linux/arch/powerpc/kernel/nvram_64.c
<<
>>
Prefs
   1/*
   2 *  c 2001 PPC 64 Team, IBM Corp
   3 *
   4 *      This program is free software; you can redistribute it and/or
   5 *      modify it under the terms of the GNU General Public License
   6 *      as published by the Free Software Foundation; either version
   7 *      2 of the License, or (at your option) any later version.
   8 *
   9 * /dev/nvram driver for PPC64
  10 *
  11 * This perhaps should live in drivers/char
  12 *
  13 * TODO: Split the /dev/nvram part (that one can use
  14 *       drivers/char/generic_nvram.c) from the arch & partition
  15 *       parsing code.
  16 */
  17
  18#include <linux/types.h>
  19#include <linux/errno.h>
  20#include <linux/fs.h>
  21#include <linux/miscdevice.h>
  22#include <linux/fcntl.h>
  23#include <linux/nvram.h>
  24#include <linux/init.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27#include <linux/kmsg_dump.h>
  28#include <linux/pagemap.h>
  29#include <linux/pstore.h>
  30#include <linux/zlib.h>
  31#include <asm/uaccess.h>
  32#include <asm/nvram.h>
  33#include <asm/rtas.h>
  34#include <asm/prom.h>
  35#include <asm/machdep.h>
  36
  37#undef DEBUG_NVRAM
  38
  39#define NVRAM_HEADER_LEN        sizeof(struct nvram_header)
  40#define NVRAM_BLOCK_LEN         NVRAM_HEADER_LEN
  41
  42/* If change this size, then change the size of NVNAME_LEN */
  43struct nvram_header {
  44        unsigned char signature;
  45        unsigned char checksum;
  46        unsigned short length;
  47        /* Terminating null required only for names < 12 chars. */
  48        char name[12];
  49};
  50
  51struct nvram_partition {
  52        struct list_head partition;
  53        struct nvram_header header;
  54        unsigned int index;
  55};
  56
  57static LIST_HEAD(nvram_partitions);
  58
  59#ifdef CONFIG_PPC_PSERIES
  60struct nvram_os_partition rtas_log_partition = {
  61        .name = "ibm,rtas-log",
  62        .req_size = 2079,
  63        .min_size = 1055,
  64        .index = -1,
  65        .os_partition = true
  66};
  67#endif
  68
  69struct nvram_os_partition oops_log_partition = {
  70        .name = "lnx,oops-log",
  71        .req_size = 4000,
  72        .min_size = 2000,
  73        .index = -1,
  74        .os_partition = true
  75};
  76
  77static const char *nvram_os_partitions[] = {
  78#ifdef CONFIG_PPC_PSERIES
  79        "ibm,rtas-log",
  80#endif
  81        "lnx,oops-log",
  82        NULL
  83};
  84
  85static void oops_to_nvram(struct kmsg_dumper *dumper,
  86                          enum kmsg_dump_reason reason);
  87
  88static struct kmsg_dumper nvram_kmsg_dumper = {
  89        .dump = oops_to_nvram
  90};
  91
  92/*
  93 * For capturing and compressing an oops or panic report...
  94
  95 * big_oops_buf[] holds the uncompressed text we're capturing.
  96 *
  97 * oops_buf[] holds the compressed text, preceded by a oops header.
  98 * oops header has u16 holding the version of oops header (to differentiate
  99 * between old and new format header) followed by u16 holding the length of
 100 * the compressed* text (*Or uncompressed, if compression fails.) and u64
 101 * holding the timestamp. oops_buf[] gets written to NVRAM.
 102 *
 103 * oops_log_info points to the header. oops_data points to the compressed text.
 104 *
 105 * +- oops_buf
 106 * |                                   +- oops_data
 107 * v                                   v
 108 * +-----------+-----------+-----------+------------------------+
 109 * | version   | length    | timestamp | text                   |
 110 * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes)   |
 111 * +-----------+-----------+-----------+------------------------+
 112 * ^
 113 * +- oops_log_info
 114 *
 115 * We preallocate these buffers during init to avoid kmalloc during oops/panic.
 116 */
 117static size_t big_oops_buf_sz;
 118static char *big_oops_buf, *oops_buf;
 119static char *oops_data;
 120static size_t oops_data_sz;
 121
 122/* Compression parameters */
 123#define COMPR_LEVEL 6
 124#define WINDOW_BITS 12
 125#define MEM_LEVEL 4
 126static struct z_stream_s stream;
 127
 128#ifdef CONFIG_PSTORE
 129#ifdef CONFIG_PPC_POWERNV
 130static struct nvram_os_partition skiboot_partition = {
 131        .name = "ibm,skiboot",
 132        .index = -1,
 133        .os_partition = false
 134};
 135#endif
 136
 137#ifdef CONFIG_PPC_PSERIES
 138static struct nvram_os_partition of_config_partition = {
 139        .name = "of-config",
 140        .index = -1,
 141        .os_partition = false
 142};
 143#endif
 144
 145static struct nvram_os_partition common_partition = {
 146        .name = "common",
 147        .index = -1,
 148        .os_partition = false
 149};
 150
 151static enum pstore_type_id nvram_type_ids[] = {
 152        PSTORE_TYPE_DMESG,
 153        PSTORE_TYPE_PPC_COMMON,
 154        -1,
 155        -1,
 156        -1
 157};
 158static int read_type;
 159#endif
 160
 161/* nvram_write_os_partition
 162 *
 163 * We need to buffer the error logs into nvram to ensure that we have
 164 * the failure information to decode.  If we have a severe error there
 165 * is no way to guarantee that the OS or the machine is in a state to
 166 * get back to user land and write the error to disk.  For example if
 167 * the SCSI device driver causes a Machine Check by writing to a bad
 168 * IO address, there is no way of guaranteeing that the device driver
 169 * is in any state that is would also be able to write the error data
 170 * captured to disk, thus we buffer it in NVRAM for analysis on the
 171 * next boot.
 172 *
 173 * In NVRAM the partition containing the error log buffer will looks like:
 174 * Header (in bytes):
 175 * +-----------+----------+--------+------------+------------------+
 176 * | signature | checksum | length | name       | data             |
 177 * |0          |1         |2      3|4         15|16        length-1|
 178 * +-----------+----------+--------+------------+------------------+
 179 *
 180 * The 'data' section would look like (in bytes):
 181 * +--------------+------------+-----------------------------------+
 182 * | event_logged | sequence # | error log                         |
 183 * |0            3|4          7|8                  error_log_size-1|
 184 * +--------------+------------+-----------------------------------+
 185 *
 186 * event_logged: 0 if event has not been logged to syslog, 1 if it has
 187 * sequence #: The unique sequence # for each event. (until it wraps)
 188 * error log: The error log from event_scan
 189 */
 190int nvram_write_os_partition(struct nvram_os_partition *part,
 191                             char *buff, int length,
 192                             unsigned int err_type,
 193                             unsigned int error_log_cnt)
 194{
 195        int rc;
 196        loff_t tmp_index;
 197        struct err_log_info info;
 198
 199        if (part->index == -1)
 200                return -ESPIPE;
 201
 202        if (length > part->size)
 203                length = part->size;
 204
 205        info.error_type = cpu_to_be32(err_type);
 206        info.seq_num = cpu_to_be32(error_log_cnt);
 207
 208        tmp_index = part->index;
 209
 210        rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info),
 211                                &tmp_index);
 212        if (rc <= 0) {
 213                pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
 214                return rc;
 215        }
 216
 217        rc = ppc_md.nvram_write(buff, length, &tmp_index);
 218        if (rc <= 0) {
 219                pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
 220                return rc;
 221        }
 222
 223        return 0;
 224}
 225
 226/* nvram_read_partition
 227 *
 228 * Reads nvram partition for at most 'length'
 229 */
 230int nvram_read_partition(struct nvram_os_partition *part, char *buff,
 231                         int length, unsigned int *err_type,
 232                         unsigned int *error_log_cnt)
 233{
 234        int rc;
 235        loff_t tmp_index;
 236        struct err_log_info info;
 237
 238        if (part->index == -1)
 239                return -1;
 240
 241        if (length > part->size)
 242                length = part->size;
 243
 244        tmp_index = part->index;
 245
 246        if (part->os_partition) {
 247                rc = ppc_md.nvram_read((char *)&info,
 248                                        sizeof(struct err_log_info),
 249                                        &tmp_index);
 250                if (rc <= 0) {
 251                        pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
 252                        return rc;
 253                }
 254        }
 255
 256        rc = ppc_md.nvram_read(buff, length, &tmp_index);
 257        if (rc <= 0) {
 258                pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
 259                return rc;
 260        }
 261
 262        if (part->os_partition) {
 263                *error_log_cnt = be32_to_cpu(info.seq_num);
 264                *err_type = be32_to_cpu(info.error_type);
 265        }
 266
 267        return 0;
 268}
 269
 270/* nvram_init_os_partition
 271 *
 272 * This sets up a partition with an "OS" signature.
 273 *
 274 * The general strategy is the following:
 275 * 1.) If a partition with the indicated name already exists...
 276 *      - If it's large enough, use it.
 277 *      - Otherwise, recycle it and keep going.
 278 * 2.) Search for a free partition that is large enough.
 279 * 3.) If there's not a free partition large enough, recycle any obsolete
 280 * OS partitions and try again.
 281 * 4.) Will first try getting a chunk that will satisfy the requested size.
 282 * 5.) If a chunk of the requested size cannot be allocated, then try finding
 283 * a chunk that will satisfy the minum needed.
 284 *
 285 * Returns 0 on success, else -1.
 286 */
 287int __init nvram_init_os_partition(struct nvram_os_partition *part)
 288{
 289        loff_t p;
 290        int size;
 291
 292        /* Look for ours */
 293        p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
 294
 295        /* Found one but too small, remove it */
 296        if (p && size < part->min_size) {
 297                pr_info("nvram: Found too small %s partition,"
 298                                        " removing it...\n", part->name);
 299                nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
 300                p = 0;
 301        }
 302
 303        /* Create one if we didn't find */
 304        if (!p) {
 305                p = nvram_create_partition(part->name, NVRAM_SIG_OS,
 306                                        part->req_size, part->min_size);
 307                if (p == -ENOSPC) {
 308                        pr_info("nvram: No room to create %s partition, "
 309                                "deleting any obsolete OS partitions...\n",
 310                                part->name);
 311                        nvram_remove_partition(NULL, NVRAM_SIG_OS,
 312                                        nvram_os_partitions);
 313                        p = nvram_create_partition(part->name, NVRAM_SIG_OS,
 314                                        part->req_size, part->min_size);
 315                }
 316        }
 317
 318        if (p <= 0) {
 319                pr_err("nvram: Failed to find or create %s"
 320                       " partition, err %d\n", part->name, (int)p);
 321                return -1;
 322        }
 323
 324        part->index = p;
 325        part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
 326
 327        return 0;
 328}
 329
 330/* Derived from logfs_compress() */
 331static int nvram_compress(const void *in, void *out, size_t inlen,
 332                                                        size_t outlen)
 333{
 334        int err, ret;
 335
 336        ret = -EIO;
 337        err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
 338                                                MEM_LEVEL, Z_DEFAULT_STRATEGY);
 339        if (err != Z_OK)
 340                goto error;
 341
 342        stream.next_in = in;
 343        stream.avail_in = inlen;
 344        stream.total_in = 0;
 345        stream.next_out = out;
 346        stream.avail_out = outlen;
 347        stream.total_out = 0;
 348
 349        err = zlib_deflate(&stream, Z_FINISH);
 350        if (err != Z_STREAM_END)
 351                goto error;
 352
 353        err = zlib_deflateEnd(&stream);
 354        if (err != Z_OK)
 355                goto error;
 356
 357        if (stream.total_out >= stream.total_in)
 358                goto error;
 359
 360        ret = stream.total_out;
 361error:
 362        return ret;
 363}
 364
 365/* Compress the text from big_oops_buf into oops_buf. */
 366static int zip_oops(size_t text_len)
 367{
 368        struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
 369        int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
 370                                                                oops_data_sz);
 371        if (zipped_len < 0) {
 372                pr_err("nvram: compression failed; returned %d\n", zipped_len);
 373                pr_err("nvram: logging uncompressed oops/panic report\n");
 374                return -1;
 375        }
 376        oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
 377        oops_hdr->report_length = cpu_to_be16(zipped_len);
 378        oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
 379        return 0;
 380}
 381
 382#ifdef CONFIG_PSTORE
 383static int nvram_pstore_open(struct pstore_info *psi)
 384{
 385        /* Reset the iterator to start reading partitions again */
 386        read_type = -1;
 387        return 0;
 388}
 389
 390/**
 391 * nvram_pstore_write - pstore write callback for nvram
 392 * @type:               Type of message logged
 393 * @reason:             reason behind dump (oops/panic)
 394 * @id:                 identifier to indicate the write performed
 395 * @part:               pstore writes data to registered buffer in parts,
 396 *                      part number will indicate the same.
 397 * @count:              Indicates oops count
 398 * @compressed:         Flag to indicate the log is compressed
 399 * @size:               number of bytes written to the registered buffer
 400 * @psi:                registered pstore_info structure
 401 *
 402 * Called by pstore_dump() when an oops or panic report is logged in the
 403 * printk buffer.
 404 * Returns 0 on successful write.
 405 */
 406static int nvram_pstore_write(enum pstore_type_id type,
 407                                enum kmsg_dump_reason reason,
 408                                u64 *id, unsigned int part, int count,
 409                                bool compressed, size_t size,
 410                                struct pstore_info *psi)
 411{
 412        int rc;
 413        unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
 414        struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
 415
 416        /* part 1 has the recent messages from printk buffer */
 417        if (part > 1 || (type != PSTORE_TYPE_DMESG))
 418                return -1;
 419
 420        if (clobbering_unread_rtas_event())
 421                return -1;
 422
 423        oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
 424        oops_hdr->report_length = cpu_to_be16(size);
 425        oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
 426
 427        if (compressed)
 428                err_type = ERR_TYPE_KERNEL_PANIC_GZ;
 429
 430        rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
 431                (int) (sizeof(*oops_hdr) + size), err_type, count);
 432
 433        if (rc != 0)
 434                return rc;
 435
 436        *id = part;
 437        return 0;
 438}
 439
 440/*
 441 * Reads the oops/panic report, rtas, of-config and common partition.
 442 * Returns the length of the data we read from each partition.
 443 * Returns 0 if we've been called before.
 444 */
 445static ssize_t nvram_pstore_read(u64 *id, enum pstore_type_id *type,
 446                                int *count, struct timespec *time, char **buf,
 447                                bool *compressed, ssize_t *ecc_notice_size,
 448                                struct pstore_info *psi)
 449{
 450        struct oops_log_info *oops_hdr;
 451        unsigned int err_type, id_no, size = 0;
 452        struct nvram_os_partition *part = NULL;
 453        char *buff = NULL;
 454        int sig = 0;
 455        loff_t p;
 456
 457        read_type++;
 458
 459        switch (nvram_type_ids[read_type]) {
 460        case PSTORE_TYPE_DMESG:
 461                part = &oops_log_partition;
 462                *type = PSTORE_TYPE_DMESG;
 463                break;
 464        case PSTORE_TYPE_PPC_COMMON:
 465                sig = NVRAM_SIG_SYS;
 466                part = &common_partition;
 467                *type = PSTORE_TYPE_PPC_COMMON;
 468                *id = PSTORE_TYPE_PPC_COMMON;
 469                time->tv_sec = 0;
 470                time->tv_nsec = 0;
 471                break;
 472#ifdef CONFIG_PPC_PSERIES
 473        case PSTORE_TYPE_PPC_RTAS:
 474                part = &rtas_log_partition;
 475                *type = PSTORE_TYPE_PPC_RTAS;
 476                time->tv_sec = last_rtas_event;
 477                time->tv_nsec = 0;
 478                break;
 479        case PSTORE_TYPE_PPC_OF:
 480                sig = NVRAM_SIG_OF;
 481                part = &of_config_partition;
 482                *type = PSTORE_TYPE_PPC_OF;
 483                *id = PSTORE_TYPE_PPC_OF;
 484                time->tv_sec = 0;
 485                time->tv_nsec = 0;
 486                break;
 487#endif
 488#ifdef CONFIG_PPC_POWERNV
 489        case PSTORE_TYPE_PPC_OPAL:
 490                sig = NVRAM_SIG_FW;
 491                part = &skiboot_partition;
 492                *type = PSTORE_TYPE_PPC_OPAL;
 493                *id = PSTORE_TYPE_PPC_OPAL;
 494                time->tv_sec = 0;
 495                time->tv_nsec = 0;
 496                break;
 497#endif
 498        default:
 499                return 0;
 500        }
 501
 502        if (!part->os_partition) {
 503                p = nvram_find_partition(part->name, sig, &size);
 504                if (p <= 0) {
 505                        pr_err("nvram: Failed to find partition %s, "
 506                                "err %d\n", part->name, (int)p);
 507                        return 0;
 508                }
 509                part->index = p;
 510                part->size = size;
 511        }
 512
 513        buff = kmalloc(part->size, GFP_KERNEL);
 514
 515        if (!buff)
 516                return -ENOMEM;
 517
 518        if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
 519                kfree(buff);
 520                return 0;
 521        }
 522
 523        *count = 0;
 524
 525        if (part->os_partition)
 526                *id = id_no;
 527
 528        if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
 529                size_t length, hdr_size;
 530
 531                oops_hdr = (struct oops_log_info *)buff;
 532                if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) {
 533                        /* Old format oops header had 2-byte record size */
 534                        hdr_size = sizeof(u16);
 535                        length = be16_to_cpu(oops_hdr->version);
 536                        time->tv_sec = 0;
 537                        time->tv_nsec = 0;
 538                } else {
 539                        hdr_size = sizeof(*oops_hdr);
 540                        length = be16_to_cpu(oops_hdr->report_length);
 541                        time->tv_sec = be64_to_cpu(oops_hdr->timestamp);
 542                        time->tv_nsec = 0;
 543                }
 544                *buf = kmemdup(buff + hdr_size, length, GFP_KERNEL);
 545                kfree(buff);
 546                if (*buf == NULL)
 547                        return -ENOMEM;
 548
 549                *ecc_notice_size = 0;
 550                if (err_type == ERR_TYPE_KERNEL_PANIC_GZ)
 551                        *compressed = true;
 552                else
 553                        *compressed = false;
 554                return length;
 555        }
 556
 557        *buf = buff;
 558        return part->size;
 559}
 560
 561static struct pstore_info nvram_pstore_info = {
 562        .owner = THIS_MODULE,
 563        .name = "nvram",
 564        .open = nvram_pstore_open,
 565        .read = nvram_pstore_read,
 566        .write = nvram_pstore_write,
 567};
 568
 569static int nvram_pstore_init(void)
 570{
 571        int rc = 0;
 572
 573        if (machine_is(pseries)) {
 574                nvram_type_ids[2] = PSTORE_TYPE_PPC_RTAS;
 575                nvram_type_ids[3] = PSTORE_TYPE_PPC_OF;
 576        } else
 577                nvram_type_ids[2] = PSTORE_TYPE_PPC_OPAL;
 578
 579        nvram_pstore_info.buf = oops_data;
 580        nvram_pstore_info.bufsize = oops_data_sz;
 581
 582        spin_lock_init(&nvram_pstore_info.buf_lock);
 583
 584        rc = pstore_register(&nvram_pstore_info);
 585        if (rc && (rc != -EPERM))
 586                /* Print error only when pstore.backend == nvram */
 587                pr_err("nvram: pstore_register() failed, returned %d. "
 588                                "Defaults to kmsg_dump\n", rc);
 589
 590        return rc;
 591}
 592#else
 593static int nvram_pstore_init(void)
 594{
 595        return -1;
 596}
 597#endif
 598
 599void __init nvram_init_oops_partition(int rtas_partition_exists)
 600{
 601        int rc;
 602
 603        rc = nvram_init_os_partition(&oops_log_partition);
 604        if (rc != 0) {
 605#ifdef CONFIG_PPC_PSERIES
 606                if (!rtas_partition_exists) {
 607                        pr_err("nvram: Failed to initialize oops partition!");
 608                        return;
 609                }
 610                pr_notice("nvram: Using %s partition to log both"
 611                        " RTAS errors and oops/panic reports\n",
 612                        rtas_log_partition.name);
 613                memcpy(&oops_log_partition, &rtas_log_partition,
 614                                                sizeof(rtas_log_partition));
 615#else
 616                pr_err("nvram: Failed to initialize oops partition!");
 617                return;
 618#endif
 619        }
 620        oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
 621        if (!oops_buf) {
 622                pr_err("nvram: No memory for %s partition\n",
 623                                                oops_log_partition.name);
 624                return;
 625        }
 626        oops_data = oops_buf + sizeof(struct oops_log_info);
 627        oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
 628
 629        rc = nvram_pstore_init();
 630
 631        if (!rc)
 632                return;
 633
 634        /*
 635         * Figure compression (preceded by elimination of each line's <n>
 636         * severity prefix) will reduce the oops/panic report to at most
 637         * 45% of its original size.
 638         */
 639        big_oops_buf_sz = (oops_data_sz * 100) / 45;
 640        big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
 641        if (big_oops_buf) {
 642                stream.workspace =  kmalloc(zlib_deflate_workspacesize(
 643                                        WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
 644                if (!stream.workspace) {
 645                        pr_err("nvram: No memory for compression workspace; "
 646                                "skipping compression of %s partition data\n",
 647                                oops_log_partition.name);
 648                        kfree(big_oops_buf);
 649                        big_oops_buf = NULL;
 650                }
 651        } else {
 652                pr_err("No memory for uncompressed %s data; "
 653                        "skipping compression\n", oops_log_partition.name);
 654                stream.workspace = NULL;
 655        }
 656
 657        rc = kmsg_dump_register(&nvram_kmsg_dumper);
 658        if (rc != 0) {
 659                pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
 660                kfree(oops_buf);
 661                kfree(big_oops_buf);
 662                kfree(stream.workspace);
 663        }
 664}
 665
 666/*
 667 * This is our kmsg_dump callback, called after an oops or panic report
 668 * has been written to the printk buffer.  We want to capture as much
 669 * of the printk buffer as possible.  First, capture as much as we can
 670 * that we think will compress sufficiently to fit in the lnx,oops-log
 671 * partition.  If that's too much, go back and capture uncompressed text.
 672 */
 673static void oops_to_nvram(struct kmsg_dumper *dumper,
 674                          enum kmsg_dump_reason reason)
 675{
 676        struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
 677        static unsigned int oops_count = 0;
 678        static bool panicking = false;
 679        static DEFINE_SPINLOCK(lock);
 680        unsigned long flags;
 681        size_t text_len;
 682        unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
 683        int rc = -1;
 684
 685        switch (reason) {
 686        case KMSG_DUMP_RESTART:
 687        case KMSG_DUMP_HALT:
 688        case KMSG_DUMP_POWEROFF:
 689                /* These are almost always orderly shutdowns. */
 690                return;
 691        case KMSG_DUMP_OOPS:
 692                break;
 693        case KMSG_DUMP_PANIC:
 694                panicking = true;
 695                break;
 696        case KMSG_DUMP_EMERG:
 697                if (panicking)
 698                        /* Panic report already captured. */
 699                        return;
 700                break;
 701        default:
 702                pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
 703                       __func__, (int) reason);
 704                return;
 705        }
 706
 707        if (clobbering_unread_rtas_event())
 708                return;
 709
 710        if (!spin_trylock_irqsave(&lock, flags))
 711                return;
 712
 713        if (big_oops_buf) {
 714                kmsg_dump_get_buffer(dumper, false,
 715                                     big_oops_buf, big_oops_buf_sz, &text_len);
 716                rc = zip_oops(text_len);
 717        }
 718        if (rc != 0) {
 719                kmsg_dump_rewind(dumper);
 720                kmsg_dump_get_buffer(dumper, false,
 721                                     oops_data, oops_data_sz, &text_len);
 722                err_type = ERR_TYPE_KERNEL_PANIC;
 723                oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
 724                oops_hdr->report_length = cpu_to_be16(text_len);
 725                oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
 726        }
 727
 728        (void) nvram_write_os_partition(&oops_log_partition, oops_buf,
 729                (int) (sizeof(*oops_hdr) + text_len), err_type,
 730                ++oops_count);
 731
 732        spin_unlock_irqrestore(&lock, flags);
 733}
 734
 735static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin)
 736{
 737        if (ppc_md.nvram_size == NULL)
 738                return -ENODEV;
 739        return generic_file_llseek_size(file, offset, origin, MAX_LFS_FILESIZE,
 740                                        ppc_md.nvram_size());
 741}
 742
 743
 744static ssize_t dev_nvram_read(struct file *file, char __user *buf,
 745                          size_t count, loff_t *ppos)
 746{
 747        ssize_t ret;
 748        char *tmp = NULL;
 749        ssize_t size;
 750
 751        if (!ppc_md.nvram_size) {
 752                ret = -ENODEV;
 753                goto out;
 754        }
 755
 756        size = ppc_md.nvram_size();
 757        if (size < 0) {
 758                ret = size;
 759                goto out;
 760        }
 761
 762        if (*ppos >= size) {
 763                ret = 0;
 764                goto out;
 765        }
 766
 767        count = min_t(size_t, count, size - *ppos);
 768        count = min(count, PAGE_SIZE);
 769
 770        tmp = kmalloc(count, GFP_KERNEL);
 771        if (!tmp) {
 772                ret = -ENOMEM;
 773                goto out;
 774        }
 775
 776        ret = ppc_md.nvram_read(tmp, count, ppos);
 777        if (ret <= 0)
 778                goto out;
 779
 780        if (copy_to_user(buf, tmp, ret))
 781                ret = -EFAULT;
 782
 783out:
 784        kfree(tmp);
 785        return ret;
 786
 787}
 788
 789static ssize_t dev_nvram_write(struct file *file, const char __user *buf,
 790                          size_t count, loff_t *ppos)
 791{
 792        ssize_t ret;
 793        char *tmp = NULL;
 794        ssize_t size;
 795
 796        ret = -ENODEV;
 797        if (!ppc_md.nvram_size)
 798                goto out;
 799
 800        ret = 0;
 801        size = ppc_md.nvram_size();
 802        if (*ppos >= size || size < 0)
 803                goto out;
 804
 805        count = min_t(size_t, count, size - *ppos);
 806        count = min(count, PAGE_SIZE);
 807
 808        ret = -ENOMEM;
 809        tmp = kmalloc(count, GFP_KERNEL);
 810        if (!tmp)
 811                goto out;
 812
 813        ret = -EFAULT;
 814        if (copy_from_user(tmp, buf, count))
 815                goto out;
 816
 817        ret = ppc_md.nvram_write(tmp, count, ppos);
 818
 819out:
 820        kfree(tmp);
 821        return ret;
 822
 823}
 824
 825static long dev_nvram_ioctl(struct file *file, unsigned int cmd,
 826                            unsigned long arg)
 827{
 828        switch(cmd) {
 829#ifdef CONFIG_PPC_PMAC
 830        case OBSOLETE_PMAC_NVRAM_GET_OFFSET:
 831                printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n");
 832        case IOC_NVRAM_GET_OFFSET: {
 833                int part, offset;
 834
 835                if (!machine_is(powermac))
 836                        return -EINVAL;
 837                if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0)
 838                        return -EFAULT;
 839                if (part < pmac_nvram_OF || part > pmac_nvram_NR)
 840                        return -EINVAL;
 841                offset = pmac_get_partition(part);
 842                if (offset < 0)
 843                        return offset;
 844                if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0)
 845                        return -EFAULT;
 846                return 0;
 847        }
 848#endif /* CONFIG_PPC_PMAC */
 849        default:
 850                return -EINVAL;
 851        }
 852}
 853
 854static const struct file_operations nvram_fops = {
 855        .owner          = THIS_MODULE,
 856        .llseek         = dev_nvram_llseek,
 857        .read           = dev_nvram_read,
 858        .write          = dev_nvram_write,
 859        .unlocked_ioctl = dev_nvram_ioctl,
 860};
 861
 862static struct miscdevice nvram_dev = {
 863        NVRAM_MINOR,
 864        "nvram",
 865        &nvram_fops
 866};
 867
 868
 869#ifdef DEBUG_NVRAM
 870static void __init nvram_print_partitions(char * label)
 871{
 872        struct nvram_partition * tmp_part;
 873        
 874        printk(KERN_WARNING "--------%s---------\n", label);
 875        printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
 876        list_for_each_entry(tmp_part, &nvram_partitions, partition) {
 877                printk(KERN_WARNING "%4d    \t%02x\t%02x\t%d\t%12.12s\n",
 878                       tmp_part->index, tmp_part->header.signature,
 879                       tmp_part->header.checksum, tmp_part->header.length,
 880                       tmp_part->header.name);
 881        }
 882}
 883#endif
 884
 885
 886static int __init nvram_write_header(struct nvram_partition * part)
 887{
 888        loff_t tmp_index;
 889        int rc;
 890        struct nvram_header phead;
 891
 892        memcpy(&phead, &part->header, NVRAM_HEADER_LEN);
 893        phead.length = cpu_to_be16(phead.length);
 894
 895        tmp_index = part->index;
 896        rc = ppc_md.nvram_write((char *)&phead, NVRAM_HEADER_LEN, &tmp_index);
 897
 898        return rc;
 899}
 900
 901
 902static unsigned char __init nvram_checksum(struct nvram_header *p)
 903{
 904        unsigned int c_sum, c_sum2;
 905        unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */
 906        c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5];
 907
 908        /* The sum may have spilled into the 3rd byte.  Fold it back. */
 909        c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff;
 910        /* The sum cannot exceed 2 bytes.  Fold it into a checksum */
 911        c_sum2 = (c_sum >> 8) + (c_sum << 8);
 912        c_sum = ((c_sum + c_sum2) >> 8) & 0xff;
 913        return c_sum;
 914}
 915
 916/*
 917 * Per the criteria passed via nvram_remove_partition(), should this
 918 * partition be removed?  1=remove, 0=keep
 919 */
 920static int nvram_can_remove_partition(struct nvram_partition *part,
 921                const char *name, int sig, const char *exceptions[])
 922{
 923        if (part->header.signature != sig)
 924                return 0;
 925        if (name) {
 926                if (strncmp(name, part->header.name, 12))
 927                        return 0;
 928        } else if (exceptions) {
 929                const char **except;
 930                for (except = exceptions; *except; except++) {
 931                        if (!strncmp(*except, part->header.name, 12))
 932                                return 0;
 933                }
 934        }
 935        return 1;
 936}
 937
 938/**
 939 * nvram_remove_partition - Remove one or more partitions in nvram
 940 * @name: name of the partition to remove, or NULL for a
 941 *        signature only match
 942 * @sig: signature of the partition(s) to remove
 943 * @exceptions: When removing all partitions with a matching signature,
 944 *        leave these alone.
 945 */
 946
 947int __init nvram_remove_partition(const char *name, int sig,
 948                                                const char *exceptions[])
 949{
 950        struct nvram_partition *part, *prev, *tmp;
 951        int rc;
 952
 953        list_for_each_entry(part, &nvram_partitions, partition) {
 954                if (!nvram_can_remove_partition(part, name, sig, exceptions))
 955                        continue;
 956
 957                /* Make partition a free partition */
 958                part->header.signature = NVRAM_SIG_FREE;
 959                memset(part->header.name, 'w', 12);
 960                part->header.checksum = nvram_checksum(&part->header);
 961                rc = nvram_write_header(part);
 962                if (rc <= 0) {
 963                        printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
 964                        return rc;
 965                }
 966        }
 967
 968        /* Merge contiguous ones */
 969        prev = NULL;
 970        list_for_each_entry_safe(part, tmp, &nvram_partitions, partition) {
 971                if (part->header.signature != NVRAM_SIG_FREE) {
 972                        prev = NULL;
 973                        continue;
 974                }
 975                if (prev) {
 976                        prev->header.length += part->header.length;
 977                        prev->header.checksum = nvram_checksum(&prev->header);
 978                        rc = nvram_write_header(prev);
 979                        if (rc <= 0) {
 980                                printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
 981                                return rc;
 982                        }
 983                        list_del(&part->partition);
 984                        kfree(part);
 985                } else
 986                        prev = part;
 987        }
 988        
 989        return 0;
 990}
 991
 992/**
 993 * nvram_create_partition - Create a partition in nvram
 994 * @name: name of the partition to create
 995 * @sig: signature of the partition to create
 996 * @req_size: size of data to allocate in bytes
 997 * @min_size: minimum acceptable size (0 means req_size)
 998 *
 999 * Returns a negative error code or a positive nvram index
1000 * of the beginning of the data area of the newly created
1001 * partition. If you provided a min_size smaller than req_size
1002 * you need to query for the actual size yourself after the
1003 * call using nvram_partition_get_size().
1004 */
1005loff_t __init nvram_create_partition(const char *name, int sig,
1006                                     int req_size, int min_size)
1007{
1008        struct nvram_partition *part;
1009        struct nvram_partition *new_part;
1010        struct nvram_partition *free_part = NULL;
1011        static char nv_init_vals[16];
1012        loff_t tmp_index;
1013        long size = 0;
1014        int rc;
1015
1016        /* Convert sizes from bytes to blocks */
1017        req_size = _ALIGN_UP(req_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
1018        min_size = _ALIGN_UP(min_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
1019
1020        /* If no minimum size specified, make it the same as the
1021         * requested size
1022         */
1023        if (min_size == 0)
1024                min_size = req_size;
1025        if (min_size > req_size)
1026                return -EINVAL;
1027
1028        /* Now add one block to each for the header */
1029        req_size += 1;
1030        min_size += 1;
1031
1032        /* Find a free partition that will give us the maximum needed size 
1033           If can't find one that will give us the minimum size needed */
1034        list_for_each_entry(part, &nvram_partitions, partition) {
1035                if (part->header.signature != NVRAM_SIG_FREE)
1036                        continue;
1037
1038                if (part->header.length >= req_size) {
1039                        size = req_size;
1040                        free_part = part;
1041                        break;
1042                }
1043                if (part->header.length > size &&
1044                    part->header.length >= min_size) {
1045                        size = part->header.length;
1046                        free_part = part;
1047                }
1048        }
1049        if (!size)
1050                return -ENOSPC;
1051        
1052        /* Create our OS partition */
1053        new_part = kmalloc(sizeof(*new_part), GFP_KERNEL);
1054        if (!new_part) {
1055                pr_err("%s: kmalloc failed\n", __func__);
1056                return -ENOMEM;
1057        }
1058
1059        new_part->index = free_part->index;
1060        new_part->header.signature = sig;
1061        new_part->header.length = size;
1062        strncpy(new_part->header.name, name, 12);
1063        new_part->header.checksum = nvram_checksum(&new_part->header);
1064
1065        rc = nvram_write_header(new_part);
1066        if (rc <= 0) {
1067                pr_err("%s: nvram_write_header failed (%d)\n", __func__, rc);
1068                kfree(new_part);
1069                return rc;
1070        }
1071        list_add_tail(&new_part->partition, &free_part->partition);
1072
1073        /* Adjust or remove the partition we stole the space from */
1074        if (free_part->header.length > size) {
1075                free_part->index += size * NVRAM_BLOCK_LEN;
1076                free_part->header.length -= size;
1077                free_part->header.checksum = nvram_checksum(&free_part->header);
1078                rc = nvram_write_header(free_part);
1079                if (rc <= 0) {
1080                        pr_err("%s: nvram_write_header failed (%d)\n",
1081                               __func__, rc);
1082                        return rc;
1083                }
1084        } else {
1085                list_del(&free_part->partition);
1086                kfree(free_part);
1087        } 
1088
1089        /* Clear the new partition */
1090        for (tmp_index = new_part->index + NVRAM_HEADER_LEN;
1091             tmp_index <  ((size - 1) * NVRAM_BLOCK_LEN);
1092             tmp_index += NVRAM_BLOCK_LEN) {
1093                rc = ppc_md.nvram_write(nv_init_vals, NVRAM_BLOCK_LEN, &tmp_index);
1094                if (rc <= 0) {
1095                        pr_err("%s: nvram_write failed (%d)\n",
1096                               __func__, rc);
1097                        return rc;
1098                }
1099        }
1100
1101        return new_part->index + NVRAM_HEADER_LEN;
1102}
1103
1104/**
1105 * nvram_get_partition_size - Get the data size of an nvram partition
1106 * @data_index: This is the offset of the start of the data of
1107 *              the partition. The same value that is returned by
1108 *              nvram_create_partition().
1109 */
1110int nvram_get_partition_size(loff_t data_index)
1111{
1112        struct nvram_partition *part;
1113        
1114        list_for_each_entry(part, &nvram_partitions, partition) {
1115                if (part->index + NVRAM_HEADER_LEN == data_index)
1116                        return (part->header.length - 1) * NVRAM_BLOCK_LEN;
1117        }
1118        return -1;
1119}
1120
1121
1122/**
1123 * nvram_find_partition - Find an nvram partition by signature and name
1124 * @name: Name of the partition or NULL for any name
1125 * @sig: Signature to test against
1126 * @out_size: if non-NULL, returns the size of the data part of the partition
1127 */
1128loff_t nvram_find_partition(const char *name, int sig, int *out_size)
1129{
1130        struct nvram_partition *p;
1131
1132        list_for_each_entry(p, &nvram_partitions, partition) {
1133                if (p->header.signature == sig &&
1134                    (!name || !strncmp(p->header.name, name, 12))) {
1135                        if (out_size)
1136                                *out_size = (p->header.length - 1) *
1137                                        NVRAM_BLOCK_LEN;
1138                        return p->index + NVRAM_HEADER_LEN;
1139                }
1140        }
1141        return 0;
1142}
1143
1144int __init nvram_scan_partitions(void)
1145{
1146        loff_t cur_index = 0;
1147        struct nvram_header phead;
1148        struct nvram_partition * tmp_part;
1149        unsigned char c_sum;
1150        char * header;
1151        int total_size;
1152        int err;
1153
1154        if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1155                return -ENODEV;
1156        total_size = ppc_md.nvram_size();
1157        
1158        header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL);
1159        if (!header) {
1160                printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n");
1161                return -ENOMEM;
1162        }
1163
1164        while (cur_index < total_size) {
1165
1166                err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index);
1167                if (err != NVRAM_HEADER_LEN) {
1168                        printk(KERN_ERR "nvram_scan_partitions: Error parsing "
1169                               "nvram partitions\n");
1170                        goto out;
1171                }
1172
1173                cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */
1174
1175                memcpy(&phead, header, NVRAM_HEADER_LEN);
1176
1177                phead.length = be16_to_cpu(phead.length);
1178
1179                err = 0;
1180                c_sum = nvram_checksum(&phead);
1181                if (c_sum != phead.checksum) {
1182                        printk(KERN_WARNING "WARNING: nvram partition checksum"
1183                               " was %02x, should be %02x!\n",
1184                               phead.checksum, c_sum);
1185                        printk(KERN_WARNING "Terminating nvram partition scan\n");
1186                        goto out;
1187                }
1188                if (!phead.length) {
1189                        printk(KERN_WARNING "WARNING: nvram corruption "
1190                               "detected: 0-length partition\n");
1191                        goto out;
1192                }
1193                tmp_part = kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
1194                err = -ENOMEM;
1195                if (!tmp_part) {
1196                        printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n");
1197                        goto out;
1198                }
1199                
1200                memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
1201                tmp_part->index = cur_index;
1202                list_add_tail(&tmp_part->partition, &nvram_partitions);
1203                
1204                cur_index += phead.length * NVRAM_BLOCK_LEN;
1205        }
1206        err = 0;
1207
1208#ifdef DEBUG_NVRAM
1209        nvram_print_partitions("NVRAM Partitions");
1210#endif
1211
1212 out:
1213        kfree(header);
1214        return err;
1215}
1216
1217static int __init nvram_init(void)
1218{
1219        int rc;
1220        
1221        BUILD_BUG_ON(NVRAM_BLOCK_LEN != 16);
1222
1223        if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1224                return  -ENODEV;
1225
1226        rc = misc_register(&nvram_dev);
1227        if (rc != 0) {
1228                printk(KERN_ERR "nvram_init: failed to register device\n");
1229                return rc;
1230        }
1231        
1232        return rc;
1233}
1234device_initcall(nvram_init);
1235