linux/arch/x86/events/intel/core.c
<<
>>
Prefs
   1/*
   2 * Per core/cpu state
   3 *
   4 * Used to coordinate shared registers between HT threads or
   5 * among events on a single PMU.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/stddef.h>
  11#include <linux/types.h>
  12#include <linux/init.h>
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/nmi.h>
  16
  17#include <asm/cpufeature.h>
  18#include <asm/hardirq.h>
  19#include <asm/intel-family.h>
  20#include <asm/apic.h>
  21
  22#include "../perf_event.h"
  23
  24/*
  25 * Intel PerfMon, used on Core and later.
  26 */
  27static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
  28{
  29        [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
  30        [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
  31        [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
  32        [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
  33        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
  34        [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
  35        [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
  36        [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
  37};
  38
  39static struct event_constraint intel_core_event_constraints[] __read_mostly =
  40{
  41        INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  42        INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  43        INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  44        INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  45        INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  46        INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  47        EVENT_CONSTRAINT_END
  48};
  49
  50static struct event_constraint intel_core2_event_constraints[] __read_mostly =
  51{
  52        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  53        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  54        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  55        INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  56        INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  57        INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  58        INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  59        INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  60        INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  61        INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  62        INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  63        INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  64        INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  65        EVENT_CONSTRAINT_END
  66};
  67
  68static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
  69{
  70        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  71        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  72        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  73        INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  74        INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  75        INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  76        INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  77        INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  78        INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  79        INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  80        INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  81        EVENT_CONSTRAINT_END
  82};
  83
  84static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
  85{
  86        /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  87        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  88        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
  89        EVENT_EXTRA_END
  90};
  91
  92static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
  93{
  94        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  95        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  96        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  97        INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  98        INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
  99        INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
 100        INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
 101        EVENT_CONSTRAINT_END
 102};
 103
 104static struct event_constraint intel_snb_event_constraints[] __read_mostly =
 105{
 106        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 107        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 108        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 109        INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
 110        INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
 111        INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 112        INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
 113        INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
 114        INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 115        INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
 116        INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
 117        INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 118
 119        /*
 120         * When HT is off these events can only run on the bottom 4 counters
 121         * When HT is on, they are impacted by the HT bug and require EXCL access
 122         */
 123        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
 124        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
 125        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
 126        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
 127
 128        EVENT_CONSTRAINT_END
 129};
 130
 131static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
 132{
 133        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 134        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 135        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 136        INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
 137        INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
 138        INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
 139        INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
 140        INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
 141        INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
 142        INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
 143        INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 144        INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
 145        INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 146
 147        /*
 148         * When HT is off these events can only run on the bottom 4 counters
 149         * When HT is on, they are impacted by the HT bug and require EXCL access
 150         */
 151        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
 152        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
 153        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
 154        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
 155
 156        EVENT_CONSTRAINT_END
 157};
 158
 159static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
 160{
 161        /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 162        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
 163        INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
 164        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
 165        EVENT_EXTRA_END
 166};
 167
 168static struct event_constraint intel_v1_event_constraints[] __read_mostly =
 169{
 170        EVENT_CONSTRAINT_END
 171};
 172
 173static struct event_constraint intel_gen_event_constraints[] __read_mostly =
 174{
 175        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 176        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 177        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 178        EVENT_CONSTRAINT_END
 179};
 180
 181static struct event_constraint intel_slm_event_constraints[] __read_mostly =
 182{
 183        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 184        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 185        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
 186        EVENT_CONSTRAINT_END
 187};
 188
 189static struct event_constraint intel_skl_event_constraints[] = {
 190        FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
 191        FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
 192        FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
 193        INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
 194
 195        /*
 196         * when HT is off, these can only run on the bottom 4 counters
 197         */
 198        INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
 199        INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
 200        INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
 201        INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
 202        INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
 203
 204        EVENT_CONSTRAINT_END
 205};
 206
 207static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
 208        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
 209        INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
 210        EVENT_EXTRA_END
 211};
 212
 213static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
 214        /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 215        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
 216        INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
 217        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 218        EVENT_EXTRA_END
 219};
 220
 221static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
 222        /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 223        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
 224        INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
 225        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 226        EVENT_EXTRA_END
 227};
 228
 229static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
 230        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
 231        INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
 232        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 233        /*
 234         * Note the low 8 bits eventsel code is not a continuous field, containing
 235         * some #GPing bits. These are masked out.
 236         */
 237        INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
 238        EVENT_EXTRA_END
 239};
 240
 241EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
 242EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
 243EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
 244
 245static struct attribute *nhm_events_attrs[] = {
 246        EVENT_PTR(mem_ld_nhm),
 247        NULL,
 248};
 249
 250/*
 251 * topdown events for Intel Core CPUs.
 252 *
 253 * The events are all in slots, which is a free slot in a 4 wide
 254 * pipeline. Some events are already reported in slots, for cycle
 255 * events we multiply by the pipeline width (4).
 256 *
 257 * With Hyper Threading on, topdown metrics are either summed or averaged
 258 * between the threads of a core: (count_t0 + count_t1).
 259 *
 260 * For the average case the metric is always scaled to pipeline width,
 261 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
 262 */
 263
 264EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
 265        "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
 266        "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
 267EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
 268EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
 269        "event=0xe,umask=0x1");                 /* uops_issued.any */
 270EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
 271        "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
 272EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
 273        "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
 274EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
 275        "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
 276        "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
 277EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
 278        "4", "2");
 279
 280static struct attribute *snb_events_attrs[] = {
 281        EVENT_PTR(mem_ld_snb),
 282        EVENT_PTR(mem_st_snb),
 283        EVENT_PTR(td_slots_issued),
 284        EVENT_PTR(td_slots_retired),
 285        EVENT_PTR(td_fetch_bubbles),
 286        EVENT_PTR(td_total_slots),
 287        EVENT_PTR(td_total_slots_scale),
 288        EVENT_PTR(td_recovery_bubbles),
 289        EVENT_PTR(td_recovery_bubbles_scale),
 290        NULL,
 291};
 292
 293static struct event_constraint intel_hsw_event_constraints[] = {
 294        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 295        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 296        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 297        INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
 298        INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 299        INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
 300        /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 301        INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
 302        /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
 303        INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
 304        /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
 305        INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
 306
 307        /*
 308         * When HT is off these events can only run on the bottom 4 counters
 309         * When HT is on, they are impacted by the HT bug and require EXCL access
 310         */
 311        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
 312        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
 313        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
 314        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
 315
 316        EVENT_CONSTRAINT_END
 317};
 318
 319static struct event_constraint intel_bdw_event_constraints[] = {
 320        FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
 321        FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
 322        FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
 323        INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
 324        INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
 325        /*
 326         * when HT is off, these can only run on the bottom 4 counters
 327         */
 328        INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
 329        INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
 330        INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
 331        INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
 332        EVENT_CONSTRAINT_END
 333};
 334
 335static u64 intel_pmu_event_map(int hw_event)
 336{
 337        return intel_perfmon_event_map[hw_event];
 338}
 339
 340/*
 341 * Notes on the events:
 342 * - data reads do not include code reads (comparable to earlier tables)
 343 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 344 * - remote node access includes remote memory, remote cache, remote mmio.
 345 * - prefetches are not included in the counts.
 346 * - icache miss does not include decoded icache
 347 */
 348
 349#define SKL_DEMAND_DATA_RD              BIT_ULL(0)
 350#define SKL_DEMAND_RFO                  BIT_ULL(1)
 351#define SKL_ANY_RESPONSE                BIT_ULL(16)
 352#define SKL_SUPPLIER_NONE               BIT_ULL(17)
 353#define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
 354#define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
 355#define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
 356#define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
 357#define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
 358                                         SKL_L3_MISS_REMOTE_HOP0_DRAM| \
 359                                         SKL_L3_MISS_REMOTE_HOP1_DRAM| \
 360                                         SKL_L3_MISS_REMOTE_HOP2P_DRAM)
 361#define SKL_SPL_HIT                     BIT_ULL(30)
 362#define SKL_SNOOP_NONE                  BIT_ULL(31)
 363#define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
 364#define SKL_SNOOP_MISS                  BIT_ULL(33)
 365#define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
 366#define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
 367#define SKL_SNOOP_HITM                  BIT_ULL(36)
 368#define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
 369#define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
 370                                         SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
 371                                         SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
 372                                         SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
 373#define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
 374#define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
 375                                         SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
 376                                         SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
 377                                         SKL_SNOOP_HITM|SKL_SPL_HIT)
 378#define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
 379#define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
 380#define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
 381                                         SKL_L3_MISS_REMOTE_HOP1_DRAM| \
 382                                         SKL_L3_MISS_REMOTE_HOP2P_DRAM)
 383
 384static __initconst const u64 skl_hw_cache_event_ids
 385                                [PERF_COUNT_HW_CACHE_MAX]
 386                                [PERF_COUNT_HW_CACHE_OP_MAX]
 387                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 388{
 389 [ C(L1D ) ] = {
 390        [ C(OP_READ) ] = {
 391                [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
 392                [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
 393        },
 394        [ C(OP_WRITE) ] = {
 395                [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
 396                [ C(RESULT_MISS)   ] = 0x0,
 397        },
 398        [ C(OP_PREFETCH) ] = {
 399                [ C(RESULT_ACCESS) ] = 0x0,
 400                [ C(RESULT_MISS)   ] = 0x0,
 401        },
 402 },
 403 [ C(L1I ) ] = {
 404        [ C(OP_READ) ] = {
 405                [ C(RESULT_ACCESS) ] = 0x0,
 406                [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
 407        },
 408        [ C(OP_WRITE) ] = {
 409                [ C(RESULT_ACCESS) ] = -1,
 410                [ C(RESULT_MISS)   ] = -1,
 411        },
 412        [ C(OP_PREFETCH) ] = {
 413                [ C(RESULT_ACCESS) ] = 0x0,
 414                [ C(RESULT_MISS)   ] = 0x0,
 415        },
 416 },
 417 [ C(LL  ) ] = {
 418        [ C(OP_READ) ] = {
 419                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 420                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 421        },
 422        [ C(OP_WRITE) ] = {
 423                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 424                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 425        },
 426        [ C(OP_PREFETCH) ] = {
 427                [ C(RESULT_ACCESS) ] = 0x0,
 428                [ C(RESULT_MISS)   ] = 0x0,
 429        },
 430 },
 431 [ C(DTLB) ] = {
 432        [ C(OP_READ) ] = {
 433                [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
 434                [ C(RESULT_MISS)   ] = 0x608,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
 435        },
 436        [ C(OP_WRITE) ] = {
 437                [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
 438                [ C(RESULT_MISS)   ] = 0x649,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
 439        },
 440        [ C(OP_PREFETCH) ] = {
 441                [ C(RESULT_ACCESS) ] = 0x0,
 442                [ C(RESULT_MISS)   ] = 0x0,
 443        },
 444 },
 445 [ C(ITLB) ] = {
 446        [ C(OP_READ) ] = {
 447                [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
 448                [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
 449        },
 450        [ C(OP_WRITE) ] = {
 451                [ C(RESULT_ACCESS) ] = -1,
 452                [ C(RESULT_MISS)   ] = -1,
 453        },
 454        [ C(OP_PREFETCH) ] = {
 455                [ C(RESULT_ACCESS) ] = -1,
 456                [ C(RESULT_MISS)   ] = -1,
 457        },
 458 },
 459 [ C(BPU ) ] = {
 460        [ C(OP_READ) ] = {
 461                [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
 462                [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
 463        },
 464        [ C(OP_WRITE) ] = {
 465                [ C(RESULT_ACCESS) ] = -1,
 466                [ C(RESULT_MISS)   ] = -1,
 467        },
 468        [ C(OP_PREFETCH) ] = {
 469                [ C(RESULT_ACCESS) ] = -1,
 470                [ C(RESULT_MISS)   ] = -1,
 471        },
 472 },
 473 [ C(NODE) ] = {
 474        [ C(OP_READ) ] = {
 475                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 476                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 477        },
 478        [ C(OP_WRITE) ] = {
 479                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 480                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 481        },
 482        [ C(OP_PREFETCH) ] = {
 483                [ C(RESULT_ACCESS) ] = 0x0,
 484                [ C(RESULT_MISS)   ] = 0x0,
 485        },
 486 },
 487};
 488
 489static __initconst const u64 skl_hw_cache_extra_regs
 490                                [PERF_COUNT_HW_CACHE_MAX]
 491                                [PERF_COUNT_HW_CACHE_OP_MAX]
 492                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 493{
 494 [ C(LL  ) ] = {
 495        [ C(OP_READ) ] = {
 496                [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
 497                                       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
 498                [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
 499                                       SKL_L3_MISS|SKL_ANY_SNOOP|
 500                                       SKL_SUPPLIER_NONE,
 501        },
 502        [ C(OP_WRITE) ] = {
 503                [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
 504                                       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
 505                [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
 506                                       SKL_L3_MISS|SKL_ANY_SNOOP|
 507                                       SKL_SUPPLIER_NONE,
 508        },
 509        [ C(OP_PREFETCH) ] = {
 510                [ C(RESULT_ACCESS) ] = 0x0,
 511                [ C(RESULT_MISS)   ] = 0x0,
 512        },
 513 },
 514 [ C(NODE) ] = {
 515        [ C(OP_READ) ] = {
 516                [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
 517                                       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
 518                [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
 519                                       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
 520        },
 521        [ C(OP_WRITE) ] = {
 522                [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
 523                                       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
 524                [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
 525                                       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
 526        },
 527        [ C(OP_PREFETCH) ] = {
 528                [ C(RESULT_ACCESS) ] = 0x0,
 529                [ C(RESULT_MISS)   ] = 0x0,
 530        },
 531 },
 532};
 533
 534#define SNB_DMND_DATA_RD        (1ULL << 0)
 535#define SNB_DMND_RFO            (1ULL << 1)
 536#define SNB_DMND_IFETCH         (1ULL << 2)
 537#define SNB_DMND_WB             (1ULL << 3)
 538#define SNB_PF_DATA_RD          (1ULL << 4)
 539#define SNB_PF_RFO              (1ULL << 5)
 540#define SNB_PF_IFETCH           (1ULL << 6)
 541#define SNB_LLC_DATA_RD         (1ULL << 7)
 542#define SNB_LLC_RFO             (1ULL << 8)
 543#define SNB_LLC_IFETCH          (1ULL << 9)
 544#define SNB_BUS_LOCKS           (1ULL << 10)
 545#define SNB_STRM_ST             (1ULL << 11)
 546#define SNB_OTHER               (1ULL << 15)
 547#define SNB_RESP_ANY            (1ULL << 16)
 548#define SNB_NO_SUPP             (1ULL << 17)
 549#define SNB_LLC_HITM            (1ULL << 18)
 550#define SNB_LLC_HITE            (1ULL << 19)
 551#define SNB_LLC_HITS            (1ULL << 20)
 552#define SNB_LLC_HITF            (1ULL << 21)
 553#define SNB_LOCAL               (1ULL << 22)
 554#define SNB_REMOTE              (0xffULL << 23)
 555#define SNB_SNP_NONE            (1ULL << 31)
 556#define SNB_SNP_NOT_NEEDED      (1ULL << 32)
 557#define SNB_SNP_MISS            (1ULL << 33)
 558#define SNB_NO_FWD              (1ULL << 34)
 559#define SNB_SNP_FWD             (1ULL << 35)
 560#define SNB_HITM                (1ULL << 36)
 561#define SNB_NON_DRAM            (1ULL << 37)
 562
 563#define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
 564#define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
 565#define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
 566
 567#define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
 568                                 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
 569                                 SNB_HITM)
 570
 571#define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
 572#define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
 573
 574#define SNB_L3_ACCESS           SNB_RESP_ANY
 575#define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
 576
 577static __initconst const u64 snb_hw_cache_extra_regs
 578                                [PERF_COUNT_HW_CACHE_MAX]
 579                                [PERF_COUNT_HW_CACHE_OP_MAX]
 580                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 581{
 582 [ C(LL  ) ] = {
 583        [ C(OP_READ) ] = {
 584                [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
 585                [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
 586        },
 587        [ C(OP_WRITE) ] = {
 588                [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
 589                [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
 590        },
 591        [ C(OP_PREFETCH) ] = {
 592                [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
 593                [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
 594        },
 595 },
 596 [ C(NODE) ] = {
 597        [ C(OP_READ) ] = {
 598                [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
 599                [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
 600        },
 601        [ C(OP_WRITE) ] = {
 602                [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
 603                [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
 604        },
 605        [ C(OP_PREFETCH) ] = {
 606                [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
 607                [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
 608        },
 609 },
 610};
 611
 612static __initconst const u64 snb_hw_cache_event_ids
 613                                [PERF_COUNT_HW_CACHE_MAX]
 614                                [PERF_COUNT_HW_CACHE_OP_MAX]
 615                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 616{
 617 [ C(L1D) ] = {
 618        [ C(OP_READ) ] = {
 619                [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
 620                [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
 621        },
 622        [ C(OP_WRITE) ] = {
 623                [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
 624                [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
 625        },
 626        [ C(OP_PREFETCH) ] = {
 627                [ C(RESULT_ACCESS) ] = 0x0,
 628                [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
 629        },
 630 },
 631 [ C(L1I ) ] = {
 632        [ C(OP_READ) ] = {
 633                [ C(RESULT_ACCESS) ] = 0x0,
 634                [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
 635        },
 636        [ C(OP_WRITE) ] = {
 637                [ C(RESULT_ACCESS) ] = -1,
 638                [ C(RESULT_MISS)   ] = -1,
 639        },
 640        [ C(OP_PREFETCH) ] = {
 641                [ C(RESULT_ACCESS) ] = 0x0,
 642                [ C(RESULT_MISS)   ] = 0x0,
 643        },
 644 },
 645 [ C(LL  ) ] = {
 646        [ C(OP_READ) ] = {
 647                /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
 648                [ C(RESULT_ACCESS) ] = 0x01b7,
 649                /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
 650                [ C(RESULT_MISS)   ] = 0x01b7,
 651        },
 652        [ C(OP_WRITE) ] = {
 653                /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
 654                [ C(RESULT_ACCESS) ] = 0x01b7,
 655                /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
 656                [ C(RESULT_MISS)   ] = 0x01b7,
 657        },
 658        [ C(OP_PREFETCH) ] = {
 659                /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
 660                [ C(RESULT_ACCESS) ] = 0x01b7,
 661                /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
 662                [ C(RESULT_MISS)   ] = 0x01b7,
 663        },
 664 },
 665 [ C(DTLB) ] = {
 666        [ C(OP_READ) ] = {
 667                [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
 668                [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
 669        },
 670        [ C(OP_WRITE) ] = {
 671                [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
 672                [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
 673        },
 674        [ C(OP_PREFETCH) ] = {
 675                [ C(RESULT_ACCESS) ] = 0x0,
 676                [ C(RESULT_MISS)   ] = 0x0,
 677        },
 678 },
 679 [ C(ITLB) ] = {
 680        [ C(OP_READ) ] = {
 681                [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
 682                [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
 683        },
 684        [ C(OP_WRITE) ] = {
 685                [ C(RESULT_ACCESS) ] = -1,
 686                [ C(RESULT_MISS)   ] = -1,
 687        },
 688        [ C(OP_PREFETCH) ] = {
 689                [ C(RESULT_ACCESS) ] = -1,
 690                [ C(RESULT_MISS)   ] = -1,
 691        },
 692 },
 693 [ C(BPU ) ] = {
 694        [ C(OP_READ) ] = {
 695                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
 696                [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
 697        },
 698        [ C(OP_WRITE) ] = {
 699                [ C(RESULT_ACCESS) ] = -1,
 700                [ C(RESULT_MISS)   ] = -1,
 701        },
 702        [ C(OP_PREFETCH) ] = {
 703                [ C(RESULT_ACCESS) ] = -1,
 704                [ C(RESULT_MISS)   ] = -1,
 705        },
 706 },
 707 [ C(NODE) ] = {
 708        [ C(OP_READ) ] = {
 709                [ C(RESULT_ACCESS) ] = 0x01b7,
 710                [ C(RESULT_MISS)   ] = 0x01b7,
 711        },
 712        [ C(OP_WRITE) ] = {
 713                [ C(RESULT_ACCESS) ] = 0x01b7,
 714                [ C(RESULT_MISS)   ] = 0x01b7,
 715        },
 716        [ C(OP_PREFETCH) ] = {
 717                [ C(RESULT_ACCESS) ] = 0x01b7,
 718                [ C(RESULT_MISS)   ] = 0x01b7,
 719        },
 720 },
 721
 722};
 723
 724/*
 725 * Notes on the events:
 726 * - data reads do not include code reads (comparable to earlier tables)
 727 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 728 * - remote node access includes remote memory, remote cache, remote mmio.
 729 * - prefetches are not included in the counts because they are not
 730 *   reliably counted.
 731 */
 732
 733#define HSW_DEMAND_DATA_RD              BIT_ULL(0)
 734#define HSW_DEMAND_RFO                  BIT_ULL(1)
 735#define HSW_ANY_RESPONSE                BIT_ULL(16)
 736#define HSW_SUPPLIER_NONE               BIT_ULL(17)
 737#define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
 738#define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
 739#define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
 740#define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
 741#define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
 742                                         HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
 743                                         HSW_L3_MISS_REMOTE_HOP2P)
 744#define HSW_SNOOP_NONE                  BIT_ULL(31)
 745#define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
 746#define HSW_SNOOP_MISS                  BIT_ULL(33)
 747#define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
 748#define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
 749#define HSW_SNOOP_HITM                  BIT_ULL(36)
 750#define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
 751#define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
 752                                         HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
 753                                         HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
 754                                         HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
 755#define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
 756#define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
 757#define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
 758#define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
 759                                         HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
 760#define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
 761
 762#define BDW_L3_MISS_LOCAL               BIT(26)
 763#define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
 764                                         HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
 765                                         HSW_L3_MISS_REMOTE_HOP2P)
 766
 767
 768static __initconst const u64 hsw_hw_cache_event_ids
 769                                [PERF_COUNT_HW_CACHE_MAX]
 770                                [PERF_COUNT_HW_CACHE_OP_MAX]
 771                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 772{
 773 [ C(L1D ) ] = {
 774        [ C(OP_READ) ] = {
 775                [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
 776                [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
 777        },
 778        [ C(OP_WRITE) ] = {
 779                [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
 780                [ C(RESULT_MISS)   ] = 0x0,
 781        },
 782        [ C(OP_PREFETCH) ] = {
 783                [ C(RESULT_ACCESS) ] = 0x0,
 784                [ C(RESULT_MISS)   ] = 0x0,
 785        },
 786 },
 787 [ C(L1I ) ] = {
 788        [ C(OP_READ) ] = {
 789                [ C(RESULT_ACCESS) ] = 0x0,
 790                [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
 791        },
 792        [ C(OP_WRITE) ] = {
 793                [ C(RESULT_ACCESS) ] = -1,
 794                [ C(RESULT_MISS)   ] = -1,
 795        },
 796        [ C(OP_PREFETCH) ] = {
 797                [ C(RESULT_ACCESS) ] = 0x0,
 798                [ C(RESULT_MISS)   ] = 0x0,
 799        },
 800 },
 801 [ C(LL  ) ] = {
 802        [ C(OP_READ) ] = {
 803                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 804                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 805        },
 806        [ C(OP_WRITE) ] = {
 807                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 808                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 809        },
 810        [ C(OP_PREFETCH) ] = {
 811                [ C(RESULT_ACCESS) ] = 0x0,
 812                [ C(RESULT_MISS)   ] = 0x0,
 813        },
 814 },
 815 [ C(DTLB) ] = {
 816        [ C(OP_READ) ] = {
 817                [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
 818                [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
 819        },
 820        [ C(OP_WRITE) ] = {
 821                [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
 822                [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
 823        },
 824        [ C(OP_PREFETCH) ] = {
 825                [ C(RESULT_ACCESS) ] = 0x0,
 826                [ C(RESULT_MISS)   ] = 0x0,
 827        },
 828 },
 829 [ C(ITLB) ] = {
 830        [ C(OP_READ) ] = {
 831                [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
 832                [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
 833        },
 834        [ C(OP_WRITE) ] = {
 835                [ C(RESULT_ACCESS) ] = -1,
 836                [ C(RESULT_MISS)   ] = -1,
 837        },
 838        [ C(OP_PREFETCH) ] = {
 839                [ C(RESULT_ACCESS) ] = -1,
 840                [ C(RESULT_MISS)   ] = -1,
 841        },
 842 },
 843 [ C(BPU ) ] = {
 844        [ C(OP_READ) ] = {
 845                [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
 846                [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
 847        },
 848        [ C(OP_WRITE) ] = {
 849                [ C(RESULT_ACCESS) ] = -1,
 850                [ C(RESULT_MISS)   ] = -1,
 851        },
 852        [ C(OP_PREFETCH) ] = {
 853                [ C(RESULT_ACCESS) ] = -1,
 854                [ C(RESULT_MISS)   ] = -1,
 855        },
 856 },
 857 [ C(NODE) ] = {
 858        [ C(OP_READ) ] = {
 859                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 860                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 861        },
 862        [ C(OP_WRITE) ] = {
 863                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 864                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 865        },
 866        [ C(OP_PREFETCH) ] = {
 867                [ C(RESULT_ACCESS) ] = 0x0,
 868                [ C(RESULT_MISS)   ] = 0x0,
 869        },
 870 },
 871};
 872
 873static __initconst const u64 hsw_hw_cache_extra_regs
 874                                [PERF_COUNT_HW_CACHE_MAX]
 875                                [PERF_COUNT_HW_CACHE_OP_MAX]
 876                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 877{
 878 [ C(LL  ) ] = {
 879        [ C(OP_READ) ] = {
 880                [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
 881                                       HSW_LLC_ACCESS,
 882                [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
 883                                       HSW_L3_MISS|HSW_ANY_SNOOP,
 884        },
 885        [ C(OP_WRITE) ] = {
 886                [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
 887                                       HSW_LLC_ACCESS,
 888                [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
 889                                       HSW_L3_MISS|HSW_ANY_SNOOP,
 890        },
 891        [ C(OP_PREFETCH) ] = {
 892                [ C(RESULT_ACCESS) ] = 0x0,
 893                [ C(RESULT_MISS)   ] = 0x0,
 894        },
 895 },
 896 [ C(NODE) ] = {
 897        [ C(OP_READ) ] = {
 898                [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
 899                                       HSW_L3_MISS_LOCAL_DRAM|
 900                                       HSW_SNOOP_DRAM,
 901                [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
 902                                       HSW_L3_MISS_REMOTE|
 903                                       HSW_SNOOP_DRAM,
 904        },
 905        [ C(OP_WRITE) ] = {
 906                [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
 907                                       HSW_L3_MISS_LOCAL_DRAM|
 908                                       HSW_SNOOP_DRAM,
 909                [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
 910                                       HSW_L3_MISS_REMOTE|
 911                                       HSW_SNOOP_DRAM,
 912        },
 913        [ C(OP_PREFETCH) ] = {
 914                [ C(RESULT_ACCESS) ] = 0x0,
 915                [ C(RESULT_MISS)   ] = 0x0,
 916        },
 917 },
 918};
 919
 920static __initconst const u64 westmere_hw_cache_event_ids
 921                                [PERF_COUNT_HW_CACHE_MAX]
 922                                [PERF_COUNT_HW_CACHE_OP_MAX]
 923                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 924{
 925 [ C(L1D) ] = {
 926        [ C(OP_READ) ] = {
 927                [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
 928                [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
 929        },
 930        [ C(OP_WRITE) ] = {
 931                [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
 932                [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
 933        },
 934        [ C(OP_PREFETCH) ] = {
 935                [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
 936                [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
 937        },
 938 },
 939 [ C(L1I ) ] = {
 940        [ C(OP_READ) ] = {
 941                [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
 942                [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
 943        },
 944        [ C(OP_WRITE) ] = {
 945                [ C(RESULT_ACCESS) ] = -1,
 946                [ C(RESULT_MISS)   ] = -1,
 947        },
 948        [ C(OP_PREFETCH) ] = {
 949                [ C(RESULT_ACCESS) ] = 0x0,
 950                [ C(RESULT_MISS)   ] = 0x0,
 951        },
 952 },
 953 [ C(LL  ) ] = {
 954        [ C(OP_READ) ] = {
 955                /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
 956                [ C(RESULT_ACCESS) ] = 0x01b7,
 957                /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
 958                [ C(RESULT_MISS)   ] = 0x01b7,
 959        },
 960        /*
 961         * Use RFO, not WRITEBACK, because a write miss would typically occur
 962         * on RFO.
 963         */
 964        [ C(OP_WRITE) ] = {
 965                /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
 966                [ C(RESULT_ACCESS) ] = 0x01b7,
 967                /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
 968                [ C(RESULT_MISS)   ] = 0x01b7,
 969        },
 970        [ C(OP_PREFETCH) ] = {
 971                /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
 972                [ C(RESULT_ACCESS) ] = 0x01b7,
 973                /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
 974                [ C(RESULT_MISS)   ] = 0x01b7,
 975        },
 976 },
 977 [ C(DTLB) ] = {
 978        [ C(OP_READ) ] = {
 979                [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
 980                [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
 981        },
 982        [ C(OP_WRITE) ] = {
 983                [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
 984                [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
 985        },
 986        [ C(OP_PREFETCH) ] = {
 987                [ C(RESULT_ACCESS) ] = 0x0,
 988                [ C(RESULT_MISS)   ] = 0x0,
 989        },
 990 },
 991 [ C(ITLB) ] = {
 992        [ C(OP_READ) ] = {
 993                [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
 994                [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
 995        },
 996        [ C(OP_WRITE) ] = {
 997                [ C(RESULT_ACCESS) ] = -1,
 998                [ C(RESULT_MISS)   ] = -1,
 999        },
1000        [ C(OP_PREFETCH) ] = {
1001                [ C(RESULT_ACCESS) ] = -1,
1002                [ C(RESULT_MISS)   ] = -1,
1003        },
1004 },
1005 [ C(BPU ) ] = {
1006        [ C(OP_READ) ] = {
1007                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1008                [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1009        },
1010        [ C(OP_WRITE) ] = {
1011                [ C(RESULT_ACCESS) ] = -1,
1012                [ C(RESULT_MISS)   ] = -1,
1013        },
1014        [ C(OP_PREFETCH) ] = {
1015                [ C(RESULT_ACCESS) ] = -1,
1016                [ C(RESULT_MISS)   ] = -1,
1017        },
1018 },
1019 [ C(NODE) ] = {
1020        [ C(OP_READ) ] = {
1021                [ C(RESULT_ACCESS) ] = 0x01b7,
1022                [ C(RESULT_MISS)   ] = 0x01b7,
1023        },
1024        [ C(OP_WRITE) ] = {
1025                [ C(RESULT_ACCESS) ] = 0x01b7,
1026                [ C(RESULT_MISS)   ] = 0x01b7,
1027        },
1028        [ C(OP_PREFETCH) ] = {
1029                [ C(RESULT_ACCESS) ] = 0x01b7,
1030                [ C(RESULT_MISS)   ] = 0x01b7,
1031        },
1032 },
1033};
1034
1035/*
1036 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1037 * See IA32 SDM Vol 3B 30.6.1.3
1038 */
1039
1040#define NHM_DMND_DATA_RD        (1 << 0)
1041#define NHM_DMND_RFO            (1 << 1)
1042#define NHM_DMND_IFETCH         (1 << 2)
1043#define NHM_DMND_WB             (1 << 3)
1044#define NHM_PF_DATA_RD          (1 << 4)
1045#define NHM_PF_DATA_RFO         (1 << 5)
1046#define NHM_PF_IFETCH           (1 << 6)
1047#define NHM_OFFCORE_OTHER       (1 << 7)
1048#define NHM_UNCORE_HIT          (1 << 8)
1049#define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1050#define NHM_OTHER_CORE_HITM     (1 << 10)
1051                                /* reserved */
1052#define NHM_REMOTE_CACHE_FWD    (1 << 12)
1053#define NHM_REMOTE_DRAM         (1 << 13)
1054#define NHM_LOCAL_DRAM          (1 << 14)
1055#define NHM_NON_DRAM            (1 << 15)
1056
1057#define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1058#define NHM_REMOTE              (NHM_REMOTE_DRAM)
1059
1060#define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1061#define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1062#define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1063
1064#define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1065#define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1066#define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1067
1068static __initconst const u64 nehalem_hw_cache_extra_regs
1069                                [PERF_COUNT_HW_CACHE_MAX]
1070                                [PERF_COUNT_HW_CACHE_OP_MAX]
1071                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1072{
1073 [ C(LL  ) ] = {
1074        [ C(OP_READ) ] = {
1075                [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1076                [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1077        },
1078        [ C(OP_WRITE) ] = {
1079                [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1080                [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1081        },
1082        [ C(OP_PREFETCH) ] = {
1083                [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1084                [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1085        },
1086 },
1087 [ C(NODE) ] = {
1088        [ C(OP_READ) ] = {
1089                [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1090                [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1091        },
1092        [ C(OP_WRITE) ] = {
1093                [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1094                [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1095        },
1096        [ C(OP_PREFETCH) ] = {
1097                [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1098                [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1099        },
1100 },
1101};
1102
1103static __initconst const u64 nehalem_hw_cache_event_ids
1104                                [PERF_COUNT_HW_CACHE_MAX]
1105                                [PERF_COUNT_HW_CACHE_OP_MAX]
1106                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1107{
1108 [ C(L1D) ] = {
1109        [ C(OP_READ) ] = {
1110                [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1111                [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1112        },
1113        [ C(OP_WRITE) ] = {
1114                [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1115                [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1116        },
1117        [ C(OP_PREFETCH) ] = {
1118                [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1119                [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1120        },
1121 },
1122 [ C(L1I ) ] = {
1123        [ C(OP_READ) ] = {
1124                [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1125                [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1126        },
1127        [ C(OP_WRITE) ] = {
1128                [ C(RESULT_ACCESS) ] = -1,
1129                [ C(RESULT_MISS)   ] = -1,
1130        },
1131        [ C(OP_PREFETCH) ] = {
1132                [ C(RESULT_ACCESS) ] = 0x0,
1133                [ C(RESULT_MISS)   ] = 0x0,
1134        },
1135 },
1136 [ C(LL  ) ] = {
1137        [ C(OP_READ) ] = {
1138                /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1139                [ C(RESULT_ACCESS) ] = 0x01b7,
1140                /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1141                [ C(RESULT_MISS)   ] = 0x01b7,
1142        },
1143        /*
1144         * Use RFO, not WRITEBACK, because a write miss would typically occur
1145         * on RFO.
1146         */
1147        [ C(OP_WRITE) ] = {
1148                /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1149                [ C(RESULT_ACCESS) ] = 0x01b7,
1150                /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1151                [ C(RESULT_MISS)   ] = 0x01b7,
1152        },
1153        [ C(OP_PREFETCH) ] = {
1154                /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1155                [ C(RESULT_ACCESS) ] = 0x01b7,
1156                /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1157                [ C(RESULT_MISS)   ] = 0x01b7,
1158        },
1159 },
1160 [ C(DTLB) ] = {
1161        [ C(OP_READ) ] = {
1162                [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1163                [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1164        },
1165        [ C(OP_WRITE) ] = {
1166                [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1167                [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1168        },
1169        [ C(OP_PREFETCH) ] = {
1170                [ C(RESULT_ACCESS) ] = 0x0,
1171                [ C(RESULT_MISS)   ] = 0x0,
1172        },
1173 },
1174 [ C(ITLB) ] = {
1175        [ C(OP_READ) ] = {
1176                [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1177                [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1178        },
1179        [ C(OP_WRITE) ] = {
1180                [ C(RESULT_ACCESS) ] = -1,
1181                [ C(RESULT_MISS)   ] = -1,
1182        },
1183        [ C(OP_PREFETCH) ] = {
1184                [ C(RESULT_ACCESS) ] = -1,
1185                [ C(RESULT_MISS)   ] = -1,
1186        },
1187 },
1188 [ C(BPU ) ] = {
1189        [ C(OP_READ) ] = {
1190                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1191                [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1192        },
1193        [ C(OP_WRITE) ] = {
1194                [ C(RESULT_ACCESS) ] = -1,
1195                [ C(RESULT_MISS)   ] = -1,
1196        },
1197        [ C(OP_PREFETCH) ] = {
1198                [ C(RESULT_ACCESS) ] = -1,
1199                [ C(RESULT_MISS)   ] = -1,
1200        },
1201 },
1202 [ C(NODE) ] = {
1203        [ C(OP_READ) ] = {
1204                [ C(RESULT_ACCESS) ] = 0x01b7,
1205                [ C(RESULT_MISS)   ] = 0x01b7,
1206        },
1207        [ C(OP_WRITE) ] = {
1208                [ C(RESULT_ACCESS) ] = 0x01b7,
1209                [ C(RESULT_MISS)   ] = 0x01b7,
1210        },
1211        [ C(OP_PREFETCH) ] = {
1212                [ C(RESULT_ACCESS) ] = 0x01b7,
1213                [ C(RESULT_MISS)   ] = 0x01b7,
1214        },
1215 },
1216};
1217
1218static __initconst const u64 core2_hw_cache_event_ids
1219                                [PERF_COUNT_HW_CACHE_MAX]
1220                                [PERF_COUNT_HW_CACHE_OP_MAX]
1221                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1222{
1223 [ C(L1D) ] = {
1224        [ C(OP_READ) ] = {
1225                [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1226                [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1227        },
1228        [ C(OP_WRITE) ] = {
1229                [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1230                [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1231        },
1232        [ C(OP_PREFETCH) ] = {
1233                [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1234                [ C(RESULT_MISS)   ] = 0,
1235        },
1236 },
1237 [ C(L1I ) ] = {
1238        [ C(OP_READ) ] = {
1239                [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1240                [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1241        },
1242        [ C(OP_WRITE) ] = {
1243                [ C(RESULT_ACCESS) ] = -1,
1244                [ C(RESULT_MISS)   ] = -1,
1245        },
1246        [ C(OP_PREFETCH) ] = {
1247                [ C(RESULT_ACCESS) ] = 0,
1248                [ C(RESULT_MISS)   ] = 0,
1249        },
1250 },
1251 [ C(LL  ) ] = {
1252        [ C(OP_READ) ] = {
1253                [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1254                [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1255        },
1256        [ C(OP_WRITE) ] = {
1257                [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1258                [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1259        },
1260        [ C(OP_PREFETCH) ] = {
1261                [ C(RESULT_ACCESS) ] = 0,
1262                [ C(RESULT_MISS)   ] = 0,
1263        },
1264 },
1265 [ C(DTLB) ] = {
1266        [ C(OP_READ) ] = {
1267                [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1268                [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1269        },
1270        [ C(OP_WRITE) ] = {
1271                [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1272                [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1273        },
1274        [ C(OP_PREFETCH) ] = {
1275                [ C(RESULT_ACCESS) ] = 0,
1276                [ C(RESULT_MISS)   ] = 0,
1277        },
1278 },
1279 [ C(ITLB) ] = {
1280        [ C(OP_READ) ] = {
1281                [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1282                [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1283        },
1284        [ C(OP_WRITE) ] = {
1285                [ C(RESULT_ACCESS) ] = -1,
1286                [ C(RESULT_MISS)   ] = -1,
1287        },
1288        [ C(OP_PREFETCH) ] = {
1289                [ C(RESULT_ACCESS) ] = -1,
1290                [ C(RESULT_MISS)   ] = -1,
1291        },
1292 },
1293 [ C(BPU ) ] = {
1294        [ C(OP_READ) ] = {
1295                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1296                [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1297        },
1298        [ C(OP_WRITE) ] = {
1299                [ C(RESULT_ACCESS) ] = -1,
1300                [ C(RESULT_MISS)   ] = -1,
1301        },
1302        [ C(OP_PREFETCH) ] = {
1303                [ C(RESULT_ACCESS) ] = -1,
1304                [ C(RESULT_MISS)   ] = -1,
1305        },
1306 },
1307};
1308
1309static __initconst const u64 atom_hw_cache_event_ids
1310                                [PERF_COUNT_HW_CACHE_MAX]
1311                                [PERF_COUNT_HW_CACHE_OP_MAX]
1312                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313{
1314 [ C(L1D) ] = {
1315        [ C(OP_READ) ] = {
1316                [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1317                [ C(RESULT_MISS)   ] = 0,
1318        },
1319        [ C(OP_WRITE) ] = {
1320                [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1321                [ C(RESULT_MISS)   ] = 0,
1322        },
1323        [ C(OP_PREFETCH) ] = {
1324                [ C(RESULT_ACCESS) ] = 0x0,
1325                [ C(RESULT_MISS)   ] = 0,
1326        },
1327 },
1328 [ C(L1I ) ] = {
1329        [ C(OP_READ) ] = {
1330                [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1331                [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1332        },
1333        [ C(OP_WRITE) ] = {
1334                [ C(RESULT_ACCESS) ] = -1,
1335                [ C(RESULT_MISS)   ] = -1,
1336        },
1337        [ C(OP_PREFETCH) ] = {
1338                [ C(RESULT_ACCESS) ] = 0,
1339                [ C(RESULT_MISS)   ] = 0,
1340        },
1341 },
1342 [ C(LL  ) ] = {
1343        [ C(OP_READ) ] = {
1344                [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1345                [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1346        },
1347        [ C(OP_WRITE) ] = {
1348                [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1349                [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1350        },
1351        [ C(OP_PREFETCH) ] = {
1352                [ C(RESULT_ACCESS) ] = 0,
1353                [ C(RESULT_MISS)   ] = 0,
1354        },
1355 },
1356 [ C(DTLB) ] = {
1357        [ C(OP_READ) ] = {
1358                [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1359                [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1360        },
1361        [ C(OP_WRITE) ] = {
1362                [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1363                [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1364        },
1365        [ C(OP_PREFETCH) ] = {
1366                [ C(RESULT_ACCESS) ] = 0,
1367                [ C(RESULT_MISS)   ] = 0,
1368        },
1369 },
1370 [ C(ITLB) ] = {
1371        [ C(OP_READ) ] = {
1372                [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1373                [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1374        },
1375        [ C(OP_WRITE) ] = {
1376                [ C(RESULT_ACCESS) ] = -1,
1377                [ C(RESULT_MISS)   ] = -1,
1378        },
1379        [ C(OP_PREFETCH) ] = {
1380                [ C(RESULT_ACCESS) ] = -1,
1381                [ C(RESULT_MISS)   ] = -1,
1382        },
1383 },
1384 [ C(BPU ) ] = {
1385        [ C(OP_READ) ] = {
1386                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1387                [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1388        },
1389        [ C(OP_WRITE) ] = {
1390                [ C(RESULT_ACCESS) ] = -1,
1391                [ C(RESULT_MISS)   ] = -1,
1392        },
1393        [ C(OP_PREFETCH) ] = {
1394                [ C(RESULT_ACCESS) ] = -1,
1395                [ C(RESULT_MISS)   ] = -1,
1396        },
1397 },
1398};
1399
1400EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1401EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1402/* no_alloc_cycles.not_delivered */
1403EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1404               "event=0xca,umask=0x50");
1405EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1406/* uops_retired.all */
1407EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1408               "event=0xc2,umask=0x10");
1409/* uops_retired.all */
1410EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1411               "event=0xc2,umask=0x10");
1412
1413static struct attribute *slm_events_attrs[] = {
1414        EVENT_PTR(td_total_slots_slm),
1415        EVENT_PTR(td_total_slots_scale_slm),
1416        EVENT_PTR(td_fetch_bubbles_slm),
1417        EVENT_PTR(td_fetch_bubbles_scale_slm),
1418        EVENT_PTR(td_slots_issued_slm),
1419        EVENT_PTR(td_slots_retired_slm),
1420        NULL
1421};
1422
1423static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1424{
1425        /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1426        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1427        INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1428        EVENT_EXTRA_END
1429};
1430
1431#define SLM_DMND_READ           SNB_DMND_DATA_RD
1432#define SLM_DMND_WRITE          SNB_DMND_RFO
1433#define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1434
1435#define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1436#define SLM_LLC_ACCESS          SNB_RESP_ANY
1437#define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1438
1439static __initconst const u64 slm_hw_cache_extra_regs
1440                                [PERF_COUNT_HW_CACHE_MAX]
1441                                [PERF_COUNT_HW_CACHE_OP_MAX]
1442                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1443{
1444 [ C(LL  ) ] = {
1445        [ C(OP_READ) ] = {
1446                [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1447                [ C(RESULT_MISS)   ] = 0,
1448        },
1449        [ C(OP_WRITE) ] = {
1450                [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1451                [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1452        },
1453        [ C(OP_PREFETCH) ] = {
1454                [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1455                [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1456        },
1457 },
1458};
1459
1460static __initconst const u64 slm_hw_cache_event_ids
1461                                [PERF_COUNT_HW_CACHE_MAX]
1462                                [PERF_COUNT_HW_CACHE_OP_MAX]
1463                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1464{
1465 [ C(L1D) ] = {
1466        [ C(OP_READ) ] = {
1467                [ C(RESULT_ACCESS) ] = 0,
1468                [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1469        },
1470        [ C(OP_WRITE) ] = {
1471                [ C(RESULT_ACCESS) ] = 0,
1472                [ C(RESULT_MISS)   ] = 0,
1473        },
1474        [ C(OP_PREFETCH) ] = {
1475                [ C(RESULT_ACCESS) ] = 0,
1476                [ C(RESULT_MISS)   ] = 0,
1477        },
1478 },
1479 [ C(L1I ) ] = {
1480        [ C(OP_READ) ] = {
1481                [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1482                [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1483        },
1484        [ C(OP_WRITE) ] = {
1485                [ C(RESULT_ACCESS) ] = -1,
1486                [ C(RESULT_MISS)   ] = -1,
1487        },
1488        [ C(OP_PREFETCH) ] = {
1489                [ C(RESULT_ACCESS) ] = 0,
1490                [ C(RESULT_MISS)   ] = 0,
1491        },
1492 },
1493 [ C(LL  ) ] = {
1494        [ C(OP_READ) ] = {
1495                /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1496                [ C(RESULT_ACCESS) ] = 0x01b7,
1497                [ C(RESULT_MISS)   ] = 0,
1498        },
1499        [ C(OP_WRITE) ] = {
1500                /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1501                [ C(RESULT_ACCESS) ] = 0x01b7,
1502                /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1503                [ C(RESULT_MISS)   ] = 0x01b7,
1504        },
1505        [ C(OP_PREFETCH) ] = {
1506                /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1507                [ C(RESULT_ACCESS) ] = 0x01b7,
1508                /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1509                [ C(RESULT_MISS)   ] = 0x01b7,
1510        },
1511 },
1512 [ C(DTLB) ] = {
1513        [ C(OP_READ) ] = {
1514                [ C(RESULT_ACCESS) ] = 0,
1515                [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1516        },
1517        [ C(OP_WRITE) ] = {
1518                [ C(RESULT_ACCESS) ] = 0,
1519                [ C(RESULT_MISS)   ] = 0,
1520        },
1521        [ C(OP_PREFETCH) ] = {
1522                [ C(RESULT_ACCESS) ] = 0,
1523                [ C(RESULT_MISS)   ] = 0,
1524        },
1525 },
1526 [ C(ITLB) ] = {
1527        [ C(OP_READ) ] = {
1528                [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1529                [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1530        },
1531        [ C(OP_WRITE) ] = {
1532                [ C(RESULT_ACCESS) ] = -1,
1533                [ C(RESULT_MISS)   ] = -1,
1534        },
1535        [ C(OP_PREFETCH) ] = {
1536                [ C(RESULT_ACCESS) ] = -1,
1537                [ C(RESULT_MISS)   ] = -1,
1538        },
1539 },
1540 [ C(BPU ) ] = {
1541        [ C(OP_READ) ] = {
1542                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1543                [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1544        },
1545        [ C(OP_WRITE) ] = {
1546                [ C(RESULT_ACCESS) ] = -1,
1547                [ C(RESULT_MISS)   ] = -1,
1548        },
1549        [ C(OP_PREFETCH) ] = {
1550                [ C(RESULT_ACCESS) ] = -1,
1551                [ C(RESULT_MISS)   ] = -1,
1552        },
1553 },
1554};
1555
1556static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1557        /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1558        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1559        INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1560        EVENT_EXTRA_END
1561};
1562
1563#define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1564#define GLM_DEMAND_RFO                  BIT_ULL(1)
1565#define GLM_ANY_RESPONSE                BIT_ULL(16)
1566#define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1567#define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1568#define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1569#define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1570#define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1571#define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1572#define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1573
1574static __initconst const u64 glm_hw_cache_event_ids
1575                                [PERF_COUNT_HW_CACHE_MAX]
1576                                [PERF_COUNT_HW_CACHE_OP_MAX]
1577                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1578        [C(L1D)] = {
1579                [C(OP_READ)] = {
1580                        [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1581                        [C(RESULT_MISS)]        = 0x0,
1582                },
1583                [C(OP_WRITE)] = {
1584                        [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1585                        [C(RESULT_MISS)]        = 0x0,
1586                },
1587                [C(OP_PREFETCH)] = {
1588                        [C(RESULT_ACCESS)]      = 0x0,
1589                        [C(RESULT_MISS)]        = 0x0,
1590                },
1591        },
1592        [C(L1I)] = {
1593                [C(OP_READ)] = {
1594                        [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1595                        [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1596                },
1597                [C(OP_WRITE)] = {
1598                        [C(RESULT_ACCESS)]      = -1,
1599                        [C(RESULT_MISS)]        = -1,
1600                },
1601                [C(OP_PREFETCH)] = {
1602                        [C(RESULT_ACCESS)]      = 0x0,
1603                        [C(RESULT_MISS)]        = 0x0,
1604                },
1605        },
1606        [C(LL)] = {
1607                [C(OP_READ)] = {
1608                        [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1609                        [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1610                },
1611                [C(OP_WRITE)] = {
1612                        [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1613                        [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1614                },
1615                [C(OP_PREFETCH)] = {
1616                        [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1617                        [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1618                },
1619        },
1620        [C(DTLB)] = {
1621                [C(OP_READ)] = {
1622                        [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1623                        [C(RESULT_MISS)]        = 0x0,
1624                },
1625                [C(OP_WRITE)] = {
1626                        [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1627                        [C(RESULT_MISS)]        = 0x0,
1628                },
1629                [C(OP_PREFETCH)] = {
1630                        [C(RESULT_ACCESS)]      = 0x0,
1631                        [C(RESULT_MISS)]        = 0x0,
1632                },
1633        },
1634        [C(ITLB)] = {
1635                [C(OP_READ)] = {
1636                        [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1637                        [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1638                },
1639                [C(OP_WRITE)] = {
1640                        [C(RESULT_ACCESS)]      = -1,
1641                        [C(RESULT_MISS)]        = -1,
1642                },
1643                [C(OP_PREFETCH)] = {
1644                        [C(RESULT_ACCESS)]      = -1,
1645                        [C(RESULT_MISS)]        = -1,
1646                },
1647        },
1648        [C(BPU)] = {
1649                [C(OP_READ)] = {
1650                        [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1651                        [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1652                },
1653                [C(OP_WRITE)] = {
1654                        [C(RESULT_ACCESS)]      = -1,
1655                        [C(RESULT_MISS)]        = -1,
1656                },
1657                [C(OP_PREFETCH)] = {
1658                        [C(RESULT_ACCESS)]      = -1,
1659                        [C(RESULT_MISS)]        = -1,
1660                },
1661        },
1662};
1663
1664static __initconst const u64 glm_hw_cache_extra_regs
1665                                [PERF_COUNT_HW_CACHE_MAX]
1666                                [PERF_COUNT_HW_CACHE_OP_MAX]
1667                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1668        [C(LL)] = {
1669                [C(OP_READ)] = {
1670                        [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1671                                                  GLM_LLC_ACCESS,
1672                        [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1673                                                  GLM_LLC_MISS,
1674                },
1675                [C(OP_WRITE)] = {
1676                        [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1677                                                  GLM_LLC_ACCESS,
1678                        [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1679                                                  GLM_LLC_MISS,
1680                },
1681                [C(OP_PREFETCH)] = {
1682                        [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1683                                                  GLM_LLC_ACCESS,
1684                        [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1685                                                  GLM_LLC_MISS,
1686                },
1687        },
1688};
1689
1690#define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
1691#define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
1692#define KNL_MCDRAM_LOCAL        BIT_ULL(21)
1693#define KNL_MCDRAM_FAR          BIT_ULL(22)
1694#define KNL_DDR_LOCAL           BIT_ULL(23)
1695#define KNL_DDR_FAR             BIT_ULL(24)
1696#define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1697                                    KNL_DDR_LOCAL | KNL_DDR_FAR)
1698#define KNL_L2_READ             SLM_DMND_READ
1699#define KNL_L2_WRITE            SLM_DMND_WRITE
1700#define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
1701#define KNL_L2_ACCESS           SLM_LLC_ACCESS
1702#define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1703                                   KNL_DRAM_ANY | SNB_SNP_ANY | \
1704                                                  SNB_NON_DRAM)
1705
1706static __initconst const u64 knl_hw_cache_extra_regs
1707                                [PERF_COUNT_HW_CACHE_MAX]
1708                                [PERF_COUNT_HW_CACHE_OP_MAX]
1709                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1710        [C(LL)] = {
1711                [C(OP_READ)] = {
1712                        [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1713                        [C(RESULT_MISS)]   = 0,
1714                },
1715                [C(OP_WRITE)] = {
1716                        [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1717                        [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1718                },
1719                [C(OP_PREFETCH)] = {
1720                        [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1721                        [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1722                },
1723        },
1724};
1725
1726/*
1727 * Used from PMIs where the LBRs are already disabled.
1728 *
1729 * This function could be called consecutively. It is required to remain in
1730 * disabled state if called consecutively.
1731 *
1732 * During consecutive calls, the same disable value will be written to related
1733 * registers, so the PMU state remains unchanged.
1734 *
1735 * intel_bts events don't coexist with intel PMU's BTS events because of
1736 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1737 * disabled around intel PMU's event batching etc, only inside the PMI handler.
1738 */
1739static void __intel_pmu_disable_all(void)
1740{
1741        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1742
1743        wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1744
1745        if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1746                intel_pmu_disable_bts();
1747
1748        intel_pmu_pebs_disable_all();
1749}
1750
1751static void intel_pmu_disable_all(void)
1752{
1753        __intel_pmu_disable_all();
1754        intel_pmu_lbr_disable_all();
1755}
1756
1757static void __intel_pmu_enable_all(int added, bool pmi)
1758{
1759        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1760
1761        intel_pmu_pebs_enable_all();
1762        intel_pmu_lbr_enable_all(pmi);
1763        wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1764                        x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1765
1766        if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1767                struct perf_event *event =
1768                        cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1769
1770                if (WARN_ON_ONCE(!event))
1771                        return;
1772
1773                intel_pmu_enable_bts(event->hw.config);
1774        }
1775}
1776
1777static void intel_pmu_enable_all(int added)
1778{
1779        __intel_pmu_enable_all(added, false);
1780}
1781
1782/*
1783 * Workaround for:
1784 *   Intel Errata AAK100 (model 26)
1785 *   Intel Errata AAP53  (model 30)
1786 *   Intel Errata BD53   (model 44)
1787 *
1788 * The official story:
1789 *   These chips need to be 'reset' when adding counters by programming the
1790 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1791 *   in sequence on the same PMC or on different PMCs.
1792 *
1793 * In practise it appears some of these events do in fact count, and
1794 * we need to programm all 4 events.
1795 */
1796static void intel_pmu_nhm_workaround(void)
1797{
1798        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1799        static const unsigned long nhm_magic[4] = {
1800                0x4300B5,
1801                0x4300D2,
1802                0x4300B1,
1803                0x4300B1
1804        };
1805        struct perf_event *event;
1806        int i;
1807
1808        /*
1809         * The Errata requires below steps:
1810         * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1811         * 2) Configure 4 PERFEVTSELx with the magic events and clear
1812         *    the corresponding PMCx;
1813         * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1814         * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1815         * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1816         */
1817
1818        /*
1819         * The real steps we choose are a little different from above.
1820         * A) To reduce MSR operations, we don't run step 1) as they
1821         *    are already cleared before this function is called;
1822         * B) Call x86_perf_event_update to save PMCx before configuring
1823         *    PERFEVTSELx with magic number;
1824         * C) With step 5), we do clear only when the PERFEVTSELx is
1825         *    not used currently.
1826         * D) Call x86_perf_event_set_period to restore PMCx;
1827         */
1828
1829        /* We always operate 4 pairs of PERF Counters */
1830        for (i = 0; i < 4; i++) {
1831                event = cpuc->events[i];
1832                if (event)
1833                        x86_perf_event_update(event);
1834        }
1835
1836        for (i = 0; i < 4; i++) {
1837                wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1838                wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1839        }
1840
1841        wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1842        wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1843
1844        for (i = 0; i < 4; i++) {
1845                event = cpuc->events[i];
1846
1847                if (event) {
1848                        x86_perf_event_set_period(event);
1849                        __x86_pmu_enable_event(&event->hw,
1850                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1851                } else
1852                        wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1853        }
1854}
1855
1856static void intel_pmu_nhm_enable_all(int added)
1857{
1858        if (added)
1859                intel_pmu_nhm_workaround();
1860        intel_pmu_enable_all(added);
1861}
1862
1863static inline u64 intel_pmu_get_status(void)
1864{
1865        u64 status;
1866
1867        rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1868
1869        return status;
1870}
1871
1872static inline void intel_pmu_ack_status(u64 ack)
1873{
1874        wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1875}
1876
1877static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1878{
1879        int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1880        u64 ctrl_val, mask;
1881
1882        mask = 0xfULL << (idx * 4);
1883
1884        rdmsrl(hwc->config_base, ctrl_val);
1885        ctrl_val &= ~mask;
1886        wrmsrl(hwc->config_base, ctrl_val);
1887}
1888
1889static inline bool event_is_checkpointed(struct perf_event *event)
1890{
1891        return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1892}
1893
1894static void intel_pmu_disable_event(struct perf_event *event)
1895{
1896        struct hw_perf_event *hwc = &event->hw;
1897        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1898
1899        if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1900                intel_pmu_disable_bts();
1901                intel_pmu_drain_bts_buffer();
1902                return;
1903        }
1904
1905        cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1906        cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1907        cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1908
1909        if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1910                intel_pmu_disable_fixed(hwc);
1911                return;
1912        }
1913
1914        x86_pmu_disable_event(event);
1915
1916        if (unlikely(event->attr.precise_ip))
1917                intel_pmu_pebs_disable(event);
1918}
1919
1920static void intel_pmu_del_event(struct perf_event *event)
1921{
1922        if (needs_branch_stack(event))
1923                intel_pmu_lbr_del(event);
1924        if (event->attr.precise_ip)
1925                intel_pmu_pebs_del(event);
1926}
1927
1928static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1929{
1930        int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1931        u64 ctrl_val, bits, mask;
1932
1933        /*
1934         * Enable IRQ generation (0x8),
1935         * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1936         * if requested:
1937         */
1938        bits = 0x8ULL;
1939        if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1940                bits |= 0x2;
1941        if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1942                bits |= 0x1;
1943
1944        /*
1945         * ANY bit is supported in v3 and up
1946         */
1947        if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1948                bits |= 0x4;
1949
1950        bits <<= (idx * 4);
1951        mask = 0xfULL << (idx * 4);
1952
1953        rdmsrl(hwc->config_base, ctrl_val);
1954        ctrl_val &= ~mask;
1955        ctrl_val |= bits;
1956        wrmsrl(hwc->config_base, ctrl_val);
1957}
1958
1959static void intel_pmu_enable_event(struct perf_event *event)
1960{
1961        struct hw_perf_event *hwc = &event->hw;
1962        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1963
1964        if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1965                if (!__this_cpu_read(cpu_hw_events.enabled))
1966                        return;
1967
1968                intel_pmu_enable_bts(hwc->config);
1969                return;
1970        }
1971
1972        if (event->attr.exclude_host)
1973                cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1974        if (event->attr.exclude_guest)
1975                cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1976
1977        if (unlikely(event_is_checkpointed(event)))
1978                cpuc->intel_cp_status |= (1ull << hwc->idx);
1979
1980        if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1981                intel_pmu_enable_fixed(hwc);
1982                return;
1983        }
1984
1985        if (unlikely(event->attr.precise_ip))
1986                intel_pmu_pebs_enable(event);
1987
1988        __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1989}
1990
1991static void intel_pmu_add_event(struct perf_event *event)
1992{
1993        if (event->attr.precise_ip)
1994                intel_pmu_pebs_add(event);
1995        if (needs_branch_stack(event))
1996                intel_pmu_lbr_add(event);
1997}
1998
1999/*
2000 * Save and restart an expired event. Called by NMI contexts,
2001 * so it has to be careful about preempting normal event ops:
2002 */
2003int intel_pmu_save_and_restart(struct perf_event *event)
2004{
2005        x86_perf_event_update(event);
2006        /*
2007         * For a checkpointed counter always reset back to 0.  This
2008         * avoids a situation where the counter overflows, aborts the
2009         * transaction and is then set back to shortly before the
2010         * overflow, and overflows and aborts again.
2011         */
2012        if (unlikely(event_is_checkpointed(event))) {
2013                /* No race with NMIs because the counter should not be armed */
2014                wrmsrl(event->hw.event_base, 0);
2015                local64_set(&event->hw.prev_count, 0);
2016        }
2017        return x86_perf_event_set_period(event);
2018}
2019
2020static void intel_pmu_reset(void)
2021{
2022        struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2023        unsigned long flags;
2024        int idx;
2025
2026        if (!x86_pmu.num_counters)
2027                return;
2028
2029        local_irq_save(flags);
2030
2031        pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2032
2033        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2034                wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2035                wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2036        }
2037        for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2038                wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2039
2040        if (ds)
2041                ds->bts_index = ds->bts_buffer_base;
2042
2043        /* Ack all overflows and disable fixed counters */
2044        if (x86_pmu.version >= 2) {
2045                intel_pmu_ack_status(intel_pmu_get_status());
2046                wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2047        }
2048
2049        /* Reset LBRs and LBR freezing */
2050        if (x86_pmu.lbr_nr) {
2051                update_debugctlmsr(get_debugctlmsr() &
2052                        ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2053        }
2054
2055        local_irq_restore(flags);
2056}
2057
2058/*
2059 * This handler is triggered by the local APIC, so the APIC IRQ handling
2060 * rules apply:
2061 */
2062static int intel_pmu_handle_irq(struct pt_regs *regs)
2063{
2064        struct perf_sample_data data;
2065        struct cpu_hw_events *cpuc;
2066        int bit, loops;
2067        u64 status;
2068        int handled;
2069
2070        cpuc = this_cpu_ptr(&cpu_hw_events);
2071
2072        /*
2073         * No known reason to not always do late ACK,
2074         * but just in case do it opt-in.
2075         */
2076        if (!x86_pmu.late_ack)
2077                apic_write(APIC_LVTPC, APIC_DM_NMI);
2078        intel_bts_disable_local();
2079        __intel_pmu_disable_all();
2080        handled = intel_pmu_drain_bts_buffer();
2081        handled += intel_bts_interrupt();
2082        status = intel_pmu_get_status();
2083        if (!status)
2084                goto done;
2085
2086        loops = 0;
2087again:
2088        intel_pmu_lbr_read();
2089        intel_pmu_ack_status(status);
2090        if (++loops > 100) {
2091                static bool warned = false;
2092                if (!warned) {
2093                        WARN(1, "perfevents: irq loop stuck!\n");
2094                        perf_event_print_debug();
2095                        warned = true;
2096                }
2097                intel_pmu_reset();
2098                goto done;
2099        }
2100
2101        inc_irq_stat(apic_perf_irqs);
2102
2103
2104        /*
2105         * Ignore a range of extra bits in status that do not indicate
2106         * overflow by themselves.
2107         */
2108        status &= ~(GLOBAL_STATUS_COND_CHG |
2109                    GLOBAL_STATUS_ASIF |
2110                    GLOBAL_STATUS_LBRS_FROZEN);
2111        if (!status)
2112                goto done;
2113
2114        /*
2115         * PEBS overflow sets bit 62 in the global status register
2116         */
2117        if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2118                handled++;
2119                x86_pmu.drain_pebs(regs);
2120                /*
2121                 * There are cases where, even though, the PEBS ovfl bit is set
2122                 * in GLOBAL_OVF_STATUS, the PEBS events may also have their
2123                 * overflow bits set for their counters. We must clear them
2124                 * here because they have been processed as exact samples in
2125                 * the drain_pebs() routine. They must not be processed again
2126                 * in the for_each_bit_set() loop for regular samples below.
2127                 */
2128                status &= ~cpuc->pebs_enabled;
2129                status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2130        }
2131
2132        /*
2133         * Intel PT
2134         */
2135        if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2136                handled++;
2137                intel_pt_interrupt();
2138        }
2139
2140        /*
2141         * Checkpointed counters can lead to 'spurious' PMIs because the
2142         * rollback caused by the PMI will have cleared the overflow status
2143         * bit. Therefore always force probe these counters.
2144         */
2145        status |= cpuc->intel_cp_status;
2146
2147        for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2148                struct perf_event *event = cpuc->events[bit];
2149
2150                handled++;
2151
2152                if (!test_bit(bit, cpuc->active_mask))
2153                        continue;
2154
2155                if (!intel_pmu_save_and_restart(event))
2156                        continue;
2157
2158                perf_sample_data_init(&data, 0, event->hw.last_period);
2159
2160                if (has_branch_stack(event))
2161                        data.br_stack = &cpuc->lbr_stack;
2162
2163                if (perf_event_overflow(event, &data, regs))
2164                        x86_pmu_stop(event, 0);
2165        }
2166
2167        /*
2168         * Repeat if there is more work to be done:
2169         */
2170        status = intel_pmu_get_status();
2171        if (status)
2172                goto again;
2173
2174done:
2175        /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2176        if (cpuc->enabled)
2177                __intel_pmu_enable_all(0, true);
2178        intel_bts_enable_local();
2179
2180        /*
2181         * Only unmask the NMI after the overflow counters
2182         * have been reset. This avoids spurious NMIs on
2183         * Haswell CPUs.
2184         */
2185        if (x86_pmu.late_ack)
2186                apic_write(APIC_LVTPC, APIC_DM_NMI);
2187        return handled;
2188}
2189
2190static struct event_constraint *
2191intel_bts_constraints(struct perf_event *event)
2192{
2193        struct hw_perf_event *hwc = &event->hw;
2194        unsigned int hw_event, bts_event;
2195
2196        if (event->attr.freq)
2197                return NULL;
2198
2199        hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2200        bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2201
2202        if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2203                return &bts_constraint;
2204
2205        return NULL;
2206}
2207
2208static int intel_alt_er(int idx, u64 config)
2209{
2210        int alt_idx = idx;
2211
2212        if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2213                return idx;
2214
2215        if (idx == EXTRA_REG_RSP_0)
2216                alt_idx = EXTRA_REG_RSP_1;
2217
2218        if (idx == EXTRA_REG_RSP_1)
2219                alt_idx = EXTRA_REG_RSP_0;
2220
2221        if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2222                return idx;
2223
2224        return alt_idx;
2225}
2226
2227static void intel_fixup_er(struct perf_event *event, int idx)
2228{
2229        event->hw.extra_reg.idx = idx;
2230
2231        if (idx == EXTRA_REG_RSP_0) {
2232                event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2233                event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2234                event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2235        } else if (idx == EXTRA_REG_RSP_1) {
2236                event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2237                event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2238                event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2239        }
2240}
2241
2242/*
2243 * manage allocation of shared extra msr for certain events
2244 *
2245 * sharing can be:
2246 * per-cpu: to be shared between the various events on a single PMU
2247 * per-core: per-cpu + shared by HT threads
2248 */
2249static struct event_constraint *
2250__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2251                                   struct perf_event *event,
2252                                   struct hw_perf_event_extra *reg)
2253{
2254        struct event_constraint *c = &emptyconstraint;
2255        struct er_account *era;
2256        unsigned long flags;
2257        int idx = reg->idx;
2258
2259        /*
2260         * reg->alloc can be set due to existing state, so for fake cpuc we
2261         * need to ignore this, otherwise we might fail to allocate proper fake
2262         * state for this extra reg constraint. Also see the comment below.
2263         */
2264        if (reg->alloc && !cpuc->is_fake)
2265                return NULL; /* call x86_get_event_constraint() */
2266
2267again:
2268        era = &cpuc->shared_regs->regs[idx];
2269        /*
2270         * we use spin_lock_irqsave() to avoid lockdep issues when
2271         * passing a fake cpuc
2272         */
2273        raw_spin_lock_irqsave(&era->lock, flags);
2274
2275        if (!atomic_read(&era->ref) || era->config == reg->config) {
2276
2277                /*
2278                 * If its a fake cpuc -- as per validate_{group,event}() we
2279                 * shouldn't touch event state and we can avoid doing so
2280                 * since both will only call get_event_constraints() once
2281                 * on each event, this avoids the need for reg->alloc.
2282                 *
2283                 * Not doing the ER fixup will only result in era->reg being
2284                 * wrong, but since we won't actually try and program hardware
2285                 * this isn't a problem either.
2286                 */
2287                if (!cpuc->is_fake) {
2288                        if (idx != reg->idx)
2289                                intel_fixup_er(event, idx);
2290
2291                        /*
2292                         * x86_schedule_events() can call get_event_constraints()
2293                         * multiple times on events in the case of incremental
2294                         * scheduling(). reg->alloc ensures we only do the ER
2295                         * allocation once.
2296                         */
2297                        reg->alloc = 1;
2298                }
2299
2300                /* lock in msr value */
2301                era->config = reg->config;
2302                era->reg = reg->reg;
2303
2304                /* one more user */
2305                atomic_inc(&era->ref);
2306
2307                /*
2308                 * need to call x86_get_event_constraint()
2309                 * to check if associated event has constraints
2310                 */
2311                c = NULL;
2312        } else {
2313                idx = intel_alt_er(idx, reg->config);
2314                if (idx != reg->idx) {
2315                        raw_spin_unlock_irqrestore(&era->lock, flags);
2316                        goto again;
2317                }
2318        }
2319        raw_spin_unlock_irqrestore(&era->lock, flags);
2320
2321        return c;
2322}
2323
2324static void
2325__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2326                                   struct hw_perf_event_extra *reg)
2327{
2328        struct er_account *era;
2329
2330        /*
2331         * Only put constraint if extra reg was actually allocated. Also takes
2332         * care of event which do not use an extra shared reg.
2333         *
2334         * Also, if this is a fake cpuc we shouldn't touch any event state
2335         * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2336         * either since it'll be thrown out.
2337         */
2338        if (!reg->alloc || cpuc->is_fake)
2339                return;
2340
2341        era = &cpuc->shared_regs->regs[reg->idx];
2342
2343        /* one fewer user */
2344        atomic_dec(&era->ref);
2345
2346        /* allocate again next time */
2347        reg->alloc = 0;
2348}
2349
2350static struct event_constraint *
2351intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2352                              struct perf_event *event)
2353{
2354        struct event_constraint *c = NULL, *d;
2355        struct hw_perf_event_extra *xreg, *breg;
2356
2357        xreg = &event->hw.extra_reg;
2358        if (xreg->idx != EXTRA_REG_NONE) {
2359                c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2360                if (c == &emptyconstraint)
2361                        return c;
2362        }
2363        breg = &event->hw.branch_reg;
2364        if (breg->idx != EXTRA_REG_NONE) {
2365                d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2366                if (d == &emptyconstraint) {
2367                        __intel_shared_reg_put_constraints(cpuc, xreg);
2368                        c = d;
2369                }
2370        }
2371        return c;
2372}
2373
2374struct event_constraint *
2375x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2376                          struct perf_event *event)
2377{
2378        struct event_constraint *c;
2379
2380        if (x86_pmu.event_constraints) {
2381                for_each_event_constraint(c, x86_pmu.event_constraints) {
2382                        if ((event->hw.config & c->cmask) == c->code) {
2383                                event->hw.flags |= c->flags;
2384                                return c;
2385                        }
2386                }
2387        }
2388
2389        return &unconstrained;
2390}
2391
2392static struct event_constraint *
2393__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2394                            struct perf_event *event)
2395{
2396        struct event_constraint *c;
2397
2398        c = intel_bts_constraints(event);
2399        if (c)
2400                return c;
2401
2402        c = intel_shared_regs_constraints(cpuc, event);
2403        if (c)
2404                return c;
2405
2406        c = intel_pebs_constraints(event);
2407        if (c)
2408                return c;
2409
2410        return x86_get_event_constraints(cpuc, idx, event);
2411}
2412
2413static void
2414intel_start_scheduling(struct cpu_hw_events *cpuc)
2415{
2416        struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2417        struct intel_excl_states *xl;
2418        int tid = cpuc->excl_thread_id;
2419
2420        /*
2421         * nothing needed if in group validation mode
2422         */
2423        if (cpuc->is_fake || !is_ht_workaround_enabled())
2424                return;
2425
2426        /*
2427         * no exclusion needed
2428         */
2429        if (WARN_ON_ONCE(!excl_cntrs))
2430                return;
2431
2432        xl = &excl_cntrs->states[tid];
2433
2434        xl->sched_started = true;
2435        /*
2436         * lock shared state until we are done scheduling
2437         * in stop_event_scheduling()
2438         * makes scheduling appear as a transaction
2439         */
2440        raw_spin_lock(&excl_cntrs->lock);
2441}
2442
2443static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2444{
2445        struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2446        struct event_constraint *c = cpuc->event_constraint[idx];
2447        struct intel_excl_states *xl;
2448        int tid = cpuc->excl_thread_id;
2449
2450        if (cpuc->is_fake || !is_ht_workaround_enabled())
2451                return;
2452
2453        if (WARN_ON_ONCE(!excl_cntrs))
2454                return;
2455
2456        if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2457                return;
2458
2459        xl = &excl_cntrs->states[tid];
2460
2461        lockdep_assert_held(&excl_cntrs->lock);
2462
2463        if (c->flags & PERF_X86_EVENT_EXCL)
2464                xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2465        else
2466                xl->state[cntr] = INTEL_EXCL_SHARED;
2467}
2468
2469static void
2470intel_stop_scheduling(struct cpu_hw_events *cpuc)
2471{
2472        struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2473        struct intel_excl_states *xl;
2474        int tid = cpuc->excl_thread_id;
2475
2476        /*
2477         * nothing needed if in group validation mode
2478         */
2479        if (cpuc->is_fake || !is_ht_workaround_enabled())
2480                return;
2481        /*
2482         * no exclusion needed
2483         */
2484        if (WARN_ON_ONCE(!excl_cntrs))
2485                return;
2486
2487        xl = &excl_cntrs->states[tid];
2488
2489        xl->sched_started = false;
2490        /*
2491         * release shared state lock (acquired in intel_start_scheduling())
2492         */
2493        raw_spin_unlock(&excl_cntrs->lock);
2494}
2495
2496static struct event_constraint *
2497intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2498                           int idx, struct event_constraint *c)
2499{
2500        struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2501        struct intel_excl_states *xlo;
2502        int tid = cpuc->excl_thread_id;
2503        int is_excl, i;
2504
2505        /*
2506         * validating a group does not require
2507         * enforcing cross-thread  exclusion
2508         */
2509        if (cpuc->is_fake || !is_ht_workaround_enabled())
2510                return c;
2511
2512        /*
2513         * no exclusion needed
2514         */
2515        if (WARN_ON_ONCE(!excl_cntrs))
2516                return c;
2517
2518        /*
2519         * because we modify the constraint, we need
2520         * to make a copy. Static constraints come
2521         * from static const tables.
2522         *
2523         * only needed when constraint has not yet
2524         * been cloned (marked dynamic)
2525         */
2526        if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2527                struct event_constraint *cx;
2528
2529                /*
2530                 * grab pre-allocated constraint entry
2531                 */
2532                cx = &cpuc->constraint_list[idx];
2533
2534                /*
2535                 * initialize dynamic constraint
2536                 * with static constraint
2537                 */
2538                *cx = *c;
2539
2540                /*
2541                 * mark constraint as dynamic, so we
2542                 * can free it later on
2543                 */
2544                cx->flags |= PERF_X86_EVENT_DYNAMIC;
2545                c = cx;
2546        }
2547
2548        /*
2549         * From here on, the constraint is dynamic.
2550         * Either it was just allocated above, or it
2551         * was allocated during a earlier invocation
2552         * of this function
2553         */
2554
2555        /*
2556         * state of sibling HT
2557         */
2558        xlo = &excl_cntrs->states[tid ^ 1];
2559
2560        /*
2561         * event requires exclusive counter access
2562         * across HT threads
2563         */
2564        is_excl = c->flags & PERF_X86_EVENT_EXCL;
2565        if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2566                event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2567                if (!cpuc->n_excl++)
2568                        WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2569        }
2570
2571        /*
2572         * Modify static constraint with current dynamic
2573         * state of thread
2574         *
2575         * EXCLUSIVE: sibling counter measuring exclusive event
2576         * SHARED   : sibling counter measuring non-exclusive event
2577         * UNUSED   : sibling counter unused
2578         */
2579        for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2580                /*
2581                 * exclusive event in sibling counter
2582                 * our corresponding counter cannot be used
2583                 * regardless of our event
2584                 */
2585                if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2586                        __clear_bit(i, c->idxmsk);
2587                /*
2588                 * if measuring an exclusive event, sibling
2589                 * measuring non-exclusive, then counter cannot
2590                 * be used
2591                 */
2592                if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2593                        __clear_bit(i, c->idxmsk);
2594        }
2595
2596        /*
2597         * recompute actual bit weight for scheduling algorithm
2598         */
2599        c->weight = hweight64(c->idxmsk64);
2600
2601        /*
2602         * if we return an empty mask, then switch
2603         * back to static empty constraint to avoid
2604         * the cost of freeing later on
2605         */
2606        if (c->weight == 0)
2607                c = &emptyconstraint;
2608
2609        return c;
2610}
2611
2612static struct event_constraint *
2613intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2614                            struct perf_event *event)
2615{
2616        struct event_constraint *c1 = NULL;
2617        struct event_constraint *c2;
2618
2619        if (idx >= 0) /* fake does < 0 */
2620                c1 = cpuc->event_constraint[idx];
2621
2622        /*
2623         * first time only
2624         * - static constraint: no change across incremental scheduling calls
2625         * - dynamic constraint: handled by intel_get_excl_constraints()
2626         */
2627        c2 = __intel_get_event_constraints(cpuc, idx, event);
2628        if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2629                bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2630                c1->weight = c2->weight;
2631                c2 = c1;
2632        }
2633
2634        if (cpuc->excl_cntrs)
2635                return intel_get_excl_constraints(cpuc, event, idx, c2);
2636
2637        return c2;
2638}
2639
2640static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2641                struct perf_event *event)
2642{
2643        struct hw_perf_event *hwc = &event->hw;
2644        struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2645        int tid = cpuc->excl_thread_id;
2646        struct intel_excl_states *xl;
2647
2648        /*
2649         * nothing needed if in group validation mode
2650         */
2651        if (cpuc->is_fake)
2652                return;
2653
2654        if (WARN_ON_ONCE(!excl_cntrs))
2655                return;
2656
2657        if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2658                hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2659                if (!--cpuc->n_excl)
2660                        WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2661        }
2662
2663        /*
2664         * If event was actually assigned, then mark the counter state as
2665         * unused now.
2666         */
2667        if (hwc->idx >= 0) {
2668                xl = &excl_cntrs->states[tid];
2669
2670                /*
2671                 * put_constraint may be called from x86_schedule_events()
2672                 * which already has the lock held so here make locking
2673                 * conditional.
2674                 */
2675                if (!xl->sched_started)
2676                        raw_spin_lock(&excl_cntrs->lock);
2677
2678                xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2679
2680                if (!xl->sched_started)
2681                        raw_spin_unlock(&excl_cntrs->lock);
2682        }
2683}
2684
2685static void
2686intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2687                                        struct perf_event *event)
2688{
2689        struct hw_perf_event_extra *reg;
2690
2691        reg = &event->hw.extra_reg;
2692        if (reg->idx != EXTRA_REG_NONE)
2693                __intel_shared_reg_put_constraints(cpuc, reg);
2694
2695        reg = &event->hw.branch_reg;
2696        if (reg->idx != EXTRA_REG_NONE)
2697                __intel_shared_reg_put_constraints(cpuc, reg);
2698}
2699
2700static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2701                                        struct perf_event *event)
2702{
2703        intel_put_shared_regs_event_constraints(cpuc, event);
2704
2705        /*
2706         * is PMU has exclusive counter restrictions, then
2707         * all events are subject to and must call the
2708         * put_excl_constraints() routine
2709         */
2710        if (cpuc->excl_cntrs)
2711                intel_put_excl_constraints(cpuc, event);
2712}
2713
2714static void intel_pebs_aliases_core2(struct perf_event *event)
2715{
2716        if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2717                /*
2718                 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2719                 * (0x003c) so that we can use it with PEBS.
2720                 *
2721                 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2722                 * PEBS capable. However we can use INST_RETIRED.ANY_P
2723                 * (0x00c0), which is a PEBS capable event, to get the same
2724                 * count.
2725                 *
2726                 * INST_RETIRED.ANY_P counts the number of cycles that retires
2727                 * CNTMASK instructions. By setting CNTMASK to a value (16)
2728                 * larger than the maximum number of instructions that can be
2729                 * retired per cycle (4) and then inverting the condition, we
2730                 * count all cycles that retire 16 or less instructions, which
2731                 * is every cycle.
2732                 *
2733                 * Thereby we gain a PEBS capable cycle counter.
2734                 */
2735                u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2736
2737                alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2738                event->hw.config = alt_config;
2739        }
2740}
2741
2742static void intel_pebs_aliases_snb(struct perf_event *event)
2743{
2744        if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2745                /*
2746                 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2747                 * (0x003c) so that we can use it with PEBS.
2748                 *
2749                 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2750                 * PEBS capable. However we can use UOPS_RETIRED.ALL
2751                 * (0x01c2), which is a PEBS capable event, to get the same
2752                 * count.
2753                 *
2754                 * UOPS_RETIRED.ALL counts the number of cycles that retires
2755                 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2756                 * larger than the maximum number of micro-ops that can be
2757                 * retired per cycle (4) and then inverting the condition, we
2758                 * count all cycles that retire 16 or less micro-ops, which
2759                 * is every cycle.
2760                 *
2761                 * Thereby we gain a PEBS capable cycle counter.
2762                 */
2763                u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2764
2765                alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2766                event->hw.config = alt_config;
2767        }
2768}
2769
2770static void intel_pebs_aliases_precdist(struct perf_event *event)
2771{
2772        if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2773                /*
2774                 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2775                 * (0x003c) so that we can use it with PEBS.
2776                 *
2777                 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2778                 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2779                 * (0x01c0), which is a PEBS capable event, to get the same
2780                 * count.
2781                 *
2782                 * The PREC_DIST event has special support to minimize sample
2783                 * shadowing effects. One drawback is that it can be
2784                 * only programmed on counter 1, but that seems like an
2785                 * acceptable trade off.
2786                 */
2787                u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2788
2789                alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2790                event->hw.config = alt_config;
2791        }
2792}
2793
2794static void intel_pebs_aliases_ivb(struct perf_event *event)
2795{
2796        if (event->attr.precise_ip < 3)
2797                return intel_pebs_aliases_snb(event);
2798        return intel_pebs_aliases_precdist(event);
2799}
2800
2801static void intel_pebs_aliases_skl(struct perf_event *event)
2802{
2803        if (event->attr.precise_ip < 3)
2804                return intel_pebs_aliases_core2(event);
2805        return intel_pebs_aliases_precdist(event);
2806}
2807
2808static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2809{
2810        unsigned long flags = x86_pmu.free_running_flags;
2811
2812        if (event->attr.use_clockid)
2813                flags &= ~PERF_SAMPLE_TIME;
2814        return flags;
2815}
2816
2817static int intel_pmu_hw_config(struct perf_event *event)
2818{
2819        int ret = x86_pmu_hw_config(event);
2820
2821        if (ret)
2822                return ret;
2823
2824        if (event->attr.precise_ip) {
2825                if (!event->attr.freq) {
2826                        event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2827                        if (!(event->attr.sample_type &
2828                              ~intel_pmu_free_running_flags(event)))
2829                                event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2830                }
2831                if (x86_pmu.pebs_aliases)
2832                        x86_pmu.pebs_aliases(event);
2833        }
2834
2835        if (needs_branch_stack(event)) {
2836                ret = intel_pmu_setup_lbr_filter(event);
2837                if (ret)
2838                        return ret;
2839
2840                /*
2841                 * BTS is set up earlier in this path, so don't account twice
2842                 */
2843                if (!intel_pmu_has_bts(event)) {
2844                        /* disallow lbr if conflicting events are present */
2845                        if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2846                                return -EBUSY;
2847
2848                        event->destroy = hw_perf_lbr_event_destroy;
2849                }
2850        }
2851
2852        if (event->attr.type != PERF_TYPE_RAW)
2853                return 0;
2854
2855        if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2856                return 0;
2857
2858        if (x86_pmu.version < 3)
2859                return -EINVAL;
2860
2861        if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2862                return -EACCES;
2863
2864        event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2865
2866        return 0;
2867}
2868
2869struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2870{
2871        if (x86_pmu.guest_get_msrs)
2872                return x86_pmu.guest_get_msrs(nr);
2873        *nr = 0;
2874        return NULL;
2875}
2876EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2877
2878static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2879{
2880        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2881        struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2882
2883        arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2884        arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2885        arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2886        /*
2887         * If PMU counter has PEBS enabled it is not enough to disable counter
2888         * on a guest entry since PEBS memory write can overshoot guest entry
2889         * and corrupt guest memory. Disabling PEBS solves the problem.
2890         */
2891        arr[1].msr = MSR_IA32_PEBS_ENABLE;
2892        arr[1].host = cpuc->pebs_enabled;
2893        arr[1].guest = 0;
2894
2895        *nr = 2;
2896        return arr;
2897}
2898
2899static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2900{
2901        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2902        struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2903        int idx;
2904
2905        for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
2906                struct perf_event *event = cpuc->events[idx];
2907
2908                arr[idx].msr = x86_pmu_config_addr(idx);
2909                arr[idx].host = arr[idx].guest = 0;
2910
2911                if (!test_bit(idx, cpuc->active_mask))
2912                        continue;
2913
2914                arr[idx].host = arr[idx].guest =
2915                        event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2916
2917                if (event->attr.exclude_host)
2918                        arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2919                else if (event->attr.exclude_guest)
2920                        arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2921        }
2922
2923        *nr = x86_pmu.num_counters;
2924        return arr;
2925}
2926
2927static void core_pmu_enable_event(struct perf_event *event)
2928{
2929        if (!event->attr.exclude_host)
2930                x86_pmu_enable_event(event);
2931}
2932
2933static void core_pmu_enable_all(int added)
2934{
2935        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2936        int idx;
2937
2938        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2939                struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2940
2941                if (!test_bit(idx, cpuc->active_mask) ||
2942                                cpuc->events[idx]->attr.exclude_host)
2943                        continue;
2944
2945                __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2946        }
2947}
2948
2949static int hsw_hw_config(struct perf_event *event)
2950{
2951        int ret = intel_pmu_hw_config(event);
2952
2953        if (ret)
2954                return ret;
2955        if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2956                return 0;
2957        event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2958
2959        /*
2960         * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2961         * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2962         * this combination.
2963         */
2964        if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2965             ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2966              event->attr.precise_ip > 0))
2967                return -EOPNOTSUPP;
2968
2969        if (event_is_checkpointed(event)) {
2970                /*
2971                 * Sampling of checkpointed events can cause situations where
2972                 * the CPU constantly aborts because of a overflow, which is
2973                 * then checkpointed back and ignored. Forbid checkpointing
2974                 * for sampling.
2975                 *
2976                 * But still allow a long sampling period, so that perf stat
2977                 * from KVM works.
2978                 */
2979                if (event->attr.sample_period > 0 &&
2980                    event->attr.sample_period < 0x7fffffff)
2981                        return -EOPNOTSUPP;
2982        }
2983        return 0;
2984}
2985
2986static struct event_constraint counter2_constraint =
2987                        EVENT_CONSTRAINT(0, 0x4, 0);
2988
2989static struct event_constraint *
2990hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2991                          struct perf_event *event)
2992{
2993        struct event_constraint *c;
2994
2995        c = intel_get_event_constraints(cpuc, idx, event);
2996
2997        /* Handle special quirk on in_tx_checkpointed only in counter 2 */
2998        if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2999                if (c->idxmsk64 & (1U << 2))
3000                        return &counter2_constraint;
3001                return &emptyconstraint;
3002        }
3003
3004        return c;
3005}
3006
3007/*
3008 * Broadwell:
3009 *
3010 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3011 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3012 * the two to enforce a minimum period of 128 (the smallest value that has bits
3013 * 0-5 cleared and >= 100).
3014 *
3015 * Because of how the code in x86_perf_event_set_period() works, the truncation
3016 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3017 * to make up for the 'lost' events due to carrying the 'error' in period_left.
3018 *
3019 * Therefore the effective (average) period matches the requested period,
3020 * despite coarser hardware granularity.
3021 */
3022static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
3023{
3024        if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3025                        X86_CONFIG(.event=0xc0, .umask=0x01)) {
3026                if (left < 128)
3027                        left = 128;
3028                left &= ~0x3fu;
3029        }
3030        return left;
3031}
3032
3033PMU_FORMAT_ATTR(event,  "config:0-7"    );
3034PMU_FORMAT_ATTR(umask,  "config:8-15"   );
3035PMU_FORMAT_ATTR(edge,   "config:18"     );
3036PMU_FORMAT_ATTR(pc,     "config:19"     );
3037PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
3038PMU_FORMAT_ATTR(inv,    "config:23"     );
3039PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
3040PMU_FORMAT_ATTR(in_tx,  "config:32");
3041PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3042
3043static struct attribute *intel_arch_formats_attr[] = {
3044        &format_attr_event.attr,
3045        &format_attr_umask.attr,
3046        &format_attr_edge.attr,
3047        &format_attr_pc.attr,
3048        &format_attr_inv.attr,
3049        &format_attr_cmask.attr,
3050        NULL,
3051};
3052
3053ssize_t intel_event_sysfs_show(char *page, u64 config)
3054{
3055        u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3056
3057        return x86_event_sysfs_show(page, config, event);
3058}
3059
3060struct intel_shared_regs *allocate_shared_regs(int cpu)
3061{
3062        struct intel_shared_regs *regs;
3063        int i;
3064
3065        regs = kzalloc_node(sizeof(struct intel_shared_regs),
3066                            GFP_KERNEL, cpu_to_node(cpu));
3067        if (regs) {
3068                /*
3069                 * initialize the locks to keep lockdep happy
3070                 */
3071                for (i = 0; i < EXTRA_REG_MAX; i++)
3072                        raw_spin_lock_init(&regs->regs[i].lock);
3073
3074                regs->core_id = -1;
3075        }
3076        return regs;
3077}
3078
3079static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3080{
3081        struct intel_excl_cntrs *c;
3082
3083        c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3084                         GFP_KERNEL, cpu_to_node(cpu));
3085        if (c) {
3086                raw_spin_lock_init(&c->lock);
3087                c->core_id = -1;
3088        }
3089        return c;
3090}
3091
3092static int intel_pmu_cpu_prepare(int cpu)
3093{
3094        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3095
3096        if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3097                cpuc->shared_regs = allocate_shared_regs(cpu);
3098                if (!cpuc->shared_regs)
3099                        goto err;
3100        }
3101
3102        if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3103                size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3104
3105                cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3106                if (!cpuc->constraint_list)
3107                        goto err_shared_regs;
3108
3109                cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3110                if (!cpuc->excl_cntrs)
3111                        goto err_constraint_list;
3112
3113                cpuc->excl_thread_id = 0;
3114        }
3115
3116        return 0;
3117
3118err_constraint_list:
3119        kfree(cpuc->constraint_list);
3120        cpuc->constraint_list = NULL;
3121
3122err_shared_regs:
3123        kfree(cpuc->shared_regs);
3124        cpuc->shared_regs = NULL;
3125
3126err:
3127        return -ENOMEM;
3128}
3129
3130static void intel_pmu_cpu_starting(int cpu)
3131{
3132        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3133        int core_id = topology_core_id(cpu);
3134        int i;
3135
3136        init_debug_store_on_cpu(cpu);
3137        /*
3138         * Deal with CPUs that don't clear their LBRs on power-up.
3139         */
3140        intel_pmu_lbr_reset();
3141
3142        cpuc->lbr_sel = NULL;
3143
3144        if (!cpuc->shared_regs)
3145                return;
3146
3147        if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3148                for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3149                        struct intel_shared_regs *pc;
3150
3151                        pc = per_cpu(cpu_hw_events, i).shared_regs;
3152                        if (pc && pc->core_id == core_id) {
3153                                cpuc->kfree_on_online[0] = cpuc->shared_regs;
3154                                cpuc->shared_regs = pc;
3155                                break;
3156                        }
3157                }
3158                cpuc->shared_regs->core_id = core_id;
3159                cpuc->shared_regs->refcnt++;
3160        }
3161
3162        if (x86_pmu.lbr_sel_map)
3163                cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3164
3165        if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3166                for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3167                        struct intel_excl_cntrs *c;
3168
3169                        c = per_cpu(cpu_hw_events, i).excl_cntrs;
3170                        if (c && c->core_id == core_id) {
3171                                cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3172                                cpuc->excl_cntrs = c;
3173                                cpuc->excl_thread_id = 1;
3174                                break;
3175                        }
3176                }
3177                cpuc->excl_cntrs->core_id = core_id;
3178                cpuc->excl_cntrs->refcnt++;
3179        }
3180}
3181
3182static void free_excl_cntrs(int cpu)
3183{
3184        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3185        struct intel_excl_cntrs *c;
3186
3187        c = cpuc->excl_cntrs;
3188        if (c) {
3189                if (c->core_id == -1 || --c->refcnt == 0)
3190                        kfree(c);
3191                cpuc->excl_cntrs = NULL;
3192                kfree(cpuc->constraint_list);
3193                cpuc->constraint_list = NULL;
3194        }
3195}
3196
3197static void intel_pmu_cpu_dying(int cpu)
3198{
3199        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3200        struct intel_shared_regs *pc;
3201
3202        pc = cpuc->shared_regs;
3203        if (pc) {
3204                if (pc->core_id == -1 || --pc->refcnt == 0)
3205                        kfree(pc);
3206                cpuc->shared_regs = NULL;
3207        }
3208
3209        free_excl_cntrs(cpu);
3210
3211        fini_debug_store_on_cpu(cpu);
3212}
3213
3214static void intel_pmu_sched_task(struct perf_event_context *ctx,
3215                                 bool sched_in)
3216{
3217        if (x86_pmu.pebs_active)
3218                intel_pmu_pebs_sched_task(ctx, sched_in);
3219        if (x86_pmu.lbr_nr)
3220                intel_pmu_lbr_sched_task(ctx, sched_in);
3221}
3222
3223PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3224
3225PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3226
3227PMU_FORMAT_ATTR(frontend, "config1:0-23");
3228
3229static struct attribute *intel_arch3_formats_attr[] = {
3230        &format_attr_event.attr,
3231        &format_attr_umask.attr,
3232        &format_attr_edge.attr,
3233        &format_attr_pc.attr,
3234        &format_attr_any.attr,
3235        &format_attr_inv.attr,
3236        &format_attr_cmask.attr,
3237        &format_attr_in_tx.attr,
3238        &format_attr_in_tx_cp.attr,
3239
3240        &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
3241        &format_attr_ldlat.attr, /* PEBS load latency */
3242        NULL,
3243};
3244
3245static struct attribute *skl_format_attr[] = {
3246        &format_attr_frontend.attr,
3247        NULL,
3248};
3249
3250static __initconst const struct x86_pmu core_pmu = {
3251        .name                   = "core",
3252        .handle_irq             = x86_pmu_handle_irq,
3253        .disable_all            = x86_pmu_disable_all,
3254        .enable_all             = core_pmu_enable_all,
3255        .enable                 = core_pmu_enable_event,
3256        .disable                = x86_pmu_disable_event,
3257        .hw_config              = x86_pmu_hw_config,
3258        .schedule_events        = x86_schedule_events,
3259        .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3260        .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3261        .event_map              = intel_pmu_event_map,
3262        .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3263        .apic                   = 1,
3264        .free_running_flags     = PEBS_FREERUNNING_FLAGS,
3265
3266        /*
3267         * Intel PMCs cannot be accessed sanely above 32-bit width,
3268         * so we install an artificial 1<<31 period regardless of
3269         * the generic event period:
3270         */
3271        .max_period             = (1ULL<<31) - 1,
3272        .get_event_constraints  = intel_get_event_constraints,
3273        .put_event_constraints  = intel_put_event_constraints,
3274        .event_constraints      = intel_core_event_constraints,
3275        .guest_get_msrs         = core_guest_get_msrs,
3276        .format_attrs           = intel_arch_formats_attr,
3277        .events_sysfs_show      = intel_event_sysfs_show,
3278
3279        /*
3280         * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3281         * together with PMU version 1 and thus be using core_pmu with
3282         * shared_regs. We need following callbacks here to allocate
3283         * it properly.
3284         */
3285        .cpu_prepare            = intel_pmu_cpu_prepare,
3286        .cpu_starting           = intel_pmu_cpu_starting,
3287        .cpu_dying              = intel_pmu_cpu_dying,
3288};
3289
3290static __initconst const struct x86_pmu intel_pmu = {
3291        .name                   = "Intel",
3292        .handle_irq             = intel_pmu_handle_irq,
3293        .disable_all            = intel_pmu_disable_all,
3294        .enable_all             = intel_pmu_enable_all,
3295        .enable                 = intel_pmu_enable_event,
3296        .disable                = intel_pmu_disable_event,
3297        .add                    = intel_pmu_add_event,
3298        .del                    = intel_pmu_del_event,
3299        .hw_config              = intel_pmu_hw_config,
3300        .schedule_events        = x86_schedule_events,
3301        .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3302        .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3303        .event_map              = intel_pmu_event_map,
3304        .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3305        .apic                   = 1,
3306        .free_running_flags     = PEBS_FREERUNNING_FLAGS,
3307        /*
3308         * Intel PMCs cannot be accessed sanely above 32 bit width,
3309         * so we install an artificial 1<<31 period regardless of
3310         * the generic event period:
3311         */
3312        .max_period             = (1ULL << 31) - 1,
3313        .get_event_constraints  = intel_get_event_constraints,
3314        .put_event_constraints  = intel_put_event_constraints,
3315        .pebs_aliases           = intel_pebs_aliases_core2,
3316
3317        .format_attrs           = intel_arch3_formats_attr,
3318        .events_sysfs_show      = intel_event_sysfs_show,
3319
3320        .cpu_prepare            = intel_pmu_cpu_prepare,
3321        .cpu_starting           = intel_pmu_cpu_starting,
3322        .cpu_dying              = intel_pmu_cpu_dying,
3323        .guest_get_msrs         = intel_guest_get_msrs,
3324        .sched_task             = intel_pmu_sched_task,
3325};
3326
3327static __init void intel_clovertown_quirk(void)
3328{
3329        /*
3330         * PEBS is unreliable due to:
3331         *
3332         *   AJ67  - PEBS may experience CPL leaks
3333         *   AJ68  - PEBS PMI may be delayed by one event
3334         *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3335         *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3336         *
3337         * AJ67 could be worked around by restricting the OS/USR flags.
3338         * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3339         *
3340         * AJ106 could possibly be worked around by not allowing LBR
3341         *       usage from PEBS, including the fixup.
3342         * AJ68  could possibly be worked around by always programming
3343         *       a pebs_event_reset[0] value and coping with the lost events.
3344         *
3345         * But taken together it might just make sense to not enable PEBS on
3346         * these chips.
3347         */
3348        pr_warn("PEBS disabled due to CPU errata\n");
3349        x86_pmu.pebs = 0;
3350        x86_pmu.pebs_constraints = NULL;
3351}
3352
3353static int intel_snb_pebs_broken(int cpu)
3354{
3355        u32 rev = UINT_MAX; /* default to broken for unknown models */
3356
3357        switch (cpu_data(cpu).x86_model) {
3358        case INTEL_FAM6_SANDYBRIDGE:
3359                rev = 0x28;
3360                break;
3361
3362        case INTEL_FAM6_SANDYBRIDGE_X:
3363                switch (cpu_data(cpu).x86_mask) {
3364                case 6: rev = 0x618; break;
3365                case 7: rev = 0x70c; break;
3366                }
3367        }
3368
3369        return (cpu_data(cpu).microcode < rev);
3370}
3371
3372static void intel_snb_check_microcode(void)
3373{
3374        int pebs_broken = 0;
3375        int cpu;
3376
3377        get_online_cpus();
3378        for_each_online_cpu(cpu) {
3379                if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3380                        break;
3381        }
3382        put_online_cpus();
3383
3384        if (pebs_broken == x86_pmu.pebs_broken)
3385                return;
3386
3387        /*
3388         * Serialized by the microcode lock..
3389         */
3390        if (x86_pmu.pebs_broken) {
3391                pr_info("PEBS enabled due to microcode update\n");
3392                x86_pmu.pebs_broken = 0;
3393        } else {
3394                pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3395                x86_pmu.pebs_broken = 1;
3396        }
3397}
3398
3399static bool is_lbr_from(unsigned long msr)
3400{
3401        unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3402
3403        return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3404}
3405
3406/*
3407 * Under certain circumstances, access certain MSR may cause #GP.
3408 * The function tests if the input MSR can be safely accessed.
3409 */
3410static bool check_msr(unsigned long msr, u64 mask)
3411{
3412        u64 val_old, val_new, val_tmp;
3413
3414        /*
3415         * Read the current value, change it and read it back to see if it
3416         * matches, this is needed to detect certain hardware emulators
3417         * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3418         */
3419        if (rdmsrl_safe(msr, &val_old))
3420                return false;
3421
3422        /*
3423         * Only change the bits which can be updated by wrmsrl.
3424         */
3425        val_tmp = val_old ^ mask;
3426
3427        if (is_lbr_from(msr))
3428                val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3429
3430        if (wrmsrl_safe(msr, val_tmp) ||
3431            rdmsrl_safe(msr, &val_new))
3432                return false;
3433
3434        /*
3435         * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3436         * should equal rdmsrl()'s even with the quirk.
3437         */
3438        if (val_new != val_tmp)
3439                return false;
3440
3441        if (is_lbr_from(msr))
3442                val_old = lbr_from_signext_quirk_wr(val_old);
3443
3444        /* Here it's sure that the MSR can be safely accessed.
3445         * Restore the old value and return.
3446         */
3447        wrmsrl(msr, val_old);
3448
3449        return true;
3450}
3451
3452static __init void intel_sandybridge_quirk(void)
3453{
3454        x86_pmu.check_microcode = intel_snb_check_microcode;
3455        intel_snb_check_microcode();
3456}
3457
3458static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3459        { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3460        { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3461        { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3462        { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3463        { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3464        { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3465        { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3466};
3467
3468static __init void intel_arch_events_quirk(void)
3469{
3470        int bit;
3471
3472        /* disable event that reported as not presend by cpuid */
3473        for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3474                intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3475                pr_warn("CPUID marked event: \'%s\' unavailable\n",
3476                        intel_arch_events_map[bit].name);
3477        }
3478}
3479
3480static __init void intel_nehalem_quirk(void)
3481{
3482        union cpuid10_ebx ebx;
3483
3484        ebx.full = x86_pmu.events_maskl;
3485        if (ebx.split.no_branch_misses_retired) {
3486                /*
3487                 * Erratum AAJ80 detected, we work it around by using
3488                 * the BR_MISP_EXEC.ANY event. This will over-count
3489                 * branch-misses, but it's still much better than the
3490                 * architectural event which is often completely bogus:
3491                 */
3492                intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3493                ebx.split.no_branch_misses_retired = 0;
3494                x86_pmu.events_maskl = ebx.full;
3495                pr_info("CPU erratum AAJ80 worked around\n");
3496        }
3497}
3498
3499/*
3500 * enable software workaround for errata:
3501 * SNB: BJ122
3502 * IVB: BV98
3503 * HSW: HSD29
3504 *
3505 * Only needed when HT is enabled. However detecting
3506 * if HT is enabled is difficult (model specific). So instead,
3507 * we enable the workaround in the early boot, and verify if
3508 * it is needed in a later initcall phase once we have valid
3509 * topology information to check if HT is actually enabled
3510 */
3511static __init void intel_ht_bug(void)
3512{
3513        x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3514
3515        x86_pmu.start_scheduling = intel_start_scheduling;
3516        x86_pmu.commit_scheduling = intel_commit_scheduling;
3517        x86_pmu.stop_scheduling = intel_stop_scheduling;
3518}
3519
3520EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
3521EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
3522
3523/* Haswell special events */
3524EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
3525EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
3526EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
3527EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
3528EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
3529EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
3530EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
3531EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
3532EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
3533EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
3534EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
3535EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
3536
3537static struct attribute *hsw_events_attrs[] = {
3538        EVENT_PTR(tx_start),
3539        EVENT_PTR(tx_commit),
3540        EVENT_PTR(tx_abort),
3541        EVENT_PTR(tx_capacity),
3542        EVENT_PTR(tx_conflict),
3543        EVENT_PTR(el_start),
3544        EVENT_PTR(el_commit),
3545        EVENT_PTR(el_abort),
3546        EVENT_PTR(el_capacity),
3547        EVENT_PTR(el_conflict),
3548        EVENT_PTR(cycles_t),
3549        EVENT_PTR(cycles_ct),
3550        EVENT_PTR(mem_ld_hsw),
3551        EVENT_PTR(mem_st_hsw),
3552        EVENT_PTR(td_slots_issued),
3553        EVENT_PTR(td_slots_retired),
3554        EVENT_PTR(td_fetch_bubbles),
3555        EVENT_PTR(td_total_slots),
3556        EVENT_PTR(td_total_slots_scale),
3557        EVENT_PTR(td_recovery_bubbles),
3558        EVENT_PTR(td_recovery_bubbles_scale),
3559        NULL
3560};
3561
3562__init int intel_pmu_init(void)
3563{
3564        union cpuid10_edx edx;
3565        union cpuid10_eax eax;
3566        union cpuid10_ebx ebx;
3567        struct event_constraint *c;
3568        unsigned int unused;
3569        struct extra_reg *er;
3570        int version, i;
3571
3572        if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3573                switch (boot_cpu_data.x86) {
3574                case 0x6:
3575                        return p6_pmu_init();
3576                case 0xb:
3577                        return knc_pmu_init();
3578                case 0xf:
3579                        return p4_pmu_init();
3580                }
3581                return -ENODEV;
3582        }
3583
3584        /*
3585         * Check whether the Architectural PerfMon supports
3586         * Branch Misses Retired hw_event or not.
3587         */
3588        cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3589        if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3590                return -ENODEV;
3591
3592        version = eax.split.version_id;
3593        if (version < 2)
3594                x86_pmu = core_pmu;
3595        else
3596                x86_pmu = intel_pmu;
3597
3598        x86_pmu.version                 = version;
3599        x86_pmu.num_counters            = eax.split.num_counters;
3600        x86_pmu.cntval_bits             = eax.split.bit_width;
3601        x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
3602
3603        x86_pmu.events_maskl            = ebx.full;
3604        x86_pmu.events_mask_len         = eax.split.mask_length;
3605
3606        x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3607
3608        /*
3609         * Quirk: v2 perfmon does not report fixed-purpose events, so
3610         * assume at least 3 events, when not running in a hypervisor:
3611         */
3612        if (version > 1) {
3613                int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
3614
3615                x86_pmu.num_counters_fixed =
3616                        max((int)edx.split.num_counters_fixed, assume);
3617        }
3618
3619        if (boot_cpu_has(X86_FEATURE_PDCM)) {
3620                u64 capabilities;
3621
3622                rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3623                x86_pmu.intel_cap.capabilities = capabilities;
3624        }
3625
3626        intel_ds_init();
3627
3628        x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3629
3630        /*
3631         * Install the hw-cache-events table:
3632         */
3633        switch (boot_cpu_data.x86_model) {
3634        case INTEL_FAM6_CORE_YONAH:
3635                pr_cont("Core events, ");
3636                break;
3637
3638        case INTEL_FAM6_CORE2_MEROM:
3639                x86_add_quirk(intel_clovertown_quirk);
3640        case INTEL_FAM6_CORE2_MEROM_L:
3641        case INTEL_FAM6_CORE2_PENRYN:
3642        case INTEL_FAM6_CORE2_DUNNINGTON:
3643                memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3644                       sizeof(hw_cache_event_ids));
3645
3646                intel_pmu_lbr_init_core();
3647
3648                x86_pmu.event_constraints = intel_core2_event_constraints;
3649                x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3650                pr_cont("Core2 events, ");
3651                break;
3652
3653        case INTEL_FAM6_NEHALEM:
3654        case INTEL_FAM6_NEHALEM_EP:
3655        case INTEL_FAM6_NEHALEM_EX:
3656                memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3657                       sizeof(hw_cache_event_ids));
3658                memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3659                       sizeof(hw_cache_extra_regs));
3660
3661                intel_pmu_lbr_init_nhm();
3662
3663                x86_pmu.event_constraints = intel_nehalem_event_constraints;
3664                x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3665                x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3666                x86_pmu.extra_regs = intel_nehalem_extra_regs;
3667
3668                x86_pmu.cpu_events = nhm_events_attrs;
3669
3670                /* UOPS_ISSUED.STALLED_CYCLES */
3671                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3672                        X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3673                /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3674                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3675                        X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3676
3677                intel_pmu_pebs_data_source_nhm();
3678                x86_add_quirk(intel_nehalem_quirk);
3679
3680                pr_cont("Nehalem events, ");
3681                break;
3682
3683        case INTEL_FAM6_ATOM_PINEVIEW:
3684        case INTEL_FAM6_ATOM_LINCROFT:
3685        case INTEL_FAM6_ATOM_PENWELL:
3686        case INTEL_FAM6_ATOM_CLOVERVIEW:
3687        case INTEL_FAM6_ATOM_CEDARVIEW:
3688                memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3689                       sizeof(hw_cache_event_ids));
3690
3691                intel_pmu_lbr_init_atom();
3692
3693                x86_pmu.event_constraints = intel_gen_event_constraints;
3694                x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3695                x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
3696                pr_cont("Atom events, ");
3697                break;
3698
3699        case INTEL_FAM6_ATOM_SILVERMONT1:
3700        case INTEL_FAM6_ATOM_SILVERMONT2:
3701        case INTEL_FAM6_ATOM_AIRMONT:
3702                memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3703                        sizeof(hw_cache_event_ids));
3704                memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3705                       sizeof(hw_cache_extra_regs));
3706
3707                intel_pmu_lbr_init_slm();
3708
3709                x86_pmu.event_constraints = intel_slm_event_constraints;
3710                x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3711                x86_pmu.extra_regs = intel_slm_extra_regs;
3712                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3713                x86_pmu.cpu_events = slm_events_attrs;
3714                pr_cont("Silvermont events, ");
3715                break;
3716
3717        case INTEL_FAM6_ATOM_GOLDMONT:
3718        case INTEL_FAM6_ATOM_DENVERTON:
3719                memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
3720                       sizeof(hw_cache_event_ids));
3721                memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
3722                       sizeof(hw_cache_extra_regs));
3723
3724                intel_pmu_lbr_init_skl();
3725
3726                x86_pmu.event_constraints = intel_slm_event_constraints;
3727                x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
3728                x86_pmu.extra_regs = intel_glm_extra_regs;
3729                /*
3730                 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
3731                 * for precise cycles.
3732                 * :pp is identical to :ppp
3733                 */
3734                x86_pmu.pebs_aliases = NULL;
3735                x86_pmu.pebs_prec_dist = true;
3736                x86_pmu.lbr_pt_coexist = true;
3737                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3738                pr_cont("Goldmont events, ");
3739                break;
3740
3741        case INTEL_FAM6_WESTMERE:
3742        case INTEL_FAM6_WESTMERE_EP:
3743        case INTEL_FAM6_WESTMERE_EX:
3744                memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3745                       sizeof(hw_cache_event_ids));
3746                memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3747                       sizeof(hw_cache_extra_regs));
3748
3749                intel_pmu_lbr_init_nhm();
3750
3751                x86_pmu.event_constraints = intel_westmere_event_constraints;
3752                x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3753                x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3754                x86_pmu.extra_regs = intel_westmere_extra_regs;
3755                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3756
3757                x86_pmu.cpu_events = nhm_events_attrs;
3758
3759                /* UOPS_ISSUED.STALLED_CYCLES */
3760                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3761                        X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3762                /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3763                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3764                        X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3765
3766                intel_pmu_pebs_data_source_nhm();
3767                pr_cont("Westmere events, ");
3768                break;
3769
3770        case INTEL_FAM6_SANDYBRIDGE:
3771        case INTEL_FAM6_SANDYBRIDGE_X:
3772                x86_add_quirk(intel_sandybridge_quirk);
3773                x86_add_quirk(intel_ht_bug);
3774                memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3775                       sizeof(hw_cache_event_ids));
3776                memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3777                       sizeof(hw_cache_extra_regs));
3778
3779                intel_pmu_lbr_init_snb();
3780
3781                x86_pmu.event_constraints = intel_snb_event_constraints;
3782                x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3783                x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3784                if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
3785                        x86_pmu.extra_regs = intel_snbep_extra_regs;
3786                else
3787                        x86_pmu.extra_regs = intel_snb_extra_regs;
3788
3789
3790                /* all extra regs are per-cpu when HT is on */
3791                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3792                x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3793
3794                x86_pmu.cpu_events = snb_events_attrs;
3795
3796                /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3797                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3798                        X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3799                /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3800                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3801                        X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3802
3803                pr_cont("SandyBridge events, ");
3804                break;
3805
3806        case INTEL_FAM6_IVYBRIDGE:
3807        case INTEL_FAM6_IVYBRIDGE_X:
3808                x86_add_quirk(intel_ht_bug);
3809                memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3810                       sizeof(hw_cache_event_ids));
3811                /* dTLB-load-misses on IVB is different than SNB */
3812                hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3813
3814                memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3815                       sizeof(hw_cache_extra_regs));
3816
3817                intel_pmu_lbr_init_snb();
3818
3819                x86_pmu.event_constraints = intel_ivb_event_constraints;
3820                x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3821                x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3822                x86_pmu.pebs_prec_dist = true;
3823                if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
3824                        x86_pmu.extra_regs = intel_snbep_extra_regs;
3825                else
3826                        x86_pmu.extra_regs = intel_snb_extra_regs;
3827                /* all extra regs are per-cpu when HT is on */
3828                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3829                x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3830
3831                x86_pmu.cpu_events = snb_events_attrs;
3832
3833                /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3834                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3835                        X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3836
3837                pr_cont("IvyBridge events, ");
3838                break;
3839
3840
3841        case INTEL_FAM6_HASWELL_CORE:
3842        case INTEL_FAM6_HASWELL_X:
3843        case INTEL_FAM6_HASWELL_ULT:
3844        case INTEL_FAM6_HASWELL_GT3E:
3845                x86_add_quirk(intel_ht_bug);
3846                x86_pmu.late_ack = true;
3847                memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3848                memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3849
3850                intel_pmu_lbr_init_hsw();
3851
3852                x86_pmu.event_constraints = intel_hsw_event_constraints;
3853                x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3854                x86_pmu.extra_regs = intel_snbep_extra_regs;
3855                x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3856                x86_pmu.pebs_prec_dist = true;
3857                /* all extra regs are per-cpu when HT is on */
3858                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3859                x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3860
3861                x86_pmu.hw_config = hsw_hw_config;
3862                x86_pmu.get_event_constraints = hsw_get_event_constraints;
3863                x86_pmu.cpu_events = hsw_events_attrs;
3864                x86_pmu.lbr_double_abort = true;
3865                pr_cont("Haswell events, ");
3866                break;
3867
3868        case INTEL_FAM6_BROADWELL_CORE:
3869        case INTEL_FAM6_BROADWELL_XEON_D:
3870        case INTEL_FAM6_BROADWELL_GT3E:
3871        case INTEL_FAM6_BROADWELL_X:
3872                x86_pmu.late_ack = true;
3873                memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3874                memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3875
3876                /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3877                hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3878                                                                         BDW_L3_MISS|HSW_SNOOP_DRAM;
3879                hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3880                                                                          HSW_SNOOP_DRAM;
3881                hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3882                                                                             BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3883                hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3884                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3885
3886                intel_pmu_lbr_init_hsw();
3887
3888                x86_pmu.event_constraints = intel_bdw_event_constraints;
3889                x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
3890                x86_pmu.extra_regs = intel_snbep_extra_regs;
3891                x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3892                x86_pmu.pebs_prec_dist = true;
3893                /* all extra regs are per-cpu when HT is on */
3894                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3895                x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3896
3897                x86_pmu.hw_config = hsw_hw_config;
3898                x86_pmu.get_event_constraints = hsw_get_event_constraints;
3899                x86_pmu.cpu_events = hsw_events_attrs;
3900                x86_pmu.limit_period = bdw_limit_period;
3901                pr_cont("Broadwell events, ");
3902                break;
3903
3904        case INTEL_FAM6_XEON_PHI_KNL:
3905        case INTEL_FAM6_XEON_PHI_KNM:
3906                memcpy(hw_cache_event_ids,
3907                       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3908                memcpy(hw_cache_extra_regs,
3909                       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3910                intel_pmu_lbr_init_knl();
3911
3912                x86_pmu.event_constraints = intel_slm_event_constraints;
3913                x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3914                x86_pmu.extra_regs = intel_knl_extra_regs;
3915
3916                /* all extra regs are per-cpu when HT is on */
3917                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3918                x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3919
3920                pr_cont("Knights Landing/Mill events, ");
3921                break;
3922
3923        case INTEL_FAM6_SKYLAKE_MOBILE:
3924        case INTEL_FAM6_SKYLAKE_DESKTOP:
3925        case INTEL_FAM6_SKYLAKE_X:
3926        case INTEL_FAM6_KABYLAKE_MOBILE:
3927        case INTEL_FAM6_KABYLAKE_DESKTOP:
3928                x86_pmu.late_ack = true;
3929                memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3930                memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3931                intel_pmu_lbr_init_skl();
3932
3933                /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
3934                event_attr_td_recovery_bubbles.event_str_noht =
3935                        "event=0xd,umask=0x1,cmask=1";
3936                event_attr_td_recovery_bubbles.event_str_ht =
3937                        "event=0xd,umask=0x1,cmask=1,any=1";
3938
3939                x86_pmu.event_constraints = intel_skl_event_constraints;
3940                x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
3941                x86_pmu.extra_regs = intel_skl_extra_regs;
3942                x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
3943                x86_pmu.pebs_prec_dist = true;
3944                /* all extra regs are per-cpu when HT is on */
3945                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3946                x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3947
3948                x86_pmu.hw_config = hsw_hw_config;
3949                x86_pmu.get_event_constraints = hsw_get_event_constraints;
3950                x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
3951                                                  skl_format_attr);
3952                WARN_ON(!x86_pmu.format_attrs);
3953                x86_pmu.cpu_events = hsw_events_attrs;
3954                pr_cont("Skylake events, ");
3955                break;
3956
3957        default:
3958                switch (x86_pmu.version) {
3959                case 1:
3960                        x86_pmu.event_constraints = intel_v1_event_constraints;
3961                        pr_cont("generic architected perfmon v1, ");
3962                        break;
3963                default:
3964                        /*
3965                         * default constraints for v2 and up
3966                         */
3967                        x86_pmu.event_constraints = intel_gen_event_constraints;
3968                        pr_cont("generic architected perfmon, ");
3969                        break;
3970                }
3971        }
3972
3973        if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3974                WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3975                     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3976                x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3977        }
3978        x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3979
3980        if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3981                WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3982                     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3983                x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3984        }
3985
3986        x86_pmu.intel_ctrl |=
3987                ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3988
3989        if (x86_pmu.event_constraints) {
3990                /*
3991                 * event on fixed counter2 (REF_CYCLES) only works on this
3992                 * counter, so do not extend mask to generic counters
3993                 */
3994                for_each_event_constraint(c, x86_pmu.event_constraints) {
3995                        if (c->cmask == FIXED_EVENT_FLAGS
3996                            && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3997                                c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3998                        }
3999                        c->idxmsk64 &=
4000                                ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4001                        c->weight = hweight64(c->idxmsk64);
4002                }
4003        }
4004
4005        /*
4006         * Access LBR MSR may cause #GP under certain circumstances.
4007         * E.g. KVM doesn't support LBR MSR
4008         * Check all LBT MSR here.
4009         * Disable LBR access if any LBR MSRs can not be accessed.
4010         */
4011        if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4012                x86_pmu.lbr_nr = 0;
4013        for (i = 0; i < x86_pmu.lbr_nr; i++) {
4014                if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4015                      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4016                        x86_pmu.lbr_nr = 0;
4017        }
4018
4019        if (x86_pmu.lbr_nr)
4020                pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4021        /*
4022         * Access extra MSR may cause #GP under certain circumstances.
4023         * E.g. KVM doesn't support offcore event
4024         * Check all extra_regs here.
4025         */
4026        if (x86_pmu.extra_regs) {
4027                for (er = x86_pmu.extra_regs; er->msr; er++) {
4028                        er->extra_msr_access = check_msr(er->msr, 0x11UL);
4029                        /* Disable LBR select mapping */
4030                        if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4031                                x86_pmu.lbr_sel_map = NULL;
4032                }
4033        }
4034
4035        /* Support full width counters using alternative MSR range */
4036        if (x86_pmu.intel_cap.full_width_write) {
4037                x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4038                x86_pmu.perfctr = MSR_IA32_PMC0;
4039                pr_cont("full-width counters, ");
4040        }
4041
4042        return 0;
4043}
4044
4045/*
4046 * HT bug: phase 2 init
4047 * Called once we have valid topology information to check
4048 * whether or not HT is enabled
4049 * If HT is off, then we disable the workaround
4050 */
4051static __init int fixup_ht_bug(void)
4052{
4053        int c;
4054        /*
4055         * problem not present on this CPU model, nothing to do
4056         */
4057        if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4058                return 0;
4059
4060        if (topology_max_smt_threads() > 1) {
4061                pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4062                return 0;
4063        }
4064
4065        if (lockup_detector_suspend() != 0) {
4066                pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
4067                return 0;
4068        }
4069
4070        x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4071
4072        x86_pmu.start_scheduling = NULL;
4073        x86_pmu.commit_scheduling = NULL;
4074        x86_pmu.stop_scheduling = NULL;
4075
4076        lockup_detector_resume();
4077
4078        get_online_cpus();
4079
4080        for_each_online_cpu(c) {
4081                free_excl_cntrs(c);
4082        }
4083
4084        put_online_cpus();
4085        pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4086        return 0;
4087}
4088subsys_initcall(fixup_ht_bug)
4089