linux/arch/x86/mm/pat.c
<<
>>
Prefs
   1/*
   2 * Handle caching attributes in page tables (PAT)
   3 *
   4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
   5 *          Suresh B Siddha <suresh.b.siddha@intel.com>
   6 *
   7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
   8 */
   9
  10#include <linux/seq_file.h>
  11#include <linux/bootmem.h>
  12#include <linux/debugfs.h>
  13#include <linux/kernel.h>
  14#include <linux/pfn_t.h>
  15#include <linux/slab.h>
  16#include <linux/mm.h>
  17#include <linux/fs.h>
  18#include <linux/rbtree.h>
  19
  20#include <asm/cacheflush.h>
  21#include <asm/processor.h>
  22#include <asm/tlbflush.h>
  23#include <asm/x86_init.h>
  24#include <asm/pgtable.h>
  25#include <asm/fcntl.h>
  26#include <asm/e820.h>
  27#include <asm/mtrr.h>
  28#include <asm/page.h>
  29#include <asm/msr.h>
  30#include <asm/pat.h>
  31#include <asm/io.h>
  32
  33#include "pat_internal.h"
  34#include "mm_internal.h"
  35
  36#undef pr_fmt
  37#define pr_fmt(fmt) "" fmt
  38
  39static bool boot_cpu_done;
  40
  41static int __read_mostly __pat_enabled = IS_ENABLED(CONFIG_X86_PAT);
  42static void init_cache_modes(void);
  43
  44void pat_disable(const char *reason)
  45{
  46        if (!__pat_enabled)
  47                return;
  48
  49        if (boot_cpu_done) {
  50                WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
  51                return;
  52        }
  53
  54        __pat_enabled = 0;
  55        pr_info("x86/PAT: %s\n", reason);
  56
  57        init_cache_modes();
  58}
  59
  60static int __init nopat(char *str)
  61{
  62        pat_disable("PAT support disabled.");
  63        return 0;
  64}
  65early_param("nopat", nopat);
  66
  67bool pat_enabled(void)
  68{
  69        return !!__pat_enabled;
  70}
  71EXPORT_SYMBOL_GPL(pat_enabled);
  72
  73int pat_debug_enable;
  74
  75static int __init pat_debug_setup(char *str)
  76{
  77        pat_debug_enable = 1;
  78        return 0;
  79}
  80__setup("debugpat", pat_debug_setup);
  81
  82#ifdef CONFIG_X86_PAT
  83/*
  84 * X86 PAT uses page flags arch_1 and uncached together to keep track of
  85 * memory type of pages that have backing page struct.
  86 *
  87 * X86 PAT supports 4 different memory types:
  88 *  - _PAGE_CACHE_MODE_WB
  89 *  - _PAGE_CACHE_MODE_WC
  90 *  - _PAGE_CACHE_MODE_UC_MINUS
  91 *  - _PAGE_CACHE_MODE_WT
  92 *
  93 * _PAGE_CACHE_MODE_WB is the default type.
  94 */
  95
  96#define _PGMT_WB                0
  97#define _PGMT_WC                (1UL << PG_arch_1)
  98#define _PGMT_UC_MINUS          (1UL << PG_uncached)
  99#define _PGMT_WT                (1UL << PG_uncached | 1UL << PG_arch_1)
 100#define _PGMT_MASK              (1UL << PG_uncached | 1UL << PG_arch_1)
 101#define _PGMT_CLEAR_MASK        (~_PGMT_MASK)
 102
 103static inline enum page_cache_mode get_page_memtype(struct page *pg)
 104{
 105        unsigned long pg_flags = pg->flags & _PGMT_MASK;
 106
 107        if (pg_flags == _PGMT_WB)
 108                return _PAGE_CACHE_MODE_WB;
 109        else if (pg_flags == _PGMT_WC)
 110                return _PAGE_CACHE_MODE_WC;
 111        else if (pg_flags == _PGMT_UC_MINUS)
 112                return _PAGE_CACHE_MODE_UC_MINUS;
 113        else
 114                return _PAGE_CACHE_MODE_WT;
 115}
 116
 117static inline void set_page_memtype(struct page *pg,
 118                                    enum page_cache_mode memtype)
 119{
 120        unsigned long memtype_flags;
 121        unsigned long old_flags;
 122        unsigned long new_flags;
 123
 124        switch (memtype) {
 125        case _PAGE_CACHE_MODE_WC:
 126                memtype_flags = _PGMT_WC;
 127                break;
 128        case _PAGE_CACHE_MODE_UC_MINUS:
 129                memtype_flags = _PGMT_UC_MINUS;
 130                break;
 131        case _PAGE_CACHE_MODE_WT:
 132                memtype_flags = _PGMT_WT;
 133                break;
 134        case _PAGE_CACHE_MODE_WB:
 135        default:
 136                memtype_flags = _PGMT_WB;
 137                break;
 138        }
 139
 140        do {
 141                old_flags = pg->flags;
 142                new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
 143        } while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
 144}
 145#else
 146static inline enum page_cache_mode get_page_memtype(struct page *pg)
 147{
 148        return -1;
 149}
 150static inline void set_page_memtype(struct page *pg,
 151                                    enum page_cache_mode memtype)
 152{
 153}
 154#endif
 155
 156enum {
 157        PAT_UC = 0,             /* uncached */
 158        PAT_WC = 1,             /* Write combining */
 159        PAT_WT = 4,             /* Write Through */
 160        PAT_WP = 5,             /* Write Protected */
 161        PAT_WB = 6,             /* Write Back (default) */
 162        PAT_UC_MINUS = 7,       /* UC, but can be overridden by MTRR */
 163};
 164
 165#define CM(c) (_PAGE_CACHE_MODE_ ## c)
 166
 167static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
 168{
 169        enum page_cache_mode cache;
 170        char *cache_mode;
 171
 172        switch (pat_val) {
 173        case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
 174        case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
 175        case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
 176        case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
 177        case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
 178        case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
 179        default:           cache = CM(WB);       cache_mode = "WB  "; break;
 180        }
 181
 182        memcpy(msg, cache_mode, 4);
 183
 184        return cache;
 185}
 186
 187#undef CM
 188
 189/*
 190 * Update the cache mode to pgprot translation tables according to PAT
 191 * configuration.
 192 * Using lower indices is preferred, so we start with highest index.
 193 */
 194static void __init_cache_modes(u64 pat)
 195{
 196        enum page_cache_mode cache;
 197        char pat_msg[33];
 198        int i;
 199
 200        pat_msg[32] = 0;
 201        for (i = 7; i >= 0; i--) {
 202                cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
 203                                           pat_msg + 4 * i);
 204                update_cache_mode_entry(i, cache);
 205        }
 206        pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
 207}
 208
 209#define PAT(x, y)       ((u64)PAT_ ## y << ((x)*8))
 210
 211static void pat_bsp_init(u64 pat)
 212{
 213        u64 tmp_pat;
 214
 215        if (!boot_cpu_has(X86_FEATURE_PAT)) {
 216                pat_disable("PAT not supported by CPU.");
 217                return;
 218        }
 219
 220        rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
 221        if (!tmp_pat) {
 222                pat_disable("PAT MSR is 0, disabled.");
 223                return;
 224        }
 225
 226        wrmsrl(MSR_IA32_CR_PAT, pat);
 227
 228        __init_cache_modes(pat);
 229}
 230
 231static void pat_ap_init(u64 pat)
 232{
 233        if (!boot_cpu_has(X86_FEATURE_PAT)) {
 234                /*
 235                 * If this happens we are on a secondary CPU, but switched to
 236                 * PAT on the boot CPU. We have no way to undo PAT.
 237                 */
 238                panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
 239        }
 240
 241        wrmsrl(MSR_IA32_CR_PAT, pat);
 242}
 243
 244static void init_cache_modes(void)
 245{
 246        u64 pat = 0;
 247        static int init_cm_done;
 248
 249        if (init_cm_done)
 250                return;
 251
 252        if (boot_cpu_has(X86_FEATURE_PAT)) {
 253                /*
 254                 * CPU supports PAT. Set PAT table to be consistent with
 255                 * PAT MSR. This case supports "nopat" boot option, and
 256                 * virtual machine environments which support PAT without
 257                 * MTRRs. In specific, Xen has unique setup to PAT MSR.
 258                 *
 259                 * If PAT MSR returns 0, it is considered invalid and emulates
 260                 * as No PAT.
 261                 */
 262                rdmsrl(MSR_IA32_CR_PAT, pat);
 263        }
 264
 265        if (!pat) {
 266                /*
 267                 * No PAT. Emulate the PAT table that corresponds to the two
 268                 * cache bits, PWT (Write Through) and PCD (Cache Disable).
 269                 * This setup is also the same as the BIOS default setup.
 270                 *
 271                 * PTE encoding:
 272                 *
 273                 *       PCD
 274                 *       |PWT  PAT
 275                 *       ||    slot
 276                 *       00    0    WB : _PAGE_CACHE_MODE_WB
 277                 *       01    1    WT : _PAGE_CACHE_MODE_WT
 278                 *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
 279                 *       11    3    UC : _PAGE_CACHE_MODE_UC
 280                 *
 281                 * NOTE: When WC or WP is used, it is redirected to UC- per
 282                 * the default setup in __cachemode2pte_tbl[].
 283                 */
 284                pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
 285                      PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
 286        }
 287
 288        __init_cache_modes(pat);
 289
 290        init_cm_done = 1;
 291}
 292
 293/**
 294 * pat_init - Initialize PAT MSR and PAT table
 295 *
 296 * This function initializes PAT MSR and PAT table with an OS-defined value
 297 * to enable additional cache attributes, WC and WT.
 298 *
 299 * This function must be called on all CPUs using the specific sequence of
 300 * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
 301 * procedure for PAT.
 302 */
 303void pat_init(void)
 304{
 305        u64 pat;
 306        struct cpuinfo_x86 *c = &boot_cpu_data;
 307
 308        if (!pat_enabled()) {
 309                init_cache_modes();
 310                return;
 311        }
 312
 313        if ((c->x86_vendor == X86_VENDOR_INTEL) &&
 314            (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
 315             ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
 316                /*
 317                 * PAT support with the lower four entries. Intel Pentium 2,
 318                 * 3, M, and 4 are affected by PAT errata, which makes the
 319                 * upper four entries unusable. To be on the safe side, we don't
 320                 * use those.
 321                 *
 322                 *  PTE encoding:
 323                 *      PAT
 324                 *      |PCD
 325                 *      ||PWT  PAT
 326                 *      |||    slot
 327                 *      000    0    WB : _PAGE_CACHE_MODE_WB
 328                 *      001    1    WC : _PAGE_CACHE_MODE_WC
 329                 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
 330                 *      011    3    UC : _PAGE_CACHE_MODE_UC
 331                 * PAT bit unused
 332                 *
 333                 * NOTE: When WT or WP is used, it is redirected to UC- per
 334                 * the default setup in __cachemode2pte_tbl[].
 335                 */
 336                pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
 337                      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
 338        } else {
 339                /*
 340                 * Full PAT support.  We put WT in slot 7 to improve
 341                 * robustness in the presence of errata that might cause
 342                 * the high PAT bit to be ignored.  This way, a buggy slot 7
 343                 * access will hit slot 3, and slot 3 is UC, so at worst
 344                 * we lose performance without causing a correctness issue.
 345                 * Pentium 4 erratum N46 is an example for such an erratum,
 346                 * although we try not to use PAT at all on affected CPUs.
 347                 *
 348                 *  PTE encoding:
 349                 *      PAT
 350                 *      |PCD
 351                 *      ||PWT  PAT
 352                 *      |||    slot
 353                 *      000    0    WB : _PAGE_CACHE_MODE_WB
 354                 *      001    1    WC : _PAGE_CACHE_MODE_WC
 355                 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
 356                 *      011    3    UC : _PAGE_CACHE_MODE_UC
 357                 *      100    4    WB : Reserved
 358                 *      101    5    WC : Reserved
 359                 *      110    6    UC-: Reserved
 360                 *      111    7    WT : _PAGE_CACHE_MODE_WT
 361                 *
 362                 * The reserved slots are unused, but mapped to their
 363                 * corresponding types in the presence of PAT errata.
 364                 */
 365                pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
 366                      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, WT);
 367        }
 368
 369        if (!boot_cpu_done) {
 370                pat_bsp_init(pat);
 371                boot_cpu_done = true;
 372        } else {
 373                pat_ap_init(pat);
 374        }
 375}
 376
 377#undef PAT
 378
 379static DEFINE_SPINLOCK(memtype_lock);   /* protects memtype accesses */
 380
 381/*
 382 * Does intersection of PAT memory type and MTRR memory type and returns
 383 * the resulting memory type as PAT understands it.
 384 * (Type in pat and mtrr will not have same value)
 385 * The intersection is based on "Effective Memory Type" tables in IA-32
 386 * SDM vol 3a
 387 */
 388static unsigned long pat_x_mtrr_type(u64 start, u64 end,
 389                                     enum page_cache_mode req_type)
 390{
 391        /*
 392         * Look for MTRR hint to get the effective type in case where PAT
 393         * request is for WB.
 394         */
 395        if (req_type == _PAGE_CACHE_MODE_WB) {
 396                u8 mtrr_type, uniform;
 397
 398                mtrr_type = mtrr_type_lookup(start, end, &uniform);
 399                if (mtrr_type != MTRR_TYPE_WRBACK)
 400                        return _PAGE_CACHE_MODE_UC_MINUS;
 401
 402                return _PAGE_CACHE_MODE_WB;
 403        }
 404
 405        return req_type;
 406}
 407
 408struct pagerange_state {
 409        unsigned long           cur_pfn;
 410        int                     ram;
 411        int                     not_ram;
 412};
 413
 414static int
 415pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
 416{
 417        struct pagerange_state *state = arg;
 418
 419        state->not_ram  |= initial_pfn > state->cur_pfn;
 420        state->ram      |= total_nr_pages > 0;
 421        state->cur_pfn   = initial_pfn + total_nr_pages;
 422
 423        return state->ram && state->not_ram;
 424}
 425
 426static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
 427{
 428        int ret = 0;
 429        unsigned long start_pfn = start >> PAGE_SHIFT;
 430        unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
 431        struct pagerange_state state = {start_pfn, 0, 0};
 432
 433        /*
 434         * For legacy reasons, physical address range in the legacy ISA
 435         * region is tracked as non-RAM. This will allow users of
 436         * /dev/mem to map portions of legacy ISA region, even when
 437         * some of those portions are listed(or not even listed) with
 438         * different e820 types(RAM/reserved/..)
 439         */
 440        if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
 441                start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
 442
 443        if (start_pfn < end_pfn) {
 444                ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
 445                                &state, pagerange_is_ram_callback);
 446        }
 447
 448        return (ret > 0) ? -1 : (state.ram ? 1 : 0);
 449}
 450
 451/*
 452 * For RAM pages, we use page flags to mark the pages with appropriate type.
 453 * The page flags are limited to four types, WB (default), WC, WT and UC-.
 454 * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
 455 * a new memory type is only allowed for a page mapped with the default WB
 456 * type.
 457 *
 458 * Here we do two passes:
 459 * - Find the memtype of all the pages in the range, look for any conflicts.
 460 * - In case of no conflicts, set the new memtype for pages in the range.
 461 */
 462static int reserve_ram_pages_type(u64 start, u64 end,
 463                                  enum page_cache_mode req_type,
 464                                  enum page_cache_mode *new_type)
 465{
 466        struct page *page;
 467        u64 pfn;
 468
 469        if (req_type == _PAGE_CACHE_MODE_WP) {
 470                if (new_type)
 471                        *new_type = _PAGE_CACHE_MODE_UC_MINUS;
 472                return -EINVAL;
 473        }
 474
 475        if (req_type == _PAGE_CACHE_MODE_UC) {
 476                /* We do not support strong UC */
 477                WARN_ON_ONCE(1);
 478                req_type = _PAGE_CACHE_MODE_UC_MINUS;
 479        }
 480
 481        for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 482                enum page_cache_mode type;
 483
 484                page = pfn_to_page(pfn);
 485                type = get_page_memtype(page);
 486                if (type != _PAGE_CACHE_MODE_WB) {
 487                        pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
 488                                start, end - 1, type, req_type);
 489                        if (new_type)
 490                                *new_type = type;
 491
 492                        return -EBUSY;
 493                }
 494        }
 495
 496        if (new_type)
 497                *new_type = req_type;
 498
 499        for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 500                page = pfn_to_page(pfn);
 501                set_page_memtype(page, req_type);
 502        }
 503        return 0;
 504}
 505
 506static int free_ram_pages_type(u64 start, u64 end)
 507{
 508        struct page *page;
 509        u64 pfn;
 510
 511        for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 512                page = pfn_to_page(pfn);
 513                set_page_memtype(page, _PAGE_CACHE_MODE_WB);
 514        }
 515        return 0;
 516}
 517
 518/*
 519 * req_type typically has one of the:
 520 * - _PAGE_CACHE_MODE_WB
 521 * - _PAGE_CACHE_MODE_WC
 522 * - _PAGE_CACHE_MODE_UC_MINUS
 523 * - _PAGE_CACHE_MODE_UC
 524 * - _PAGE_CACHE_MODE_WT
 525 *
 526 * If new_type is NULL, function will return an error if it cannot reserve the
 527 * region with req_type. If new_type is non-NULL, function will return
 528 * available type in new_type in case of no error. In case of any error
 529 * it will return a negative return value.
 530 */
 531int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
 532                    enum page_cache_mode *new_type)
 533{
 534        struct memtype *new;
 535        enum page_cache_mode actual_type;
 536        int is_range_ram;
 537        int err = 0;
 538
 539        BUG_ON(start >= end); /* end is exclusive */
 540
 541        if (!pat_enabled()) {
 542                /* This is identical to page table setting without PAT */
 543                if (new_type)
 544                        *new_type = req_type;
 545                return 0;
 546        }
 547
 548        /* Low ISA region is always mapped WB in page table. No need to track */
 549        if (x86_platform.is_untracked_pat_range(start, end)) {
 550                if (new_type)
 551                        *new_type = _PAGE_CACHE_MODE_WB;
 552                return 0;
 553        }
 554
 555        /*
 556         * Call mtrr_lookup to get the type hint. This is an
 557         * optimization for /dev/mem mmap'ers into WB memory (BIOS
 558         * tools and ACPI tools). Use WB request for WB memory and use
 559         * UC_MINUS otherwise.
 560         */
 561        actual_type = pat_x_mtrr_type(start, end, req_type);
 562
 563        if (new_type)
 564                *new_type = actual_type;
 565
 566        is_range_ram = pat_pagerange_is_ram(start, end);
 567        if (is_range_ram == 1) {
 568
 569                err = reserve_ram_pages_type(start, end, req_type, new_type);
 570
 571                return err;
 572        } else if (is_range_ram < 0) {
 573                return -EINVAL;
 574        }
 575
 576        new  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
 577        if (!new)
 578                return -ENOMEM;
 579
 580        new->start      = start;
 581        new->end        = end;
 582        new->type       = actual_type;
 583
 584        spin_lock(&memtype_lock);
 585
 586        err = rbt_memtype_check_insert(new, new_type);
 587        if (err) {
 588                pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
 589                        start, end - 1,
 590                        cattr_name(new->type), cattr_name(req_type));
 591                kfree(new);
 592                spin_unlock(&memtype_lock);
 593
 594                return err;
 595        }
 596
 597        spin_unlock(&memtype_lock);
 598
 599        dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
 600                start, end - 1, cattr_name(new->type), cattr_name(req_type),
 601                new_type ? cattr_name(*new_type) : "-");
 602
 603        return err;
 604}
 605
 606int free_memtype(u64 start, u64 end)
 607{
 608        int err = -EINVAL;
 609        int is_range_ram;
 610        struct memtype *entry;
 611
 612        if (!pat_enabled())
 613                return 0;
 614
 615        /* Low ISA region is always mapped WB. No need to track */
 616        if (x86_platform.is_untracked_pat_range(start, end))
 617                return 0;
 618
 619        is_range_ram = pat_pagerange_is_ram(start, end);
 620        if (is_range_ram == 1) {
 621
 622                err = free_ram_pages_type(start, end);
 623
 624                return err;
 625        } else if (is_range_ram < 0) {
 626                return -EINVAL;
 627        }
 628
 629        spin_lock(&memtype_lock);
 630        entry = rbt_memtype_erase(start, end);
 631        spin_unlock(&memtype_lock);
 632
 633        if (IS_ERR(entry)) {
 634                pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
 635                        current->comm, current->pid, start, end - 1);
 636                return -EINVAL;
 637        }
 638
 639        kfree(entry);
 640
 641        dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
 642
 643        return 0;
 644}
 645
 646
 647/**
 648 * lookup_memtype - Looksup the memory type for a physical address
 649 * @paddr: physical address of which memory type needs to be looked up
 650 *
 651 * Only to be called when PAT is enabled
 652 *
 653 * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
 654 * or _PAGE_CACHE_MODE_WT.
 655 */
 656static enum page_cache_mode lookup_memtype(u64 paddr)
 657{
 658        enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
 659        struct memtype *entry;
 660
 661        if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
 662                return rettype;
 663
 664        if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
 665                struct page *page;
 666
 667                page = pfn_to_page(paddr >> PAGE_SHIFT);
 668                return get_page_memtype(page);
 669        }
 670
 671        spin_lock(&memtype_lock);
 672
 673        entry = rbt_memtype_lookup(paddr);
 674        if (entry != NULL)
 675                rettype = entry->type;
 676        else
 677                rettype = _PAGE_CACHE_MODE_UC_MINUS;
 678
 679        spin_unlock(&memtype_lock);
 680        return rettype;
 681}
 682
 683/**
 684 * io_reserve_memtype - Request a memory type mapping for a region of memory
 685 * @start: start (physical address) of the region
 686 * @end: end (physical address) of the region
 687 * @type: A pointer to memtype, with requested type. On success, requested
 688 * or any other compatible type that was available for the region is returned
 689 *
 690 * On success, returns 0
 691 * On failure, returns non-zero
 692 */
 693int io_reserve_memtype(resource_size_t start, resource_size_t end,
 694                        enum page_cache_mode *type)
 695{
 696        resource_size_t size = end - start;
 697        enum page_cache_mode req_type = *type;
 698        enum page_cache_mode new_type;
 699        int ret;
 700
 701        WARN_ON_ONCE(iomem_map_sanity_check(start, size));
 702
 703        ret = reserve_memtype(start, end, req_type, &new_type);
 704        if (ret)
 705                goto out_err;
 706
 707        if (!is_new_memtype_allowed(start, size, req_type, new_type))
 708                goto out_free;
 709
 710        if (kernel_map_sync_memtype(start, size, new_type) < 0)
 711                goto out_free;
 712
 713        *type = new_type;
 714        return 0;
 715
 716out_free:
 717        free_memtype(start, end);
 718        ret = -EBUSY;
 719out_err:
 720        return ret;
 721}
 722
 723/**
 724 * io_free_memtype - Release a memory type mapping for a region of memory
 725 * @start: start (physical address) of the region
 726 * @end: end (physical address) of the region
 727 */
 728void io_free_memtype(resource_size_t start, resource_size_t end)
 729{
 730        free_memtype(start, end);
 731}
 732
 733int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
 734{
 735        enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
 736
 737        return io_reserve_memtype(start, start + size, &type);
 738}
 739EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
 740
 741void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
 742{
 743        io_free_memtype(start, start + size);
 744}
 745EXPORT_SYMBOL(arch_io_free_memtype_wc);
 746
 747pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 748                                unsigned long size, pgprot_t vma_prot)
 749{
 750        return vma_prot;
 751}
 752
 753#ifdef CONFIG_STRICT_DEVMEM
 754/* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
 755static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 756{
 757        return 1;
 758}
 759#else
 760/* This check is needed to avoid cache aliasing when PAT is enabled */
 761static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 762{
 763        u64 from = ((u64)pfn) << PAGE_SHIFT;
 764        u64 to = from + size;
 765        u64 cursor = from;
 766
 767        if (!pat_enabled())
 768                return 1;
 769
 770        while (cursor < to) {
 771                if (!devmem_is_allowed(pfn))
 772                        return 0;
 773                cursor += PAGE_SIZE;
 774                pfn++;
 775        }
 776        return 1;
 777}
 778#endif /* CONFIG_STRICT_DEVMEM */
 779
 780int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
 781                                unsigned long size, pgprot_t *vma_prot)
 782{
 783        enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
 784
 785        if (!range_is_allowed(pfn, size))
 786                return 0;
 787
 788        if (file->f_flags & O_DSYNC)
 789                pcm = _PAGE_CACHE_MODE_UC_MINUS;
 790
 791        *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
 792                             cachemode2protval(pcm));
 793        return 1;
 794}
 795
 796/*
 797 * Change the memory type for the physial address range in kernel identity
 798 * mapping space if that range is a part of identity map.
 799 */
 800int kernel_map_sync_memtype(u64 base, unsigned long size,
 801                            enum page_cache_mode pcm)
 802{
 803        unsigned long id_sz;
 804
 805        if (base > __pa(high_memory-1))
 806                return 0;
 807
 808        /*
 809         * some areas in the middle of the kernel identity range
 810         * are not mapped, like the PCI space.
 811         */
 812        if (!page_is_ram(base >> PAGE_SHIFT))
 813                return 0;
 814
 815        id_sz = (__pa(high_memory-1) <= base + size) ?
 816                                __pa(high_memory) - base :
 817                                size;
 818
 819        if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
 820                pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
 821                        current->comm, current->pid,
 822                        cattr_name(pcm),
 823                        base, (unsigned long long)(base + size-1));
 824                return -EINVAL;
 825        }
 826        return 0;
 827}
 828
 829/*
 830 * Internal interface to reserve a range of physical memory with prot.
 831 * Reserved non RAM regions only and after successful reserve_memtype,
 832 * this func also keeps identity mapping (if any) in sync with this new prot.
 833 */
 834static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
 835                                int strict_prot)
 836{
 837        int is_ram = 0;
 838        int ret;
 839        enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
 840        enum page_cache_mode pcm = want_pcm;
 841
 842        is_ram = pat_pagerange_is_ram(paddr, paddr + size);
 843
 844        /*
 845         * reserve_pfn_range() for RAM pages. We do not refcount to keep
 846         * track of number of mappings of RAM pages. We can assert that
 847         * the type requested matches the type of first page in the range.
 848         */
 849        if (is_ram) {
 850                if (!pat_enabled())
 851                        return 0;
 852
 853                pcm = lookup_memtype(paddr);
 854                if (want_pcm != pcm) {
 855                        pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
 856                                current->comm, current->pid,
 857                                cattr_name(want_pcm),
 858                                (unsigned long long)paddr,
 859                                (unsigned long long)(paddr + size - 1),
 860                                cattr_name(pcm));
 861                        *vma_prot = __pgprot((pgprot_val(*vma_prot) &
 862                                             (~_PAGE_CACHE_MASK)) |
 863                                             cachemode2protval(pcm));
 864                }
 865                return 0;
 866        }
 867
 868        ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm);
 869        if (ret)
 870                return ret;
 871
 872        if (pcm != want_pcm) {
 873                if (strict_prot ||
 874                    !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
 875                        free_memtype(paddr, paddr + size);
 876                        pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
 877                               current->comm, current->pid,
 878                               cattr_name(want_pcm),
 879                               (unsigned long long)paddr,
 880                               (unsigned long long)(paddr + size - 1),
 881                               cattr_name(pcm));
 882                        return -EINVAL;
 883                }
 884                /*
 885                 * We allow returning different type than the one requested in
 886                 * non strict case.
 887                 */
 888                *vma_prot = __pgprot((pgprot_val(*vma_prot) &
 889                                      (~_PAGE_CACHE_MASK)) |
 890                                     cachemode2protval(pcm));
 891        }
 892
 893        if (kernel_map_sync_memtype(paddr, size, pcm) < 0) {
 894                free_memtype(paddr, paddr + size);
 895                return -EINVAL;
 896        }
 897        return 0;
 898}
 899
 900/*
 901 * Internal interface to free a range of physical memory.
 902 * Frees non RAM regions only.
 903 */
 904static void free_pfn_range(u64 paddr, unsigned long size)
 905{
 906        int is_ram;
 907
 908        is_ram = pat_pagerange_is_ram(paddr, paddr + size);
 909        if (is_ram == 0)
 910                free_memtype(paddr, paddr + size);
 911}
 912
 913/*
 914 * track_pfn_copy is called when vma that is covering the pfnmap gets
 915 * copied through copy_page_range().
 916 *
 917 * If the vma has a linear pfn mapping for the entire range, we get the prot
 918 * from pte and reserve the entire vma range with single reserve_pfn_range call.
 919 */
 920int track_pfn_copy(struct vm_area_struct *vma)
 921{
 922        resource_size_t paddr;
 923        unsigned long prot;
 924        unsigned long vma_size = vma->vm_end - vma->vm_start;
 925        pgprot_t pgprot;
 926
 927        if (vma->vm_flags & VM_PAT) {
 928                /*
 929                 * reserve the whole chunk covered by vma. We need the
 930                 * starting address and protection from pte.
 931                 */
 932                if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
 933                        WARN_ON_ONCE(1);
 934                        return -EINVAL;
 935                }
 936                pgprot = __pgprot(prot);
 937                return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
 938        }
 939
 940        return 0;
 941}
 942
 943/*
 944 * prot is passed in as a parameter for the new mapping. If the vma has
 945 * a linear pfn mapping for the entire range, or no vma is provided,
 946 * reserve the entire pfn + size range with single reserve_pfn_range
 947 * call.
 948 */
 949int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 950                    unsigned long pfn, unsigned long addr, unsigned long size)
 951{
 952        resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
 953        enum page_cache_mode pcm;
 954
 955        /* reserve the whole chunk starting from paddr */
 956        if (!vma || (addr == vma->vm_start
 957                                && size == (vma->vm_end - vma->vm_start))) {
 958                int ret;
 959
 960                ret = reserve_pfn_range(paddr, size, prot, 0);
 961                if (ret == 0 && vma)
 962                        vma->vm_flags |= VM_PAT;
 963                return ret;
 964        }
 965
 966        if (!pat_enabled())
 967                return 0;
 968
 969        /*
 970         * For anything smaller than the vma size we set prot based on the
 971         * lookup.
 972         */
 973        pcm = lookup_memtype(paddr);
 974
 975        /* Check memtype for the remaining pages */
 976        while (size > PAGE_SIZE) {
 977                size -= PAGE_SIZE;
 978                paddr += PAGE_SIZE;
 979                if (pcm != lookup_memtype(paddr))
 980                        return -EINVAL;
 981        }
 982
 983        *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
 984                         cachemode2protval(pcm));
 985
 986        return 0;
 987}
 988
 989int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 990                     pfn_t pfn)
 991{
 992        enum page_cache_mode pcm;
 993
 994        if (!pat_enabled())
 995                return 0;
 996
 997        /* Set prot based on lookup */
 998        pcm = lookup_memtype(pfn_t_to_phys(pfn));
 999        *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1000                         cachemode2protval(pcm));
1001
1002        return 0;
1003}
1004
1005/*
1006 * untrack_pfn is called while unmapping a pfnmap for a region.
1007 * untrack can be called for a specific region indicated by pfn and size or
1008 * can be for the entire vma (in which case pfn, size are zero).
1009 */
1010void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1011                 unsigned long size)
1012{
1013        resource_size_t paddr;
1014        unsigned long prot;
1015
1016        if (vma && !(vma->vm_flags & VM_PAT))
1017                return;
1018
1019        /* free the chunk starting from pfn or the whole chunk */
1020        paddr = (resource_size_t)pfn << PAGE_SHIFT;
1021        if (!paddr && !size) {
1022                if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1023                        WARN_ON_ONCE(1);
1024                        return;
1025                }
1026
1027                size = vma->vm_end - vma->vm_start;
1028        }
1029        free_pfn_range(paddr, size);
1030        if (vma)
1031                vma->vm_flags &= ~VM_PAT;
1032}
1033
1034/*
1035 * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
1036 * with the old vma after its pfnmap page table has been removed.  The new
1037 * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1038 */
1039void untrack_pfn_moved(struct vm_area_struct *vma)
1040{
1041        vma->vm_flags &= ~VM_PAT;
1042}
1043
1044pgprot_t pgprot_writecombine(pgprot_t prot)
1045{
1046        return __pgprot(pgprot_val(prot) |
1047                                cachemode2protval(_PAGE_CACHE_MODE_WC));
1048}
1049EXPORT_SYMBOL_GPL(pgprot_writecombine);
1050
1051pgprot_t pgprot_writethrough(pgprot_t prot)
1052{
1053        return __pgprot(pgprot_val(prot) |
1054                                cachemode2protval(_PAGE_CACHE_MODE_WT));
1055}
1056EXPORT_SYMBOL_GPL(pgprot_writethrough);
1057
1058#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1059
1060static struct memtype *memtype_get_idx(loff_t pos)
1061{
1062        struct memtype *print_entry;
1063        int ret;
1064
1065        print_entry  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1066        if (!print_entry)
1067                return NULL;
1068
1069        spin_lock(&memtype_lock);
1070        ret = rbt_memtype_copy_nth_element(print_entry, pos);
1071        spin_unlock(&memtype_lock);
1072
1073        if (!ret) {
1074                return print_entry;
1075        } else {
1076                kfree(print_entry);
1077                return NULL;
1078        }
1079}
1080
1081static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1082{
1083        if (*pos == 0) {
1084                ++*pos;
1085                seq_puts(seq, "PAT memtype list:\n");
1086        }
1087
1088        return memtype_get_idx(*pos);
1089}
1090
1091static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1092{
1093        ++*pos;
1094        return memtype_get_idx(*pos);
1095}
1096
1097static void memtype_seq_stop(struct seq_file *seq, void *v)
1098{
1099}
1100
1101static int memtype_seq_show(struct seq_file *seq, void *v)
1102{
1103        struct memtype *print_entry = (struct memtype *)v;
1104
1105        seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
1106                        print_entry->start, print_entry->end);
1107        kfree(print_entry);
1108
1109        return 0;
1110}
1111
1112static const struct seq_operations memtype_seq_ops = {
1113        .start = memtype_seq_start,
1114        .next  = memtype_seq_next,
1115        .stop  = memtype_seq_stop,
1116        .show  = memtype_seq_show,
1117};
1118
1119static int memtype_seq_open(struct inode *inode, struct file *file)
1120{
1121        return seq_open(file, &memtype_seq_ops);
1122}
1123
1124static const struct file_operations memtype_fops = {
1125        .open    = memtype_seq_open,
1126        .read    = seq_read,
1127        .llseek  = seq_lseek,
1128        .release = seq_release,
1129};
1130
1131static int __init pat_memtype_list_init(void)
1132{
1133        if (pat_enabled()) {
1134                debugfs_create_file("pat_memtype_list", S_IRUSR,
1135                                    arch_debugfs_dir, NULL, &memtype_fops);
1136        }
1137        return 0;
1138}
1139
1140late_initcall(pat_memtype_list_init);
1141
1142#endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1143