linux/arch/powerpc/kvm/book3s_64_mmu_hv.c
<<
>>
Prefs
   1/*
   2 * This program is free software; you can redistribute it and/or modify
   3 * it under the terms of the GNU General Public License, version 2, as
   4 * published by the Free Software Foundation.
   5 *
   6 * This program is distributed in the hope that it will be useful,
   7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
   8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   9 * GNU General Public License for more details.
  10 *
  11 * You should have received a copy of the GNU General Public License
  12 * along with this program; if not, write to the Free Software
  13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  14 *
  15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  16 */
  17
  18#include <linux/types.h>
  19#include <linux/string.h>
  20#include <linux/kvm.h>
  21#include <linux/kvm_host.h>
  22#include <linux/highmem.h>
  23#include <linux/gfp.h>
  24#include <linux/slab.h>
  25#include <linux/hugetlb.h>
  26#include <linux/vmalloc.h>
  27#include <linux/srcu.h>
  28#include <linux/anon_inodes.h>
  29#include <linux/file.h>
  30#include <linux/debugfs.h>
  31
  32#include <asm/tlbflush.h>
  33#include <asm/kvm_ppc.h>
  34#include <asm/kvm_book3s.h>
  35#include <asm/book3s/64/mmu-hash.h>
  36#include <asm/hvcall.h>
  37#include <asm/synch.h>
  38#include <asm/ppc-opcode.h>
  39#include <asm/cputable.h>
  40
  41#include "trace_hv.h"
  42
  43/* Power architecture requires HPT is at least 256kB */
  44#define PPC_MIN_HPT_ORDER       18
  45
  46static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
  47                                long pte_index, unsigned long pteh,
  48                                unsigned long ptel, unsigned long *pte_idx_ret);
  49static void kvmppc_rmap_reset(struct kvm *kvm);
  50
  51long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
  52{
  53        unsigned long hpt = 0;
  54        struct revmap_entry *rev;
  55        struct page *page = NULL;
  56        long order = KVM_DEFAULT_HPT_ORDER;
  57
  58        if (htab_orderp) {
  59                order = *htab_orderp;
  60                if (order < PPC_MIN_HPT_ORDER)
  61                        order = PPC_MIN_HPT_ORDER;
  62        }
  63
  64        kvm->arch.hpt_cma_alloc = 0;
  65        page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
  66        if (page) {
  67                hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
  68                memset((void *)hpt, 0, (1ul << order));
  69                kvm->arch.hpt_cma_alloc = 1;
  70        }
  71
  72        /* Lastly try successively smaller sizes from the page allocator */
  73        /* Only do this if userspace didn't specify a size via ioctl */
  74        while (!hpt && order > PPC_MIN_HPT_ORDER && !htab_orderp) {
  75                hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
  76                                       __GFP_NOWARN, order - PAGE_SHIFT);
  77                if (!hpt)
  78                        --order;
  79        }
  80
  81        if (!hpt)
  82                return -ENOMEM;
  83
  84        kvm->arch.hpt_virt = hpt;
  85        kvm->arch.hpt_order = order;
  86        /* HPTEs are 2**4 bytes long */
  87        kvm->arch.hpt_npte = 1ul << (order - 4);
  88        /* 128 (2**7) bytes in each HPTEG */
  89        kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
  90
  91        /* Allocate reverse map array */
  92        rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
  93        if (!rev) {
  94                pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
  95                goto out_freehpt;
  96        }
  97        kvm->arch.revmap = rev;
  98        kvm->arch.sdr1 = __pa(hpt) | (order - 18);
  99
 100        pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
 101                hpt, order, kvm->arch.lpid);
 102
 103        if (htab_orderp)
 104                *htab_orderp = order;
 105        return 0;
 106
 107 out_freehpt:
 108        if (kvm->arch.hpt_cma_alloc)
 109                kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
 110        else
 111                free_pages(hpt, order - PAGE_SHIFT);
 112        return -ENOMEM;
 113}
 114
 115long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
 116{
 117        long err = -EBUSY;
 118        long order;
 119
 120        mutex_lock(&kvm->lock);
 121        if (kvm->arch.hpte_setup_done) {
 122                kvm->arch.hpte_setup_done = 0;
 123                /* order hpte_setup_done vs. vcpus_running */
 124                smp_mb();
 125                if (atomic_read(&kvm->arch.vcpus_running)) {
 126                        kvm->arch.hpte_setup_done = 1;
 127                        goto out;
 128                }
 129        }
 130        if (kvm->arch.hpt_virt) {
 131                order = kvm->arch.hpt_order;
 132                /* Set the entire HPT to 0, i.e. invalid HPTEs */
 133                memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
 134                /*
 135                 * Reset all the reverse-mapping chains for all memslots
 136                 */
 137                kvmppc_rmap_reset(kvm);
 138                /* Ensure that each vcpu will flush its TLB on next entry. */
 139                cpumask_setall(&kvm->arch.need_tlb_flush);
 140                *htab_orderp = order;
 141                err = 0;
 142        } else {
 143                err = kvmppc_alloc_hpt(kvm, htab_orderp);
 144                order = *htab_orderp;
 145        }
 146 out:
 147        mutex_unlock(&kvm->lock);
 148        return err;
 149}
 150
 151void kvmppc_free_hpt(struct kvm *kvm)
 152{
 153        kvmppc_free_lpid(kvm->arch.lpid);
 154        vfree(kvm->arch.revmap);
 155        if (kvm->arch.hpt_cma_alloc)
 156                kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
 157                                1 << (kvm->arch.hpt_order - PAGE_SHIFT));
 158        else
 159                free_pages(kvm->arch.hpt_virt,
 160                           kvm->arch.hpt_order - PAGE_SHIFT);
 161}
 162
 163/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
 164static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
 165{
 166        return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
 167}
 168
 169/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
 170static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
 171{
 172        return (pgsize == 0x10000) ? 0x1000 : 0;
 173}
 174
 175void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
 176                     unsigned long porder)
 177{
 178        unsigned long i;
 179        unsigned long npages;
 180        unsigned long hp_v, hp_r;
 181        unsigned long addr, hash;
 182        unsigned long psize;
 183        unsigned long hp0, hp1;
 184        unsigned long idx_ret;
 185        long ret;
 186        struct kvm *kvm = vcpu->kvm;
 187
 188        psize = 1ul << porder;
 189        npages = memslot->npages >> (porder - PAGE_SHIFT);
 190
 191        /* VRMA can't be > 1TB */
 192        if (npages > 1ul << (40 - porder))
 193                npages = 1ul << (40 - porder);
 194        /* Can't use more than 1 HPTE per HPTEG */
 195        if (npages > kvm->arch.hpt_mask + 1)
 196                npages = kvm->arch.hpt_mask + 1;
 197
 198        hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
 199                HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
 200        hp1 = hpte1_pgsize_encoding(psize) |
 201                HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
 202
 203        for (i = 0; i < npages; ++i) {
 204                addr = i << porder;
 205                /* can't use hpt_hash since va > 64 bits */
 206                hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
 207                /*
 208                 * We assume that the hash table is empty and no
 209                 * vcpus are using it at this stage.  Since we create
 210                 * at most one HPTE per HPTEG, we just assume entry 7
 211                 * is available and use it.
 212                 */
 213                hash = (hash << 3) + 7;
 214                hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
 215                hp_r = hp1 | addr;
 216                ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
 217                                                 &idx_ret);
 218                if (ret != H_SUCCESS) {
 219                        pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
 220                               addr, ret);
 221                        break;
 222                }
 223        }
 224}
 225
 226int kvmppc_mmu_hv_init(void)
 227{
 228        unsigned long host_lpid, rsvd_lpid;
 229
 230        if (!cpu_has_feature(CPU_FTR_HVMODE))
 231                return -EINVAL;
 232
 233        /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
 234        host_lpid = mfspr(SPRN_LPID);
 235        rsvd_lpid = LPID_RSVD;
 236
 237        kvmppc_init_lpid(rsvd_lpid + 1);
 238
 239        kvmppc_claim_lpid(host_lpid);
 240        /* rsvd_lpid is reserved for use in partition switching */
 241        kvmppc_claim_lpid(rsvd_lpid);
 242
 243        return 0;
 244}
 245
 246static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
 247{
 248        unsigned long msr = vcpu->arch.intr_msr;
 249
 250        /* If transactional, change to suspend mode on IRQ delivery */
 251        if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
 252                msr |= MSR_TS_S;
 253        else
 254                msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
 255        kvmppc_set_msr(vcpu, msr);
 256}
 257
 258long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
 259                                long pte_index, unsigned long pteh,
 260                                unsigned long ptel, unsigned long *pte_idx_ret)
 261{
 262        long ret;
 263
 264        /* Protect linux PTE lookup from page table destruction */
 265        rcu_read_lock_sched();  /* this disables preemption too */
 266        ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
 267                                current->mm->pgd, false, pte_idx_ret);
 268        rcu_read_unlock_sched();
 269        if (ret == H_TOO_HARD) {
 270                /* this can't happen */
 271                pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
 272                ret = H_RESOURCE;       /* or something */
 273        }
 274        return ret;
 275
 276}
 277
 278static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
 279                                                         gva_t eaddr)
 280{
 281        u64 mask;
 282        int i;
 283
 284        for (i = 0; i < vcpu->arch.slb_nr; i++) {
 285                if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
 286                        continue;
 287
 288                if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
 289                        mask = ESID_MASK_1T;
 290                else
 291                        mask = ESID_MASK;
 292
 293                if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
 294                        return &vcpu->arch.slb[i];
 295        }
 296        return NULL;
 297}
 298
 299static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
 300                        unsigned long ea)
 301{
 302        unsigned long ra_mask;
 303
 304        ra_mask = hpte_page_size(v, r) - 1;
 305        return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
 306}
 307
 308static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
 309                        struct kvmppc_pte *gpte, bool data, bool iswrite)
 310{
 311        struct kvm *kvm = vcpu->kvm;
 312        struct kvmppc_slb *slbe;
 313        unsigned long slb_v;
 314        unsigned long pp, key;
 315        unsigned long v, gr;
 316        __be64 *hptep;
 317        int index;
 318        int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
 319
 320        /* Get SLB entry */
 321        if (virtmode) {
 322                slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
 323                if (!slbe)
 324                        return -EINVAL;
 325                slb_v = slbe->origv;
 326        } else {
 327                /* real mode access */
 328                slb_v = vcpu->kvm->arch.vrma_slb_v;
 329        }
 330
 331        preempt_disable();
 332        /* Find the HPTE in the hash table */
 333        index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
 334                                         HPTE_V_VALID | HPTE_V_ABSENT);
 335        if (index < 0) {
 336                preempt_enable();
 337                return -ENOENT;
 338        }
 339        hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
 340        v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
 341        gr = kvm->arch.revmap[index].guest_rpte;
 342
 343        unlock_hpte(hptep, v);
 344        preempt_enable();
 345
 346        gpte->eaddr = eaddr;
 347        gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
 348
 349        /* Get PP bits and key for permission check */
 350        pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
 351        key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
 352        key &= slb_v;
 353
 354        /* Calculate permissions */
 355        gpte->may_read = hpte_read_permission(pp, key);
 356        gpte->may_write = hpte_write_permission(pp, key);
 357        gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
 358
 359        /* Storage key permission check for POWER7 */
 360        if (data && virtmode) {
 361                int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
 362                if (amrfield & 1)
 363                        gpte->may_read = 0;
 364                if (amrfield & 2)
 365                        gpte->may_write = 0;
 366        }
 367
 368        /* Get the guest physical address */
 369        gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
 370        return 0;
 371}
 372
 373/*
 374 * Quick test for whether an instruction is a load or a store.
 375 * If the instruction is a load or a store, then this will indicate
 376 * which it is, at least on server processors.  (Embedded processors
 377 * have some external PID instructions that don't follow the rule
 378 * embodied here.)  If the instruction isn't a load or store, then
 379 * this doesn't return anything useful.
 380 */
 381static int instruction_is_store(unsigned int instr)
 382{
 383        unsigned int mask;
 384
 385        mask = 0x10000000;
 386        if ((instr & 0xfc000000) == 0x7c000000)
 387                mask = 0x100;           /* major opcode 31 */
 388        return (instr & mask) != 0;
 389}
 390
 391static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
 392                                  unsigned long gpa, gva_t ea, int is_store)
 393{
 394        u32 last_inst;
 395
 396        /*
 397         * If we fail, we just return to the guest and try executing it again.
 398         */
 399        if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
 400                EMULATE_DONE)
 401                return RESUME_GUEST;
 402
 403        /*
 404         * WARNING: We do not know for sure whether the instruction we just
 405         * read from memory is the same that caused the fault in the first
 406         * place.  If the instruction we read is neither an load or a store,
 407         * then it can't access memory, so we don't need to worry about
 408         * enforcing access permissions.  So, assuming it is a load or
 409         * store, we just check that its direction (load or store) is
 410         * consistent with the original fault, since that's what we
 411         * checked the access permissions against.  If there is a mismatch
 412         * we just return and retry the instruction.
 413         */
 414
 415        if (instruction_is_store(last_inst) != !!is_store)
 416                return RESUME_GUEST;
 417
 418        /*
 419         * Emulated accesses are emulated by looking at the hash for
 420         * translation once, then performing the access later. The
 421         * translation could be invalidated in the meantime in which
 422         * point performing the subsequent memory access on the old
 423         * physical address could possibly be a security hole for the
 424         * guest (but not the host).
 425         *
 426         * This is less of an issue for MMIO stores since they aren't
 427         * globally visible. It could be an issue for MMIO loads to
 428         * a certain extent but we'll ignore it for now.
 429         */
 430
 431        vcpu->arch.paddr_accessed = gpa;
 432        vcpu->arch.vaddr_accessed = ea;
 433        return kvmppc_emulate_mmio(run, vcpu);
 434}
 435
 436int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
 437                                unsigned long ea, unsigned long dsisr)
 438{
 439        struct kvm *kvm = vcpu->kvm;
 440        unsigned long hpte[3], r;
 441        __be64 *hptep;
 442        unsigned long mmu_seq, psize, pte_size;
 443        unsigned long gpa_base, gfn_base;
 444        unsigned long gpa, gfn, hva, pfn;
 445        struct kvm_memory_slot *memslot;
 446        unsigned long *rmap;
 447        struct revmap_entry *rev;
 448        struct page *page, *pages[1];
 449        long index, ret, npages;
 450        bool is_ci;
 451        unsigned int writing, write_ok;
 452        struct vm_area_struct *vma;
 453        unsigned long rcbits;
 454
 455        /*
 456         * Real-mode code has already searched the HPT and found the
 457         * entry we're interested in.  Lock the entry and check that
 458         * it hasn't changed.  If it has, just return and re-execute the
 459         * instruction.
 460         */
 461        if (ea != vcpu->arch.pgfault_addr)
 462                return RESUME_GUEST;
 463        index = vcpu->arch.pgfault_index;
 464        hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
 465        rev = &kvm->arch.revmap[index];
 466        preempt_disable();
 467        while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
 468                cpu_relax();
 469        hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
 470        hpte[1] = be64_to_cpu(hptep[1]);
 471        hpte[2] = r = rev->guest_rpte;
 472        unlock_hpte(hptep, hpte[0]);
 473        preempt_enable();
 474
 475        if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
 476            hpte[1] != vcpu->arch.pgfault_hpte[1])
 477                return RESUME_GUEST;
 478
 479        /* Translate the logical address and get the page */
 480        psize = hpte_page_size(hpte[0], r);
 481        gpa_base = r & HPTE_R_RPN & ~(psize - 1);
 482        gfn_base = gpa_base >> PAGE_SHIFT;
 483        gpa = gpa_base | (ea & (psize - 1));
 484        gfn = gpa >> PAGE_SHIFT;
 485        memslot = gfn_to_memslot(kvm, gfn);
 486
 487        trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
 488
 489        /* No memslot means it's an emulated MMIO region */
 490        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
 491                return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
 492                                              dsisr & DSISR_ISSTORE);
 493
 494        /*
 495         * This should never happen, because of the slot_is_aligned()
 496         * check in kvmppc_do_h_enter().
 497         */
 498        if (gfn_base < memslot->base_gfn)
 499                return -EFAULT;
 500
 501        /* used to check for invalidations in progress */
 502        mmu_seq = kvm->mmu_notifier_seq;
 503        smp_rmb();
 504
 505        ret = -EFAULT;
 506        is_ci = false;
 507        pfn = 0;
 508        page = NULL;
 509        pte_size = PAGE_SIZE;
 510        writing = (dsisr & DSISR_ISSTORE) != 0;
 511        /* If writing != 0, then the HPTE must allow writing, if we get here */
 512        write_ok = writing;
 513        hva = gfn_to_hva_memslot(memslot, gfn);
 514        npages = get_user_pages_fast(hva, 1, writing, pages);
 515        if (npages < 1) {
 516                /* Check if it's an I/O mapping */
 517                down_read(&current->mm->mmap_sem);
 518                vma = find_vma(current->mm, hva);
 519                if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
 520                    (vma->vm_flags & VM_PFNMAP)) {
 521                        pfn = vma->vm_pgoff +
 522                                ((hva - vma->vm_start) >> PAGE_SHIFT);
 523                        pte_size = psize;
 524                        is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot))));
 525                        write_ok = vma->vm_flags & VM_WRITE;
 526                }
 527                up_read(&current->mm->mmap_sem);
 528                if (!pfn)
 529                        goto out_put;
 530        } else {
 531                page = pages[0];
 532                pfn = page_to_pfn(page);
 533                if (PageHuge(page)) {
 534                        page = compound_head(page);
 535                        pte_size <<= compound_order(page);
 536                }
 537                /* if the guest wants write access, see if that is OK */
 538                if (!writing && hpte_is_writable(r)) {
 539                        pte_t *ptep, pte;
 540                        unsigned long flags;
 541                        /*
 542                         * We need to protect against page table destruction
 543                         * hugepage split and collapse.
 544                         */
 545                        local_irq_save(flags);
 546                        ptep = find_linux_pte_or_hugepte(current->mm->pgd,
 547                                                         hva, NULL, NULL);
 548                        if (ptep) {
 549                                pte = kvmppc_read_update_linux_pte(ptep, 1);
 550                                if (pte_write(pte))
 551                                        write_ok = 1;
 552                        }
 553                        local_irq_restore(flags);
 554                }
 555        }
 556
 557        if (psize > pte_size)
 558                goto out_put;
 559
 560        /* Check WIMG vs. the actual page we're accessing */
 561        if (!hpte_cache_flags_ok(r, is_ci)) {
 562                if (is_ci)
 563                        goto out_put;
 564                /*
 565                 * Allow guest to map emulated device memory as
 566                 * uncacheable, but actually make it cacheable.
 567                 */
 568                r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
 569        }
 570
 571        /*
 572         * Set the HPTE to point to pfn.
 573         * Since the pfn is at PAGE_SIZE granularity, make sure we
 574         * don't mask out lower-order bits if psize < PAGE_SIZE.
 575         */
 576        if (psize < PAGE_SIZE)
 577                psize = PAGE_SIZE;
 578        r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
 579        if (hpte_is_writable(r) && !write_ok)
 580                r = hpte_make_readonly(r);
 581        ret = RESUME_GUEST;
 582        preempt_disable();
 583        while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
 584                cpu_relax();
 585        if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
 586                be64_to_cpu(hptep[1]) != hpte[1] ||
 587                rev->guest_rpte != hpte[2])
 588                /* HPTE has been changed under us; let the guest retry */
 589                goto out_unlock;
 590        hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
 591
 592        /* Always put the HPTE in the rmap chain for the page base address */
 593        rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
 594        lock_rmap(rmap);
 595
 596        /* Check if we might have been invalidated; let the guest retry if so */
 597        ret = RESUME_GUEST;
 598        if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
 599                unlock_rmap(rmap);
 600                goto out_unlock;
 601        }
 602
 603        /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
 604        rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
 605        r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
 606
 607        if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
 608                /* HPTE was previously valid, so we need to invalidate it */
 609                unlock_rmap(rmap);
 610                hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
 611                kvmppc_invalidate_hpte(kvm, hptep, index);
 612                /* don't lose previous R and C bits */
 613                r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
 614        } else {
 615                kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
 616        }
 617
 618        hptep[1] = cpu_to_be64(r);
 619        eieio();
 620        __unlock_hpte(hptep, hpte[0]);
 621        asm volatile("ptesync" : : : "memory");
 622        preempt_enable();
 623        if (page && hpte_is_writable(r))
 624                SetPageDirty(page);
 625
 626 out_put:
 627        trace_kvm_page_fault_exit(vcpu, hpte, ret);
 628
 629        if (page) {
 630                /*
 631                 * We drop pages[0] here, not page because page might
 632                 * have been set to the head page of a compound, but
 633                 * we have to drop the reference on the correct tail
 634                 * page to match the get inside gup()
 635                 */
 636                put_page(pages[0]);
 637        }
 638        return ret;
 639
 640 out_unlock:
 641        __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
 642        preempt_enable();
 643        goto out_put;
 644}
 645
 646static void kvmppc_rmap_reset(struct kvm *kvm)
 647{
 648        struct kvm_memslots *slots;
 649        struct kvm_memory_slot *memslot;
 650        int srcu_idx;
 651
 652        srcu_idx = srcu_read_lock(&kvm->srcu);
 653        slots = kvm_memslots(kvm);
 654        kvm_for_each_memslot(memslot, slots) {
 655                /*
 656                 * This assumes it is acceptable to lose reference and
 657                 * change bits across a reset.
 658                 */
 659                memset(memslot->arch.rmap, 0,
 660                       memslot->npages * sizeof(*memslot->arch.rmap));
 661        }
 662        srcu_read_unlock(&kvm->srcu, srcu_idx);
 663}
 664
 665static int kvm_handle_hva_range(struct kvm *kvm,
 666                                unsigned long start,
 667                                unsigned long end,
 668                                int (*handler)(struct kvm *kvm,
 669                                               unsigned long *rmapp,
 670                                               unsigned long gfn))
 671{
 672        int ret;
 673        int retval = 0;
 674        struct kvm_memslots *slots;
 675        struct kvm_memory_slot *memslot;
 676
 677        slots = kvm_memslots(kvm);
 678        kvm_for_each_memslot(memslot, slots) {
 679                unsigned long hva_start, hva_end;
 680                gfn_t gfn, gfn_end;
 681
 682                hva_start = max(start, memslot->userspace_addr);
 683                hva_end = min(end, memslot->userspace_addr +
 684                                        (memslot->npages << PAGE_SHIFT));
 685                if (hva_start >= hva_end)
 686                        continue;
 687                /*
 688                 * {gfn(page) | page intersects with [hva_start, hva_end)} =
 689                 * {gfn, gfn+1, ..., gfn_end-1}.
 690                 */
 691                gfn = hva_to_gfn_memslot(hva_start, memslot);
 692                gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
 693
 694                for (; gfn < gfn_end; ++gfn) {
 695                        gfn_t gfn_offset = gfn - memslot->base_gfn;
 696
 697                        ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
 698                        retval |= ret;
 699                }
 700        }
 701
 702        return retval;
 703}
 704
 705static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
 706                          int (*handler)(struct kvm *kvm, unsigned long *rmapp,
 707                                         unsigned long gfn))
 708{
 709        return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
 710}
 711
 712static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
 713                           unsigned long gfn)
 714{
 715        struct revmap_entry *rev = kvm->arch.revmap;
 716        unsigned long h, i, j;
 717        __be64 *hptep;
 718        unsigned long ptel, psize, rcbits;
 719
 720        for (;;) {
 721                lock_rmap(rmapp);
 722                if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
 723                        unlock_rmap(rmapp);
 724                        break;
 725                }
 726
 727                /*
 728                 * To avoid an ABBA deadlock with the HPTE lock bit,
 729                 * we can't spin on the HPTE lock while holding the
 730                 * rmap chain lock.
 731                 */
 732                i = *rmapp & KVMPPC_RMAP_INDEX;
 733                hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
 734                if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
 735                        /* unlock rmap before spinning on the HPTE lock */
 736                        unlock_rmap(rmapp);
 737                        while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
 738                                cpu_relax();
 739                        continue;
 740                }
 741                j = rev[i].forw;
 742                if (j == i) {
 743                        /* chain is now empty */
 744                        *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
 745                } else {
 746                        /* remove i from chain */
 747                        h = rev[i].back;
 748                        rev[h].forw = j;
 749                        rev[j].back = h;
 750                        rev[i].forw = rev[i].back = i;
 751                        *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
 752                }
 753
 754                /* Now check and modify the HPTE */
 755                ptel = rev[i].guest_rpte;
 756                psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
 757                if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
 758                    hpte_rpn(ptel, psize) == gfn) {
 759                        hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
 760                        kvmppc_invalidate_hpte(kvm, hptep, i);
 761                        /* Harvest R and C */
 762                        rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
 763                        *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
 764                        if (rcbits & HPTE_R_C)
 765                                kvmppc_update_rmap_change(rmapp, psize);
 766                        if (rcbits & ~rev[i].guest_rpte) {
 767                                rev[i].guest_rpte = ptel | rcbits;
 768                                note_hpte_modification(kvm, &rev[i]);
 769                        }
 770                }
 771                unlock_rmap(rmapp);
 772                __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
 773        }
 774        return 0;
 775}
 776
 777int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
 778{
 779        kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
 780        return 0;
 781}
 782
 783int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
 784{
 785        kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
 786        return 0;
 787}
 788
 789void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
 790                                  struct kvm_memory_slot *memslot)
 791{
 792        unsigned long *rmapp;
 793        unsigned long gfn;
 794        unsigned long n;
 795
 796        rmapp = memslot->arch.rmap;
 797        gfn = memslot->base_gfn;
 798        for (n = memslot->npages; n; --n) {
 799                /*
 800                 * Testing the present bit without locking is OK because
 801                 * the memslot has been marked invalid already, and hence
 802                 * no new HPTEs referencing this page can be created,
 803                 * thus the present bit can't go from 0 to 1.
 804                 */
 805                if (*rmapp & KVMPPC_RMAP_PRESENT)
 806                        kvm_unmap_rmapp(kvm, rmapp, gfn);
 807                ++rmapp;
 808                ++gfn;
 809        }
 810}
 811
 812static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
 813                         unsigned long gfn)
 814{
 815        struct revmap_entry *rev = kvm->arch.revmap;
 816        unsigned long head, i, j;
 817        __be64 *hptep;
 818        int ret = 0;
 819
 820 retry:
 821        lock_rmap(rmapp);
 822        if (*rmapp & KVMPPC_RMAP_REFERENCED) {
 823                *rmapp &= ~KVMPPC_RMAP_REFERENCED;
 824                ret = 1;
 825        }
 826        if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
 827                unlock_rmap(rmapp);
 828                return ret;
 829        }
 830
 831        i = head = *rmapp & KVMPPC_RMAP_INDEX;
 832        do {
 833                hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
 834                j = rev[i].forw;
 835
 836                /* If this HPTE isn't referenced, ignore it */
 837                if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
 838                        continue;
 839
 840                if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
 841                        /* unlock rmap before spinning on the HPTE lock */
 842                        unlock_rmap(rmapp);
 843                        while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
 844                                cpu_relax();
 845                        goto retry;
 846                }
 847
 848                /* Now check and modify the HPTE */
 849                if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
 850                    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
 851                        kvmppc_clear_ref_hpte(kvm, hptep, i);
 852                        if (!(rev[i].guest_rpte & HPTE_R_R)) {
 853                                rev[i].guest_rpte |= HPTE_R_R;
 854                                note_hpte_modification(kvm, &rev[i]);
 855                        }
 856                        ret = 1;
 857                }
 858                __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
 859        } while ((i = j) != head);
 860
 861        unlock_rmap(rmapp);
 862        return ret;
 863}
 864
 865int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
 866{
 867        return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
 868}
 869
 870static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
 871                              unsigned long gfn)
 872{
 873        struct revmap_entry *rev = kvm->arch.revmap;
 874        unsigned long head, i, j;
 875        unsigned long *hp;
 876        int ret = 1;
 877
 878        if (*rmapp & KVMPPC_RMAP_REFERENCED)
 879                return 1;
 880
 881        lock_rmap(rmapp);
 882        if (*rmapp & KVMPPC_RMAP_REFERENCED)
 883                goto out;
 884
 885        if (*rmapp & KVMPPC_RMAP_PRESENT) {
 886                i = head = *rmapp & KVMPPC_RMAP_INDEX;
 887                do {
 888                        hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
 889                        j = rev[i].forw;
 890                        if (be64_to_cpu(hp[1]) & HPTE_R_R)
 891                                goto out;
 892                } while ((i = j) != head);
 893        }
 894        ret = 0;
 895
 896 out:
 897        unlock_rmap(rmapp);
 898        return ret;
 899}
 900
 901int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
 902{
 903        return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
 904}
 905
 906void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
 907{
 908        kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
 909}
 910
 911static int vcpus_running(struct kvm *kvm)
 912{
 913        return atomic_read(&kvm->arch.vcpus_running) != 0;
 914}
 915
 916/*
 917 * Returns the number of system pages that are dirty.
 918 * This can be more than 1 if we find a huge-page HPTE.
 919 */
 920static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
 921{
 922        struct revmap_entry *rev = kvm->arch.revmap;
 923        unsigned long head, i, j;
 924        unsigned long n;
 925        unsigned long v, r;
 926        __be64 *hptep;
 927        int npages_dirty = 0;
 928
 929 retry:
 930        lock_rmap(rmapp);
 931        if (*rmapp & KVMPPC_RMAP_CHANGED) {
 932                long change_order = (*rmapp & KVMPPC_RMAP_CHG_ORDER)
 933                        >> KVMPPC_RMAP_CHG_SHIFT;
 934                *rmapp &= ~(KVMPPC_RMAP_CHANGED | KVMPPC_RMAP_CHG_ORDER);
 935                npages_dirty = 1;
 936                if (change_order > PAGE_SHIFT)
 937                        npages_dirty = 1ul << (change_order - PAGE_SHIFT);
 938        }
 939        if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
 940                unlock_rmap(rmapp);
 941                return npages_dirty;
 942        }
 943
 944        i = head = *rmapp & KVMPPC_RMAP_INDEX;
 945        do {
 946                unsigned long hptep1;
 947                hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
 948                j = rev[i].forw;
 949
 950                /*
 951                 * Checking the C (changed) bit here is racy since there
 952                 * is no guarantee about when the hardware writes it back.
 953                 * If the HPTE is not writable then it is stable since the
 954                 * page can't be written to, and we would have done a tlbie
 955                 * (which forces the hardware to complete any writeback)
 956                 * when making the HPTE read-only.
 957                 * If vcpus are running then this call is racy anyway
 958                 * since the page could get dirtied subsequently, so we
 959                 * expect there to be a further call which would pick up
 960                 * any delayed C bit writeback.
 961                 * Otherwise we need to do the tlbie even if C==0 in
 962                 * order to pick up any delayed writeback of C.
 963                 */
 964                hptep1 = be64_to_cpu(hptep[1]);
 965                if (!(hptep1 & HPTE_R_C) &&
 966                    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
 967                        continue;
 968
 969                if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
 970                        /* unlock rmap before spinning on the HPTE lock */
 971                        unlock_rmap(rmapp);
 972                        while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
 973                                cpu_relax();
 974                        goto retry;
 975                }
 976
 977                /* Now check and modify the HPTE */
 978                if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
 979                        __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
 980                        continue;
 981                }
 982
 983                /* need to make it temporarily absent so C is stable */
 984                hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
 985                kvmppc_invalidate_hpte(kvm, hptep, i);
 986                v = be64_to_cpu(hptep[0]);
 987                r = be64_to_cpu(hptep[1]);
 988                if (r & HPTE_R_C) {
 989                        hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
 990                        if (!(rev[i].guest_rpte & HPTE_R_C)) {
 991                                rev[i].guest_rpte |= HPTE_R_C;
 992                                note_hpte_modification(kvm, &rev[i]);
 993                        }
 994                        n = hpte_page_size(v, r);
 995                        n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
 996                        if (n > npages_dirty)
 997                                npages_dirty = n;
 998                        eieio();
 999                }
1000                v &= ~HPTE_V_ABSENT;
1001                v |= HPTE_V_VALID;
1002                __unlock_hpte(hptep, v);
1003        } while ((i = j) != head);
1004
1005        unlock_rmap(rmapp);
1006        return npages_dirty;
1007}
1008
1009static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1010                              struct kvm_memory_slot *memslot,
1011                              unsigned long *map)
1012{
1013        unsigned long gfn;
1014
1015        if (!vpa->dirty || !vpa->pinned_addr)
1016                return;
1017        gfn = vpa->gpa >> PAGE_SHIFT;
1018        if (gfn < memslot->base_gfn ||
1019            gfn >= memslot->base_gfn + memslot->npages)
1020                return;
1021
1022        vpa->dirty = false;
1023        if (map)
1024                __set_bit_le(gfn - memslot->base_gfn, map);
1025}
1026
1027long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1028                             unsigned long *map)
1029{
1030        unsigned long i, j;
1031        unsigned long *rmapp;
1032        struct kvm_vcpu *vcpu;
1033
1034        preempt_disable();
1035        rmapp = memslot->arch.rmap;
1036        for (i = 0; i < memslot->npages; ++i) {
1037                int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1038                /*
1039                 * Note that if npages > 0 then i must be a multiple of npages,
1040                 * since we always put huge-page HPTEs in the rmap chain
1041                 * corresponding to their page base address.
1042                 */
1043                if (npages && map)
1044                        for (j = i; npages; ++j, --npages)
1045                                __set_bit_le(j, map);
1046                ++rmapp;
1047        }
1048
1049        /* Harvest dirty bits from VPA and DTL updates */
1050        /* Note: we never modify the SLB shadow buffer areas */
1051        kvm_for_each_vcpu(i, vcpu, kvm) {
1052                spin_lock(&vcpu->arch.vpa_update_lock);
1053                harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1054                harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1055                spin_unlock(&vcpu->arch.vpa_update_lock);
1056        }
1057        preempt_enable();
1058        return 0;
1059}
1060
1061void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1062                            unsigned long *nb_ret)
1063{
1064        struct kvm_memory_slot *memslot;
1065        unsigned long gfn = gpa >> PAGE_SHIFT;
1066        struct page *page, *pages[1];
1067        int npages;
1068        unsigned long hva, offset;
1069        int srcu_idx;
1070
1071        srcu_idx = srcu_read_lock(&kvm->srcu);
1072        memslot = gfn_to_memslot(kvm, gfn);
1073        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1074                goto err;
1075        hva = gfn_to_hva_memslot(memslot, gfn);
1076        npages = get_user_pages_fast(hva, 1, 1, pages);
1077        if (npages < 1)
1078                goto err;
1079        page = pages[0];
1080        srcu_read_unlock(&kvm->srcu, srcu_idx);
1081
1082        offset = gpa & (PAGE_SIZE - 1);
1083        if (nb_ret)
1084                *nb_ret = PAGE_SIZE - offset;
1085        return page_address(page) + offset;
1086
1087 err:
1088        srcu_read_unlock(&kvm->srcu, srcu_idx);
1089        return NULL;
1090}
1091
1092void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1093                             bool dirty)
1094{
1095        struct page *page = virt_to_page(va);
1096        struct kvm_memory_slot *memslot;
1097        unsigned long gfn;
1098        unsigned long *rmap;
1099        int srcu_idx;
1100
1101        put_page(page);
1102
1103        if (!dirty)
1104                return;
1105
1106        /* We need to mark this page dirty in the rmap chain */
1107        gfn = gpa >> PAGE_SHIFT;
1108        srcu_idx = srcu_read_lock(&kvm->srcu);
1109        memslot = gfn_to_memslot(kvm, gfn);
1110        if (memslot) {
1111                rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1112                lock_rmap(rmap);
1113                *rmap |= KVMPPC_RMAP_CHANGED;
1114                unlock_rmap(rmap);
1115        }
1116        srcu_read_unlock(&kvm->srcu, srcu_idx);
1117}
1118
1119/*
1120 * Functions for reading and writing the hash table via reads and
1121 * writes on a file descriptor.
1122 *
1123 * Reads return the guest view of the hash table, which has to be
1124 * pieced together from the real hash table and the guest_rpte
1125 * values in the revmap array.
1126 *
1127 * On writes, each HPTE written is considered in turn, and if it
1128 * is valid, it is written to the HPT as if an H_ENTER with the
1129 * exact flag set was done.  When the invalid count is non-zero
1130 * in the header written to the stream, the kernel will make
1131 * sure that that many HPTEs are invalid, and invalidate them
1132 * if not.
1133 */
1134
1135struct kvm_htab_ctx {
1136        unsigned long   index;
1137        unsigned long   flags;
1138        struct kvm      *kvm;
1139        int             first_pass;
1140};
1141
1142#define HPTE_SIZE       (2 * sizeof(unsigned long))
1143
1144/*
1145 * Returns 1 if this HPT entry has been modified or has pending
1146 * R/C bit changes.
1147 */
1148static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1149{
1150        unsigned long rcbits_unset;
1151
1152        if (revp->guest_rpte & HPTE_GR_MODIFIED)
1153                return 1;
1154
1155        /* Also need to consider changes in reference and changed bits */
1156        rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1157        if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1158            (be64_to_cpu(hptp[1]) & rcbits_unset))
1159                return 1;
1160
1161        return 0;
1162}
1163
1164static long record_hpte(unsigned long flags, __be64 *hptp,
1165                        unsigned long *hpte, struct revmap_entry *revp,
1166                        int want_valid, int first_pass)
1167{
1168        unsigned long v, r;
1169        unsigned long rcbits_unset;
1170        int ok = 1;
1171        int valid, dirty;
1172
1173        /* Unmodified entries are uninteresting except on the first pass */
1174        dirty = hpte_dirty(revp, hptp);
1175        if (!first_pass && !dirty)
1176                return 0;
1177
1178        valid = 0;
1179        if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1180                valid = 1;
1181                if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1182                    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1183                        valid = 0;
1184        }
1185        if (valid != want_valid)
1186                return 0;
1187
1188        v = r = 0;
1189        if (valid || dirty) {
1190                /* lock the HPTE so it's stable and read it */
1191                preempt_disable();
1192                while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1193                        cpu_relax();
1194                v = be64_to_cpu(hptp[0]);
1195
1196                /* re-evaluate valid and dirty from synchronized HPTE value */
1197                valid = !!(v & HPTE_V_VALID);
1198                dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1199
1200                /* Harvest R and C into guest view if necessary */
1201                rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1202                if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
1203                        revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
1204                                (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1205                        dirty = 1;
1206                }
1207
1208                if (v & HPTE_V_ABSENT) {
1209                        v &= ~HPTE_V_ABSENT;
1210                        v |= HPTE_V_VALID;
1211                        valid = 1;
1212                }
1213                if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1214                        valid = 0;
1215
1216                r = revp->guest_rpte;
1217                /* only clear modified if this is the right sort of entry */
1218                if (valid == want_valid && dirty) {
1219                        r &= ~HPTE_GR_MODIFIED;
1220                        revp->guest_rpte = r;
1221                }
1222                unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1223                preempt_enable();
1224                if (!(valid == want_valid && (first_pass || dirty)))
1225                        ok = 0;
1226        }
1227        hpte[0] = cpu_to_be64(v);
1228        hpte[1] = cpu_to_be64(r);
1229        return ok;
1230}
1231
1232static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1233                             size_t count, loff_t *ppos)
1234{
1235        struct kvm_htab_ctx *ctx = file->private_data;
1236        struct kvm *kvm = ctx->kvm;
1237        struct kvm_get_htab_header hdr;
1238        __be64 *hptp;
1239        struct revmap_entry *revp;
1240        unsigned long i, nb, nw;
1241        unsigned long __user *lbuf;
1242        struct kvm_get_htab_header __user *hptr;
1243        unsigned long flags;
1244        int first_pass;
1245        unsigned long hpte[2];
1246
1247        if (!access_ok(VERIFY_WRITE, buf, count))
1248                return -EFAULT;
1249
1250        first_pass = ctx->first_pass;
1251        flags = ctx->flags;
1252
1253        i = ctx->index;
1254        hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1255        revp = kvm->arch.revmap + i;
1256        lbuf = (unsigned long __user *)buf;
1257
1258        nb = 0;
1259        while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1260                /* Initialize header */
1261                hptr = (struct kvm_get_htab_header __user *)buf;
1262                hdr.n_valid = 0;
1263                hdr.n_invalid = 0;
1264                nw = nb;
1265                nb += sizeof(hdr);
1266                lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1267
1268                /* Skip uninteresting entries, i.e. clean on not-first pass */
1269                if (!first_pass) {
1270                        while (i < kvm->arch.hpt_npte &&
1271                               !hpte_dirty(revp, hptp)) {
1272                                ++i;
1273                                hptp += 2;
1274                                ++revp;
1275                        }
1276                }
1277                hdr.index = i;
1278
1279                /* Grab a series of valid entries */
1280                while (i < kvm->arch.hpt_npte &&
1281                       hdr.n_valid < 0xffff &&
1282                       nb + HPTE_SIZE < count &&
1283                       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1284                        /* valid entry, write it out */
1285                        ++hdr.n_valid;
1286                        if (__put_user(hpte[0], lbuf) ||
1287                            __put_user(hpte[1], lbuf + 1))
1288                                return -EFAULT;
1289                        nb += HPTE_SIZE;
1290                        lbuf += 2;
1291                        ++i;
1292                        hptp += 2;
1293                        ++revp;
1294                }
1295                /* Now skip invalid entries while we can */
1296                while (i < kvm->arch.hpt_npte &&
1297                       hdr.n_invalid < 0xffff &&
1298                       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1299                        /* found an invalid entry */
1300                        ++hdr.n_invalid;
1301                        ++i;
1302                        hptp += 2;
1303                        ++revp;
1304                }
1305
1306                if (hdr.n_valid || hdr.n_invalid) {
1307                        /* write back the header */
1308                        if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1309                                return -EFAULT;
1310                        nw = nb;
1311                        buf = (char __user *)lbuf;
1312                } else {
1313                        nb = nw;
1314                }
1315
1316                /* Check if we've wrapped around the hash table */
1317                if (i >= kvm->arch.hpt_npte) {
1318                        i = 0;
1319                        ctx->first_pass = 0;
1320                        break;
1321                }
1322        }
1323
1324        ctx->index = i;
1325
1326        return nb;
1327}
1328
1329static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1330                              size_t count, loff_t *ppos)
1331{
1332        struct kvm_htab_ctx *ctx = file->private_data;
1333        struct kvm *kvm = ctx->kvm;
1334        struct kvm_get_htab_header hdr;
1335        unsigned long i, j;
1336        unsigned long v, r;
1337        unsigned long __user *lbuf;
1338        __be64 *hptp;
1339        unsigned long tmp[2];
1340        ssize_t nb;
1341        long int err, ret;
1342        int hpte_setup;
1343
1344        if (!access_ok(VERIFY_READ, buf, count))
1345                return -EFAULT;
1346
1347        /* lock out vcpus from running while we're doing this */
1348        mutex_lock(&kvm->lock);
1349        hpte_setup = kvm->arch.hpte_setup_done;
1350        if (hpte_setup) {
1351                kvm->arch.hpte_setup_done = 0;  /* temporarily */
1352                /* order hpte_setup_done vs. vcpus_running */
1353                smp_mb();
1354                if (atomic_read(&kvm->arch.vcpus_running)) {
1355                        kvm->arch.hpte_setup_done = 1;
1356                        mutex_unlock(&kvm->lock);
1357                        return -EBUSY;
1358                }
1359        }
1360
1361        err = 0;
1362        for (nb = 0; nb + sizeof(hdr) <= count; ) {
1363                err = -EFAULT;
1364                if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1365                        break;
1366
1367                err = 0;
1368                if (nb + hdr.n_valid * HPTE_SIZE > count)
1369                        break;
1370
1371                nb += sizeof(hdr);
1372                buf += sizeof(hdr);
1373
1374                err = -EINVAL;
1375                i = hdr.index;
1376                if (i >= kvm->arch.hpt_npte ||
1377                    i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1378                        break;
1379
1380                hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1381                lbuf = (unsigned long __user *)buf;
1382                for (j = 0; j < hdr.n_valid; ++j) {
1383                        __be64 hpte_v;
1384                        __be64 hpte_r;
1385
1386                        err = -EFAULT;
1387                        if (__get_user(hpte_v, lbuf) ||
1388                            __get_user(hpte_r, lbuf + 1))
1389                                goto out;
1390                        v = be64_to_cpu(hpte_v);
1391                        r = be64_to_cpu(hpte_r);
1392                        err = -EINVAL;
1393                        if (!(v & HPTE_V_VALID))
1394                                goto out;
1395                        lbuf += 2;
1396                        nb += HPTE_SIZE;
1397
1398                        if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1399                                kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1400                        err = -EIO;
1401                        ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1402                                                         tmp);
1403                        if (ret != H_SUCCESS) {
1404                                pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1405                                       "r=%lx\n", ret, i, v, r);
1406                                goto out;
1407                        }
1408                        if (!hpte_setup && is_vrma_hpte(v)) {
1409                                unsigned long psize = hpte_base_page_size(v, r);
1410                                unsigned long senc = slb_pgsize_encoding(psize);
1411                                unsigned long lpcr;
1412
1413                                kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1414                                        (VRMA_VSID << SLB_VSID_SHIFT_1T);
1415                                lpcr = senc << (LPCR_VRMASD_SH - 4);
1416                                kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1417                                hpte_setup = 1;
1418                        }
1419                        ++i;
1420                        hptp += 2;
1421                }
1422
1423                for (j = 0; j < hdr.n_invalid; ++j) {
1424                        if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1425                                kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1426                        ++i;
1427                        hptp += 2;
1428                }
1429                err = 0;
1430        }
1431
1432 out:
1433        /* Order HPTE updates vs. hpte_setup_done */
1434        smp_wmb();
1435        kvm->arch.hpte_setup_done = hpte_setup;
1436        mutex_unlock(&kvm->lock);
1437
1438        if (err)
1439                return err;
1440        return nb;
1441}
1442
1443static int kvm_htab_release(struct inode *inode, struct file *filp)
1444{
1445        struct kvm_htab_ctx *ctx = filp->private_data;
1446
1447        filp->private_data = NULL;
1448        if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1449                atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1450        kvm_put_kvm(ctx->kvm);
1451        kfree(ctx);
1452        return 0;
1453}
1454
1455static const struct file_operations kvm_htab_fops = {
1456        .read           = kvm_htab_read,
1457        .write          = kvm_htab_write,
1458        .llseek         = default_llseek,
1459        .release        = kvm_htab_release,
1460};
1461
1462int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1463{
1464        int ret;
1465        struct kvm_htab_ctx *ctx;
1466        int rwflag;
1467
1468        /* reject flags we don't recognize */
1469        if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1470                return -EINVAL;
1471        ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1472        if (!ctx)
1473                return -ENOMEM;
1474        kvm_get_kvm(kvm);
1475        ctx->kvm = kvm;
1476        ctx->index = ghf->start_index;
1477        ctx->flags = ghf->flags;
1478        ctx->first_pass = 1;
1479
1480        rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1481        ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1482        if (ret < 0) {
1483                kvm_put_kvm(kvm);
1484                return ret;
1485        }
1486
1487        if (rwflag == O_RDONLY) {
1488                mutex_lock(&kvm->slots_lock);
1489                atomic_inc(&kvm->arch.hpte_mod_interest);
1490                /* make sure kvmppc_do_h_enter etc. see the increment */
1491                synchronize_srcu_expedited(&kvm->srcu);
1492                mutex_unlock(&kvm->slots_lock);
1493        }
1494
1495        return ret;
1496}
1497
1498struct debugfs_htab_state {
1499        struct kvm      *kvm;
1500        struct mutex    mutex;
1501        unsigned long   hpt_index;
1502        int             chars_left;
1503        int             buf_index;
1504        char            buf[64];
1505};
1506
1507static int debugfs_htab_open(struct inode *inode, struct file *file)
1508{
1509        struct kvm *kvm = inode->i_private;
1510        struct debugfs_htab_state *p;
1511
1512        p = kzalloc(sizeof(*p), GFP_KERNEL);
1513        if (!p)
1514                return -ENOMEM;
1515
1516        kvm_get_kvm(kvm);
1517        p->kvm = kvm;
1518        mutex_init(&p->mutex);
1519        file->private_data = p;
1520
1521        return nonseekable_open(inode, file);
1522}
1523
1524static int debugfs_htab_release(struct inode *inode, struct file *file)
1525{
1526        struct debugfs_htab_state *p = file->private_data;
1527
1528        kvm_put_kvm(p->kvm);
1529        kfree(p);
1530        return 0;
1531}
1532
1533static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
1534                                 size_t len, loff_t *ppos)
1535{
1536        struct debugfs_htab_state *p = file->private_data;
1537        ssize_t ret, r;
1538        unsigned long i, n;
1539        unsigned long v, hr, gr;
1540        struct kvm *kvm;
1541        __be64 *hptp;
1542
1543        ret = mutex_lock_interruptible(&p->mutex);
1544        if (ret)
1545                return ret;
1546
1547        if (p->chars_left) {
1548                n = p->chars_left;
1549                if (n > len)
1550                        n = len;
1551                r = copy_to_user(buf, p->buf + p->buf_index, n);
1552                n -= r;
1553                p->chars_left -= n;
1554                p->buf_index += n;
1555                buf += n;
1556                len -= n;
1557                ret = n;
1558                if (r) {
1559                        if (!n)
1560                                ret = -EFAULT;
1561                        goto out;
1562                }
1563        }
1564
1565        kvm = p->kvm;
1566        i = p->hpt_index;
1567        hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1568        for (; len != 0 && i < kvm->arch.hpt_npte; ++i, hptp += 2) {
1569                if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
1570                        continue;
1571
1572                /* lock the HPTE so it's stable and read it */
1573                preempt_disable();
1574                while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1575                        cpu_relax();
1576                v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
1577                hr = be64_to_cpu(hptp[1]);
1578                gr = kvm->arch.revmap[i].guest_rpte;
1579                unlock_hpte(hptp, v);
1580                preempt_enable();
1581
1582                if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
1583                        continue;
1584
1585                n = scnprintf(p->buf, sizeof(p->buf),
1586                              "%6lx %.16lx %.16lx %.16lx\n",
1587                              i, v, hr, gr);
1588                p->chars_left = n;
1589                if (n > len)
1590                        n = len;
1591                r = copy_to_user(buf, p->buf, n);
1592                n -= r;
1593                p->chars_left -= n;
1594                p->buf_index = n;
1595                buf += n;
1596                len -= n;
1597                ret += n;
1598                if (r) {
1599                        if (!ret)
1600                                ret = -EFAULT;
1601                        goto out;
1602                }
1603        }
1604        p->hpt_index = i;
1605
1606 out:
1607        mutex_unlock(&p->mutex);
1608        return ret;
1609}
1610
1611ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
1612                           size_t len, loff_t *ppos)
1613{
1614        return -EACCES;
1615}
1616
1617static const struct file_operations debugfs_htab_fops = {
1618        .owner   = THIS_MODULE,
1619        .open    = debugfs_htab_open,
1620        .release = debugfs_htab_release,
1621        .read    = debugfs_htab_read,
1622        .write   = debugfs_htab_write,
1623        .llseek  = generic_file_llseek,
1624};
1625
1626void kvmppc_mmu_debugfs_init(struct kvm *kvm)
1627{
1628        kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
1629                                                    kvm->arch.debugfs_dir, kvm,
1630                                                    &debugfs_htab_fops);
1631}
1632
1633void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1634{
1635        struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1636
1637        vcpu->arch.slb_nr = 32;         /* POWER7/POWER8 */
1638
1639        mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1640        mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1641
1642        vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1643}
1644