linux/drivers/acpi/osl.c
<<
>>
Prefs
   1/*
   2 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   3 *
   4 *  Copyright (C) 2000       Andrew Henroid
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (c) 2008 Intel Corporation
   8 *   Author: Matthew Wilcox <willy@linux.intel.com>
   9 *
  10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2 of the License, or
  15 *  (at your option) any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  23 *
  24 */
  25
  26#include <linux/module.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/mm.h>
  30#include <linux/highmem.h>
  31#include <linux/pci.h>
  32#include <linux/interrupt.h>
  33#include <linux/kmod.h>
  34#include <linux/delay.h>
  35#include <linux/workqueue.h>
  36#include <linux/nmi.h>
  37#include <linux/acpi.h>
  38#include <linux/efi.h>
  39#include <linux/ioport.h>
  40#include <linux/list.h>
  41#include <linux/jiffies.h>
  42#include <linux/semaphore.h>
  43
  44#include <asm/io.h>
  45#include <asm/uaccess.h>
  46#include <linux/io-64-nonatomic-lo-hi.h>
  47
  48#include "internal.h"
  49
  50#define _COMPONENT              ACPI_OS_SERVICES
  51ACPI_MODULE_NAME("osl");
  52
  53struct acpi_os_dpc {
  54        acpi_osd_exec_callback function;
  55        void *context;
  56        struct work_struct work;
  57};
  58
  59#ifdef ENABLE_DEBUGGER
  60#include <linux/kdb.h>
  61
  62/* stuff for debugger support */
  63int acpi_in_debugger;
  64EXPORT_SYMBOL(acpi_in_debugger);
  65#endif                          /*ENABLE_DEBUGGER */
  66
  67static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  68                                      u32 pm1b_ctrl);
  69static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  70                                      u32 val_b);
  71
  72static acpi_osd_handler acpi_irq_handler;
  73static void *acpi_irq_context;
  74static struct workqueue_struct *kacpid_wq;
  75static struct workqueue_struct *kacpi_notify_wq;
  76static struct workqueue_struct *kacpi_hotplug_wq;
  77static bool acpi_os_initialized;
  78unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
  79
  80/*
  81 * This list of permanent mappings is for memory that may be accessed from
  82 * interrupt context, where we can't do the ioremap().
  83 */
  84struct acpi_ioremap {
  85        struct list_head list;
  86        void __iomem *virt;
  87        acpi_physical_address phys;
  88        acpi_size size;
  89        unsigned long refcount;
  90};
  91
  92static LIST_HEAD(acpi_ioremaps);
  93static DEFINE_MUTEX(acpi_ioremap_lock);
  94
  95static void __init acpi_request_region (struct acpi_generic_address *gas,
  96        unsigned int length, char *desc)
  97{
  98        u64 addr;
  99
 100        /* Handle possible alignment issues */
 101        memcpy(&addr, &gas->address, sizeof(addr));
 102        if (!addr || !length)
 103                return;
 104
 105        /* Resources are never freed */
 106        if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
 107                request_region(addr, length, desc);
 108        else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 109                request_mem_region(addr, length, desc);
 110}
 111
 112static int __init acpi_reserve_resources(void)
 113{
 114        acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 115                "ACPI PM1a_EVT_BLK");
 116
 117        acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 118                "ACPI PM1b_EVT_BLK");
 119
 120        acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 121                "ACPI PM1a_CNT_BLK");
 122
 123        acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 124                "ACPI PM1b_CNT_BLK");
 125
 126        if (acpi_gbl_FADT.pm_timer_length == 4)
 127                acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 128
 129        acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 130                "ACPI PM2_CNT_BLK");
 131
 132        /* Length of GPE blocks must be a non-negative multiple of 2 */
 133
 134        if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 135                acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 136                               acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 137
 138        if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 139                acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 140                               acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 141
 142        return 0;
 143}
 144fs_initcall_sync(acpi_reserve_resources);
 145
 146void acpi_os_printf(const char *fmt, ...)
 147{
 148        va_list args;
 149        va_start(args, fmt);
 150        acpi_os_vprintf(fmt, args);
 151        va_end(args);
 152}
 153EXPORT_SYMBOL(acpi_os_printf);
 154
 155void acpi_os_vprintf(const char *fmt, va_list args)
 156{
 157        static char buffer[512];
 158
 159        vsprintf(buffer, fmt, args);
 160
 161#ifdef ENABLE_DEBUGGER
 162        if (acpi_in_debugger) {
 163                kdb_printf("%s", buffer);
 164        } else {
 165                if (printk_get_level(buffer))
 166                        printk("%s", buffer);
 167                else
 168                        printk(KERN_CONT "%s", buffer);
 169        }
 170#else
 171        if (acpi_debugger_write_log(buffer) < 0) {
 172                if (printk_get_level(buffer))
 173                        printk("%s", buffer);
 174                else
 175                        printk(KERN_CONT "%s", buffer);
 176        }
 177#endif
 178}
 179
 180#ifdef CONFIG_KEXEC
 181static unsigned long acpi_rsdp;
 182static int __init setup_acpi_rsdp(char *arg)
 183{
 184        if (kstrtoul(arg, 16, &acpi_rsdp))
 185                return -EINVAL;
 186        return 0;
 187}
 188early_param("acpi_rsdp", setup_acpi_rsdp);
 189#endif
 190
 191acpi_physical_address __init acpi_os_get_root_pointer(void)
 192{
 193#ifdef CONFIG_KEXEC
 194        if (acpi_rsdp)
 195                return acpi_rsdp;
 196#endif
 197
 198        if (efi_enabled(EFI_CONFIG_TABLES)) {
 199                if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 200                        return efi.acpi20;
 201                else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 202                        return efi.acpi;
 203                else {
 204                        printk(KERN_ERR PREFIX
 205                               "System description tables not found\n");
 206                        return 0;
 207                }
 208        } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 209                acpi_physical_address pa = 0;
 210
 211                acpi_find_root_pointer(&pa);
 212                return pa;
 213        }
 214
 215        return 0;
 216}
 217
 218/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 219static struct acpi_ioremap *
 220acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 221{
 222        struct acpi_ioremap *map;
 223
 224        list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 225                if (map->phys <= phys &&
 226                    phys + size <= map->phys + map->size)
 227                        return map;
 228
 229        return NULL;
 230}
 231
 232/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 233static void __iomem *
 234acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 235{
 236        struct acpi_ioremap *map;
 237
 238        map = acpi_map_lookup(phys, size);
 239        if (map)
 240                return map->virt + (phys - map->phys);
 241
 242        return NULL;
 243}
 244
 245void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 246{
 247        struct acpi_ioremap *map;
 248        void __iomem *virt = NULL;
 249
 250        mutex_lock(&acpi_ioremap_lock);
 251        map = acpi_map_lookup(phys, size);
 252        if (map) {
 253                virt = map->virt + (phys - map->phys);
 254                map->refcount++;
 255        }
 256        mutex_unlock(&acpi_ioremap_lock);
 257        return virt;
 258}
 259EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 260
 261/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 262static struct acpi_ioremap *
 263acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 264{
 265        struct acpi_ioremap *map;
 266
 267        list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 268                if (map->virt <= virt &&
 269                    virt + size <= map->virt + map->size)
 270                        return map;
 271
 272        return NULL;
 273}
 274
 275#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
 276/* ioremap will take care of cache attributes */
 277#define should_use_kmap(pfn)   0
 278#else
 279#define should_use_kmap(pfn)   page_is_ram(pfn)
 280#endif
 281
 282static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 283{
 284        unsigned long pfn;
 285
 286        pfn = pg_off >> PAGE_SHIFT;
 287        if (should_use_kmap(pfn)) {
 288                if (pg_sz > PAGE_SIZE)
 289                        return NULL;
 290                return (void __iomem __force *)kmap(pfn_to_page(pfn));
 291        } else
 292                return acpi_os_ioremap(pg_off, pg_sz);
 293}
 294
 295static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 296{
 297        unsigned long pfn;
 298
 299        pfn = pg_off >> PAGE_SHIFT;
 300        if (should_use_kmap(pfn))
 301                kunmap(pfn_to_page(pfn));
 302        else
 303                iounmap(vaddr);
 304}
 305
 306/**
 307 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 308 * @phys: Start of the physical address range to map.
 309 * @size: Size of the physical address range to map.
 310 *
 311 * Look up the given physical address range in the list of existing ACPI memory
 312 * mappings.  If found, get a reference to it and return a pointer to it (its
 313 * virtual address).  If not found, map it, add it to that list and return a
 314 * pointer to it.
 315 *
 316 * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
 317 * routine simply calls __acpi_map_table() to get the job done.
 318 */
 319void __iomem *__ref
 320acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 321{
 322        struct acpi_ioremap *map;
 323        void __iomem *virt;
 324        acpi_physical_address pg_off;
 325        acpi_size pg_sz;
 326
 327        if (phys > ULONG_MAX) {
 328                printk(KERN_ERR PREFIX "Cannot map memory that high\n");
 329                return NULL;
 330        }
 331
 332        if (!acpi_gbl_permanent_mmap)
 333                return __acpi_map_table((unsigned long)phys, size);
 334
 335        mutex_lock(&acpi_ioremap_lock);
 336        /* Check if there's a suitable mapping already. */
 337        map = acpi_map_lookup(phys, size);
 338        if (map) {
 339                map->refcount++;
 340                goto out;
 341        }
 342
 343        map = kzalloc(sizeof(*map), GFP_KERNEL);
 344        if (!map) {
 345                mutex_unlock(&acpi_ioremap_lock);
 346                return NULL;
 347        }
 348
 349        pg_off = round_down(phys, PAGE_SIZE);
 350        pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 351        virt = acpi_map(pg_off, pg_sz);
 352        if (!virt) {
 353                mutex_unlock(&acpi_ioremap_lock);
 354                kfree(map);
 355                return NULL;
 356        }
 357
 358        INIT_LIST_HEAD(&map->list);
 359        map->virt = virt;
 360        map->phys = pg_off;
 361        map->size = pg_sz;
 362        map->refcount = 1;
 363
 364        list_add_tail_rcu(&map->list, &acpi_ioremaps);
 365
 366out:
 367        mutex_unlock(&acpi_ioremap_lock);
 368        return map->virt + (phys - map->phys);
 369}
 370EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 371
 372void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 373{
 374        return (void *)acpi_os_map_iomem(phys, size);
 375}
 376EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 377
 378static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 379{
 380        if (!--map->refcount)
 381                list_del_rcu(&map->list);
 382}
 383
 384static void acpi_os_map_cleanup(struct acpi_ioremap *map)
 385{
 386        if (!map->refcount) {
 387                synchronize_rcu_expedited();
 388                acpi_unmap(map->phys, map->virt);
 389                kfree(map);
 390        }
 391}
 392
 393/**
 394 * acpi_os_unmap_iomem - Drop a memory mapping reference.
 395 * @virt: Start of the address range to drop a reference to.
 396 * @size: Size of the address range to drop a reference to.
 397 *
 398 * Look up the given virtual address range in the list of existing ACPI memory
 399 * mappings, drop a reference to it and unmap it if there are no more active
 400 * references to it.
 401 *
 402 * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
 403 * routine simply calls __acpi_unmap_table() to get the job done.  Since
 404 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 405 * here.
 406 */
 407void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 408{
 409        struct acpi_ioremap *map;
 410
 411        if (!acpi_gbl_permanent_mmap) {
 412                __acpi_unmap_table(virt, size);
 413                return;
 414        }
 415
 416        mutex_lock(&acpi_ioremap_lock);
 417        map = acpi_map_lookup_virt(virt, size);
 418        if (!map) {
 419                mutex_unlock(&acpi_ioremap_lock);
 420                WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
 421                return;
 422        }
 423        acpi_os_drop_map_ref(map);
 424        mutex_unlock(&acpi_ioremap_lock);
 425
 426        acpi_os_map_cleanup(map);
 427}
 428EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 429
 430void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 431{
 432        return acpi_os_unmap_iomem((void __iomem *)virt, size);
 433}
 434EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 435
 436void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
 437{
 438        if (!acpi_gbl_permanent_mmap)
 439                __acpi_unmap_table(virt, size);
 440}
 441
 442int acpi_os_map_generic_address(struct acpi_generic_address *gas)
 443{
 444        u64 addr;
 445        void __iomem *virt;
 446
 447        if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 448                return 0;
 449
 450        /* Handle possible alignment issues */
 451        memcpy(&addr, &gas->address, sizeof(addr));
 452        if (!addr || !gas->bit_width)
 453                return -EINVAL;
 454
 455        virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
 456        if (!virt)
 457                return -EIO;
 458
 459        return 0;
 460}
 461EXPORT_SYMBOL(acpi_os_map_generic_address);
 462
 463void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 464{
 465        u64 addr;
 466        struct acpi_ioremap *map;
 467
 468        if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 469                return;
 470
 471        /* Handle possible alignment issues */
 472        memcpy(&addr, &gas->address, sizeof(addr));
 473        if (!addr || !gas->bit_width)
 474                return;
 475
 476        mutex_lock(&acpi_ioremap_lock);
 477        map = acpi_map_lookup(addr, gas->bit_width / 8);
 478        if (!map) {
 479                mutex_unlock(&acpi_ioremap_lock);
 480                return;
 481        }
 482        acpi_os_drop_map_ref(map);
 483        mutex_unlock(&acpi_ioremap_lock);
 484
 485        acpi_os_map_cleanup(map);
 486}
 487EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 488
 489#ifdef ACPI_FUTURE_USAGE
 490acpi_status
 491acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 492{
 493        if (!phys || !virt)
 494                return AE_BAD_PARAMETER;
 495
 496        *phys = virt_to_phys(virt);
 497
 498        return AE_OK;
 499}
 500#endif
 501
 502#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 503static bool acpi_rev_override;
 504
 505int __init acpi_rev_override_setup(char *str)
 506{
 507        acpi_rev_override = true;
 508        return 1;
 509}
 510__setup("acpi_rev_override", acpi_rev_override_setup);
 511#else
 512#define acpi_rev_override       false
 513#endif
 514
 515#define ACPI_MAX_OVERRIDE_LEN 100
 516
 517static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 518
 519acpi_status
 520acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 521                            acpi_string *new_val)
 522{
 523        if (!init_val || !new_val)
 524                return AE_BAD_PARAMETER;
 525
 526        *new_val = NULL;
 527        if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 528                printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
 529                       acpi_os_name);
 530                *new_val = acpi_os_name;
 531        }
 532
 533        if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 534                printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
 535                *new_val = (char *)5;
 536        }
 537
 538        return AE_OK;
 539}
 540
 541static irqreturn_t acpi_irq(int irq, void *dev_id)
 542{
 543        u32 handled;
 544
 545        handled = (*acpi_irq_handler) (acpi_irq_context);
 546
 547        if (handled) {
 548                acpi_irq_handled++;
 549                return IRQ_HANDLED;
 550        } else {
 551                acpi_irq_not_handled++;
 552                return IRQ_NONE;
 553        }
 554}
 555
 556acpi_status
 557acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 558                                  void *context)
 559{
 560        unsigned int irq;
 561
 562        acpi_irq_stats_init();
 563
 564        /*
 565         * ACPI interrupts different from the SCI in our copy of the FADT are
 566         * not supported.
 567         */
 568        if (gsi != acpi_gbl_FADT.sci_interrupt)
 569                return AE_BAD_PARAMETER;
 570
 571        if (acpi_irq_handler)
 572                return AE_ALREADY_ACQUIRED;
 573
 574        if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 575                printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
 576                       gsi);
 577                return AE_OK;
 578        }
 579
 580        acpi_irq_handler = handler;
 581        acpi_irq_context = context;
 582        if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 583                printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
 584                acpi_irq_handler = NULL;
 585                return AE_NOT_ACQUIRED;
 586        }
 587        acpi_sci_irq = irq;
 588
 589        return AE_OK;
 590}
 591
 592acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 593{
 594        if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 595                return AE_BAD_PARAMETER;
 596
 597        free_irq(acpi_sci_irq, acpi_irq);
 598        acpi_irq_handler = NULL;
 599        acpi_sci_irq = INVALID_ACPI_IRQ;
 600
 601        return AE_OK;
 602}
 603
 604/*
 605 * Running in interpreter thread context, safe to sleep
 606 */
 607
 608void acpi_os_sleep(u64 ms)
 609{
 610        msleep(ms);
 611}
 612
 613void acpi_os_stall(u32 us)
 614{
 615        while (us) {
 616                u32 delay = 1000;
 617
 618                if (delay > us)
 619                        delay = us;
 620                udelay(delay);
 621                touch_nmi_watchdog();
 622                us -= delay;
 623        }
 624}
 625
 626/*
 627 * Support ACPI 3.0 AML Timer operand
 628 * Returns 64-bit free-running, monotonically increasing timer
 629 * with 100ns granularity
 630 */
 631u64 acpi_os_get_timer(void)
 632{
 633        u64 time_ns = ktime_to_ns(ktime_get());
 634        do_div(time_ns, 100);
 635        return time_ns;
 636}
 637
 638acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 639{
 640        u32 dummy;
 641
 642        if (!value)
 643                value = &dummy;
 644
 645        *value = 0;
 646        if (width <= 8) {
 647                *(u8 *) value = inb(port);
 648        } else if (width <= 16) {
 649                *(u16 *) value = inw(port);
 650        } else if (width <= 32) {
 651                *(u32 *) value = inl(port);
 652        } else {
 653                BUG();
 654        }
 655
 656        return AE_OK;
 657}
 658
 659EXPORT_SYMBOL(acpi_os_read_port);
 660
 661acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 662{
 663        if (width <= 8) {
 664                outb(value, port);
 665        } else if (width <= 16) {
 666                outw(value, port);
 667        } else if (width <= 32) {
 668                outl(value, port);
 669        } else {
 670                BUG();
 671        }
 672
 673        return AE_OK;
 674}
 675
 676EXPORT_SYMBOL(acpi_os_write_port);
 677
 678acpi_status
 679acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 680{
 681        void __iomem *virt_addr;
 682        unsigned int size = width / 8;
 683        bool unmap = false;
 684        u64 dummy;
 685
 686        rcu_read_lock();
 687        virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 688        if (!virt_addr) {
 689                rcu_read_unlock();
 690                virt_addr = acpi_os_ioremap(phys_addr, size);
 691                if (!virt_addr)
 692                        return AE_BAD_ADDRESS;
 693                unmap = true;
 694        }
 695
 696        if (!value)
 697                value = &dummy;
 698
 699        switch (width) {
 700        case 8:
 701                *(u8 *) value = readb(virt_addr);
 702                break;
 703        case 16:
 704                *(u16 *) value = readw(virt_addr);
 705                break;
 706        case 32:
 707                *(u32 *) value = readl(virt_addr);
 708                break;
 709        case 64:
 710                *(u64 *) value = readq(virt_addr);
 711                break;
 712        default:
 713                BUG();
 714        }
 715
 716        if (unmap)
 717                iounmap(virt_addr);
 718        else
 719                rcu_read_unlock();
 720
 721        return AE_OK;
 722}
 723
 724acpi_status
 725acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 726{
 727        void __iomem *virt_addr;
 728        unsigned int size = width / 8;
 729        bool unmap = false;
 730
 731        rcu_read_lock();
 732        virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 733        if (!virt_addr) {
 734                rcu_read_unlock();
 735                virt_addr = acpi_os_ioremap(phys_addr, size);
 736                if (!virt_addr)
 737                        return AE_BAD_ADDRESS;
 738                unmap = true;
 739        }
 740
 741        switch (width) {
 742        case 8:
 743                writeb(value, virt_addr);
 744                break;
 745        case 16:
 746                writew(value, virt_addr);
 747                break;
 748        case 32:
 749                writel(value, virt_addr);
 750                break;
 751        case 64:
 752                writeq(value, virt_addr);
 753                break;
 754        default:
 755                BUG();
 756        }
 757
 758        if (unmap)
 759                iounmap(virt_addr);
 760        else
 761                rcu_read_unlock();
 762
 763        return AE_OK;
 764}
 765
 766acpi_status
 767acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 768                               u64 *value, u32 width)
 769{
 770        int result, size;
 771        u32 value32;
 772
 773        if (!value)
 774                return AE_BAD_PARAMETER;
 775
 776        switch (width) {
 777        case 8:
 778                size = 1;
 779                break;
 780        case 16:
 781                size = 2;
 782                break;
 783        case 32:
 784                size = 4;
 785                break;
 786        default:
 787                return AE_ERROR;
 788        }
 789
 790        result = raw_pci_read(pci_id->segment, pci_id->bus,
 791                                PCI_DEVFN(pci_id->device, pci_id->function),
 792                                reg, size, &value32);
 793        *value = value32;
 794
 795        return (result ? AE_ERROR : AE_OK);
 796}
 797
 798acpi_status
 799acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 800                                u64 value, u32 width)
 801{
 802        int result, size;
 803
 804        switch (width) {
 805        case 8:
 806                size = 1;
 807                break;
 808        case 16:
 809                size = 2;
 810                break;
 811        case 32:
 812                size = 4;
 813                break;
 814        default:
 815                return AE_ERROR;
 816        }
 817
 818        result = raw_pci_write(pci_id->segment, pci_id->bus,
 819                                PCI_DEVFN(pci_id->device, pci_id->function),
 820                                reg, size, value);
 821
 822        return (result ? AE_ERROR : AE_OK);
 823}
 824
 825static void acpi_os_execute_deferred(struct work_struct *work)
 826{
 827        struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 828
 829        dpc->function(dpc->context);
 830        kfree(dpc);
 831}
 832
 833#ifdef CONFIG_ACPI_DEBUGGER
 834static struct acpi_debugger acpi_debugger;
 835static bool acpi_debugger_initialized;
 836
 837int acpi_register_debugger(struct module *owner,
 838                           const struct acpi_debugger_ops *ops)
 839{
 840        int ret = 0;
 841
 842        mutex_lock(&acpi_debugger.lock);
 843        if (acpi_debugger.ops) {
 844                ret = -EBUSY;
 845                goto err_lock;
 846        }
 847
 848        acpi_debugger.owner = owner;
 849        acpi_debugger.ops = ops;
 850
 851err_lock:
 852        mutex_unlock(&acpi_debugger.lock);
 853        return ret;
 854}
 855EXPORT_SYMBOL(acpi_register_debugger);
 856
 857void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
 858{
 859        mutex_lock(&acpi_debugger.lock);
 860        if (ops == acpi_debugger.ops) {
 861                acpi_debugger.ops = NULL;
 862                acpi_debugger.owner = NULL;
 863        }
 864        mutex_unlock(&acpi_debugger.lock);
 865}
 866EXPORT_SYMBOL(acpi_unregister_debugger);
 867
 868int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
 869{
 870        int ret;
 871        int (*func)(acpi_osd_exec_callback, void *);
 872        struct module *owner;
 873
 874        if (!acpi_debugger_initialized)
 875                return -ENODEV;
 876        mutex_lock(&acpi_debugger.lock);
 877        if (!acpi_debugger.ops) {
 878                ret = -ENODEV;
 879                goto err_lock;
 880        }
 881        if (!try_module_get(acpi_debugger.owner)) {
 882                ret = -ENODEV;
 883                goto err_lock;
 884        }
 885        func = acpi_debugger.ops->create_thread;
 886        owner = acpi_debugger.owner;
 887        mutex_unlock(&acpi_debugger.lock);
 888
 889        ret = func(function, context);
 890
 891        mutex_lock(&acpi_debugger.lock);
 892        module_put(owner);
 893err_lock:
 894        mutex_unlock(&acpi_debugger.lock);
 895        return ret;
 896}
 897
 898ssize_t acpi_debugger_write_log(const char *msg)
 899{
 900        ssize_t ret;
 901        ssize_t (*func)(const char *);
 902        struct module *owner;
 903
 904        if (!acpi_debugger_initialized)
 905                return -ENODEV;
 906        mutex_lock(&acpi_debugger.lock);
 907        if (!acpi_debugger.ops) {
 908                ret = -ENODEV;
 909                goto err_lock;
 910        }
 911        if (!try_module_get(acpi_debugger.owner)) {
 912                ret = -ENODEV;
 913                goto err_lock;
 914        }
 915        func = acpi_debugger.ops->write_log;
 916        owner = acpi_debugger.owner;
 917        mutex_unlock(&acpi_debugger.lock);
 918
 919        ret = func(msg);
 920
 921        mutex_lock(&acpi_debugger.lock);
 922        module_put(owner);
 923err_lock:
 924        mutex_unlock(&acpi_debugger.lock);
 925        return ret;
 926}
 927
 928ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
 929{
 930        ssize_t ret;
 931        ssize_t (*func)(char *, size_t);
 932        struct module *owner;
 933
 934        if (!acpi_debugger_initialized)
 935                return -ENODEV;
 936        mutex_lock(&acpi_debugger.lock);
 937        if (!acpi_debugger.ops) {
 938                ret = -ENODEV;
 939                goto err_lock;
 940        }
 941        if (!try_module_get(acpi_debugger.owner)) {
 942                ret = -ENODEV;
 943                goto err_lock;
 944        }
 945        func = acpi_debugger.ops->read_cmd;
 946        owner = acpi_debugger.owner;
 947        mutex_unlock(&acpi_debugger.lock);
 948
 949        ret = func(buffer, buffer_length);
 950
 951        mutex_lock(&acpi_debugger.lock);
 952        module_put(owner);
 953err_lock:
 954        mutex_unlock(&acpi_debugger.lock);
 955        return ret;
 956}
 957
 958int acpi_debugger_wait_command_ready(void)
 959{
 960        int ret;
 961        int (*func)(bool, char *, size_t);
 962        struct module *owner;
 963
 964        if (!acpi_debugger_initialized)
 965                return -ENODEV;
 966        mutex_lock(&acpi_debugger.lock);
 967        if (!acpi_debugger.ops) {
 968                ret = -ENODEV;
 969                goto err_lock;
 970        }
 971        if (!try_module_get(acpi_debugger.owner)) {
 972                ret = -ENODEV;
 973                goto err_lock;
 974        }
 975        func = acpi_debugger.ops->wait_command_ready;
 976        owner = acpi_debugger.owner;
 977        mutex_unlock(&acpi_debugger.lock);
 978
 979        ret = func(acpi_gbl_method_executing,
 980                   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
 981
 982        mutex_lock(&acpi_debugger.lock);
 983        module_put(owner);
 984err_lock:
 985        mutex_unlock(&acpi_debugger.lock);
 986        return ret;
 987}
 988
 989int acpi_debugger_notify_command_complete(void)
 990{
 991        int ret;
 992        int (*func)(void);
 993        struct module *owner;
 994
 995        if (!acpi_debugger_initialized)
 996                return -ENODEV;
 997        mutex_lock(&acpi_debugger.lock);
 998        if (!acpi_debugger.ops) {
 999                ret = -ENODEV;
1000                goto err_lock;
1001        }
1002        if (!try_module_get(acpi_debugger.owner)) {
1003                ret = -ENODEV;
1004                goto err_lock;
1005        }
1006        func = acpi_debugger.ops->notify_command_complete;
1007        owner = acpi_debugger.owner;
1008        mutex_unlock(&acpi_debugger.lock);
1009
1010        ret = func();
1011
1012        mutex_lock(&acpi_debugger.lock);
1013        module_put(owner);
1014err_lock:
1015        mutex_unlock(&acpi_debugger.lock);
1016        return ret;
1017}
1018
1019int __init acpi_debugger_init(void)
1020{
1021        mutex_init(&acpi_debugger.lock);
1022        acpi_debugger_initialized = true;
1023        return 0;
1024}
1025#endif
1026
1027/*******************************************************************************
1028 *
1029 * FUNCTION:    acpi_os_execute
1030 *
1031 * PARAMETERS:  Type               - Type of the callback
1032 *              Function           - Function to be executed
1033 *              Context            - Function parameters
1034 *
1035 * RETURN:      Status
1036 *
1037 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1038 *              immediately executes function on a separate thread.
1039 *
1040 ******************************************************************************/
1041
1042acpi_status acpi_os_execute(acpi_execute_type type,
1043                            acpi_osd_exec_callback function, void *context)
1044{
1045        acpi_status status = AE_OK;
1046        struct acpi_os_dpc *dpc;
1047        struct workqueue_struct *queue;
1048        int ret;
1049        ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1050                          "Scheduling function [%p(%p)] for deferred execution.\n",
1051                          function, context));
1052
1053        if (type == OSL_DEBUGGER_MAIN_THREAD) {
1054                ret = acpi_debugger_create_thread(function, context);
1055                if (ret) {
1056                        pr_err("Call to kthread_create() failed.\n");
1057                        status = AE_ERROR;
1058                }
1059                goto out_thread;
1060        }
1061
1062        /*
1063         * Allocate/initialize DPC structure.  Note that this memory will be
1064         * freed by the callee.  The kernel handles the work_struct list  in a
1065         * way that allows us to also free its memory inside the callee.
1066         * Because we may want to schedule several tasks with different
1067         * parameters we can't use the approach some kernel code uses of
1068         * having a static work_struct.
1069         */
1070
1071        dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1072        if (!dpc)
1073                return AE_NO_MEMORY;
1074
1075        dpc->function = function;
1076        dpc->context = context;
1077
1078        /*
1079         * To prevent lockdep from complaining unnecessarily, make sure that
1080         * there is a different static lockdep key for each workqueue by using
1081         * INIT_WORK() for each of them separately.
1082         */
1083        if (type == OSL_NOTIFY_HANDLER) {
1084                queue = kacpi_notify_wq;
1085                INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1086        } else if (type == OSL_GPE_HANDLER) {
1087                queue = kacpid_wq;
1088                INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1089        } else {
1090                pr_err("Unsupported os_execute type %d.\n", type);
1091                status = AE_ERROR;
1092        }
1093
1094        if (ACPI_FAILURE(status))
1095                goto err_workqueue;
1096
1097        /*
1098         * On some machines, a software-initiated SMI causes corruption unless
1099         * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1100         * typically it's done in GPE-related methods that are run via
1101         * workqueues, so we can avoid the known corruption cases by always
1102         * queueing on CPU 0.
1103         */
1104        ret = queue_work_on(0, queue, &dpc->work);
1105        if (!ret) {
1106                printk(KERN_ERR PREFIX
1107                          "Call to queue_work() failed.\n");
1108                status = AE_ERROR;
1109        }
1110err_workqueue:
1111        if (ACPI_FAILURE(status))
1112                kfree(dpc);
1113out_thread:
1114        return status;
1115}
1116EXPORT_SYMBOL(acpi_os_execute);
1117
1118void acpi_os_wait_events_complete(void)
1119{
1120        /*
1121         * Make sure the GPE handler or the fixed event handler is not used
1122         * on another CPU after removal.
1123         */
1124        if (acpi_sci_irq_valid())
1125                synchronize_hardirq(acpi_sci_irq);
1126        flush_workqueue(kacpid_wq);
1127        flush_workqueue(kacpi_notify_wq);
1128}
1129
1130struct acpi_hp_work {
1131        struct work_struct work;
1132        struct acpi_device *adev;
1133        u32 src;
1134};
1135
1136static void acpi_hotplug_work_fn(struct work_struct *work)
1137{
1138        struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1139
1140        acpi_os_wait_events_complete();
1141        acpi_device_hotplug(hpw->adev, hpw->src);
1142        kfree(hpw);
1143}
1144
1145acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1146{
1147        struct acpi_hp_work *hpw;
1148
1149        ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1150                  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1151                  adev, src));
1152
1153        hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1154        if (!hpw)
1155                return AE_NO_MEMORY;
1156
1157        INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1158        hpw->adev = adev;
1159        hpw->src = src;
1160        /*
1161         * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1162         * the hotplug code may call driver .remove() functions, which may
1163         * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1164         * these workqueues.
1165         */
1166        if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1167                kfree(hpw);
1168                return AE_ERROR;
1169        }
1170        return AE_OK;
1171}
1172
1173bool acpi_queue_hotplug_work(struct work_struct *work)
1174{
1175        return queue_work(kacpi_hotplug_wq, work);
1176}
1177
1178acpi_status
1179acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1180{
1181        struct semaphore *sem = NULL;
1182
1183        sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1184        if (!sem)
1185                return AE_NO_MEMORY;
1186
1187        sema_init(sem, initial_units);
1188
1189        *handle = (acpi_handle *) sem;
1190
1191        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1192                          *handle, initial_units));
1193
1194        return AE_OK;
1195}
1196
1197/*
1198 * TODO: A better way to delete semaphores?  Linux doesn't have a
1199 * 'delete_semaphore()' function -- may result in an invalid
1200 * pointer dereference for non-synchronized consumers.  Should
1201 * we at least check for blocked threads and signal/cancel them?
1202 */
1203
1204acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1205{
1206        struct semaphore *sem = (struct semaphore *)handle;
1207
1208        if (!sem)
1209                return AE_BAD_PARAMETER;
1210
1211        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1212
1213        BUG_ON(!list_empty(&sem->wait_list));
1214        kfree(sem);
1215        sem = NULL;
1216
1217        return AE_OK;
1218}
1219
1220/*
1221 * TODO: Support for units > 1?
1222 */
1223acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1224{
1225        acpi_status status = AE_OK;
1226        struct semaphore *sem = (struct semaphore *)handle;
1227        long jiffies;
1228        int ret = 0;
1229
1230        if (!acpi_os_initialized)
1231                return AE_OK;
1232
1233        if (!sem || (units < 1))
1234                return AE_BAD_PARAMETER;
1235
1236        if (units > 1)
1237                return AE_SUPPORT;
1238
1239        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1240                          handle, units, timeout));
1241
1242        if (timeout == ACPI_WAIT_FOREVER)
1243                jiffies = MAX_SCHEDULE_TIMEOUT;
1244        else
1245                jiffies = msecs_to_jiffies(timeout);
1246
1247        ret = down_timeout(sem, jiffies);
1248        if (ret)
1249                status = AE_TIME;
1250
1251        if (ACPI_FAILURE(status)) {
1252                ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1253                                  "Failed to acquire semaphore[%p|%d|%d], %s",
1254                                  handle, units, timeout,
1255                                  acpi_format_exception(status)));
1256        } else {
1257                ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1258                                  "Acquired semaphore[%p|%d|%d]", handle,
1259                                  units, timeout));
1260        }
1261
1262        return status;
1263}
1264
1265/*
1266 * TODO: Support for units > 1?
1267 */
1268acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1269{
1270        struct semaphore *sem = (struct semaphore *)handle;
1271
1272        if (!acpi_os_initialized)
1273                return AE_OK;
1274
1275        if (!sem || (units < 1))
1276                return AE_BAD_PARAMETER;
1277
1278        if (units > 1)
1279                return AE_SUPPORT;
1280
1281        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1282                          units));
1283
1284        up(sem);
1285
1286        return AE_OK;
1287}
1288
1289acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1290{
1291#ifdef ENABLE_DEBUGGER
1292        if (acpi_in_debugger) {
1293                u32 chars;
1294
1295                kdb_read(buffer, buffer_length);
1296
1297                /* remove the CR kdb includes */
1298                chars = strlen(buffer) - 1;
1299                buffer[chars] = '\0';
1300        }
1301#else
1302        int ret;
1303
1304        ret = acpi_debugger_read_cmd(buffer, buffer_length);
1305        if (ret < 0)
1306                return AE_ERROR;
1307        if (bytes_read)
1308                *bytes_read = ret;
1309#endif
1310
1311        return AE_OK;
1312}
1313EXPORT_SYMBOL(acpi_os_get_line);
1314
1315acpi_status acpi_os_wait_command_ready(void)
1316{
1317        int ret;
1318
1319        ret = acpi_debugger_wait_command_ready();
1320        if (ret < 0)
1321                return AE_ERROR;
1322        return AE_OK;
1323}
1324
1325acpi_status acpi_os_notify_command_complete(void)
1326{
1327        int ret;
1328
1329        ret = acpi_debugger_notify_command_complete();
1330        if (ret < 0)
1331                return AE_ERROR;
1332        return AE_OK;
1333}
1334
1335acpi_status acpi_os_signal(u32 function, void *info)
1336{
1337        switch (function) {
1338        case ACPI_SIGNAL_FATAL:
1339                printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1340                break;
1341        case ACPI_SIGNAL_BREAKPOINT:
1342                /*
1343                 * AML Breakpoint
1344                 * ACPI spec. says to treat it as a NOP unless
1345                 * you are debugging.  So if/when we integrate
1346                 * AML debugger into the kernel debugger its
1347                 * hook will go here.  But until then it is
1348                 * not useful to print anything on breakpoints.
1349                 */
1350                break;
1351        default:
1352                break;
1353        }
1354
1355        return AE_OK;
1356}
1357
1358static int __init acpi_os_name_setup(char *str)
1359{
1360        char *p = acpi_os_name;
1361        int count = ACPI_MAX_OVERRIDE_LEN - 1;
1362
1363        if (!str || !*str)
1364                return 0;
1365
1366        for (; count-- && *str; str++) {
1367                if (isalnum(*str) || *str == ' ' || *str == ':')
1368                        *p++ = *str;
1369                else if (*str == '\'' || *str == '"')
1370                        continue;
1371                else
1372                        break;
1373        }
1374        *p = 0;
1375
1376        return 1;
1377
1378}
1379
1380__setup("acpi_os_name=", acpi_os_name_setup);
1381
1382/*
1383 * Disable the auto-serialization of named objects creation methods.
1384 *
1385 * This feature is enabled by default.  It marks the AML control methods
1386 * that contain the opcodes to create named objects as "Serialized".
1387 */
1388static int __init acpi_no_auto_serialize_setup(char *str)
1389{
1390        acpi_gbl_auto_serialize_methods = FALSE;
1391        pr_info("ACPI: auto-serialization disabled\n");
1392
1393        return 1;
1394}
1395
1396__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1397
1398/* Check of resource interference between native drivers and ACPI
1399 * OperationRegions (SystemIO and System Memory only).
1400 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1401 * in arbitrary AML code and can interfere with legacy drivers.
1402 * acpi_enforce_resources= can be set to:
1403 *
1404 *   - strict (default) (2)
1405 *     -> further driver trying to access the resources will not load
1406 *   - lax              (1)
1407 *     -> further driver trying to access the resources will load, but you
1408 *     get a system message that something might go wrong...
1409 *
1410 *   - no               (0)
1411 *     -> ACPI Operation Region resources will not be registered
1412 *
1413 */
1414#define ENFORCE_RESOURCES_STRICT 2
1415#define ENFORCE_RESOURCES_LAX    1
1416#define ENFORCE_RESOURCES_NO     0
1417
1418static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1419
1420static int __init acpi_enforce_resources_setup(char *str)
1421{
1422        if (str == NULL || *str == '\0')
1423                return 0;
1424
1425        if (!strcmp("strict", str))
1426                acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1427        else if (!strcmp("lax", str))
1428                acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1429        else if (!strcmp("no", str))
1430                acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1431
1432        return 1;
1433}
1434
1435__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1436
1437/* Check for resource conflicts between ACPI OperationRegions and native
1438 * drivers */
1439int acpi_check_resource_conflict(const struct resource *res)
1440{
1441        acpi_adr_space_type space_id;
1442        acpi_size length;
1443        u8 warn = 0;
1444        int clash = 0;
1445
1446        if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1447                return 0;
1448        if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1449                return 0;
1450
1451        if (res->flags & IORESOURCE_IO)
1452                space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1453        else
1454                space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1455
1456        length = resource_size(res);
1457        if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1458                warn = 1;
1459        clash = acpi_check_address_range(space_id, res->start, length, warn);
1460
1461        if (clash) {
1462                if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1463                        if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1464                                printk(KERN_NOTICE "ACPI: This conflict may"
1465                                       " cause random problems and system"
1466                                       " instability\n");
1467                        printk(KERN_INFO "ACPI: If an ACPI driver is available"
1468                               " for this device, you should use it instead of"
1469                               " the native driver\n");
1470                }
1471                if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1472                        return -EBUSY;
1473        }
1474        return 0;
1475}
1476EXPORT_SYMBOL(acpi_check_resource_conflict);
1477
1478int acpi_check_region(resource_size_t start, resource_size_t n,
1479                      const char *name)
1480{
1481        struct resource res = {
1482                .start = start,
1483                .end   = start + n - 1,
1484                .name  = name,
1485                .flags = IORESOURCE_IO,
1486        };
1487
1488        return acpi_check_resource_conflict(&res);
1489}
1490EXPORT_SYMBOL(acpi_check_region);
1491
1492/*
1493 * Let drivers know whether the resource checks are effective
1494 */
1495int acpi_resources_are_enforced(void)
1496{
1497        return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1498}
1499EXPORT_SYMBOL(acpi_resources_are_enforced);
1500
1501/*
1502 * Deallocate the memory for a spinlock.
1503 */
1504void acpi_os_delete_lock(acpi_spinlock handle)
1505{
1506        ACPI_FREE(handle);
1507}
1508
1509/*
1510 * Acquire a spinlock.
1511 *
1512 * handle is a pointer to the spinlock_t.
1513 */
1514
1515acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1516{
1517        acpi_cpu_flags flags;
1518        spin_lock_irqsave(lockp, flags);
1519        return flags;
1520}
1521
1522/*
1523 * Release a spinlock. See above.
1524 */
1525
1526void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1527{
1528        spin_unlock_irqrestore(lockp, flags);
1529}
1530
1531#ifndef ACPI_USE_LOCAL_CACHE
1532
1533/*******************************************************************************
1534 *
1535 * FUNCTION:    acpi_os_create_cache
1536 *
1537 * PARAMETERS:  name      - Ascii name for the cache
1538 *              size      - Size of each cached object
1539 *              depth     - Maximum depth of the cache (in objects) <ignored>
1540 *              cache     - Where the new cache object is returned
1541 *
1542 * RETURN:      status
1543 *
1544 * DESCRIPTION: Create a cache object
1545 *
1546 ******************************************************************************/
1547
1548acpi_status
1549acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1550{
1551        *cache = kmem_cache_create(name, size, 0, 0, NULL);
1552        if (*cache == NULL)
1553                return AE_ERROR;
1554        else
1555                return AE_OK;
1556}
1557
1558/*******************************************************************************
1559 *
1560 * FUNCTION:    acpi_os_purge_cache
1561 *
1562 * PARAMETERS:  Cache           - Handle to cache object
1563 *
1564 * RETURN:      Status
1565 *
1566 * DESCRIPTION: Free all objects within the requested cache.
1567 *
1568 ******************************************************************************/
1569
1570acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1571{
1572        kmem_cache_shrink(cache);
1573        return (AE_OK);
1574}
1575
1576/*******************************************************************************
1577 *
1578 * FUNCTION:    acpi_os_delete_cache
1579 *
1580 * PARAMETERS:  Cache           - Handle to cache object
1581 *
1582 * RETURN:      Status
1583 *
1584 * DESCRIPTION: Free all objects within the requested cache and delete the
1585 *              cache object.
1586 *
1587 ******************************************************************************/
1588
1589acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1590{
1591        kmem_cache_destroy(cache);
1592        return (AE_OK);
1593}
1594
1595/*******************************************************************************
1596 *
1597 * FUNCTION:    acpi_os_release_object
1598 *
1599 * PARAMETERS:  Cache       - Handle to cache object
1600 *              Object      - The object to be released
1601 *
1602 * RETURN:      None
1603 *
1604 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1605 *              the object is deleted.
1606 *
1607 ******************************************************************************/
1608
1609acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1610{
1611        kmem_cache_free(cache, object);
1612        return (AE_OK);
1613}
1614#endif
1615
1616static int __init acpi_no_static_ssdt_setup(char *s)
1617{
1618        acpi_gbl_disable_ssdt_table_install = TRUE;
1619        pr_info("ACPI: static SSDT installation disabled\n");
1620
1621        return 0;
1622}
1623
1624early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1625
1626static int __init acpi_disable_return_repair(char *s)
1627{
1628        printk(KERN_NOTICE PREFIX
1629               "ACPI: Predefined validation mechanism disabled\n");
1630        acpi_gbl_disable_auto_repair = TRUE;
1631
1632        return 1;
1633}
1634
1635__setup("acpica_no_return_repair", acpi_disable_return_repair);
1636
1637acpi_status __init acpi_os_initialize(void)
1638{
1639        acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1640        acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1641        acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1642        acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1643        if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1644                /*
1645                 * Use acpi_os_map_generic_address to pre-map the reset
1646                 * register if it's in system memory.
1647                 */
1648                int rv;
1649
1650                rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1651                pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1652        }
1653        acpi_os_initialized = true;
1654
1655        return AE_OK;
1656}
1657
1658acpi_status __init acpi_os_initialize1(void)
1659{
1660        kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1661        kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1662        kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1663        BUG_ON(!kacpid_wq);
1664        BUG_ON(!kacpi_notify_wq);
1665        BUG_ON(!kacpi_hotplug_wq);
1666        acpi_osi_init();
1667        return AE_OK;
1668}
1669
1670acpi_status acpi_os_terminate(void)
1671{
1672        if (acpi_irq_handler) {
1673                acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1674                                                 acpi_irq_handler);
1675        }
1676
1677        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1678        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1679        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1680        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1681        if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1682                acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1683
1684        destroy_workqueue(kacpid_wq);
1685        destroy_workqueue(kacpi_notify_wq);
1686        destroy_workqueue(kacpi_hotplug_wq);
1687
1688        return AE_OK;
1689}
1690
1691acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1692                                  u32 pm1b_control)
1693{
1694        int rc = 0;
1695        if (__acpi_os_prepare_sleep)
1696                rc = __acpi_os_prepare_sleep(sleep_state,
1697                                             pm1a_control, pm1b_control);
1698        if (rc < 0)
1699                return AE_ERROR;
1700        else if (rc > 0)
1701                return AE_CTRL_SKIP;
1702
1703        return AE_OK;
1704}
1705
1706void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1707                               u32 pm1a_ctrl, u32 pm1b_ctrl))
1708{
1709        __acpi_os_prepare_sleep = func;
1710}
1711
1712acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1713                                  u32 val_b)
1714{
1715        int rc = 0;
1716        if (__acpi_os_prepare_extended_sleep)
1717                rc = __acpi_os_prepare_extended_sleep(sleep_state,
1718                                             val_a, val_b);
1719        if (rc < 0)
1720                return AE_ERROR;
1721        else if (rc > 0)
1722                return AE_CTRL_SKIP;
1723
1724        return AE_OK;
1725}
1726
1727void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1728                               u32 val_a, u32 val_b))
1729{
1730        __acpi_os_prepare_extended_sleep = func;
1731}
1732