linux/drivers/iio/pressure/bmp280-core.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
   3 * Copyright (c) 2012 Bosch Sensortec GmbH
   4 * Copyright (c) 2012 Unixphere AB
   5 * Copyright (c) 2014 Intel Corporation
   6 * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
   7 *
   8 * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License version 2 as
  12 * published by the Free Software Foundation.
  13 *
  14 * Datasheet:
  15 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP180-DS000-121.pdf
  16 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
  17 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280_DS001-11.pdf
  18 */
  19
  20#define pr_fmt(fmt) "bmp280: " fmt
  21
  22#include <linux/device.h>
  23#include <linux/module.h>
  24#include <linux/regmap.h>
  25#include <linux/delay.h>
  26#include <linux/iio/iio.h>
  27#include <linux/iio/sysfs.h>
  28#include <linux/gpio/consumer.h>
  29#include <linux/regulator/consumer.h>
  30#include <linux/interrupt.h>
  31#include <linux/irq.h> /* For irq_get_irq_data() */
  32#include <linux/completion.h>
  33#include <linux/pm_runtime.h>
  34#include <linux/random.h>
  35
  36#include "bmp280.h"
  37
  38/*
  39 * These enums are used for indexing into the array of calibration
  40 * coefficients for BMP180.
  41 */
  42enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
  43
  44struct bmp180_calib {
  45        s16 AC1;
  46        s16 AC2;
  47        s16 AC3;
  48        u16 AC4;
  49        u16 AC5;
  50        u16 AC6;
  51        s16 B1;
  52        s16 B2;
  53        s16 MB;
  54        s16 MC;
  55        s16 MD;
  56};
  57
  58struct bmp280_data {
  59        struct device *dev;
  60        struct mutex lock;
  61        struct regmap *regmap;
  62        struct completion done;
  63        bool use_eoc;
  64        const struct bmp280_chip_info *chip_info;
  65        struct bmp180_calib calib;
  66        struct regulator *vddd;
  67        struct regulator *vdda;
  68        unsigned int start_up_time; /* in milliseconds */
  69
  70        /* log of base 2 of oversampling rate */
  71        u8 oversampling_press;
  72        u8 oversampling_temp;
  73        u8 oversampling_humid;
  74
  75        /*
  76         * Carryover value from temperature conversion, used in pressure
  77         * calculation.
  78         */
  79        s32 t_fine;
  80};
  81
  82struct bmp280_chip_info {
  83        const int *oversampling_temp_avail;
  84        int num_oversampling_temp_avail;
  85
  86        const int *oversampling_press_avail;
  87        int num_oversampling_press_avail;
  88
  89        const int *oversampling_humid_avail;
  90        int num_oversampling_humid_avail;
  91
  92        int (*chip_config)(struct bmp280_data *);
  93        int (*read_temp)(struct bmp280_data *, int *);
  94        int (*read_press)(struct bmp280_data *, int *, int *);
  95        int (*read_humid)(struct bmp280_data *, int *, int *);
  96};
  97
  98/*
  99 * These enums are used for indexing into the array of compensation
 100 * parameters for BMP280.
 101 */
 102enum { T1, T2, T3 };
 103enum { P1, P2, P3, P4, P5, P6, P7, P8, P9 };
 104
 105static const struct iio_chan_spec bmp280_channels[] = {
 106        {
 107                .type = IIO_PRESSURE,
 108                .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
 109                                      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
 110        },
 111        {
 112                .type = IIO_TEMP,
 113                .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
 114                                      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
 115        },
 116        {
 117                .type = IIO_HUMIDITYRELATIVE,
 118                .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
 119                                      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
 120        },
 121};
 122
 123/*
 124 * Returns humidity in percent, resolution is 0.01 percent. Output value of
 125 * "47445" represents 47445/1024 = 46.333 %RH.
 126 *
 127 * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
 128 */
 129
 130static u32 bmp280_compensate_humidity(struct bmp280_data *data,
 131                                      s32 adc_humidity)
 132{
 133        struct device *dev = data->dev;
 134        unsigned int H1, H3, tmp;
 135        int H2, H4, H5, H6, ret, var;
 136
 137        ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &H1);
 138        if (ret < 0) {
 139                dev_err(dev, "failed to read H1 comp value\n");
 140                return ret;
 141        }
 142
 143        ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2, &tmp, 2);
 144        if (ret < 0) {
 145                dev_err(dev, "failed to read H2 comp value\n");
 146                return ret;
 147        }
 148        H2 = sign_extend32(le16_to_cpu(tmp), 15);
 149
 150        ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &H3);
 151        if (ret < 0) {
 152                dev_err(dev, "failed to read H3 comp value\n");
 153                return ret;
 154        }
 155
 156        ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4, &tmp, 2);
 157        if (ret < 0) {
 158                dev_err(dev, "failed to read H4 comp value\n");
 159                return ret;
 160        }
 161        H4 = sign_extend32(((be16_to_cpu(tmp) >> 4) & 0xff0) |
 162                          (be16_to_cpu(tmp) & 0xf), 11);
 163
 164        ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5, &tmp, 2);
 165        if (ret < 0) {
 166                dev_err(dev, "failed to read H5 comp value\n");
 167                return ret;
 168        }
 169        H5 = sign_extend32(((le16_to_cpu(tmp) >> 4) & 0xfff), 11);
 170
 171        ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp);
 172        if (ret < 0) {
 173                dev_err(dev, "failed to read H6 comp value\n");
 174                return ret;
 175        }
 176        H6 = sign_extend32(tmp, 7);
 177
 178        var = ((s32)data->t_fine) - 76800;
 179        var = ((((adc_humidity << 14) - (H4 << 20) - (H5 * var)) + 16384) >> 15)
 180                * (((((((var * H6) >> 10) * (((var * H3) >> 11) + 32768)) >> 10)
 181                + 2097152) * H2 + 8192) >> 14);
 182        var -= ((((var >> 15) * (var >> 15)) >> 7) * H1) >> 4;
 183
 184        return var >> 12;
 185};
 186
 187/*
 188 * Returns temperature in DegC, resolution is 0.01 DegC.  Output value of
 189 * "5123" equals 51.23 DegC.  t_fine carries fine temperature as global
 190 * value.
 191 *
 192 * Taken from datasheet, Section 3.11.3, "Compensation formula".
 193 */
 194static s32 bmp280_compensate_temp(struct bmp280_data *data,
 195                                  s32 adc_temp)
 196{
 197        int ret;
 198        s32 var1, var2;
 199        __le16 buf[BMP280_COMP_TEMP_REG_COUNT / 2];
 200
 201        ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
 202                               buf, BMP280_COMP_TEMP_REG_COUNT);
 203        if (ret < 0) {
 204                dev_err(data->dev,
 205                        "failed to read temperature calibration parameters\n");
 206                return ret;
 207        }
 208
 209        /*
 210         * The double casts are necessary because le16_to_cpu returns an
 211         * unsigned 16-bit value.  Casting that value directly to a
 212         * signed 32-bit will not do proper sign extension.
 213         *
 214         * Conversely, T1 and P1 are unsigned values, so they can be
 215         * cast straight to the larger type.
 216         */
 217        var1 = (((adc_temp >> 3) - ((s32)le16_to_cpu(buf[T1]) << 1)) *
 218                ((s32)(s16)le16_to_cpu(buf[T2]))) >> 11;
 219        var2 = (((((adc_temp >> 4) - ((s32)le16_to_cpu(buf[T1]))) *
 220                  ((adc_temp >> 4) - ((s32)le16_to_cpu(buf[T1])))) >> 12) *
 221                ((s32)(s16)le16_to_cpu(buf[T3]))) >> 14;
 222        data->t_fine = var1 + var2;
 223
 224        return (data->t_fine * 5 + 128) >> 8;
 225}
 226
 227/*
 228 * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
 229 * integer bits and 8 fractional bits).  Output value of "24674867"
 230 * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
 231 *
 232 * Taken from datasheet, Section 3.11.3, "Compensation formula".
 233 */
 234static u32 bmp280_compensate_press(struct bmp280_data *data,
 235                                   s32 adc_press)
 236{
 237        int ret;
 238        s64 var1, var2, p;
 239        __le16 buf[BMP280_COMP_PRESS_REG_COUNT / 2];
 240
 241        ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_PRESS_START,
 242                               buf, BMP280_COMP_PRESS_REG_COUNT);
 243        if (ret < 0) {
 244                dev_err(data->dev,
 245                        "failed to read pressure calibration parameters\n");
 246                return ret;
 247        }
 248
 249        var1 = ((s64)data->t_fine) - 128000;
 250        var2 = var1 * var1 * (s64)(s16)le16_to_cpu(buf[P6]);
 251        var2 += (var1 * (s64)(s16)le16_to_cpu(buf[P5])) << 17;
 252        var2 += ((s64)(s16)le16_to_cpu(buf[P4])) << 35;
 253        var1 = ((var1 * var1 * (s64)(s16)le16_to_cpu(buf[P3])) >> 8) +
 254                ((var1 * (s64)(s16)le16_to_cpu(buf[P2])) << 12);
 255        var1 = ((((s64)1) << 47) + var1) * ((s64)le16_to_cpu(buf[P1])) >> 33;
 256
 257        if (var1 == 0)
 258                return 0;
 259
 260        p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
 261        p = div64_s64(p, var1);
 262        var1 = (((s64)(s16)le16_to_cpu(buf[P9])) * (p >> 13) * (p >> 13)) >> 25;
 263        var2 = (((s64)(s16)le16_to_cpu(buf[P8])) * p) >> 19;
 264        p = ((p + var1 + var2) >> 8) + (((s64)(s16)le16_to_cpu(buf[P7])) << 4);
 265
 266        return (u32)p;
 267}
 268
 269static int bmp280_read_temp(struct bmp280_data *data,
 270                            int *val)
 271{
 272        int ret;
 273        __be32 tmp = 0;
 274        s32 adc_temp, comp_temp;
 275
 276        ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB,
 277                               (u8 *) &tmp, 3);
 278        if (ret < 0) {
 279                dev_err(data->dev, "failed to read temperature\n");
 280                return ret;
 281        }
 282
 283        adc_temp = be32_to_cpu(tmp) >> 12;
 284        comp_temp = bmp280_compensate_temp(data, adc_temp);
 285
 286        /*
 287         * val might be NULL if we're called by the read_press routine,
 288         * who only cares about the carry over t_fine value.
 289         */
 290        if (val) {
 291                *val = comp_temp * 10;
 292                return IIO_VAL_INT;
 293        }
 294
 295        return 0;
 296}
 297
 298static int bmp280_read_press(struct bmp280_data *data,
 299                             int *val, int *val2)
 300{
 301        int ret;
 302        __be32 tmp = 0;
 303        s32 adc_press;
 304        u32 comp_press;
 305
 306        /* Read and compensate temperature so we get a reading of t_fine. */
 307        ret = bmp280_read_temp(data, NULL);
 308        if (ret < 0)
 309                return ret;
 310
 311        ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
 312                               (u8 *) &tmp, 3);
 313        if (ret < 0) {
 314                dev_err(data->dev, "failed to read pressure\n");
 315                return ret;
 316        }
 317
 318        adc_press = be32_to_cpu(tmp) >> 12;
 319        comp_press = bmp280_compensate_press(data, adc_press);
 320
 321        *val = comp_press;
 322        *val2 = 256000;
 323
 324        return IIO_VAL_FRACTIONAL;
 325}
 326
 327static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
 328{
 329        int ret;
 330        __be16 tmp = 0;
 331        s32 adc_humidity;
 332        u32 comp_humidity;
 333
 334        /* Read and compensate temperature so we get a reading of t_fine. */
 335        ret = bmp280_read_temp(data, NULL);
 336        if (ret < 0)
 337                return ret;
 338
 339        ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB,
 340                               (u8 *) &tmp, 2);
 341        if (ret < 0) {
 342                dev_err(data->dev, "failed to read humidity\n");
 343                return ret;
 344        }
 345
 346        adc_humidity = be16_to_cpu(tmp);
 347        comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
 348
 349        *val = comp_humidity;
 350        *val2 = 1024;
 351
 352        return IIO_VAL_FRACTIONAL;
 353}
 354
 355static int bmp280_read_raw(struct iio_dev *indio_dev,
 356                           struct iio_chan_spec const *chan,
 357                           int *val, int *val2, long mask)
 358{
 359        int ret;
 360        struct bmp280_data *data = iio_priv(indio_dev);
 361
 362        pm_runtime_get_sync(data->dev);
 363        mutex_lock(&data->lock);
 364
 365        switch (mask) {
 366        case IIO_CHAN_INFO_PROCESSED:
 367                switch (chan->type) {
 368                case IIO_HUMIDITYRELATIVE:
 369                        ret = data->chip_info->read_humid(data, val, val2);
 370                        break;
 371                case IIO_PRESSURE:
 372                        ret = data->chip_info->read_press(data, val, val2);
 373                        break;
 374                case IIO_TEMP:
 375                        ret = data->chip_info->read_temp(data, val);
 376                        break;
 377                default:
 378                        ret = -EINVAL;
 379                        break;
 380                }
 381                break;
 382        case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
 383                switch (chan->type) {
 384                case IIO_HUMIDITYRELATIVE:
 385                        *val = 1 << data->oversampling_humid;
 386                        ret = IIO_VAL_INT;
 387                        break;
 388                case IIO_PRESSURE:
 389                        *val = 1 << data->oversampling_press;
 390                        ret = IIO_VAL_INT;
 391                        break;
 392                case IIO_TEMP:
 393                        *val = 1 << data->oversampling_temp;
 394                        ret = IIO_VAL_INT;
 395                        break;
 396                default:
 397                        ret = -EINVAL;
 398                        break;
 399                }
 400                break;
 401        default:
 402                ret = -EINVAL;
 403                break;
 404        }
 405
 406        mutex_unlock(&data->lock);
 407        pm_runtime_mark_last_busy(data->dev);
 408        pm_runtime_put_autosuspend(data->dev);
 409
 410        return ret;
 411}
 412
 413static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
 414                                               int val)
 415{
 416        int i;
 417        const int *avail = data->chip_info->oversampling_humid_avail;
 418        const int n = data->chip_info->num_oversampling_humid_avail;
 419
 420        for (i = 0; i < n; i++) {
 421                if (avail[i] == val) {
 422                        data->oversampling_humid = ilog2(val);
 423
 424                        return data->chip_info->chip_config(data);
 425                }
 426        }
 427        return -EINVAL;
 428}
 429
 430static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
 431                                               int val)
 432{
 433        int i;
 434        const int *avail = data->chip_info->oversampling_temp_avail;
 435        const int n = data->chip_info->num_oversampling_temp_avail;
 436
 437        for (i = 0; i < n; i++) {
 438                if (avail[i] == val) {
 439                        data->oversampling_temp = ilog2(val);
 440
 441                        return data->chip_info->chip_config(data);
 442                }
 443        }
 444        return -EINVAL;
 445}
 446
 447static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
 448                                               int val)
 449{
 450        int i;
 451        const int *avail = data->chip_info->oversampling_press_avail;
 452        const int n = data->chip_info->num_oversampling_press_avail;
 453
 454        for (i = 0; i < n; i++) {
 455                if (avail[i] == val) {
 456                        data->oversampling_press = ilog2(val);
 457
 458                        return data->chip_info->chip_config(data);
 459                }
 460        }
 461        return -EINVAL;
 462}
 463
 464static int bmp280_write_raw(struct iio_dev *indio_dev,
 465                            struct iio_chan_spec const *chan,
 466                            int val, int val2, long mask)
 467{
 468        int ret = 0;
 469        struct bmp280_data *data = iio_priv(indio_dev);
 470
 471        switch (mask) {
 472        case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
 473                pm_runtime_get_sync(data->dev);
 474                mutex_lock(&data->lock);
 475                switch (chan->type) {
 476                case IIO_HUMIDITYRELATIVE:
 477                        ret = bmp280_write_oversampling_ratio_humid(data, val);
 478                        break;
 479                case IIO_PRESSURE:
 480                        ret = bmp280_write_oversampling_ratio_press(data, val);
 481                        break;
 482                case IIO_TEMP:
 483                        ret = bmp280_write_oversampling_ratio_temp(data, val);
 484                        break;
 485                default:
 486                        ret = -EINVAL;
 487                        break;
 488                }
 489                mutex_unlock(&data->lock);
 490                pm_runtime_mark_last_busy(data->dev);
 491                pm_runtime_put_autosuspend(data->dev);
 492                break;
 493        default:
 494                return -EINVAL;
 495        }
 496
 497        return ret;
 498}
 499
 500static ssize_t bmp280_show_avail(char *buf, const int *vals, const int n)
 501{
 502        size_t len = 0;
 503        int i;
 504
 505        for (i = 0; i < n; i++)
 506                len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", vals[i]);
 507
 508        buf[len - 1] = '\n';
 509
 510        return len;
 511}
 512
 513static ssize_t bmp280_show_temp_oversampling_avail(struct device *dev,
 514                                struct device_attribute *attr, char *buf)
 515{
 516        struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
 517
 518        return bmp280_show_avail(buf, data->chip_info->oversampling_temp_avail,
 519                                 data->chip_info->num_oversampling_temp_avail);
 520}
 521
 522static ssize_t bmp280_show_press_oversampling_avail(struct device *dev,
 523                                struct device_attribute *attr, char *buf)
 524{
 525        struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
 526
 527        return bmp280_show_avail(buf, data->chip_info->oversampling_press_avail,
 528                                 data->chip_info->num_oversampling_press_avail);
 529}
 530
 531static IIO_DEVICE_ATTR(in_temp_oversampling_ratio_available,
 532        S_IRUGO, bmp280_show_temp_oversampling_avail, NULL, 0);
 533
 534static IIO_DEVICE_ATTR(in_pressure_oversampling_ratio_available,
 535        S_IRUGO, bmp280_show_press_oversampling_avail, NULL, 0);
 536
 537static struct attribute *bmp280_attributes[] = {
 538        &iio_dev_attr_in_temp_oversampling_ratio_available.dev_attr.attr,
 539        &iio_dev_attr_in_pressure_oversampling_ratio_available.dev_attr.attr,
 540        NULL,
 541};
 542
 543static const struct attribute_group bmp280_attrs_group = {
 544        .attrs = bmp280_attributes,
 545};
 546
 547static const struct iio_info bmp280_info = {
 548        .driver_module = THIS_MODULE,
 549        .read_raw = &bmp280_read_raw,
 550        .write_raw = &bmp280_write_raw,
 551        .attrs = &bmp280_attrs_group,
 552};
 553
 554static int bmp280_chip_config(struct bmp280_data *data)
 555{
 556        int ret;
 557        u8 osrs = BMP280_OSRS_TEMP_X(data->oversampling_temp + 1) |
 558                  BMP280_OSRS_PRESS_X(data->oversampling_press + 1);
 559
 560        ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_MEAS,
 561                                 BMP280_OSRS_TEMP_MASK |
 562                                 BMP280_OSRS_PRESS_MASK |
 563                                 BMP280_MODE_MASK,
 564                                 osrs | BMP280_MODE_NORMAL);
 565        if (ret < 0) {
 566                dev_err(data->dev,
 567                        "failed to write ctrl_meas register\n");
 568                return ret;
 569        }
 570
 571        ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
 572                                 BMP280_FILTER_MASK,
 573                                 BMP280_FILTER_4X);
 574        if (ret < 0) {
 575                dev_err(data->dev,
 576                        "failed to write config register\n");
 577                return ret;
 578        }
 579
 580        return ret;
 581}
 582
 583static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
 584
 585static const struct bmp280_chip_info bmp280_chip_info = {
 586        .oversampling_temp_avail = bmp280_oversampling_avail,
 587        .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
 588
 589        .oversampling_press_avail = bmp280_oversampling_avail,
 590        .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
 591
 592        .chip_config = bmp280_chip_config,
 593        .read_temp = bmp280_read_temp,
 594        .read_press = bmp280_read_press,
 595};
 596
 597static int bme280_chip_config(struct bmp280_data *data)
 598{
 599        int ret = bmp280_chip_config(data);
 600        u8 osrs = BMP280_OSRS_HUMIDITIY_X(data->oversampling_humid + 1);
 601
 602        if (ret < 0)
 603                return ret;
 604
 605        return regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY,
 606                                  BMP280_OSRS_HUMIDITY_MASK, osrs);
 607}
 608
 609static const struct bmp280_chip_info bme280_chip_info = {
 610        .oversampling_temp_avail = bmp280_oversampling_avail,
 611        .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
 612
 613        .oversampling_press_avail = bmp280_oversampling_avail,
 614        .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
 615
 616        .oversampling_humid_avail = bmp280_oversampling_avail,
 617        .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
 618
 619        .chip_config = bme280_chip_config,
 620        .read_temp = bmp280_read_temp,
 621        .read_press = bmp280_read_press,
 622        .read_humid = bmp280_read_humid,
 623};
 624
 625static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
 626{
 627        int ret;
 628        const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
 629        unsigned int delay_us;
 630        unsigned int ctrl;
 631
 632        if (data->use_eoc)
 633                init_completion(&data->done);
 634
 635        ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
 636        if (ret)
 637                return ret;
 638
 639        if (data->use_eoc) {
 640                /*
 641                 * If we have a completion interrupt, use it, wait up to
 642                 * 100ms. The longest conversion time listed is 76.5 ms for
 643                 * advanced resolution mode.
 644                 */
 645                ret = wait_for_completion_timeout(&data->done,
 646                                                  1 + msecs_to_jiffies(100));
 647                if (!ret)
 648                        dev_err(data->dev, "timeout waiting for completion\n");
 649        } else {
 650                if (ctrl_meas == BMP180_MEAS_TEMP)
 651                        delay_us = 4500;
 652                else
 653                        delay_us =
 654                                conversion_time_max[data->oversampling_press];
 655
 656                usleep_range(delay_us, delay_us + 1000);
 657        }
 658
 659        ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
 660        if (ret)
 661                return ret;
 662
 663        /* The value of this bit reset to "0" after conversion is complete */
 664        if (ctrl & BMP180_MEAS_SCO)
 665                return -EIO;
 666
 667        return 0;
 668}
 669
 670static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
 671{
 672        int ret;
 673        __be16 tmp = 0;
 674
 675        ret = bmp180_measure(data, BMP180_MEAS_TEMP);
 676        if (ret)
 677                return ret;
 678
 679        ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 2);
 680        if (ret)
 681                return ret;
 682
 683        *val = be16_to_cpu(tmp);
 684
 685        return 0;
 686}
 687
 688static int bmp180_read_calib(struct bmp280_data *data,
 689                             struct bmp180_calib *calib)
 690{
 691        int ret;
 692        int i;
 693        __be16 buf[BMP180_REG_CALIB_COUNT / 2];
 694
 695        ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, buf,
 696                               sizeof(buf));
 697
 698        if (ret < 0)
 699                return ret;
 700
 701        /* None of the words has the value 0 or 0xFFFF */
 702        for (i = 0; i < ARRAY_SIZE(buf); i++) {
 703                if (buf[i] == cpu_to_be16(0) || buf[i] == cpu_to_be16(0xffff))
 704                        return -EIO;
 705        }
 706
 707        /* Toss the calibration data into the entropy pool */
 708        add_device_randomness(buf, sizeof(buf));
 709
 710        calib->AC1 = be16_to_cpu(buf[AC1]);
 711        calib->AC2 = be16_to_cpu(buf[AC2]);
 712        calib->AC3 = be16_to_cpu(buf[AC3]);
 713        calib->AC4 = be16_to_cpu(buf[AC4]);
 714        calib->AC5 = be16_to_cpu(buf[AC5]);
 715        calib->AC6 = be16_to_cpu(buf[AC6]);
 716        calib->B1 = be16_to_cpu(buf[B1]);
 717        calib->B2 = be16_to_cpu(buf[B2]);
 718        calib->MB = be16_to_cpu(buf[MB]);
 719        calib->MC = be16_to_cpu(buf[MC]);
 720        calib->MD = be16_to_cpu(buf[MD]);
 721
 722        return 0;
 723}
 724
 725/*
 726 * Returns temperature in DegC, resolution is 0.1 DegC.
 727 * t_fine carries fine temperature as global value.
 728 *
 729 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
 730 */
 731static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
 732{
 733        s32 x1, x2;
 734        struct bmp180_calib *calib = &data->calib;
 735
 736        x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
 737        x2 = (calib->MC << 11) / (x1 + calib->MD);
 738        data->t_fine = x1 + x2;
 739
 740        return (data->t_fine + 8) >> 4;
 741}
 742
 743static int bmp180_read_temp(struct bmp280_data *data, int *val)
 744{
 745        int ret;
 746        s32 adc_temp, comp_temp;
 747
 748        ret = bmp180_read_adc_temp(data, &adc_temp);
 749        if (ret)
 750                return ret;
 751
 752        comp_temp = bmp180_compensate_temp(data, adc_temp);
 753
 754        /*
 755         * val might be NULL if we're called by the read_press routine,
 756         * who only cares about the carry over t_fine value.
 757         */
 758        if (val) {
 759                *val = comp_temp * 100;
 760                return IIO_VAL_INT;
 761        }
 762
 763        return 0;
 764}
 765
 766static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
 767{
 768        int ret;
 769        __be32 tmp = 0;
 770        u8 oss = data->oversampling_press;
 771
 772        ret = bmp180_measure(data, BMP180_MEAS_PRESS_X(oss));
 773        if (ret)
 774                return ret;
 775
 776        ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 3);
 777        if (ret)
 778                return ret;
 779
 780        *val = (be32_to_cpu(tmp) >> 8) >> (8 - oss);
 781
 782        return 0;
 783}
 784
 785/*
 786 * Returns pressure in Pa, resolution is 1 Pa.
 787 *
 788 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
 789 */
 790static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
 791{
 792        s32 x1, x2, x3, p;
 793        s32 b3, b6;
 794        u32 b4, b7;
 795        s32 oss = data->oversampling_press;
 796        struct bmp180_calib *calib = &data->calib;
 797
 798        b6 = data->t_fine - 4000;
 799        x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
 800        x2 = calib->AC2 * b6 >> 11;
 801        x3 = x1 + x2;
 802        b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
 803        x1 = calib->AC3 * b6 >> 13;
 804        x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
 805        x3 = (x1 + x2 + 2) >> 2;
 806        b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
 807        b7 = ((u32)adc_press - b3) * (50000 >> oss);
 808        if (b7 < 0x80000000)
 809                p = (b7 * 2) / b4;
 810        else
 811                p = (b7 / b4) * 2;
 812
 813        x1 = (p >> 8) * (p >> 8);
 814        x1 = (x1 * 3038) >> 16;
 815        x2 = (-7357 * p) >> 16;
 816
 817        return p + ((x1 + x2 + 3791) >> 4);
 818}
 819
 820static int bmp180_read_press(struct bmp280_data *data,
 821                             int *val, int *val2)
 822{
 823        int ret;
 824        s32 adc_press;
 825        u32 comp_press;
 826
 827        /* Read and compensate temperature so we get a reading of t_fine. */
 828        ret = bmp180_read_temp(data, NULL);
 829        if (ret)
 830                return ret;
 831
 832        ret = bmp180_read_adc_press(data, &adc_press);
 833        if (ret)
 834                return ret;
 835
 836        comp_press = bmp180_compensate_press(data, adc_press);
 837
 838        *val = comp_press;
 839        *val2 = 1000;
 840
 841        return IIO_VAL_FRACTIONAL;
 842}
 843
 844static int bmp180_chip_config(struct bmp280_data *data)
 845{
 846        return 0;
 847}
 848
 849static const int bmp180_oversampling_temp_avail[] = { 1 };
 850static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
 851
 852static const struct bmp280_chip_info bmp180_chip_info = {
 853        .oversampling_temp_avail = bmp180_oversampling_temp_avail,
 854        .num_oversampling_temp_avail =
 855                ARRAY_SIZE(bmp180_oversampling_temp_avail),
 856
 857        .oversampling_press_avail = bmp180_oversampling_press_avail,
 858        .num_oversampling_press_avail =
 859                ARRAY_SIZE(bmp180_oversampling_press_avail),
 860
 861        .chip_config = bmp180_chip_config,
 862        .read_temp = bmp180_read_temp,
 863        .read_press = bmp180_read_press,
 864};
 865
 866static irqreturn_t bmp085_eoc_irq(int irq, void *d)
 867{
 868        struct bmp280_data *data = d;
 869
 870        complete(&data->done);
 871
 872        return IRQ_HANDLED;
 873}
 874
 875static int bmp085_fetch_eoc_irq(struct device *dev,
 876                                const char *name,
 877                                int irq,
 878                                struct bmp280_data *data)
 879{
 880        unsigned long irq_trig;
 881        int ret;
 882
 883        irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
 884        if (irq_trig != IRQF_TRIGGER_RISING) {
 885                dev_err(dev, "non-rising trigger given for EOC interrupt, "
 886                        "trying to enforce it\n");
 887                irq_trig = IRQF_TRIGGER_RISING;
 888        }
 889        ret = devm_request_threaded_irq(dev,
 890                        irq,
 891                        bmp085_eoc_irq,
 892                        NULL,
 893                        irq_trig,
 894                        name,
 895                        data);
 896        if (ret) {
 897                /* Bail out without IRQ but keep the driver in place */
 898                dev_err(dev, "unable to request DRDY IRQ\n");
 899                return 0;
 900        }
 901
 902        data->use_eoc = true;
 903        return 0;
 904}
 905
 906int bmp280_common_probe(struct device *dev,
 907                        struct regmap *regmap,
 908                        unsigned int chip,
 909                        const char *name,
 910                        int irq)
 911{
 912        int ret;
 913        struct iio_dev *indio_dev;
 914        struct bmp280_data *data;
 915        unsigned int chip_id;
 916        struct gpio_desc *gpiod;
 917
 918        indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
 919        if (!indio_dev)
 920                return -ENOMEM;
 921
 922        data = iio_priv(indio_dev);
 923        mutex_init(&data->lock);
 924        data->dev = dev;
 925
 926        indio_dev->dev.parent = dev;
 927        indio_dev->name = name;
 928        indio_dev->channels = bmp280_channels;
 929        indio_dev->info = &bmp280_info;
 930        indio_dev->modes = INDIO_DIRECT_MODE;
 931
 932        switch (chip) {
 933        case BMP180_CHIP_ID:
 934                indio_dev->num_channels = 2;
 935                data->chip_info = &bmp180_chip_info;
 936                data->oversampling_press = ilog2(8);
 937                data->oversampling_temp = ilog2(1);
 938                data->start_up_time = 10;
 939                break;
 940        case BMP280_CHIP_ID:
 941                indio_dev->num_channels = 2;
 942                data->chip_info = &bmp280_chip_info;
 943                data->oversampling_press = ilog2(16);
 944                data->oversampling_temp = ilog2(2);
 945                data->start_up_time = 2;
 946                break;
 947        case BME280_CHIP_ID:
 948                indio_dev->num_channels = 3;
 949                data->chip_info = &bme280_chip_info;
 950                data->oversampling_press = ilog2(16);
 951                data->oversampling_humid = ilog2(16);
 952                data->oversampling_temp = ilog2(2);
 953                data->start_up_time = 2;
 954                break;
 955        default:
 956                return -EINVAL;
 957        }
 958
 959        /* Bring up regulators */
 960        data->vddd = devm_regulator_get(dev, "vddd");
 961        if (IS_ERR(data->vddd)) {
 962                dev_err(dev, "failed to get VDDD regulator\n");
 963                return PTR_ERR(data->vddd);
 964        }
 965        ret = regulator_enable(data->vddd);
 966        if (ret) {
 967                dev_err(dev, "failed to enable VDDD regulator\n");
 968                return ret;
 969        }
 970        data->vdda = devm_regulator_get(dev, "vdda");
 971        if (IS_ERR(data->vdda)) {
 972                dev_err(dev, "failed to get VDDA regulator\n");
 973                ret = PTR_ERR(data->vdda);
 974                goto out_disable_vddd;
 975        }
 976        ret = regulator_enable(data->vdda);
 977        if (ret) {
 978                dev_err(dev, "failed to enable VDDA regulator\n");
 979                goto out_disable_vddd;
 980        }
 981        /* Wait to make sure we started up properly */
 982        mdelay(data->start_up_time);
 983
 984        /* Bring chip out of reset if there is an assigned GPIO line */
 985        gpiod = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
 986        /* Deassert the signal */
 987        if (!IS_ERR(gpiod)) {
 988                dev_info(dev, "release reset\n");
 989                gpiod_set_value(gpiod, 0);
 990        }
 991
 992        data->regmap = regmap;
 993        ret = regmap_read(regmap, BMP280_REG_ID, &chip_id);
 994        if (ret < 0)
 995                goto out_disable_vdda;
 996        if (chip_id != chip) {
 997                dev_err(dev, "bad chip id: expected %x got %x\n",
 998                        chip, chip_id);
 999                ret = -EINVAL;
1000                goto out_disable_vdda;
1001        }
1002
1003        ret = data->chip_info->chip_config(data);
1004        if (ret < 0)
1005                goto out_disable_vdda;
1006
1007        dev_set_drvdata(dev, indio_dev);
1008
1009        /*
1010         * The BMP085 and BMP180 has calibration in an E2PROM, read it out
1011         * at probe time. It will not change.
1012         */
1013        if (chip_id  == BMP180_CHIP_ID) {
1014                ret = bmp180_read_calib(data, &data->calib);
1015                if (ret < 0) {
1016                        dev_err(data->dev,
1017                                "failed to read calibration coefficients\n");
1018                        goto out_disable_vdda;
1019                }
1020        }
1021
1022        /*
1023         * Attempt to grab an optional EOC IRQ - only the BMP085 has this
1024         * however as it happens, the BMP085 shares the chip ID of BMP180
1025         * so we look for an IRQ if we have that.
1026         */
1027        if (irq > 0 || (chip_id  == BMP180_CHIP_ID)) {
1028                ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
1029                if (ret)
1030                        goto out_disable_vdda;
1031        }
1032
1033        /* Enable runtime PM */
1034        pm_runtime_get_noresume(dev);
1035        pm_runtime_set_active(dev);
1036        pm_runtime_enable(dev);
1037        /*
1038         * Set autosuspend to two orders of magnitude larger than the
1039         * start-up time.
1040         */
1041        pm_runtime_set_autosuspend_delay(dev, data->start_up_time *100);
1042        pm_runtime_use_autosuspend(dev);
1043        pm_runtime_put(dev);
1044
1045        ret = iio_device_register(indio_dev);
1046        if (ret)
1047                goto out_runtime_pm_disable;
1048
1049
1050        return 0;
1051
1052out_runtime_pm_disable:
1053        pm_runtime_get_sync(data->dev);
1054        pm_runtime_put_noidle(data->dev);
1055        pm_runtime_disable(data->dev);
1056out_disable_vdda:
1057        regulator_disable(data->vdda);
1058out_disable_vddd:
1059        regulator_disable(data->vddd);
1060        return ret;
1061}
1062EXPORT_SYMBOL(bmp280_common_probe);
1063
1064int bmp280_common_remove(struct device *dev)
1065{
1066        struct iio_dev *indio_dev = dev_get_drvdata(dev);
1067        struct bmp280_data *data = iio_priv(indio_dev);
1068
1069        iio_device_unregister(indio_dev);
1070        pm_runtime_get_sync(data->dev);
1071        pm_runtime_put_noidle(data->dev);
1072        pm_runtime_disable(data->dev);
1073        regulator_disable(data->vdda);
1074        regulator_disable(data->vddd);
1075        return 0;
1076}
1077EXPORT_SYMBOL(bmp280_common_remove);
1078
1079#ifdef CONFIG_PM
1080static int bmp280_runtime_suspend(struct device *dev)
1081{
1082        struct iio_dev *indio_dev = dev_get_drvdata(dev);
1083        struct bmp280_data *data = iio_priv(indio_dev);
1084        int ret;
1085
1086        ret = regulator_disable(data->vdda);
1087        if (ret)
1088                return ret;
1089        return regulator_disable(data->vddd);
1090}
1091
1092static int bmp280_runtime_resume(struct device *dev)
1093{
1094        struct iio_dev *indio_dev = dev_get_drvdata(dev);
1095        struct bmp280_data *data = iio_priv(indio_dev);
1096        int ret;
1097
1098        ret = regulator_enable(data->vddd);
1099        if (ret)
1100                return ret;
1101        ret = regulator_enable(data->vdda);
1102        if (ret)
1103                return ret;
1104        msleep(data->start_up_time);
1105        return data->chip_info->chip_config(data);
1106}
1107#endif /* CONFIG_PM */
1108
1109const struct dev_pm_ops bmp280_dev_pm_ops = {
1110        SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1111                                pm_runtime_force_resume)
1112        SET_RUNTIME_PM_OPS(bmp280_runtime_suspend,
1113                           bmp280_runtime_resume, NULL)
1114};
1115EXPORT_SYMBOL(bmp280_dev_pm_ops);
1116
1117MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
1118MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
1119MODULE_LICENSE("GPL v2");
1120