linux/drivers/lguest/lguest_user.c
<<
>>
Prefs
   1/*P:200 This contains all the /dev/lguest code, whereby the userspace
   2 * launcher controls and communicates with the Guest.  For example,
   3 * the first write will tell us the Guest's memory layout and entry
   4 * point.  A read will run the Guest until something happens, such as
   5 * a signal or the Guest accessing a device.
   6:*/
   7#include <linux/uaccess.h>
   8#include <linux/miscdevice.h>
   9#include <linux/fs.h>
  10#include <linux/sched.h>
  11#include <linux/file.h>
  12#include <linux/slab.h>
  13#include <linux/export.h>
  14#include "lg.h"
  15
  16/*L:052
  17  The Launcher can get the registers, and also set some of them.
  18*/
  19static int getreg_setup(struct lg_cpu *cpu, const unsigned long __user *input)
  20{
  21        unsigned long which;
  22
  23        /* We re-use the ptrace structure to specify which register to read. */
  24        if (get_user(which, input) != 0)
  25                return -EFAULT;
  26
  27        /*
  28         * We set up the cpu register pointer, and their next read will
  29         * actually get the value (instead of running the guest).
  30         *
  31         * The last argument 'true' says we can access any register.
  32         */
  33        cpu->reg_read = lguest_arch_regptr(cpu, which, true);
  34        if (!cpu->reg_read)
  35                return -ENOENT;
  36
  37        /* And because this is a write() call, we return the length used. */
  38        return sizeof(unsigned long) * 2;
  39}
  40
  41static int setreg(struct lg_cpu *cpu, const unsigned long __user *input)
  42{
  43        unsigned long which, value, *reg;
  44
  45        /* We re-use the ptrace structure to specify which register to read. */
  46        if (get_user(which, input) != 0)
  47                return -EFAULT;
  48        input++;
  49        if (get_user(value, input) != 0)
  50                return -EFAULT;
  51
  52        /* The last argument 'false' means we can't access all registers. */
  53        reg = lguest_arch_regptr(cpu, which, false);
  54        if (!reg)
  55                return -ENOENT;
  56
  57        *reg = value;
  58
  59        /* And because this is a write() call, we return the length used. */
  60        return sizeof(unsigned long) * 3;
  61}
  62
  63/*L:050
  64 * Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
  65 * number to /dev/lguest.
  66 */
  67static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
  68{
  69        unsigned long irq;
  70
  71        if (get_user(irq, input) != 0)
  72                return -EFAULT;
  73        if (irq >= LGUEST_IRQS)
  74                return -EINVAL;
  75
  76        /*
  77         * Next time the Guest runs, the core code will see if it can deliver
  78         * this interrupt.
  79         */
  80        set_interrupt(cpu, irq);
  81        return 0;
  82}
  83
  84/*L:053
  85 * Deliver a trap: this is used by the Launcher if it can't emulate
  86 * an instruction.
  87 */
  88static int trap(struct lg_cpu *cpu, const unsigned long __user *input)
  89{
  90        unsigned long trapnum;
  91
  92        if (get_user(trapnum, input) != 0)
  93                return -EFAULT;
  94
  95        if (!deliver_trap(cpu, trapnum))
  96                return -EINVAL;
  97
  98        return 0;
  99}
 100
 101/*L:040
 102 * Once our Guest is initialized, the Launcher makes it run by reading
 103 * from /dev/lguest.
 104 */
 105static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
 106{
 107        struct lguest *lg = file->private_data;
 108        struct lg_cpu *cpu;
 109        unsigned int cpu_id = *o;
 110
 111        /* You must write LHREQ_INITIALIZE first! */
 112        if (!lg)
 113                return -EINVAL;
 114
 115        /* Watch out for arbitrary vcpu indexes! */
 116        if (cpu_id >= lg->nr_cpus)
 117                return -EINVAL;
 118
 119        cpu = &lg->cpus[cpu_id];
 120
 121        /* If you're not the task which owns the Guest, go away. */
 122        if (current != cpu->tsk)
 123                return -EPERM;
 124
 125        /* If the Guest is already dead, we indicate why */
 126        if (lg->dead) {
 127                size_t len;
 128
 129                /* lg->dead either contains an error code, or a string. */
 130                if (IS_ERR(lg->dead))
 131                        return PTR_ERR(lg->dead);
 132
 133                /* We can only return as much as the buffer they read with. */
 134                len = min(size, strlen(lg->dead)+1);
 135                if (copy_to_user(user, lg->dead, len) != 0)
 136                        return -EFAULT;
 137                return len;
 138        }
 139
 140        /*
 141         * If we returned from read() last time because the Guest sent I/O,
 142         * clear the flag.
 143         */
 144        if (cpu->pending.trap)
 145                cpu->pending.trap = 0;
 146
 147        /* Run the Guest until something interesting happens. */
 148        return run_guest(cpu, (unsigned long __user *)user);
 149}
 150
 151/*L:025
 152 * This actually initializes a CPU.  For the moment, a Guest is only
 153 * uniprocessor, so "id" is always 0.
 154 */
 155static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
 156{
 157        /* We have a limited number of CPUs in the lguest struct. */
 158        if (id >= ARRAY_SIZE(cpu->lg->cpus))
 159                return -EINVAL;
 160
 161        /* Set up this CPU's id, and pointer back to the lguest struct. */
 162        cpu->id = id;
 163        cpu->lg = container_of(cpu, struct lguest, cpus[id]);
 164        cpu->lg->nr_cpus++;
 165
 166        /* Each CPU has a timer it can set. */
 167        init_clockdev(cpu);
 168
 169        /*
 170         * We need a complete page for the Guest registers: they are accessible
 171         * to the Guest and we can only grant it access to whole pages.
 172         */
 173        cpu->regs_page = get_zeroed_page(GFP_KERNEL);
 174        if (!cpu->regs_page)
 175                return -ENOMEM;
 176
 177        /* We actually put the registers at the end of the page. */
 178        cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
 179
 180        /*
 181         * Now we initialize the Guest's registers, handing it the start
 182         * address.
 183         */
 184        lguest_arch_setup_regs(cpu, start_ip);
 185
 186        /*
 187         * We keep a pointer to the Launcher task (ie. current task) for when
 188         * other Guests want to wake this one (eg. console input).
 189         */
 190        cpu->tsk = current;
 191
 192        /*
 193         * We need to keep a pointer to the Launcher's memory map, because if
 194         * the Launcher dies we need to clean it up.  If we don't keep a
 195         * reference, it is destroyed before close() is called.
 196         */
 197        cpu->mm = get_task_mm(cpu->tsk);
 198
 199        /*
 200         * We remember which CPU's pages this Guest used last, for optimization
 201         * when the same Guest runs on the same CPU twice.
 202         */
 203        cpu->last_pages = NULL;
 204
 205        /* No error == success. */
 206        return 0;
 207}
 208
 209/*L:020
 210 * The initialization write supplies 3 pointer sized (32 or 64 bit) values (in
 211 * addition to the LHREQ_INITIALIZE value).  These are:
 212 *
 213 * base: The start of the Guest-physical memory inside the Launcher memory.
 214 *
 215 * pfnlimit: The highest (Guest-physical) page number the Guest should be
 216 * allowed to access.  The Guest memory lives inside the Launcher, so it sets
 217 * this to ensure the Guest can only reach its own memory.
 218 *
 219 * start: The first instruction to execute ("eip" in x86-speak).
 220 */
 221static int initialize(struct file *file, const unsigned long __user *input)
 222{
 223        /* "struct lguest" contains all we (the Host) know about a Guest. */
 224        struct lguest *lg;
 225        int err;
 226        unsigned long args[4];
 227
 228        /*
 229         * We grab the Big Lguest lock, which protects against multiple
 230         * simultaneous initializations.
 231         */
 232        mutex_lock(&lguest_lock);
 233        /* You can't initialize twice!  Close the device and start again... */
 234        if (file->private_data) {
 235                err = -EBUSY;
 236                goto unlock;
 237        }
 238
 239        if (copy_from_user(args, input, sizeof(args)) != 0) {
 240                err = -EFAULT;
 241                goto unlock;
 242        }
 243
 244        lg = kzalloc(sizeof(*lg), GFP_KERNEL);
 245        if (!lg) {
 246                err = -ENOMEM;
 247                goto unlock;
 248        }
 249
 250        /* Populate the easy fields of our "struct lguest" */
 251        lg->mem_base = (void __user *)args[0];
 252        lg->pfn_limit = args[1];
 253        lg->device_limit = args[3];
 254
 255        /* This is the first cpu (cpu 0) and it will start booting at args[2] */
 256        err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
 257        if (err)
 258                goto free_lg;
 259
 260        /*
 261         * Initialize the Guest's shadow page tables.  This allocates
 262         * memory, so can fail.
 263         */
 264        err = init_guest_pagetable(lg);
 265        if (err)
 266                goto free_regs;
 267
 268        /* We keep our "struct lguest" in the file's private_data. */
 269        file->private_data = lg;
 270
 271        mutex_unlock(&lguest_lock);
 272
 273        /* And because this is a write() call, we return the length used. */
 274        return sizeof(args);
 275
 276free_regs:
 277        /* FIXME: This should be in free_vcpu */
 278        free_page(lg->cpus[0].regs_page);
 279free_lg:
 280        kfree(lg);
 281unlock:
 282        mutex_unlock(&lguest_lock);
 283        return err;
 284}
 285
 286/*L:010
 287 * The first operation the Launcher does must be a write.  All writes
 288 * start with an unsigned long number: for the first write this must be
 289 * LHREQ_INITIALIZE to set up the Guest.  After that the Launcher can use
 290 * writes of other values to send interrupts or set up receipt of notifications.
 291 *
 292 * Note that we overload the "offset" in the /dev/lguest file to indicate what
 293 * CPU number we're dealing with.  Currently this is always 0 since we only
 294 * support uniprocessor Guests, but you can see the beginnings of SMP support
 295 * here.
 296 */
 297static ssize_t write(struct file *file, const char __user *in,
 298                     size_t size, loff_t *off)
 299{
 300        /*
 301         * Once the Guest is initialized, we hold the "struct lguest" in the
 302         * file private data.
 303         */
 304        struct lguest *lg = file->private_data;
 305        const unsigned long __user *input = (const unsigned long __user *)in;
 306        unsigned long req;
 307        struct lg_cpu *uninitialized_var(cpu);
 308        unsigned int cpu_id = *off;
 309
 310        /* The first value tells us what this request is. */
 311        if (get_user(req, input) != 0)
 312                return -EFAULT;
 313        input++;
 314
 315        /* If you haven't initialized, you must do that first. */
 316        if (req != LHREQ_INITIALIZE) {
 317                if (!lg || (cpu_id >= lg->nr_cpus))
 318                        return -EINVAL;
 319                cpu = &lg->cpus[cpu_id];
 320
 321                /* Once the Guest is dead, you can only read() why it died. */
 322                if (lg->dead)
 323                        return -ENOENT;
 324        }
 325
 326        switch (req) {
 327        case LHREQ_INITIALIZE:
 328                return initialize(file, input);
 329        case LHREQ_IRQ:
 330                return user_send_irq(cpu, input);
 331        case LHREQ_GETREG:
 332                return getreg_setup(cpu, input);
 333        case LHREQ_SETREG:
 334                return setreg(cpu, input);
 335        case LHREQ_TRAP:
 336                return trap(cpu, input);
 337        default:
 338                return -EINVAL;
 339        }
 340}
 341
 342static int open(struct inode *inode, struct file *file)
 343{
 344        file->private_data = NULL;
 345
 346        return 0;
 347}
 348
 349/*L:060
 350 * The final piece of interface code is the close() routine.  It reverses
 351 * everything done in initialize().  This is usually called because the
 352 * Launcher exited.
 353 *
 354 * Note that the close routine returns 0 or a negative error number: it can't
 355 * really fail, but it can whine.  I blame Sun for this wart, and K&R C for
 356 * letting them do it.
 357:*/
 358static int close(struct inode *inode, struct file *file)
 359{
 360        struct lguest *lg = file->private_data;
 361        unsigned int i;
 362
 363        /* If we never successfully initialized, there's nothing to clean up */
 364        if (!lg)
 365                return 0;
 366
 367        /*
 368         * We need the big lock, to protect from inter-guest I/O and other
 369         * Launchers initializing guests.
 370         */
 371        mutex_lock(&lguest_lock);
 372
 373        /* Free up the shadow page tables for the Guest. */
 374        free_guest_pagetable(lg);
 375
 376        for (i = 0; i < lg->nr_cpus; i++) {
 377                /* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
 378                hrtimer_cancel(&lg->cpus[i].hrt);
 379                /* We can free up the register page we allocated. */
 380                free_page(lg->cpus[i].regs_page);
 381                /*
 382                 * Now all the memory cleanups are done, it's safe to release
 383                 * the Launcher's memory management structure.
 384                 */
 385                mmput(lg->cpus[i].mm);
 386        }
 387
 388        /*
 389         * If lg->dead doesn't contain an error code it will be NULL or a
 390         * kmalloc()ed string, either of which is ok to hand to kfree().
 391         */
 392        if (!IS_ERR(lg->dead))
 393                kfree(lg->dead);
 394        /* Free the memory allocated to the lguest_struct */
 395        kfree(lg);
 396        /* Release lock and exit. */
 397        mutex_unlock(&lguest_lock);
 398
 399        return 0;
 400}
 401
 402/*L:000
 403 * Welcome to our journey through the Launcher!
 404 *
 405 * The Launcher is the Host userspace program which sets up, runs and services
 406 * the Guest.  In fact, many comments in the Drivers which refer to "the Host"
 407 * doing things are inaccurate: the Launcher does all the device handling for
 408 * the Guest, but the Guest can't know that.
 409 *
 410 * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
 411 * shall see more of that later.
 412 *
 413 * We begin our understanding with the Host kernel interface which the Launcher
 414 * uses: reading and writing a character device called /dev/lguest.  All the
 415 * work happens in the read(), write() and close() routines:
 416 */
 417static const struct file_operations lguest_fops = {
 418        .owner   = THIS_MODULE,
 419        .open    = open,
 420        .release = close,
 421        .write   = write,
 422        .read    = read,
 423        .llseek  = default_llseek,
 424};
 425/*:*/
 426
 427/*
 428 * This is a textbook example of a "misc" character device.  Populate a "struct
 429 * miscdevice" and register it with misc_register().
 430 */
 431static struct miscdevice lguest_dev = {
 432        .minor  = MISC_DYNAMIC_MINOR,
 433        .name   = "lguest",
 434        .fops   = &lguest_fops,
 435};
 436
 437int __init lguest_device_init(void)
 438{
 439        return misc_register(&lguest_dev);
 440}
 441
 442void __exit lguest_device_remove(void)
 443{
 444        misc_deregister(&lguest_dev);
 445}
 446