linux/drivers/md/dm-table.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
  21#include <linux/blk-mq.h>
  22#include <linux/mount.h>
  23
  24#define DM_MSG_PREFIX "table"
  25
  26#define MAX_DEPTH 16
  27#define NODE_SIZE L1_CACHE_BYTES
  28#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  29#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  30
  31struct dm_table {
  32        struct mapped_device *md;
  33        unsigned type;
  34
  35        /* btree table */
  36        unsigned int depth;
  37        unsigned int counts[MAX_DEPTH]; /* in nodes */
  38        sector_t *index[MAX_DEPTH];
  39
  40        unsigned int num_targets;
  41        unsigned int num_allocated;
  42        sector_t *highs;
  43        struct dm_target *targets;
  44
  45        struct target_type *immutable_target_type;
  46
  47        bool integrity_supported:1;
  48        bool singleton:1;
  49        bool all_blk_mq:1;
  50
  51        /*
  52         * Indicates the rw permissions for the new logical
  53         * device.  This should be a combination of FMODE_READ
  54         * and FMODE_WRITE.
  55         */
  56        fmode_t mode;
  57
  58        /* a list of devices used by this table */
  59        struct list_head devices;
  60
  61        /* events get handed up using this callback */
  62        void (*event_fn)(void *);
  63        void *event_context;
  64
  65        struct dm_md_mempools *mempools;
  66
  67        struct list_head target_callbacks;
  68};
  69
  70/*
  71 * Similar to ceiling(log_size(n))
  72 */
  73static unsigned int int_log(unsigned int n, unsigned int base)
  74{
  75        int result = 0;
  76
  77        while (n > 1) {
  78                n = dm_div_up(n, base);
  79                result++;
  80        }
  81
  82        return result;
  83}
  84
  85/*
  86 * Calculate the index of the child node of the n'th node k'th key.
  87 */
  88static inline unsigned int get_child(unsigned int n, unsigned int k)
  89{
  90        return (n * CHILDREN_PER_NODE) + k;
  91}
  92
  93/*
  94 * Return the n'th node of level l from table t.
  95 */
  96static inline sector_t *get_node(struct dm_table *t,
  97                                 unsigned int l, unsigned int n)
  98{
  99        return t->index[l] + (n * KEYS_PER_NODE);
 100}
 101
 102/*
 103 * Return the highest key that you could lookup from the n'th
 104 * node on level l of the btree.
 105 */
 106static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 107{
 108        for (; l < t->depth - 1; l++)
 109                n = get_child(n, CHILDREN_PER_NODE - 1);
 110
 111        if (n >= t->counts[l])
 112                return (sector_t) - 1;
 113
 114        return get_node(t, l, n)[KEYS_PER_NODE - 1];
 115}
 116
 117/*
 118 * Fills in a level of the btree based on the highs of the level
 119 * below it.
 120 */
 121static int setup_btree_index(unsigned int l, struct dm_table *t)
 122{
 123        unsigned int n, k;
 124        sector_t *node;
 125
 126        for (n = 0U; n < t->counts[l]; n++) {
 127                node = get_node(t, l, n);
 128
 129                for (k = 0U; k < KEYS_PER_NODE; k++)
 130                        node[k] = high(t, l + 1, get_child(n, k));
 131        }
 132
 133        return 0;
 134}
 135
 136void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 137{
 138        unsigned long size;
 139        void *addr;
 140
 141        /*
 142         * Check that we're not going to overflow.
 143         */
 144        if (nmemb > (ULONG_MAX / elem_size))
 145                return NULL;
 146
 147        size = nmemb * elem_size;
 148        addr = vzalloc(size);
 149
 150        return addr;
 151}
 152EXPORT_SYMBOL(dm_vcalloc);
 153
 154/*
 155 * highs, and targets are managed as dynamic arrays during a
 156 * table load.
 157 */
 158static int alloc_targets(struct dm_table *t, unsigned int num)
 159{
 160        sector_t *n_highs;
 161        struct dm_target *n_targets;
 162
 163        /*
 164         * Allocate both the target array and offset array at once.
 165         * Append an empty entry to catch sectors beyond the end of
 166         * the device.
 167         */
 168        n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
 169                                          sizeof(sector_t));
 170        if (!n_highs)
 171                return -ENOMEM;
 172
 173        n_targets = (struct dm_target *) (n_highs + num);
 174
 175        memset(n_highs, -1, sizeof(*n_highs) * num);
 176        vfree(t->highs);
 177
 178        t->num_allocated = num;
 179        t->highs = n_highs;
 180        t->targets = n_targets;
 181
 182        return 0;
 183}
 184
 185int dm_table_create(struct dm_table **result, fmode_t mode,
 186                    unsigned num_targets, struct mapped_device *md)
 187{
 188        struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 189
 190        if (!t)
 191                return -ENOMEM;
 192
 193        INIT_LIST_HEAD(&t->devices);
 194        INIT_LIST_HEAD(&t->target_callbacks);
 195
 196        if (!num_targets)
 197                num_targets = KEYS_PER_NODE;
 198
 199        num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 200
 201        if (!num_targets) {
 202                kfree(t);
 203                return -ENOMEM;
 204        }
 205
 206        if (alloc_targets(t, num_targets)) {
 207                kfree(t);
 208                return -ENOMEM;
 209        }
 210
 211        t->type = DM_TYPE_NONE;
 212        t->mode = mode;
 213        t->md = md;
 214        *result = t;
 215        return 0;
 216}
 217
 218static void free_devices(struct list_head *devices, struct mapped_device *md)
 219{
 220        struct list_head *tmp, *next;
 221
 222        list_for_each_safe(tmp, next, devices) {
 223                struct dm_dev_internal *dd =
 224                    list_entry(tmp, struct dm_dev_internal, list);
 225                DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
 226                       dm_device_name(md), dd->dm_dev->name);
 227                dm_put_table_device(md, dd->dm_dev);
 228                kfree(dd);
 229        }
 230}
 231
 232void dm_table_destroy(struct dm_table *t)
 233{
 234        unsigned int i;
 235
 236        if (!t)
 237                return;
 238
 239        /* free the indexes */
 240        if (t->depth >= 2)
 241                vfree(t->index[t->depth - 2]);
 242
 243        /* free the targets */
 244        for (i = 0; i < t->num_targets; i++) {
 245                struct dm_target *tgt = t->targets + i;
 246
 247                if (tgt->type->dtr)
 248                        tgt->type->dtr(tgt);
 249
 250                dm_put_target_type(tgt->type);
 251        }
 252
 253        vfree(t->highs);
 254
 255        /* free the device list */
 256        free_devices(&t->devices, t->md);
 257
 258        dm_free_md_mempools(t->mempools);
 259
 260        kfree(t);
 261}
 262
 263/*
 264 * See if we've already got a device in the list.
 265 */
 266static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 267{
 268        struct dm_dev_internal *dd;
 269
 270        list_for_each_entry (dd, l, list)
 271                if (dd->dm_dev->bdev->bd_dev == dev)
 272                        return dd;
 273
 274        return NULL;
 275}
 276
 277/*
 278 * If possible, this checks an area of a destination device is invalid.
 279 */
 280static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 281                                  sector_t start, sector_t len, void *data)
 282{
 283        struct request_queue *q;
 284        struct queue_limits *limits = data;
 285        struct block_device *bdev = dev->bdev;
 286        sector_t dev_size =
 287                i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 288        unsigned short logical_block_size_sectors =
 289                limits->logical_block_size >> SECTOR_SHIFT;
 290        char b[BDEVNAME_SIZE];
 291
 292        /*
 293         * Some devices exist without request functions,
 294         * such as loop devices not yet bound to backing files.
 295         * Forbid the use of such devices.
 296         */
 297        q = bdev_get_queue(bdev);
 298        if (!q || !q->make_request_fn) {
 299                DMWARN("%s: %s is not yet initialised: "
 300                       "start=%llu, len=%llu, dev_size=%llu",
 301                       dm_device_name(ti->table->md), bdevname(bdev, b),
 302                       (unsigned long long)start,
 303                       (unsigned long long)len,
 304                       (unsigned long long)dev_size);
 305                return 1;
 306        }
 307
 308        if (!dev_size)
 309                return 0;
 310
 311        if ((start >= dev_size) || (start + len > dev_size)) {
 312                DMWARN("%s: %s too small for target: "
 313                       "start=%llu, len=%llu, dev_size=%llu",
 314                       dm_device_name(ti->table->md), bdevname(bdev, b),
 315                       (unsigned long long)start,
 316                       (unsigned long long)len,
 317                       (unsigned long long)dev_size);
 318                return 1;
 319        }
 320
 321        if (logical_block_size_sectors <= 1)
 322                return 0;
 323
 324        if (start & (logical_block_size_sectors - 1)) {
 325                DMWARN("%s: start=%llu not aligned to h/w "
 326                       "logical block size %u of %s",
 327                       dm_device_name(ti->table->md),
 328                       (unsigned long long)start,
 329                       limits->logical_block_size, bdevname(bdev, b));
 330                return 1;
 331        }
 332
 333        if (len & (logical_block_size_sectors - 1)) {
 334                DMWARN("%s: len=%llu not aligned to h/w "
 335                       "logical block size %u of %s",
 336                       dm_device_name(ti->table->md),
 337                       (unsigned long long)len,
 338                       limits->logical_block_size, bdevname(bdev, b));
 339                return 1;
 340        }
 341
 342        return 0;
 343}
 344
 345/*
 346 * This upgrades the mode on an already open dm_dev, being
 347 * careful to leave things as they were if we fail to reopen the
 348 * device and not to touch the existing bdev field in case
 349 * it is accessed concurrently inside dm_table_any_congested().
 350 */
 351static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 352                        struct mapped_device *md)
 353{
 354        int r;
 355        struct dm_dev *old_dev, *new_dev;
 356
 357        old_dev = dd->dm_dev;
 358
 359        r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
 360                                dd->dm_dev->mode | new_mode, &new_dev);
 361        if (r)
 362                return r;
 363
 364        dd->dm_dev = new_dev;
 365        dm_put_table_device(md, old_dev);
 366
 367        return 0;
 368}
 369
 370/*
 371 * Convert the path to a device
 372 */
 373dev_t dm_get_dev_t(const char *path)
 374{
 375        dev_t uninitialized_var(dev);
 376        struct block_device *bdev;
 377
 378        bdev = lookup_bdev(path);
 379        if (IS_ERR(bdev))
 380                dev = name_to_dev_t(path);
 381        else {
 382                dev = bdev->bd_dev;
 383                bdput(bdev);
 384        }
 385
 386        return dev;
 387}
 388EXPORT_SYMBOL_GPL(dm_get_dev_t);
 389
 390/*
 391 * Add a device to the list, or just increment the usage count if
 392 * it's already present.
 393 */
 394int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 395                  struct dm_dev **result)
 396{
 397        int r;
 398        dev_t dev;
 399        struct dm_dev_internal *dd;
 400        struct dm_table *t = ti->table;
 401
 402        BUG_ON(!t);
 403
 404        dev = dm_get_dev_t(path);
 405        if (!dev)
 406                return -ENODEV;
 407
 408        dd = find_device(&t->devices, dev);
 409        if (!dd) {
 410                dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 411                if (!dd)
 412                        return -ENOMEM;
 413
 414                if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
 415                        kfree(dd);
 416                        return r;
 417                }
 418
 419                atomic_set(&dd->count, 0);
 420                list_add(&dd->list, &t->devices);
 421
 422        } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
 423                r = upgrade_mode(dd, mode, t->md);
 424                if (r)
 425                        return r;
 426        }
 427        atomic_inc(&dd->count);
 428
 429        *result = dd->dm_dev;
 430        return 0;
 431}
 432EXPORT_SYMBOL(dm_get_device);
 433
 434static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 435                                sector_t start, sector_t len, void *data)
 436{
 437        struct queue_limits *limits = data;
 438        struct block_device *bdev = dev->bdev;
 439        struct request_queue *q = bdev_get_queue(bdev);
 440        char b[BDEVNAME_SIZE];
 441
 442        if (unlikely(!q)) {
 443                DMWARN("%s: Cannot set limits for nonexistent device %s",
 444                       dm_device_name(ti->table->md), bdevname(bdev, b));
 445                return 0;
 446        }
 447
 448        if (bdev_stack_limits(limits, bdev, start) < 0)
 449                DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 450                       "physical_block_size=%u, logical_block_size=%u, "
 451                       "alignment_offset=%u, start=%llu",
 452                       dm_device_name(ti->table->md), bdevname(bdev, b),
 453                       q->limits.physical_block_size,
 454                       q->limits.logical_block_size,
 455                       q->limits.alignment_offset,
 456                       (unsigned long long) start << SECTOR_SHIFT);
 457
 458        return 0;
 459}
 460
 461/*
 462 * Decrement a device's use count and remove it if necessary.
 463 */
 464void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 465{
 466        int found = 0;
 467        struct list_head *devices = &ti->table->devices;
 468        struct dm_dev_internal *dd;
 469
 470        list_for_each_entry(dd, devices, list) {
 471                if (dd->dm_dev == d) {
 472                        found = 1;
 473                        break;
 474                }
 475        }
 476        if (!found) {
 477                DMWARN("%s: device %s not in table devices list",
 478                       dm_device_name(ti->table->md), d->name);
 479                return;
 480        }
 481        if (atomic_dec_and_test(&dd->count)) {
 482                dm_put_table_device(ti->table->md, d);
 483                list_del(&dd->list);
 484                kfree(dd);
 485        }
 486}
 487EXPORT_SYMBOL(dm_put_device);
 488
 489/*
 490 * Checks to see if the target joins onto the end of the table.
 491 */
 492static int adjoin(struct dm_table *table, struct dm_target *ti)
 493{
 494        struct dm_target *prev;
 495
 496        if (!table->num_targets)
 497                return !ti->begin;
 498
 499        prev = &table->targets[table->num_targets - 1];
 500        return (ti->begin == (prev->begin + prev->len));
 501}
 502
 503/*
 504 * Used to dynamically allocate the arg array.
 505 *
 506 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 507 * process messages even if some device is suspended. These messages have a
 508 * small fixed number of arguments.
 509 *
 510 * On the other hand, dm-switch needs to process bulk data using messages and
 511 * excessive use of GFP_NOIO could cause trouble.
 512 */
 513static char **realloc_argv(unsigned *array_size, char **old_argv)
 514{
 515        char **argv;
 516        unsigned new_size;
 517        gfp_t gfp;
 518
 519        if (*array_size) {
 520                new_size = *array_size * 2;
 521                gfp = GFP_KERNEL;
 522        } else {
 523                new_size = 8;
 524                gfp = GFP_NOIO;
 525        }
 526        argv = kmalloc(new_size * sizeof(*argv), gfp);
 527        if (argv) {
 528                memcpy(argv, old_argv, *array_size * sizeof(*argv));
 529                *array_size = new_size;
 530        }
 531
 532        kfree(old_argv);
 533        return argv;
 534}
 535
 536/*
 537 * Destructively splits up the argument list to pass to ctr.
 538 */
 539int dm_split_args(int *argc, char ***argvp, char *input)
 540{
 541        char *start, *end = input, *out, **argv = NULL;
 542        unsigned array_size = 0;
 543
 544        *argc = 0;
 545
 546        if (!input) {
 547                *argvp = NULL;
 548                return 0;
 549        }
 550
 551        argv = realloc_argv(&array_size, argv);
 552        if (!argv)
 553                return -ENOMEM;
 554
 555        while (1) {
 556                /* Skip whitespace */
 557                start = skip_spaces(end);
 558
 559                if (!*start)
 560                        break;  /* success, we hit the end */
 561
 562                /* 'out' is used to remove any back-quotes */
 563                end = out = start;
 564                while (*end) {
 565                        /* Everything apart from '\0' can be quoted */
 566                        if (*end == '\\' && *(end + 1)) {
 567                                *out++ = *(end + 1);
 568                                end += 2;
 569                                continue;
 570                        }
 571
 572                        if (isspace(*end))
 573                                break;  /* end of token */
 574
 575                        *out++ = *end++;
 576                }
 577
 578                /* have we already filled the array ? */
 579                if ((*argc + 1) > array_size) {
 580                        argv = realloc_argv(&array_size, argv);
 581                        if (!argv)
 582                                return -ENOMEM;
 583                }
 584
 585                /* we know this is whitespace */
 586                if (*end)
 587                        end++;
 588
 589                /* terminate the string and put it in the array */
 590                *out = '\0';
 591                argv[*argc] = start;
 592                (*argc)++;
 593        }
 594
 595        *argvp = argv;
 596        return 0;
 597}
 598
 599/*
 600 * Impose necessary and sufficient conditions on a devices's table such
 601 * that any incoming bio which respects its logical_block_size can be
 602 * processed successfully.  If it falls across the boundary between
 603 * two or more targets, the size of each piece it gets split into must
 604 * be compatible with the logical_block_size of the target processing it.
 605 */
 606static int validate_hardware_logical_block_alignment(struct dm_table *table,
 607                                                 struct queue_limits *limits)
 608{
 609        /*
 610         * This function uses arithmetic modulo the logical_block_size
 611         * (in units of 512-byte sectors).
 612         */
 613        unsigned short device_logical_block_size_sects =
 614                limits->logical_block_size >> SECTOR_SHIFT;
 615
 616        /*
 617         * Offset of the start of the next table entry, mod logical_block_size.
 618         */
 619        unsigned short next_target_start = 0;
 620
 621        /*
 622         * Given an aligned bio that extends beyond the end of a
 623         * target, how many sectors must the next target handle?
 624         */
 625        unsigned short remaining = 0;
 626
 627        struct dm_target *uninitialized_var(ti);
 628        struct queue_limits ti_limits;
 629        unsigned i = 0;
 630
 631        /*
 632         * Check each entry in the table in turn.
 633         */
 634        while (i < dm_table_get_num_targets(table)) {
 635                ti = dm_table_get_target(table, i++);
 636
 637                blk_set_stacking_limits(&ti_limits);
 638
 639                /* combine all target devices' limits */
 640                if (ti->type->iterate_devices)
 641                        ti->type->iterate_devices(ti, dm_set_device_limits,
 642                                                  &ti_limits);
 643
 644                /*
 645                 * If the remaining sectors fall entirely within this
 646                 * table entry are they compatible with its logical_block_size?
 647                 */
 648                if (remaining < ti->len &&
 649                    remaining & ((ti_limits.logical_block_size >>
 650                                  SECTOR_SHIFT) - 1))
 651                        break;  /* Error */
 652
 653                next_target_start =
 654                    (unsigned short) ((next_target_start + ti->len) &
 655                                      (device_logical_block_size_sects - 1));
 656                remaining = next_target_start ?
 657                    device_logical_block_size_sects - next_target_start : 0;
 658        }
 659
 660        if (remaining) {
 661                DMWARN("%s: table line %u (start sect %llu len %llu) "
 662                       "not aligned to h/w logical block size %u",
 663                       dm_device_name(table->md), i,
 664                       (unsigned long long) ti->begin,
 665                       (unsigned long long) ti->len,
 666                       limits->logical_block_size);
 667                return -EINVAL;
 668        }
 669
 670        return 0;
 671}
 672
 673int dm_table_add_target(struct dm_table *t, const char *type,
 674                        sector_t start, sector_t len, char *params)
 675{
 676        int r = -EINVAL, argc;
 677        char **argv;
 678        struct dm_target *tgt;
 679
 680        if (t->singleton) {
 681                DMERR("%s: target type %s must appear alone in table",
 682                      dm_device_name(t->md), t->targets->type->name);
 683                return -EINVAL;
 684        }
 685
 686        BUG_ON(t->num_targets >= t->num_allocated);
 687
 688        tgt = t->targets + t->num_targets;
 689        memset(tgt, 0, sizeof(*tgt));
 690
 691        if (!len) {
 692                DMERR("%s: zero-length target", dm_device_name(t->md));
 693                return -EINVAL;
 694        }
 695
 696        tgt->type = dm_get_target_type(type);
 697        if (!tgt->type) {
 698                DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
 699                return -EINVAL;
 700        }
 701
 702        if (dm_target_needs_singleton(tgt->type)) {
 703                if (t->num_targets) {
 704                        tgt->error = "singleton target type must appear alone in table";
 705                        goto bad;
 706                }
 707                t->singleton = true;
 708        }
 709
 710        if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
 711                tgt->error = "target type may not be included in a read-only table";
 712                goto bad;
 713        }
 714
 715        if (t->immutable_target_type) {
 716                if (t->immutable_target_type != tgt->type) {
 717                        tgt->error = "immutable target type cannot be mixed with other target types";
 718                        goto bad;
 719                }
 720        } else if (dm_target_is_immutable(tgt->type)) {
 721                if (t->num_targets) {
 722                        tgt->error = "immutable target type cannot be mixed with other target types";
 723                        goto bad;
 724                }
 725                t->immutable_target_type = tgt->type;
 726        }
 727
 728        tgt->table = t;
 729        tgt->begin = start;
 730        tgt->len = len;
 731        tgt->error = "Unknown error";
 732
 733        /*
 734         * Does this target adjoin the previous one ?
 735         */
 736        if (!adjoin(t, tgt)) {
 737                tgt->error = "Gap in table";
 738                goto bad;
 739        }
 740
 741        r = dm_split_args(&argc, &argv, params);
 742        if (r) {
 743                tgt->error = "couldn't split parameters (insufficient memory)";
 744                goto bad;
 745        }
 746
 747        r = tgt->type->ctr(tgt, argc, argv);
 748        kfree(argv);
 749        if (r)
 750                goto bad;
 751
 752        t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 753
 754        if (!tgt->num_discard_bios && tgt->discards_supported)
 755                DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 756                       dm_device_name(t->md), type);
 757
 758        return 0;
 759
 760 bad:
 761        DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 762        dm_put_target_type(tgt->type);
 763        return r;
 764}
 765
 766/*
 767 * Target argument parsing helpers.
 768 */
 769static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 770                             unsigned *value, char **error, unsigned grouped)
 771{
 772        const char *arg_str = dm_shift_arg(arg_set);
 773        char dummy;
 774
 775        if (!arg_str ||
 776            (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 777            (*value < arg->min) ||
 778            (*value > arg->max) ||
 779            (grouped && arg_set->argc < *value)) {
 780                *error = arg->error;
 781                return -EINVAL;
 782        }
 783
 784        return 0;
 785}
 786
 787int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 788                unsigned *value, char **error)
 789{
 790        return validate_next_arg(arg, arg_set, value, error, 0);
 791}
 792EXPORT_SYMBOL(dm_read_arg);
 793
 794int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
 795                      unsigned *value, char **error)
 796{
 797        return validate_next_arg(arg, arg_set, value, error, 1);
 798}
 799EXPORT_SYMBOL(dm_read_arg_group);
 800
 801const char *dm_shift_arg(struct dm_arg_set *as)
 802{
 803        char *r;
 804
 805        if (as->argc) {
 806                as->argc--;
 807                r = *as->argv;
 808                as->argv++;
 809                return r;
 810        }
 811
 812        return NULL;
 813}
 814EXPORT_SYMBOL(dm_shift_arg);
 815
 816void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 817{
 818        BUG_ON(as->argc < num_args);
 819        as->argc -= num_args;
 820        as->argv += num_args;
 821}
 822EXPORT_SYMBOL(dm_consume_args);
 823
 824static bool __table_type_bio_based(unsigned table_type)
 825{
 826        return (table_type == DM_TYPE_BIO_BASED ||
 827                table_type == DM_TYPE_DAX_BIO_BASED);
 828}
 829
 830static bool __table_type_request_based(unsigned table_type)
 831{
 832        return (table_type == DM_TYPE_REQUEST_BASED ||
 833                table_type == DM_TYPE_MQ_REQUEST_BASED);
 834}
 835
 836void dm_table_set_type(struct dm_table *t, unsigned type)
 837{
 838        t->type = type;
 839}
 840EXPORT_SYMBOL_GPL(dm_table_set_type);
 841
 842static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
 843                               sector_t start, sector_t len, void *data)
 844{
 845        struct request_queue *q = bdev_get_queue(dev->bdev);
 846
 847        return q && blk_queue_dax(q);
 848}
 849
 850static bool dm_table_supports_dax(struct dm_table *t)
 851{
 852        struct dm_target *ti;
 853        unsigned i = 0;
 854
 855        /* Ensure that all targets support DAX. */
 856        while (i < dm_table_get_num_targets(t)) {
 857                ti = dm_table_get_target(t, i++);
 858
 859                if (!ti->type->direct_access)
 860                        return false;
 861
 862                if (!ti->type->iterate_devices ||
 863                    !ti->type->iterate_devices(ti, device_supports_dax, NULL))
 864                        return false;
 865        }
 866
 867        return true;
 868}
 869
 870static int dm_table_determine_type(struct dm_table *t)
 871{
 872        unsigned i;
 873        unsigned bio_based = 0, request_based = 0, hybrid = 0;
 874        bool verify_blk_mq = false;
 875        struct dm_target *tgt;
 876        struct dm_dev_internal *dd;
 877        struct list_head *devices = dm_table_get_devices(t);
 878        unsigned live_md_type = dm_get_md_type(t->md);
 879
 880        if (t->type != DM_TYPE_NONE) {
 881                /* target already set the table's type */
 882                if (t->type == DM_TYPE_BIO_BASED)
 883                        return 0;
 884                BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
 885                goto verify_rq_based;
 886        }
 887
 888        for (i = 0; i < t->num_targets; i++) {
 889                tgt = t->targets + i;
 890                if (dm_target_hybrid(tgt))
 891                        hybrid = 1;
 892                else if (dm_target_request_based(tgt))
 893                        request_based = 1;
 894                else
 895                        bio_based = 1;
 896
 897                if (bio_based && request_based) {
 898                        DMWARN("Inconsistent table: different target types"
 899                               " can't be mixed up");
 900                        return -EINVAL;
 901                }
 902        }
 903
 904        if (hybrid && !bio_based && !request_based) {
 905                /*
 906                 * The targets can work either way.
 907                 * Determine the type from the live device.
 908                 * Default to bio-based if device is new.
 909                 */
 910                if (__table_type_request_based(live_md_type))
 911                        request_based = 1;
 912                else
 913                        bio_based = 1;
 914        }
 915
 916        if (bio_based) {
 917                /* We must use this table as bio-based */
 918                t->type = DM_TYPE_BIO_BASED;
 919                if (dm_table_supports_dax(t) ||
 920                    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
 921                        t->type = DM_TYPE_DAX_BIO_BASED;
 922                return 0;
 923        }
 924
 925        BUG_ON(!request_based); /* No targets in this table */
 926
 927        if (list_empty(devices) && __table_type_request_based(live_md_type)) {
 928                /* inherit live MD type */
 929                t->type = live_md_type;
 930                return 0;
 931        }
 932
 933        /*
 934         * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
 935         * having a compatible target use dm_table_set_type.
 936         */
 937        t->type = DM_TYPE_REQUEST_BASED;
 938
 939verify_rq_based:
 940        /*
 941         * Request-based dm supports only tables that have a single target now.
 942         * To support multiple targets, request splitting support is needed,
 943         * and that needs lots of changes in the block-layer.
 944         * (e.g. request completion process for partial completion.)
 945         */
 946        if (t->num_targets > 1) {
 947                DMWARN("Request-based dm doesn't support multiple targets yet");
 948                return -EINVAL;
 949        }
 950
 951        /* Non-request-stackable devices can't be used for request-based dm */
 952        list_for_each_entry(dd, devices, list) {
 953                struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
 954
 955                if (!blk_queue_stackable(q)) {
 956                        DMERR("table load rejected: including"
 957                              " non-request-stackable devices");
 958                        return -EINVAL;
 959                }
 960
 961                if (q->mq_ops)
 962                        verify_blk_mq = true;
 963        }
 964
 965        if (verify_blk_mq) {
 966                /* verify _all_ devices in the table are blk-mq devices */
 967                list_for_each_entry(dd, devices, list)
 968                        if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
 969                                DMERR("table load rejected: not all devices"
 970                                      " are blk-mq request-stackable");
 971                                return -EINVAL;
 972                        }
 973
 974                t->all_blk_mq = true;
 975        }
 976
 977        return 0;
 978}
 979
 980unsigned dm_table_get_type(struct dm_table *t)
 981{
 982        return t->type;
 983}
 984
 985struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
 986{
 987        return t->immutable_target_type;
 988}
 989
 990struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
 991{
 992        /* Immutable target is implicitly a singleton */
 993        if (t->num_targets > 1 ||
 994            !dm_target_is_immutable(t->targets[0].type))
 995                return NULL;
 996
 997        return t->targets;
 998}
 999
1000struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1001{
1002        struct dm_target *uninitialized_var(ti);
1003        unsigned i = 0;
1004
1005        while (i < dm_table_get_num_targets(t)) {
1006                ti = dm_table_get_target(t, i++);
1007                if (dm_target_is_wildcard(ti->type))
1008                        return ti;
1009        }
1010
1011        return NULL;
1012}
1013
1014bool dm_table_bio_based(struct dm_table *t)
1015{
1016        return __table_type_bio_based(dm_table_get_type(t));
1017}
1018
1019bool dm_table_request_based(struct dm_table *t)
1020{
1021        return __table_type_request_based(dm_table_get_type(t));
1022}
1023
1024bool dm_table_all_blk_mq_devices(struct dm_table *t)
1025{
1026        return t->all_blk_mq;
1027}
1028
1029static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1030{
1031        unsigned type = dm_table_get_type(t);
1032        unsigned per_io_data_size = 0;
1033        struct dm_target *tgt;
1034        unsigned i;
1035
1036        if (unlikely(type == DM_TYPE_NONE)) {
1037                DMWARN("no table type is set, can't allocate mempools");
1038                return -EINVAL;
1039        }
1040
1041        if (__table_type_bio_based(type))
1042                for (i = 0; i < t->num_targets; i++) {
1043                        tgt = t->targets + i;
1044                        per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1045                }
1046
1047        t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1048        if (!t->mempools)
1049                return -ENOMEM;
1050
1051        return 0;
1052}
1053
1054void dm_table_free_md_mempools(struct dm_table *t)
1055{
1056        dm_free_md_mempools(t->mempools);
1057        t->mempools = NULL;
1058}
1059
1060struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1061{
1062        return t->mempools;
1063}
1064
1065static int setup_indexes(struct dm_table *t)
1066{
1067        int i;
1068        unsigned int total = 0;
1069        sector_t *indexes;
1070
1071        /* allocate the space for *all* the indexes */
1072        for (i = t->depth - 2; i >= 0; i--) {
1073                t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1074                total += t->counts[i];
1075        }
1076
1077        indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1078        if (!indexes)
1079                return -ENOMEM;
1080
1081        /* set up internal nodes, bottom-up */
1082        for (i = t->depth - 2; i >= 0; i--) {
1083                t->index[i] = indexes;
1084                indexes += (KEYS_PER_NODE * t->counts[i]);
1085                setup_btree_index(i, t);
1086        }
1087
1088        return 0;
1089}
1090
1091/*
1092 * Builds the btree to index the map.
1093 */
1094static int dm_table_build_index(struct dm_table *t)
1095{
1096        int r = 0;
1097        unsigned int leaf_nodes;
1098
1099        /* how many indexes will the btree have ? */
1100        leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1101        t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1102
1103        /* leaf layer has already been set up */
1104        t->counts[t->depth - 1] = leaf_nodes;
1105        t->index[t->depth - 1] = t->highs;
1106
1107        if (t->depth >= 2)
1108                r = setup_indexes(t);
1109
1110        return r;
1111}
1112
1113static bool integrity_profile_exists(struct gendisk *disk)
1114{
1115        return !!blk_get_integrity(disk);
1116}
1117
1118/*
1119 * Get a disk whose integrity profile reflects the table's profile.
1120 * Returns NULL if integrity support was inconsistent or unavailable.
1121 */
1122static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1123{
1124        struct list_head *devices = dm_table_get_devices(t);
1125        struct dm_dev_internal *dd = NULL;
1126        struct gendisk *prev_disk = NULL, *template_disk = NULL;
1127
1128        list_for_each_entry(dd, devices, list) {
1129                template_disk = dd->dm_dev->bdev->bd_disk;
1130                if (!integrity_profile_exists(template_disk))
1131                        goto no_integrity;
1132                else if (prev_disk &&
1133                         blk_integrity_compare(prev_disk, template_disk) < 0)
1134                        goto no_integrity;
1135                prev_disk = template_disk;
1136        }
1137
1138        return template_disk;
1139
1140no_integrity:
1141        if (prev_disk)
1142                DMWARN("%s: integrity not set: %s and %s profile mismatch",
1143                       dm_device_name(t->md),
1144                       prev_disk->disk_name,
1145                       template_disk->disk_name);
1146        return NULL;
1147}
1148
1149/*
1150 * Register the mapped device for blk_integrity support if the
1151 * underlying devices have an integrity profile.  But all devices may
1152 * not have matching profiles (checking all devices isn't reliable
1153 * during table load because this table may use other DM device(s) which
1154 * must be resumed before they will have an initialized integity
1155 * profile).  Consequently, stacked DM devices force a 2 stage integrity
1156 * profile validation: First pass during table load, final pass during
1157 * resume.
1158 */
1159static int dm_table_register_integrity(struct dm_table *t)
1160{
1161        struct mapped_device *md = t->md;
1162        struct gendisk *template_disk = NULL;
1163
1164        template_disk = dm_table_get_integrity_disk(t);
1165        if (!template_disk)
1166                return 0;
1167
1168        if (!integrity_profile_exists(dm_disk(md))) {
1169                t->integrity_supported = true;
1170                /*
1171                 * Register integrity profile during table load; we can do
1172                 * this because the final profile must match during resume.
1173                 */
1174                blk_integrity_register(dm_disk(md),
1175                                       blk_get_integrity(template_disk));
1176                return 0;
1177        }
1178
1179        /*
1180         * If DM device already has an initialized integrity
1181         * profile the new profile should not conflict.
1182         */
1183        if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1184                DMWARN("%s: conflict with existing integrity profile: "
1185                       "%s profile mismatch",
1186                       dm_device_name(t->md),
1187                       template_disk->disk_name);
1188                return 1;
1189        }
1190
1191        /* Preserve existing integrity profile */
1192        t->integrity_supported = true;
1193        return 0;
1194}
1195
1196/*
1197 * Prepares the table for use by building the indices,
1198 * setting the type, and allocating mempools.
1199 */
1200int dm_table_complete(struct dm_table *t)
1201{
1202        int r;
1203
1204        r = dm_table_determine_type(t);
1205        if (r) {
1206                DMERR("unable to determine table type");
1207                return r;
1208        }
1209
1210        r = dm_table_build_index(t);
1211        if (r) {
1212                DMERR("unable to build btrees");
1213                return r;
1214        }
1215
1216        r = dm_table_register_integrity(t);
1217        if (r) {
1218                DMERR("could not register integrity profile.");
1219                return r;
1220        }
1221
1222        r = dm_table_alloc_md_mempools(t, t->md);
1223        if (r)
1224                DMERR("unable to allocate mempools");
1225
1226        return r;
1227}
1228
1229static DEFINE_MUTEX(_event_lock);
1230void dm_table_event_callback(struct dm_table *t,
1231                             void (*fn)(void *), void *context)
1232{
1233        mutex_lock(&_event_lock);
1234        t->event_fn = fn;
1235        t->event_context = context;
1236        mutex_unlock(&_event_lock);
1237}
1238
1239void dm_table_event(struct dm_table *t)
1240{
1241        /*
1242         * You can no longer call dm_table_event() from interrupt
1243         * context, use a bottom half instead.
1244         */
1245        BUG_ON(in_interrupt());
1246
1247        mutex_lock(&_event_lock);
1248        if (t->event_fn)
1249                t->event_fn(t->event_context);
1250        mutex_unlock(&_event_lock);
1251}
1252EXPORT_SYMBOL(dm_table_event);
1253
1254sector_t dm_table_get_size(struct dm_table *t)
1255{
1256        return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1257}
1258EXPORT_SYMBOL(dm_table_get_size);
1259
1260struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1261{
1262        if (index >= t->num_targets)
1263                return NULL;
1264
1265        return t->targets + index;
1266}
1267
1268/*
1269 * Search the btree for the correct target.
1270 *
1271 * Caller should check returned pointer with dm_target_is_valid()
1272 * to trap I/O beyond end of device.
1273 */
1274struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1275{
1276        unsigned int l, n = 0, k = 0;
1277        sector_t *node;
1278
1279        for (l = 0; l < t->depth; l++) {
1280                n = get_child(n, k);
1281                node = get_node(t, l, n);
1282
1283                for (k = 0; k < KEYS_PER_NODE; k++)
1284                        if (node[k] >= sector)
1285                                break;
1286        }
1287
1288        return &t->targets[(KEYS_PER_NODE * n) + k];
1289}
1290
1291static int count_device(struct dm_target *ti, struct dm_dev *dev,
1292                        sector_t start, sector_t len, void *data)
1293{
1294        unsigned *num_devices = data;
1295
1296        (*num_devices)++;
1297
1298        return 0;
1299}
1300
1301/*
1302 * Check whether a table has no data devices attached using each
1303 * target's iterate_devices method.
1304 * Returns false if the result is unknown because a target doesn't
1305 * support iterate_devices.
1306 */
1307bool dm_table_has_no_data_devices(struct dm_table *table)
1308{
1309        struct dm_target *uninitialized_var(ti);
1310        unsigned i = 0, num_devices = 0;
1311
1312        while (i < dm_table_get_num_targets(table)) {
1313                ti = dm_table_get_target(table, i++);
1314
1315                if (!ti->type->iterate_devices)
1316                        return false;
1317
1318                ti->type->iterate_devices(ti, count_device, &num_devices);
1319                if (num_devices)
1320                        return false;
1321        }
1322
1323        return true;
1324}
1325
1326/*
1327 * Establish the new table's queue_limits and validate them.
1328 */
1329int dm_calculate_queue_limits(struct dm_table *table,
1330                              struct queue_limits *limits)
1331{
1332        struct dm_target *uninitialized_var(ti);
1333        struct queue_limits ti_limits;
1334        unsigned i = 0;
1335
1336        blk_set_stacking_limits(limits);
1337
1338        while (i < dm_table_get_num_targets(table)) {
1339                blk_set_stacking_limits(&ti_limits);
1340
1341                ti = dm_table_get_target(table, i++);
1342
1343                if (!ti->type->iterate_devices)
1344                        goto combine_limits;
1345
1346                /*
1347                 * Combine queue limits of all the devices this target uses.
1348                 */
1349                ti->type->iterate_devices(ti, dm_set_device_limits,
1350                                          &ti_limits);
1351
1352                /* Set I/O hints portion of queue limits */
1353                if (ti->type->io_hints)
1354                        ti->type->io_hints(ti, &ti_limits);
1355
1356                /*
1357                 * Check each device area is consistent with the target's
1358                 * overall queue limits.
1359                 */
1360                if (ti->type->iterate_devices(ti, device_area_is_invalid,
1361                                              &ti_limits))
1362                        return -EINVAL;
1363
1364combine_limits:
1365                /*
1366                 * Merge this target's queue limits into the overall limits
1367                 * for the table.
1368                 */
1369                if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1370                        DMWARN("%s: adding target device "
1371                               "(start sect %llu len %llu) "
1372                               "caused an alignment inconsistency",
1373                               dm_device_name(table->md),
1374                               (unsigned long long) ti->begin,
1375                               (unsigned long long) ti->len);
1376        }
1377
1378        return validate_hardware_logical_block_alignment(table, limits);
1379}
1380
1381/*
1382 * Verify that all devices have an integrity profile that matches the
1383 * DM device's registered integrity profile.  If the profiles don't
1384 * match then unregister the DM device's integrity profile.
1385 */
1386static void dm_table_verify_integrity(struct dm_table *t)
1387{
1388        struct gendisk *template_disk = NULL;
1389
1390        if (t->integrity_supported) {
1391                /*
1392                 * Verify that the original integrity profile
1393                 * matches all the devices in this table.
1394                 */
1395                template_disk = dm_table_get_integrity_disk(t);
1396                if (template_disk &&
1397                    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1398                        return;
1399        }
1400
1401        if (integrity_profile_exists(dm_disk(t->md))) {
1402                DMWARN("%s: unable to establish an integrity profile",
1403                       dm_device_name(t->md));
1404                blk_integrity_unregister(dm_disk(t->md));
1405        }
1406}
1407
1408static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1409                                sector_t start, sector_t len, void *data)
1410{
1411        unsigned long flush = (unsigned long) data;
1412        struct request_queue *q = bdev_get_queue(dev->bdev);
1413
1414        return q && (q->queue_flags & flush);
1415}
1416
1417static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1418{
1419        struct dm_target *ti;
1420        unsigned i = 0;
1421
1422        /*
1423         * Require at least one underlying device to support flushes.
1424         * t->devices includes internal dm devices such as mirror logs
1425         * so we need to use iterate_devices here, which targets
1426         * supporting flushes must provide.
1427         */
1428        while (i < dm_table_get_num_targets(t)) {
1429                ti = dm_table_get_target(t, i++);
1430
1431                if (!ti->num_flush_bios)
1432                        continue;
1433
1434                if (ti->flush_supported)
1435                        return true;
1436
1437                if (ti->type->iterate_devices &&
1438                    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1439                        return true;
1440        }
1441
1442        return false;
1443}
1444
1445static bool dm_table_discard_zeroes_data(struct dm_table *t)
1446{
1447        struct dm_target *ti;
1448        unsigned i = 0;
1449
1450        /* Ensure that all targets supports discard_zeroes_data. */
1451        while (i < dm_table_get_num_targets(t)) {
1452                ti = dm_table_get_target(t, i++);
1453
1454                if (ti->discard_zeroes_data_unsupported)
1455                        return false;
1456        }
1457
1458        return true;
1459}
1460
1461static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1462                            sector_t start, sector_t len, void *data)
1463{
1464        struct request_queue *q = bdev_get_queue(dev->bdev);
1465
1466        return q && blk_queue_nonrot(q);
1467}
1468
1469static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1470                             sector_t start, sector_t len, void *data)
1471{
1472        struct request_queue *q = bdev_get_queue(dev->bdev);
1473
1474        return q && !blk_queue_add_random(q);
1475}
1476
1477static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1478                                   sector_t start, sector_t len, void *data)
1479{
1480        struct request_queue *q = bdev_get_queue(dev->bdev);
1481
1482        return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1483}
1484
1485static bool dm_table_all_devices_attribute(struct dm_table *t,
1486                                           iterate_devices_callout_fn func)
1487{
1488        struct dm_target *ti;
1489        unsigned i = 0;
1490
1491        while (i < dm_table_get_num_targets(t)) {
1492                ti = dm_table_get_target(t, i++);
1493
1494                if (!ti->type->iterate_devices ||
1495                    !ti->type->iterate_devices(ti, func, NULL))
1496                        return false;
1497        }
1498
1499        return true;
1500}
1501
1502static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1503                                         sector_t start, sector_t len, void *data)
1504{
1505        struct request_queue *q = bdev_get_queue(dev->bdev);
1506
1507        return q && !q->limits.max_write_same_sectors;
1508}
1509
1510static bool dm_table_supports_write_same(struct dm_table *t)
1511{
1512        struct dm_target *ti;
1513        unsigned i = 0;
1514
1515        while (i < dm_table_get_num_targets(t)) {
1516                ti = dm_table_get_target(t, i++);
1517
1518                if (!ti->num_write_same_bios)
1519                        return false;
1520
1521                if (!ti->type->iterate_devices ||
1522                    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1523                        return false;
1524        }
1525
1526        return true;
1527}
1528
1529static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1530                                  sector_t start, sector_t len, void *data)
1531{
1532        struct request_queue *q = bdev_get_queue(dev->bdev);
1533
1534        return q && blk_queue_discard(q);
1535}
1536
1537static bool dm_table_supports_discards(struct dm_table *t)
1538{
1539        struct dm_target *ti;
1540        unsigned i = 0;
1541
1542        /*
1543         * Unless any target used by the table set discards_supported,
1544         * require at least one underlying device to support discards.
1545         * t->devices includes internal dm devices such as mirror logs
1546         * so we need to use iterate_devices here, which targets
1547         * supporting discard selectively must provide.
1548         */
1549        while (i < dm_table_get_num_targets(t)) {
1550                ti = dm_table_get_target(t, i++);
1551
1552                if (!ti->num_discard_bios)
1553                        continue;
1554
1555                if (ti->discards_supported)
1556                        return true;
1557
1558                if (ti->type->iterate_devices &&
1559                    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1560                        return true;
1561        }
1562
1563        return false;
1564}
1565
1566void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1567                               struct queue_limits *limits)
1568{
1569        bool wc = false, fua = false;
1570
1571        /*
1572         * Copy table's limits to the DM device's request_queue
1573         */
1574        q->limits = *limits;
1575
1576        if (!dm_table_supports_discards(t))
1577                queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1578        else
1579                queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1580
1581        if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1582                wc = true;
1583                if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1584                        fua = true;
1585        }
1586        blk_queue_write_cache(q, wc, fua);
1587
1588        if (!dm_table_discard_zeroes_data(t))
1589                q->limits.discard_zeroes_data = 0;
1590
1591        /* Ensure that all underlying devices are non-rotational. */
1592        if (dm_table_all_devices_attribute(t, device_is_nonrot))
1593                queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1594        else
1595                queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1596
1597        if (!dm_table_supports_write_same(t))
1598                q->limits.max_write_same_sectors = 0;
1599
1600        if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1601                queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1602        else
1603                queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1604
1605        dm_table_verify_integrity(t);
1606
1607        /*
1608         * Determine whether or not this queue's I/O timings contribute
1609         * to the entropy pool, Only request-based targets use this.
1610         * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1611         * have it set.
1612         */
1613        if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1614                queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1615
1616        /*
1617         * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1618         * visible to other CPUs because, once the flag is set, incoming bios
1619         * are processed by request-based dm, which refers to the queue
1620         * settings.
1621         * Until the flag set, bios are passed to bio-based dm and queued to
1622         * md->deferred where queue settings are not needed yet.
1623         * Those bios are passed to request-based dm at the resume time.
1624         */
1625        smp_mb();
1626        if (dm_table_request_based(t))
1627                queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1628}
1629
1630unsigned int dm_table_get_num_targets(struct dm_table *t)
1631{
1632        return t->num_targets;
1633}
1634
1635struct list_head *dm_table_get_devices(struct dm_table *t)
1636{
1637        return &t->devices;
1638}
1639
1640fmode_t dm_table_get_mode(struct dm_table *t)
1641{
1642        return t->mode;
1643}
1644EXPORT_SYMBOL(dm_table_get_mode);
1645
1646enum suspend_mode {
1647        PRESUSPEND,
1648        PRESUSPEND_UNDO,
1649        POSTSUSPEND,
1650};
1651
1652static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1653{
1654        int i = t->num_targets;
1655        struct dm_target *ti = t->targets;
1656
1657        while (i--) {
1658                switch (mode) {
1659                case PRESUSPEND:
1660                        if (ti->type->presuspend)
1661                                ti->type->presuspend(ti);
1662                        break;
1663                case PRESUSPEND_UNDO:
1664                        if (ti->type->presuspend_undo)
1665                                ti->type->presuspend_undo(ti);
1666                        break;
1667                case POSTSUSPEND:
1668                        if (ti->type->postsuspend)
1669                                ti->type->postsuspend(ti);
1670                        break;
1671                }
1672                ti++;
1673        }
1674}
1675
1676void dm_table_presuspend_targets(struct dm_table *t)
1677{
1678        if (!t)
1679                return;
1680
1681        suspend_targets(t, PRESUSPEND);
1682}
1683
1684void dm_table_presuspend_undo_targets(struct dm_table *t)
1685{
1686        if (!t)
1687                return;
1688
1689        suspend_targets(t, PRESUSPEND_UNDO);
1690}
1691
1692void dm_table_postsuspend_targets(struct dm_table *t)
1693{
1694        if (!t)
1695                return;
1696
1697        suspend_targets(t, POSTSUSPEND);
1698}
1699
1700int dm_table_resume_targets(struct dm_table *t)
1701{
1702        int i, r = 0;
1703
1704        for (i = 0; i < t->num_targets; i++) {
1705                struct dm_target *ti = t->targets + i;
1706
1707                if (!ti->type->preresume)
1708                        continue;
1709
1710                r = ti->type->preresume(ti);
1711                if (r) {
1712                        DMERR("%s: %s: preresume failed, error = %d",
1713                              dm_device_name(t->md), ti->type->name, r);
1714                        return r;
1715                }
1716        }
1717
1718        for (i = 0; i < t->num_targets; i++) {
1719                struct dm_target *ti = t->targets + i;
1720
1721                if (ti->type->resume)
1722                        ti->type->resume(ti);
1723        }
1724
1725        return 0;
1726}
1727
1728void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1729{
1730        list_add(&cb->list, &t->target_callbacks);
1731}
1732EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1733
1734int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1735{
1736        struct dm_dev_internal *dd;
1737        struct list_head *devices = dm_table_get_devices(t);
1738        struct dm_target_callbacks *cb;
1739        int r = 0;
1740
1741        list_for_each_entry(dd, devices, list) {
1742                struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1743                char b[BDEVNAME_SIZE];
1744
1745                if (likely(q))
1746                        r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1747                else
1748                        DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1749                                     dm_device_name(t->md),
1750                                     bdevname(dd->dm_dev->bdev, b));
1751        }
1752
1753        list_for_each_entry(cb, &t->target_callbacks, list)
1754                if (cb->congested_fn)
1755                        r |= cb->congested_fn(cb, bdi_bits);
1756
1757        return r;
1758}
1759
1760struct mapped_device *dm_table_get_md(struct dm_table *t)
1761{
1762        return t->md;
1763}
1764EXPORT_SYMBOL(dm_table_get_md);
1765
1766void dm_table_run_md_queue_async(struct dm_table *t)
1767{
1768        struct mapped_device *md;
1769        struct request_queue *queue;
1770        unsigned long flags;
1771
1772        if (!dm_table_request_based(t))
1773                return;
1774
1775        md = dm_table_get_md(t);
1776        queue = dm_get_md_queue(md);
1777        if (queue) {
1778                if (queue->mq_ops)
1779                        blk_mq_run_hw_queues(queue, true);
1780                else {
1781                        spin_lock_irqsave(queue->queue_lock, flags);
1782                        blk_run_queue_async(queue);
1783                        spin_unlock_irqrestore(queue->queue_lock, flags);
1784                }
1785        }
1786}
1787EXPORT_SYMBOL(dm_table_run_md_queue_async);
1788
1789