linux/drivers/infiniband/hw/cxgb4/t4.h
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *      - Redistributions in binary form must reproduce the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer in the documentation and/or other materials
  20 *        provided with the distribution.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  29 * SOFTWARE.
  30 */
  31#ifndef __T4_H__
  32#define __T4_H__
  33
  34#include "t4_hw.h"
  35#include "t4_regs.h"
  36#include "t4_values.h"
  37#include "t4_msg.h"
  38#include "t4fw_ri_api.h"
  39
  40#define T4_MAX_NUM_PD 65536
  41#define T4_MAX_MR_SIZE (~0ULL)
  42#define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
  43#define T4_STAG_UNSET 0xffffffff
  44#define T4_FW_MAJ 0
  45#define PCIE_MA_SYNC_A 0x30b4
  46
  47struct t4_status_page {
  48        __be32 rsvd1;   /* flit 0 - hw owns */
  49        __be16 rsvd2;
  50        __be16 qid;
  51        __be16 cidx;
  52        __be16 pidx;
  53        u8 qp_err;      /* flit 1 - sw owns */
  54        u8 db_off;
  55        u8 pad;
  56        u16 host_wq_pidx;
  57        u16 host_cidx;
  58        u16 host_pidx;
  59};
  60
  61#define T4_EQ_ENTRY_SIZE 64
  62
  63#define T4_SQ_NUM_SLOTS 5
  64#define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
  65#define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
  66                        sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
  67#define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
  68                        sizeof(struct fw_ri_immd)))
  69#define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
  70                        sizeof(struct fw_ri_rdma_write_wr) - \
  71                        sizeof(struct fw_ri_immd)))
  72#define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
  73                        sizeof(struct fw_ri_rdma_write_wr) - \
  74                        sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
  75#define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
  76                        sizeof(struct fw_ri_immd)) & ~31UL)
  77#define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
  78#define T4_MAX_FR_DSGL 1024
  79#define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
  80
  81static inline int t4_max_fr_depth(int use_dsgl)
  82{
  83        return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
  84}
  85
  86#define T4_RQ_NUM_SLOTS 2
  87#define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
  88#define T4_MAX_RECV_SGE 4
  89
  90union t4_wr {
  91        struct fw_ri_res_wr res;
  92        struct fw_ri_wr ri;
  93        struct fw_ri_rdma_write_wr write;
  94        struct fw_ri_send_wr send;
  95        struct fw_ri_rdma_read_wr read;
  96        struct fw_ri_bind_mw_wr bind;
  97        struct fw_ri_fr_nsmr_wr fr;
  98        struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
  99        struct fw_ri_inv_lstag_wr inv;
 100        struct t4_status_page status;
 101        __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
 102};
 103
 104union t4_recv_wr {
 105        struct fw_ri_recv_wr recv;
 106        struct t4_status_page status;
 107        __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
 108};
 109
 110static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
 111                               enum fw_wr_opcodes opcode, u8 flags, u8 len16)
 112{
 113        wqe->send.opcode = (u8)opcode;
 114        wqe->send.flags = flags;
 115        wqe->send.wrid = wrid;
 116        wqe->send.r1[0] = 0;
 117        wqe->send.r1[1] = 0;
 118        wqe->send.r1[2] = 0;
 119        wqe->send.len16 = len16;
 120}
 121
 122/* CQE/AE status codes */
 123#define T4_ERR_SUCCESS                     0x0
 124#define T4_ERR_STAG                        0x1  /* STAG invalid: either the */
 125                                                /* STAG is offlimt, being 0, */
 126                                                /* or STAG_key mismatch */
 127#define T4_ERR_PDID                        0x2  /* PDID mismatch */
 128#define T4_ERR_QPID                        0x3  /* QPID mismatch */
 129#define T4_ERR_ACCESS                      0x4  /* Invalid access right */
 130#define T4_ERR_WRAP                        0x5  /* Wrap error */
 131#define T4_ERR_BOUND                       0x6  /* base and bounds voilation */
 132#define T4_ERR_INVALIDATE_SHARED_MR        0x7  /* attempt to invalidate a  */
 133                                                /* shared memory region */
 134#define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8  /* attempt to invalidate a  */
 135                                                /* shared memory region */
 136#define T4_ERR_ECC                         0x9  /* ECC error detected */
 137#define T4_ERR_ECC_PSTAG                   0xA  /* ECC error detected when  */
 138                                                /* reading PSTAG for a MW  */
 139                                                /* Invalidate */
 140#define T4_ERR_PBL_ADDR_BOUND              0xB  /* pbl addr out of bounds:  */
 141                                                /* software error */
 142#define T4_ERR_SWFLUSH                     0xC  /* SW FLUSHED */
 143#define T4_ERR_CRC                         0x10 /* CRC error */
 144#define T4_ERR_MARKER                      0x11 /* Marker error */
 145#define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
 146#define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
 147#define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
 148#define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
 149#define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
 150#define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
 151#define T4_ERR_MSN                         0x18 /* MSN error */
 152#define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
 153#define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
 154                                                /* or READ_REQ */
 155#define T4_ERR_MSN_GAP                     0x1B
 156#define T4_ERR_MSN_RANGE                   0x1C
 157#define T4_ERR_IRD_OVERFLOW                0x1D
 158#define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
 159                                                /* software error */
 160#define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
 161                                                /* mismatch) */
 162/*
 163 * CQE defs
 164 */
 165struct t4_cqe {
 166        __be32 header;
 167        __be32 len;
 168        union {
 169                struct {
 170                        __be32 stag;
 171                        __be32 msn;
 172                } rcqe;
 173                struct {
 174                        u32 stag;
 175                        u16 nada2;
 176                        u16 cidx;
 177                } scqe;
 178                struct {
 179                        __be32 wrid_hi;
 180                        __be32 wrid_low;
 181                } gen;
 182        } u;
 183        __be64 reserved;
 184        __be64 bits_type_ts;
 185};
 186
 187/* macros for flit 0 of the cqe */
 188
 189#define CQE_QPID_S        12
 190#define CQE_QPID_M        0xFFFFF
 191#define CQE_QPID_G(x)     ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
 192#define CQE_QPID_V(x)     ((x)<<CQE_QPID_S)
 193
 194#define CQE_SWCQE_S       11
 195#define CQE_SWCQE_M       0x1
 196#define CQE_SWCQE_G(x)    ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
 197#define CQE_SWCQE_V(x)    ((x)<<CQE_SWCQE_S)
 198
 199#define CQE_STATUS_S      5
 200#define CQE_STATUS_M      0x1F
 201#define CQE_STATUS_G(x)   ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
 202#define CQE_STATUS_V(x)   ((x)<<CQE_STATUS_S)
 203
 204#define CQE_TYPE_S        4
 205#define CQE_TYPE_M        0x1
 206#define CQE_TYPE_G(x)     ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
 207#define CQE_TYPE_V(x)     ((x)<<CQE_TYPE_S)
 208
 209#define CQE_OPCODE_S      0
 210#define CQE_OPCODE_M      0xF
 211#define CQE_OPCODE_G(x)   ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
 212#define CQE_OPCODE_V(x)   ((x)<<CQE_OPCODE_S)
 213
 214#define SW_CQE(x)         (CQE_SWCQE_G(be32_to_cpu((x)->header)))
 215#define CQE_QPID(x)       (CQE_QPID_G(be32_to_cpu((x)->header)))
 216#define CQE_TYPE(x)       (CQE_TYPE_G(be32_to_cpu((x)->header)))
 217#define SQ_TYPE(x)        (CQE_TYPE((x)))
 218#define RQ_TYPE(x)        (!CQE_TYPE((x)))
 219#define CQE_STATUS(x)     (CQE_STATUS_G(be32_to_cpu((x)->header)))
 220#define CQE_OPCODE(x)     (CQE_OPCODE_G(be32_to_cpu((x)->header)))
 221
 222#define CQE_SEND_OPCODE(x)( \
 223        (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
 224        (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
 225        (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
 226        (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
 227
 228#define CQE_LEN(x)        (be32_to_cpu((x)->len))
 229
 230/* used for RQ completion processing */
 231#define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
 232#define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
 233
 234/* used for SQ completion processing */
 235#define CQE_WRID_SQ_IDX(x)      ((x)->u.scqe.cidx)
 236#define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
 237
 238/* generic accessor macros */
 239#define CQE_WRID_HI(x)          (be32_to_cpu((x)->u.gen.wrid_hi))
 240#define CQE_WRID_LOW(x)         (be32_to_cpu((x)->u.gen.wrid_low))
 241
 242/* macros for flit 3 of the cqe */
 243#define CQE_GENBIT_S    63
 244#define CQE_GENBIT_M    0x1
 245#define CQE_GENBIT_G(x) (((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
 246#define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
 247
 248#define CQE_OVFBIT_S    62
 249#define CQE_OVFBIT_M    0x1
 250#define CQE_OVFBIT_G(x) ((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
 251
 252#define CQE_IQTYPE_S    60
 253#define CQE_IQTYPE_M    0x3
 254#define CQE_IQTYPE_G(x) ((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
 255
 256#define CQE_TS_M        0x0fffffffffffffffULL
 257#define CQE_TS_G(x)     ((x) & CQE_TS_M)
 258
 259#define CQE_OVFBIT(x)   ((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
 260#define CQE_GENBIT(x)   ((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
 261#define CQE_TS(x)       (CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
 262
 263struct t4_swsqe {
 264        u64                     wr_id;
 265        struct t4_cqe           cqe;
 266        int                     read_len;
 267        int                     opcode;
 268        int                     complete;
 269        int                     signaled;
 270        u16                     idx;
 271        int                     flushed;
 272        struct timespec         host_ts;
 273        u64                     sge_ts;
 274};
 275
 276static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
 277{
 278#if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
 279        return pgprot_writecombine(prot);
 280#else
 281        return pgprot_noncached(prot);
 282#endif
 283}
 284
 285enum {
 286        T4_SQ_ONCHIP = (1<<0),
 287};
 288
 289struct t4_sq {
 290        union t4_wr *queue;
 291        dma_addr_t dma_addr;
 292        DEFINE_DMA_UNMAP_ADDR(mapping);
 293        unsigned long phys_addr;
 294        struct t4_swsqe *sw_sq;
 295        struct t4_swsqe *oldest_read;
 296        void __iomem *bar2_va;
 297        u64 bar2_pa;
 298        size_t memsize;
 299        u32 bar2_qid;
 300        u32 qid;
 301        u16 in_use;
 302        u16 size;
 303        u16 cidx;
 304        u16 pidx;
 305        u16 wq_pidx;
 306        u16 wq_pidx_inc;
 307        u16 flags;
 308        short flush_cidx;
 309};
 310
 311struct t4_swrqe {
 312        u64 wr_id;
 313        struct timespec host_ts;
 314        u64 sge_ts;
 315};
 316
 317struct t4_rq {
 318        union  t4_recv_wr *queue;
 319        dma_addr_t dma_addr;
 320        DEFINE_DMA_UNMAP_ADDR(mapping);
 321        struct t4_swrqe *sw_rq;
 322        void __iomem *bar2_va;
 323        u64 bar2_pa;
 324        size_t memsize;
 325        u32 bar2_qid;
 326        u32 qid;
 327        u32 msn;
 328        u32 rqt_hwaddr;
 329        u16 rqt_size;
 330        u16 in_use;
 331        u16 size;
 332        u16 cidx;
 333        u16 pidx;
 334        u16 wq_pidx;
 335        u16 wq_pidx_inc;
 336};
 337
 338struct t4_wq {
 339        struct t4_sq sq;
 340        struct t4_rq rq;
 341        void __iomem *db;
 342        struct c4iw_rdev *rdev;
 343        int flushed;
 344};
 345
 346static inline int t4_rqes_posted(struct t4_wq *wq)
 347{
 348        return wq->rq.in_use;
 349}
 350
 351static inline int t4_rq_empty(struct t4_wq *wq)
 352{
 353        return wq->rq.in_use == 0;
 354}
 355
 356static inline int t4_rq_full(struct t4_wq *wq)
 357{
 358        return wq->rq.in_use == (wq->rq.size - 1);
 359}
 360
 361static inline u32 t4_rq_avail(struct t4_wq *wq)
 362{
 363        return wq->rq.size - 1 - wq->rq.in_use;
 364}
 365
 366static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
 367{
 368        wq->rq.in_use++;
 369        if (++wq->rq.pidx == wq->rq.size)
 370                wq->rq.pidx = 0;
 371        wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
 372        if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
 373                wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
 374}
 375
 376static inline void t4_rq_consume(struct t4_wq *wq)
 377{
 378        wq->rq.in_use--;
 379        wq->rq.msn++;
 380        if (++wq->rq.cidx == wq->rq.size)
 381                wq->rq.cidx = 0;
 382}
 383
 384static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
 385{
 386        return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
 387}
 388
 389static inline u16 t4_rq_wq_size(struct t4_wq *wq)
 390{
 391                return wq->rq.size * T4_RQ_NUM_SLOTS;
 392}
 393
 394static inline int t4_sq_onchip(struct t4_sq *sq)
 395{
 396        return sq->flags & T4_SQ_ONCHIP;
 397}
 398
 399static inline int t4_sq_empty(struct t4_wq *wq)
 400{
 401        return wq->sq.in_use == 0;
 402}
 403
 404static inline int t4_sq_full(struct t4_wq *wq)
 405{
 406        return wq->sq.in_use == (wq->sq.size - 1);
 407}
 408
 409static inline u32 t4_sq_avail(struct t4_wq *wq)
 410{
 411        return wq->sq.size - 1 - wq->sq.in_use;
 412}
 413
 414static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
 415{
 416        wq->sq.in_use++;
 417        if (++wq->sq.pidx == wq->sq.size)
 418                wq->sq.pidx = 0;
 419        wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
 420        if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
 421                wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
 422}
 423
 424static inline void t4_sq_consume(struct t4_wq *wq)
 425{
 426        BUG_ON(wq->sq.in_use < 1);
 427        if (wq->sq.cidx == wq->sq.flush_cidx)
 428                wq->sq.flush_cidx = -1;
 429        wq->sq.in_use--;
 430        if (++wq->sq.cidx == wq->sq.size)
 431                wq->sq.cidx = 0;
 432}
 433
 434static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
 435{
 436        return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
 437}
 438
 439static inline u16 t4_sq_wq_size(struct t4_wq *wq)
 440{
 441                return wq->sq.size * T4_SQ_NUM_SLOTS;
 442}
 443
 444/* This function copies 64 byte coalesced work request to memory
 445 * mapped BAR2 space. For coalesced WRs, the SGE fetches data
 446 * from the FIFO instead of from Host.
 447 */
 448static inline void pio_copy(u64 __iomem *dst, u64 *src)
 449{
 450        int count = 8;
 451
 452        while (count) {
 453                writeq(*src, dst);
 454                src++;
 455                dst++;
 456                count--;
 457        }
 458}
 459
 460static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe)
 461{
 462
 463        /* Flush host queue memory writes. */
 464        wmb();
 465        if (wq->sq.bar2_va) {
 466                if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
 467                        PDBG("%s: WC wq->sq.pidx = %d\n",
 468                             __func__, wq->sq.pidx);
 469                        pio_copy((u64 __iomem *)
 470                                 (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
 471                                 (u64 *)wqe);
 472                } else {
 473                        PDBG("%s: DB wq->sq.pidx = %d\n",
 474                             __func__, wq->sq.pidx);
 475                        writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
 476                               wq->sq.bar2_va + SGE_UDB_KDOORBELL);
 477                }
 478
 479                /* Flush user doorbell area writes. */
 480                wmb();
 481                return;
 482        }
 483        writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
 484}
 485
 486static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc,
 487                                 union t4_recv_wr *wqe)
 488{
 489
 490        /* Flush host queue memory writes. */
 491        wmb();
 492        if (wq->rq.bar2_va) {
 493                if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
 494                        PDBG("%s: WC wq->rq.pidx = %d\n",
 495                             __func__, wq->rq.pidx);
 496                        pio_copy((u64 __iomem *)
 497                                 (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
 498                                 (void *)wqe);
 499                } else {
 500                        PDBG("%s: DB wq->rq.pidx = %d\n",
 501                             __func__, wq->rq.pidx);
 502                        writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
 503                               wq->rq.bar2_va + SGE_UDB_KDOORBELL);
 504                }
 505
 506                /* Flush user doorbell area writes. */
 507                wmb();
 508                return;
 509        }
 510        writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
 511}
 512
 513static inline int t4_wq_in_error(struct t4_wq *wq)
 514{
 515        return wq->rq.queue[wq->rq.size].status.qp_err;
 516}
 517
 518static inline void t4_set_wq_in_error(struct t4_wq *wq)
 519{
 520        wq->rq.queue[wq->rq.size].status.qp_err = 1;
 521}
 522
 523static inline void t4_disable_wq_db(struct t4_wq *wq)
 524{
 525        wq->rq.queue[wq->rq.size].status.db_off = 1;
 526}
 527
 528static inline void t4_enable_wq_db(struct t4_wq *wq)
 529{
 530        wq->rq.queue[wq->rq.size].status.db_off = 0;
 531}
 532
 533static inline int t4_wq_db_enabled(struct t4_wq *wq)
 534{
 535        return !wq->rq.queue[wq->rq.size].status.db_off;
 536}
 537
 538enum t4_cq_flags {
 539        CQ_ARMED        = 1,
 540};
 541
 542struct t4_cq {
 543        struct t4_cqe *queue;
 544        dma_addr_t dma_addr;
 545        DEFINE_DMA_UNMAP_ADDR(mapping);
 546        struct t4_cqe *sw_queue;
 547        void __iomem *gts;
 548        void __iomem *bar2_va;
 549        u64 bar2_pa;
 550        u32 bar2_qid;
 551        struct c4iw_rdev *rdev;
 552        size_t memsize;
 553        __be64 bits_type_ts;
 554        u32 cqid;
 555        u32 qid_mask;
 556        int vector;
 557        u16 size; /* including status page */
 558        u16 cidx;
 559        u16 sw_pidx;
 560        u16 sw_cidx;
 561        u16 sw_in_use;
 562        u16 cidx_inc;
 563        u8 gen;
 564        u8 error;
 565        unsigned long flags;
 566};
 567
 568static inline void write_gts(struct t4_cq *cq, u32 val)
 569{
 570        if (cq->bar2_va)
 571                writel(val | INGRESSQID_V(cq->bar2_qid),
 572                       cq->bar2_va + SGE_UDB_GTS);
 573        else
 574                writel(val | INGRESSQID_V(cq->cqid), cq->gts);
 575}
 576
 577static inline int t4_clear_cq_armed(struct t4_cq *cq)
 578{
 579        return test_and_clear_bit(CQ_ARMED, &cq->flags);
 580}
 581
 582static inline int t4_arm_cq(struct t4_cq *cq, int se)
 583{
 584        u32 val;
 585
 586        set_bit(CQ_ARMED, &cq->flags);
 587        while (cq->cidx_inc > CIDXINC_M) {
 588                val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
 589                write_gts(cq, val);
 590                cq->cidx_inc -= CIDXINC_M;
 591        }
 592        val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
 593        write_gts(cq, val);
 594        cq->cidx_inc = 0;
 595        return 0;
 596}
 597
 598static inline void t4_swcq_produce(struct t4_cq *cq)
 599{
 600        cq->sw_in_use++;
 601        if (cq->sw_in_use == cq->size) {
 602                PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
 603                cq->error = 1;
 604                BUG_ON(1);
 605        }
 606        if (++cq->sw_pidx == cq->size)
 607                cq->sw_pidx = 0;
 608}
 609
 610static inline void t4_swcq_consume(struct t4_cq *cq)
 611{
 612        BUG_ON(cq->sw_in_use < 1);
 613        cq->sw_in_use--;
 614        if (++cq->sw_cidx == cq->size)
 615                cq->sw_cidx = 0;
 616}
 617
 618static inline void t4_hwcq_consume(struct t4_cq *cq)
 619{
 620        cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
 621        if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
 622                u32 val;
 623
 624                val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
 625                write_gts(cq, val);
 626                cq->cidx_inc = 0;
 627        }
 628        if (++cq->cidx == cq->size) {
 629                cq->cidx = 0;
 630                cq->gen ^= 1;
 631        }
 632}
 633
 634static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
 635{
 636        return (CQE_GENBIT(cqe) == cq->gen);
 637}
 638
 639static inline int t4_cq_notempty(struct t4_cq *cq)
 640{
 641        return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
 642}
 643
 644static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
 645{
 646        int ret;
 647        u16 prev_cidx;
 648
 649        if (cq->cidx == 0)
 650                prev_cidx = cq->size - 1;
 651        else
 652                prev_cidx = cq->cidx - 1;
 653
 654        if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
 655                ret = -EOVERFLOW;
 656                cq->error = 1;
 657                printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
 658                BUG_ON(1);
 659        } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
 660
 661                /* Ensure CQE is flushed to memory */
 662                rmb();
 663                *cqe = &cq->queue[cq->cidx];
 664                ret = 0;
 665        } else
 666                ret = -ENODATA;
 667        return ret;
 668}
 669
 670static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
 671{
 672        if (cq->sw_in_use == cq->size) {
 673                PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
 674                cq->error = 1;
 675                BUG_ON(1);
 676                return NULL;
 677        }
 678        if (cq->sw_in_use)
 679                return &cq->sw_queue[cq->sw_cidx];
 680        return NULL;
 681}
 682
 683static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
 684{
 685        int ret = 0;
 686
 687        if (cq->error)
 688                ret = -ENODATA;
 689        else if (cq->sw_in_use)
 690                *cqe = &cq->sw_queue[cq->sw_cidx];
 691        else
 692                ret = t4_next_hw_cqe(cq, cqe);
 693        return ret;
 694}
 695
 696static inline int t4_cq_in_error(struct t4_cq *cq)
 697{
 698        return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
 699}
 700
 701static inline void t4_set_cq_in_error(struct t4_cq *cq)
 702{
 703        ((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
 704}
 705#endif
 706
 707struct t4_dev_status_page {
 708        u8 db_off;
 709        u8 pad1;
 710        u16 pad2;
 711        u32 pad3;
 712        u64 qp_start;
 713        u64 qp_size;
 714        u64 cq_start;
 715        u64 cq_size;
 716};
 717