linux/drivers/gpu/drm/i915/intel_breadcrumbs.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 */
  24
  25#include <linux/kthread.h>
  26
  27#include "i915_drv.h"
  28
  29static void intel_breadcrumbs_hangcheck(unsigned long data)
  30{
  31        struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
  32        struct intel_breadcrumbs *b = &engine->breadcrumbs;
  33
  34        if (!b->irq_enabled)
  35                return;
  36
  37        if (time_before(jiffies, b->timeout)) {
  38                mod_timer(&b->hangcheck, b->timeout);
  39                return;
  40        }
  41
  42        DRM_DEBUG("Hangcheck timer elapsed... %s idle\n", engine->name);
  43        set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
  44        mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
  45
  46        /* Ensure that even if the GPU hangs, we get woken up.
  47         *
  48         * However, note that if no one is waiting, we never notice
  49         * a gpu hang. Eventually, we will have to wait for a resource
  50         * held by the GPU and so trigger a hangcheck. In the most
  51         * pathological case, this will be upon memory starvation! To
  52         * prevent this, we also queue the hangcheck from the retire
  53         * worker.
  54         */
  55        i915_queue_hangcheck(engine->i915);
  56}
  57
  58static unsigned long wait_timeout(void)
  59{
  60        return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
  61}
  62
  63static void intel_breadcrumbs_fake_irq(unsigned long data)
  64{
  65        struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
  66
  67        /*
  68         * The timer persists in case we cannot enable interrupts,
  69         * or if we have previously seen seqno/interrupt incoherency
  70         * ("missed interrupt" syndrome). Here the worker will wake up
  71         * every jiffie in order to kick the oldest waiter to do the
  72         * coherent seqno check.
  73         */
  74        if (intel_engine_wakeup(engine))
  75                mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
  76}
  77
  78static void irq_enable(struct intel_engine_cs *engine)
  79{
  80        /* Enabling the IRQ may miss the generation of the interrupt, but
  81         * we still need to force the barrier before reading the seqno,
  82         * just in case.
  83         */
  84        engine->breadcrumbs.irq_posted = true;
  85
  86        spin_lock_irq(&engine->i915->irq_lock);
  87        engine->irq_enable(engine);
  88        spin_unlock_irq(&engine->i915->irq_lock);
  89}
  90
  91static void irq_disable(struct intel_engine_cs *engine)
  92{
  93        spin_lock_irq(&engine->i915->irq_lock);
  94        engine->irq_disable(engine);
  95        spin_unlock_irq(&engine->i915->irq_lock);
  96
  97        engine->breadcrumbs.irq_posted = false;
  98}
  99
 100static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
 101{
 102        struct intel_engine_cs *engine =
 103                container_of(b, struct intel_engine_cs, breadcrumbs);
 104        struct drm_i915_private *i915 = engine->i915;
 105
 106        assert_spin_locked(&b->lock);
 107        if (b->rpm_wakelock)
 108                return;
 109
 110        /* Since we are waiting on a request, the GPU should be busy
 111         * and should have its own rpm reference. For completeness,
 112         * record an rpm reference for ourselves to cover the
 113         * interrupt we unmask.
 114         */
 115        intel_runtime_pm_get_noresume(i915);
 116        b->rpm_wakelock = true;
 117
 118        /* No interrupts? Kick the waiter every jiffie! */
 119        if (intel_irqs_enabled(i915)) {
 120                if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
 121                        irq_enable(engine);
 122                b->irq_enabled = true;
 123        }
 124
 125        if (!b->irq_enabled ||
 126            test_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
 127                mod_timer(&b->fake_irq, jiffies + 1);
 128        } else {
 129                /* Ensure we never sleep indefinitely */
 130                GEM_BUG_ON(!time_after(b->timeout, jiffies));
 131                mod_timer(&b->hangcheck, b->timeout);
 132        }
 133}
 134
 135static void __intel_breadcrumbs_disable_irq(struct intel_breadcrumbs *b)
 136{
 137        struct intel_engine_cs *engine =
 138                container_of(b, struct intel_engine_cs, breadcrumbs);
 139
 140        assert_spin_locked(&b->lock);
 141        if (!b->rpm_wakelock)
 142                return;
 143
 144        if (b->irq_enabled) {
 145                irq_disable(engine);
 146                b->irq_enabled = false;
 147        }
 148
 149        intel_runtime_pm_put(engine->i915);
 150        b->rpm_wakelock = false;
 151}
 152
 153static inline struct intel_wait *to_wait(struct rb_node *node)
 154{
 155        return container_of(node, struct intel_wait, node);
 156}
 157
 158static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
 159                                              struct intel_wait *wait)
 160{
 161        assert_spin_locked(&b->lock);
 162
 163        /* This request is completed, so remove it from the tree, mark it as
 164         * complete, and *then* wake up the associated task.
 165         */
 166        rb_erase(&wait->node, &b->waiters);
 167        RB_CLEAR_NODE(&wait->node);
 168
 169        wake_up_process(wait->tsk); /* implicit smp_wmb() */
 170}
 171
 172static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
 173                                    struct intel_wait *wait)
 174{
 175        struct intel_breadcrumbs *b = &engine->breadcrumbs;
 176        struct rb_node **p, *parent, *completed;
 177        bool first;
 178        u32 seqno;
 179
 180        /* Insert the request into the retirement ordered list
 181         * of waiters by walking the rbtree. If we are the oldest
 182         * seqno in the tree (the first to be retired), then
 183         * set ourselves as the bottom-half.
 184         *
 185         * As we descend the tree, prune completed branches since we hold the
 186         * spinlock we know that the first_waiter must be delayed and can
 187         * reduce some of the sequential wake up latency if we take action
 188         * ourselves and wake up the completed tasks in parallel. Also, by
 189         * removing stale elements in the tree, we may be able to reduce the
 190         * ping-pong between the old bottom-half and ourselves as first-waiter.
 191         */
 192        first = true;
 193        parent = NULL;
 194        completed = NULL;
 195        seqno = intel_engine_get_seqno(engine);
 196
 197         /* If the request completed before we managed to grab the spinlock,
 198          * return now before adding ourselves to the rbtree. We let the
 199          * current bottom-half handle any pending wakeups and instead
 200          * try and get out of the way quickly.
 201          */
 202        if (i915_seqno_passed(seqno, wait->seqno)) {
 203                RB_CLEAR_NODE(&wait->node);
 204                return first;
 205        }
 206
 207        p = &b->waiters.rb_node;
 208        while (*p) {
 209                parent = *p;
 210                if (wait->seqno == to_wait(parent)->seqno) {
 211                        /* We have multiple waiters on the same seqno, select
 212                         * the highest priority task (that with the smallest
 213                         * task->prio) to serve as the bottom-half for this
 214                         * group.
 215                         */
 216                        if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
 217                                p = &parent->rb_right;
 218                                first = false;
 219                        } else {
 220                                p = &parent->rb_left;
 221                        }
 222                } else if (i915_seqno_passed(wait->seqno,
 223                                             to_wait(parent)->seqno)) {
 224                        p = &parent->rb_right;
 225                        if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
 226                                completed = parent;
 227                        else
 228                                first = false;
 229                } else {
 230                        p = &parent->rb_left;
 231                }
 232        }
 233        rb_link_node(&wait->node, parent, p);
 234        rb_insert_color(&wait->node, &b->waiters);
 235        GEM_BUG_ON(!first && !rcu_access_pointer(b->irq_seqno_bh));
 236
 237        if (completed) {
 238                struct rb_node *next = rb_next(completed);
 239
 240                GEM_BUG_ON(!next && !first);
 241                if (next && next != &wait->node) {
 242                        GEM_BUG_ON(first);
 243                        b->timeout = wait_timeout();
 244                        b->first_wait = to_wait(next);
 245                        rcu_assign_pointer(b->irq_seqno_bh, b->first_wait->tsk);
 246                        /* As there is a delay between reading the current
 247                         * seqno, processing the completed tasks and selecting
 248                         * the next waiter, we may have missed the interrupt
 249                         * and so need for the next bottom-half to wakeup.
 250                         *
 251                         * Also as we enable the IRQ, we may miss the
 252                         * interrupt for that seqno, so we have to wake up
 253                         * the next bottom-half in order to do a coherent check
 254                         * in case the seqno passed.
 255                         */
 256                        __intel_breadcrumbs_enable_irq(b);
 257                        if (READ_ONCE(b->irq_posted))
 258                                wake_up_process(to_wait(next)->tsk);
 259                }
 260
 261                do {
 262                        struct intel_wait *crumb = to_wait(completed);
 263                        completed = rb_prev(completed);
 264                        __intel_breadcrumbs_finish(b, crumb);
 265                } while (completed);
 266        }
 267
 268        if (first) {
 269                GEM_BUG_ON(rb_first(&b->waiters) != &wait->node);
 270                b->timeout = wait_timeout();
 271                b->first_wait = wait;
 272                rcu_assign_pointer(b->irq_seqno_bh, wait->tsk);
 273                /* After assigning ourselves as the new bottom-half, we must
 274                 * perform a cursory check to prevent a missed interrupt.
 275                 * Either we miss the interrupt whilst programming the hardware,
 276                 * or if there was a previous waiter (for a later seqno) they
 277                 * may be woken instead of us (due to the inherent race
 278                 * in the unlocked read of b->irq_seqno_bh in the irq handler)
 279                 * and so we miss the wake up.
 280                 */
 281                __intel_breadcrumbs_enable_irq(b);
 282        }
 283        GEM_BUG_ON(!rcu_access_pointer(b->irq_seqno_bh));
 284        GEM_BUG_ON(!b->first_wait);
 285        GEM_BUG_ON(rb_first(&b->waiters) != &b->first_wait->node);
 286
 287        return first;
 288}
 289
 290bool intel_engine_add_wait(struct intel_engine_cs *engine,
 291                           struct intel_wait *wait)
 292{
 293        struct intel_breadcrumbs *b = &engine->breadcrumbs;
 294        bool first;
 295
 296        spin_lock(&b->lock);
 297        first = __intel_engine_add_wait(engine, wait);
 298        spin_unlock(&b->lock);
 299
 300        return first;
 301}
 302
 303static inline bool chain_wakeup(struct rb_node *rb, int priority)
 304{
 305        return rb && to_wait(rb)->tsk->prio <= priority;
 306}
 307
 308static inline int wakeup_priority(struct intel_breadcrumbs *b,
 309                                  struct task_struct *tsk)
 310{
 311        if (tsk == b->signaler)
 312                return INT_MIN;
 313        else
 314                return tsk->prio;
 315}
 316
 317void intel_engine_remove_wait(struct intel_engine_cs *engine,
 318                              struct intel_wait *wait)
 319{
 320        struct intel_breadcrumbs *b = &engine->breadcrumbs;
 321
 322        /* Quick check to see if this waiter was already decoupled from
 323         * the tree by the bottom-half to avoid contention on the spinlock
 324         * by the herd.
 325         */
 326        if (RB_EMPTY_NODE(&wait->node))
 327                return;
 328
 329        spin_lock(&b->lock);
 330
 331        if (RB_EMPTY_NODE(&wait->node))
 332                goto out_unlock;
 333
 334        if (b->first_wait == wait) {
 335                const int priority = wakeup_priority(b, wait->tsk);
 336                struct rb_node *next;
 337
 338                GEM_BUG_ON(rcu_access_pointer(b->irq_seqno_bh) != wait->tsk);
 339
 340                /* We are the current bottom-half. Find the next candidate,
 341                 * the first waiter in the queue on the remaining oldest
 342                 * request. As multiple seqnos may complete in the time it
 343                 * takes us to wake up and find the next waiter, we have to
 344                 * wake up that waiter for it to perform its own coherent
 345                 * completion check.
 346                 */
 347                next = rb_next(&wait->node);
 348                if (chain_wakeup(next, priority)) {
 349                        /* If the next waiter is already complete,
 350                         * wake it up and continue onto the next waiter. So
 351                         * if have a small herd, they will wake up in parallel
 352                         * rather than sequentially, which should reduce
 353                         * the overall latency in waking all the completed
 354                         * clients.
 355                         *
 356                         * However, waking up a chain adds extra latency to
 357                         * the first_waiter. This is undesirable if that
 358                         * waiter is a high priority task.
 359                         */
 360                        u32 seqno = intel_engine_get_seqno(engine);
 361
 362                        while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
 363                                struct rb_node *n = rb_next(next);
 364
 365                                __intel_breadcrumbs_finish(b, to_wait(next));
 366                                next = n;
 367                                if (!chain_wakeup(next, priority))
 368                                        break;
 369                        }
 370                }
 371
 372                if (next) {
 373                        /* In our haste, we may have completed the first waiter
 374                         * before we enabled the interrupt. Do so now as we
 375                         * have a second waiter for a future seqno. Afterwards,
 376                         * we have to wake up that waiter in case we missed
 377                         * the interrupt, or if we have to handle an
 378                         * exception rather than a seqno completion.
 379                         */
 380                        b->timeout = wait_timeout();
 381                        b->first_wait = to_wait(next);
 382                        rcu_assign_pointer(b->irq_seqno_bh, b->first_wait->tsk);
 383                        if (b->first_wait->seqno != wait->seqno)
 384                                __intel_breadcrumbs_enable_irq(b);
 385                        wake_up_process(b->first_wait->tsk);
 386                } else {
 387                        b->first_wait = NULL;
 388                        rcu_assign_pointer(b->irq_seqno_bh, NULL);
 389                        __intel_breadcrumbs_disable_irq(b);
 390                }
 391        } else {
 392                GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
 393        }
 394
 395        GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
 396        rb_erase(&wait->node, &b->waiters);
 397
 398out_unlock:
 399        GEM_BUG_ON(b->first_wait == wait);
 400        GEM_BUG_ON(rb_first(&b->waiters) !=
 401                   (b->first_wait ? &b->first_wait->node : NULL));
 402        GEM_BUG_ON(!rcu_access_pointer(b->irq_seqno_bh) ^ RB_EMPTY_ROOT(&b->waiters));
 403        spin_unlock(&b->lock);
 404}
 405
 406static bool signal_complete(struct drm_i915_gem_request *request)
 407{
 408        if (!request)
 409                return false;
 410
 411        /* If another process served as the bottom-half it may have already
 412         * signalled that this wait is already completed.
 413         */
 414        if (intel_wait_complete(&request->signaling.wait))
 415                return true;
 416
 417        /* Carefully check if the request is complete, giving time for the
 418         * seqno to be visible or if the GPU hung.
 419         */
 420        if (__i915_request_irq_complete(request))
 421                return true;
 422
 423        return false;
 424}
 425
 426static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
 427{
 428        return container_of(rb, struct drm_i915_gem_request, signaling.node);
 429}
 430
 431static void signaler_set_rtpriority(void)
 432{
 433         struct sched_param param = { .sched_priority = 1 };
 434
 435         sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
 436}
 437
 438static int intel_breadcrumbs_signaler(void *arg)
 439{
 440        struct intel_engine_cs *engine = arg;
 441        struct intel_breadcrumbs *b = &engine->breadcrumbs;
 442        struct drm_i915_gem_request *request;
 443
 444        /* Install ourselves with high priority to reduce signalling latency */
 445        signaler_set_rtpriority();
 446
 447        do {
 448                set_current_state(TASK_INTERRUPTIBLE);
 449
 450                /* We are either woken up by the interrupt bottom-half,
 451                 * or by a client adding a new signaller. In both cases,
 452                 * the GPU seqno may have advanced beyond our oldest signal.
 453                 * If it has, propagate the signal, remove the waiter and
 454                 * check again with the next oldest signal. Otherwise we
 455                 * need to wait for a new interrupt from the GPU or for
 456                 * a new client.
 457                 */
 458                request = READ_ONCE(b->first_signal);
 459                if (signal_complete(request)) {
 460                        /* Wake up all other completed waiters and select the
 461                         * next bottom-half for the next user interrupt.
 462                         */
 463                        intel_engine_remove_wait(engine,
 464                                                 &request->signaling.wait);
 465
 466                        local_bh_disable();
 467                        fence_signal(&request->fence);
 468                        local_bh_enable(); /* kick start the tasklets */
 469
 470                        /* Find the next oldest signal. Note that as we have
 471                         * not been holding the lock, another client may
 472                         * have installed an even older signal than the one
 473                         * we just completed - so double check we are still
 474                         * the oldest before picking the next one.
 475                         */
 476                        spin_lock(&b->lock);
 477                        if (request == b->first_signal) {
 478                                struct rb_node *rb =
 479                                        rb_next(&request->signaling.node);
 480                                b->first_signal = rb ? to_signaler(rb) : NULL;
 481                        }
 482                        rb_erase(&request->signaling.node, &b->signals);
 483                        spin_unlock(&b->lock);
 484
 485                        i915_gem_request_put(request);
 486                } else {
 487                        if (kthread_should_stop())
 488                                break;
 489
 490                        schedule();
 491                }
 492        } while (1);
 493        __set_current_state(TASK_RUNNING);
 494
 495        return 0;
 496}
 497
 498void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
 499{
 500        struct intel_engine_cs *engine = request->engine;
 501        struct intel_breadcrumbs *b = &engine->breadcrumbs;
 502        struct rb_node *parent, **p;
 503        bool first, wakeup;
 504
 505        /* locked by fence_enable_sw_signaling() */
 506        assert_spin_locked(&request->lock);
 507
 508        request->signaling.wait.tsk = b->signaler;
 509        request->signaling.wait.seqno = request->fence.seqno;
 510        i915_gem_request_get(request);
 511
 512        spin_lock(&b->lock);
 513
 514        /* First add ourselves into the list of waiters, but register our
 515         * bottom-half as the signaller thread. As per usual, only the oldest
 516         * waiter (not just signaller) is tasked as the bottom-half waking
 517         * up all completed waiters after the user interrupt.
 518         *
 519         * If we are the oldest waiter, enable the irq (after which we
 520         * must double check that the seqno did not complete).
 521         */
 522        wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
 523
 524        /* Now insert ourselves into the retirement ordered list of signals
 525         * on this engine. We track the oldest seqno as that will be the
 526         * first signal to complete.
 527         */
 528        parent = NULL;
 529        first = true;
 530        p = &b->signals.rb_node;
 531        while (*p) {
 532                parent = *p;
 533                if (i915_seqno_passed(request->fence.seqno,
 534                                      to_signaler(parent)->fence.seqno)) {
 535                        p = &parent->rb_right;
 536                        first = false;
 537                } else {
 538                        p = &parent->rb_left;
 539                }
 540        }
 541        rb_link_node(&request->signaling.node, parent, p);
 542        rb_insert_color(&request->signaling.node, &b->signals);
 543        if (first)
 544                smp_store_mb(b->first_signal, request);
 545
 546        spin_unlock(&b->lock);
 547
 548        if (wakeup)
 549                wake_up_process(b->signaler);
 550}
 551
 552int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
 553{
 554        struct intel_breadcrumbs *b = &engine->breadcrumbs;
 555        struct task_struct *tsk;
 556
 557        spin_lock_init(&b->lock);
 558        setup_timer(&b->fake_irq,
 559                    intel_breadcrumbs_fake_irq,
 560                    (unsigned long)engine);
 561        setup_timer(&b->hangcheck,
 562                    intel_breadcrumbs_hangcheck,
 563                    (unsigned long)engine);
 564
 565        /* Spawn a thread to provide a common bottom-half for all signals.
 566         * As this is an asynchronous interface we cannot steal the current
 567         * task for handling the bottom-half to the user interrupt, therefore
 568         * we create a thread to do the coherent seqno dance after the
 569         * interrupt and then signal the waitqueue (via the dma-buf/fence).
 570         */
 571        tsk = kthread_run(intel_breadcrumbs_signaler, engine,
 572                          "i915/signal:%d", engine->id);
 573        if (IS_ERR(tsk))
 574                return PTR_ERR(tsk);
 575
 576        b->signaler = tsk;
 577
 578        return 0;
 579}
 580
 581static void cancel_fake_irq(struct intel_engine_cs *engine)
 582{
 583        struct intel_breadcrumbs *b = &engine->breadcrumbs;
 584
 585        del_timer_sync(&b->hangcheck);
 586        del_timer_sync(&b->fake_irq);
 587        clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
 588}
 589
 590void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
 591{
 592        struct intel_breadcrumbs *b = &engine->breadcrumbs;
 593
 594        cancel_fake_irq(engine);
 595        spin_lock(&b->lock);
 596
 597        __intel_breadcrumbs_disable_irq(b);
 598        if (intel_engine_has_waiter(engine)) {
 599                b->timeout = wait_timeout();
 600                __intel_breadcrumbs_enable_irq(b);
 601                if (READ_ONCE(b->irq_posted))
 602                        wake_up_process(b->first_wait->tsk);
 603        } else {
 604                /* sanitize the IMR and unmask any auxiliary interrupts */
 605                irq_disable(engine);
 606        }
 607
 608        spin_unlock(&b->lock);
 609}
 610
 611void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
 612{
 613        struct intel_breadcrumbs *b = &engine->breadcrumbs;
 614
 615        if (!IS_ERR_OR_NULL(b->signaler))
 616                kthread_stop(b->signaler);
 617
 618        cancel_fake_irq(engine);
 619}
 620
 621unsigned int intel_kick_waiters(struct drm_i915_private *i915)
 622{
 623        struct intel_engine_cs *engine;
 624        unsigned int mask = 0;
 625
 626        /* To avoid the task_struct disappearing beneath us as we wake up
 627         * the process, we must first inspect the task_struct->state under the
 628         * RCU lock, i.e. as we call wake_up_process() we must be holding the
 629         * rcu_read_lock().
 630         */
 631        for_each_engine(engine, i915)
 632                if (unlikely(intel_engine_wakeup(engine)))
 633                        mask |= intel_engine_flag(engine);
 634
 635        return mask;
 636}
 637
 638unsigned int intel_kick_signalers(struct drm_i915_private *i915)
 639{
 640        struct intel_engine_cs *engine;
 641        unsigned int mask = 0;
 642
 643        for_each_engine(engine, i915) {
 644                if (unlikely(READ_ONCE(engine->breadcrumbs.first_signal))) {
 645                        wake_up_process(engine->breadcrumbs.signaler);
 646                        mask |= intel_engine_flag(engine);
 647                }
 648        }
 649
 650        return mask;
 651}
 652