linux/drivers/media/rc/rc-main.c
<<
>>
Prefs
   1/* rc-main.c - Remote Controller core module
   2 *
   3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 *  it under the terms of the GNU General Public License as published by
   7 *  the Free Software Foundation version 2 of the License.
   8 *
   9 *  This program is distributed in the hope that it will be useful,
  10 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 *  GNU General Public License for more details.
  13 */
  14
  15#include <media/rc-core.h>
  16#include <linux/atomic.h>
  17#include <linux/spinlock.h>
  18#include <linux/delay.h>
  19#include <linux/input.h>
  20#include <linux/leds.h>
  21#include <linux/slab.h>
  22#include <linux/idr.h>
  23#include <linux/device.h>
  24#include <linux/module.h>
  25#include "rc-core-priv.h"
  26
  27/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
  28#define IR_TAB_MIN_SIZE 256
  29#define IR_TAB_MAX_SIZE 8192
  30#define RC_DEV_MAX      256
  31
  32/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
  33#define IR_KEYPRESS_TIMEOUT 250
  34
  35/* Used to keep track of known keymaps */
  36static LIST_HEAD(rc_map_list);
  37static DEFINE_SPINLOCK(rc_map_lock);
  38static struct led_trigger *led_feedback;
  39
  40/* Used to keep track of rc devices */
  41static DEFINE_IDA(rc_ida);
  42
  43static struct rc_map_list *seek_rc_map(const char *name)
  44{
  45        struct rc_map_list *map = NULL;
  46
  47        spin_lock(&rc_map_lock);
  48        list_for_each_entry(map, &rc_map_list, list) {
  49                if (!strcmp(name, map->map.name)) {
  50                        spin_unlock(&rc_map_lock);
  51                        return map;
  52                }
  53        }
  54        spin_unlock(&rc_map_lock);
  55
  56        return NULL;
  57}
  58
  59struct rc_map *rc_map_get(const char *name)
  60{
  61
  62        struct rc_map_list *map;
  63
  64        map = seek_rc_map(name);
  65#ifdef CONFIG_MODULES
  66        if (!map) {
  67                int rc = request_module("%s", name);
  68                if (rc < 0) {
  69                        printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
  70                        return NULL;
  71                }
  72                msleep(20);     /* Give some time for IR to register */
  73
  74                map = seek_rc_map(name);
  75        }
  76#endif
  77        if (!map) {
  78                printk(KERN_ERR "IR keymap %s not found\n", name);
  79                return NULL;
  80        }
  81
  82        printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
  83
  84        return &map->map;
  85}
  86EXPORT_SYMBOL_GPL(rc_map_get);
  87
  88int rc_map_register(struct rc_map_list *map)
  89{
  90        spin_lock(&rc_map_lock);
  91        list_add_tail(&map->list, &rc_map_list);
  92        spin_unlock(&rc_map_lock);
  93        return 0;
  94}
  95EXPORT_SYMBOL_GPL(rc_map_register);
  96
  97void rc_map_unregister(struct rc_map_list *map)
  98{
  99        spin_lock(&rc_map_lock);
 100        list_del(&map->list);
 101        spin_unlock(&rc_map_lock);
 102}
 103EXPORT_SYMBOL_GPL(rc_map_unregister);
 104
 105
 106static struct rc_map_table empty[] = {
 107        { 0x2a, KEY_COFFEE },
 108};
 109
 110static struct rc_map_list empty_map = {
 111        .map = {
 112                .scan    = empty,
 113                .size    = ARRAY_SIZE(empty),
 114                .rc_type = RC_TYPE_UNKNOWN,     /* Legacy IR type */
 115                .name    = RC_MAP_EMPTY,
 116        }
 117};
 118
 119/**
 120 * ir_create_table() - initializes a scancode table
 121 * @rc_map:     the rc_map to initialize
 122 * @name:       name to assign to the table
 123 * @rc_type:    ir type to assign to the new table
 124 * @size:       initial size of the table
 125 * @return:     zero on success or a negative error code
 126 *
 127 * This routine will initialize the rc_map and will allocate
 128 * memory to hold at least the specified number of elements.
 129 */
 130static int ir_create_table(struct rc_map *rc_map,
 131                           const char *name, u64 rc_type, size_t size)
 132{
 133        rc_map->name = kstrdup(name, GFP_KERNEL);
 134        if (!rc_map->name)
 135                return -ENOMEM;
 136        rc_map->rc_type = rc_type;
 137        rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
 138        rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 139        rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
 140        if (!rc_map->scan) {
 141                kfree(rc_map->name);
 142                rc_map->name = NULL;
 143                return -ENOMEM;
 144        }
 145
 146        IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
 147                   rc_map->size, rc_map->alloc);
 148        return 0;
 149}
 150
 151/**
 152 * ir_free_table() - frees memory allocated by a scancode table
 153 * @rc_map:     the table whose mappings need to be freed
 154 *
 155 * This routine will free memory alloctaed for key mappings used by given
 156 * scancode table.
 157 */
 158static void ir_free_table(struct rc_map *rc_map)
 159{
 160        rc_map->size = 0;
 161        kfree(rc_map->name);
 162        kfree(rc_map->scan);
 163        rc_map->scan = NULL;
 164}
 165
 166/**
 167 * ir_resize_table() - resizes a scancode table if necessary
 168 * @rc_map:     the rc_map to resize
 169 * @gfp_flags:  gfp flags to use when allocating memory
 170 * @return:     zero on success or a negative error code
 171 *
 172 * This routine will shrink the rc_map if it has lots of
 173 * unused entries and grow it if it is full.
 174 */
 175static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
 176{
 177        unsigned int oldalloc = rc_map->alloc;
 178        unsigned int newalloc = oldalloc;
 179        struct rc_map_table *oldscan = rc_map->scan;
 180        struct rc_map_table *newscan;
 181
 182        if (rc_map->size == rc_map->len) {
 183                /* All entries in use -> grow keytable */
 184                if (rc_map->alloc >= IR_TAB_MAX_SIZE)
 185                        return -ENOMEM;
 186
 187                newalloc *= 2;
 188                IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
 189        }
 190
 191        if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
 192                /* Less than 1/3 of entries in use -> shrink keytable */
 193                newalloc /= 2;
 194                IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
 195        }
 196
 197        if (newalloc == oldalloc)
 198                return 0;
 199
 200        newscan = kmalloc(newalloc, gfp_flags);
 201        if (!newscan) {
 202                IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
 203                return -ENOMEM;
 204        }
 205
 206        memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
 207        rc_map->scan = newscan;
 208        rc_map->alloc = newalloc;
 209        rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 210        kfree(oldscan);
 211        return 0;
 212}
 213
 214/**
 215 * ir_update_mapping() - set a keycode in the scancode->keycode table
 216 * @dev:        the struct rc_dev device descriptor
 217 * @rc_map:     scancode table to be adjusted
 218 * @index:      index of the mapping that needs to be updated
 219 * @keycode:    the desired keycode
 220 * @return:     previous keycode assigned to the mapping
 221 *
 222 * This routine is used to update scancode->keycode mapping at given
 223 * position.
 224 */
 225static unsigned int ir_update_mapping(struct rc_dev *dev,
 226                                      struct rc_map *rc_map,
 227                                      unsigned int index,
 228                                      unsigned int new_keycode)
 229{
 230        int old_keycode = rc_map->scan[index].keycode;
 231        int i;
 232
 233        /* Did the user wish to remove the mapping? */
 234        if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
 235                IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
 236                           index, rc_map->scan[index].scancode);
 237                rc_map->len--;
 238                memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
 239                        (rc_map->len - index) * sizeof(struct rc_map_table));
 240        } else {
 241                IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
 242                           index,
 243                           old_keycode == KEY_RESERVED ? "New" : "Replacing",
 244                           rc_map->scan[index].scancode, new_keycode);
 245                rc_map->scan[index].keycode = new_keycode;
 246                __set_bit(new_keycode, dev->input_dev->keybit);
 247        }
 248
 249        if (old_keycode != KEY_RESERVED) {
 250                /* A previous mapping was updated... */
 251                __clear_bit(old_keycode, dev->input_dev->keybit);
 252                /* ... but another scancode might use the same keycode */
 253                for (i = 0; i < rc_map->len; i++) {
 254                        if (rc_map->scan[i].keycode == old_keycode) {
 255                                __set_bit(old_keycode, dev->input_dev->keybit);
 256                                break;
 257                        }
 258                }
 259
 260                /* Possibly shrink the keytable, failure is not a problem */
 261                ir_resize_table(rc_map, GFP_ATOMIC);
 262        }
 263
 264        return old_keycode;
 265}
 266
 267/**
 268 * ir_establish_scancode() - set a keycode in the scancode->keycode table
 269 * @dev:        the struct rc_dev device descriptor
 270 * @rc_map:     scancode table to be searched
 271 * @scancode:   the desired scancode
 272 * @resize:     controls whether we allowed to resize the table to
 273 *              accommodate not yet present scancodes
 274 * @return:     index of the mapping containing scancode in question
 275 *              or -1U in case of failure.
 276 *
 277 * This routine is used to locate given scancode in rc_map.
 278 * If scancode is not yet present the routine will allocate a new slot
 279 * for it.
 280 */
 281static unsigned int ir_establish_scancode(struct rc_dev *dev,
 282                                          struct rc_map *rc_map,
 283                                          unsigned int scancode,
 284                                          bool resize)
 285{
 286        unsigned int i;
 287
 288        /*
 289         * Unfortunately, some hardware-based IR decoders don't provide
 290         * all bits for the complete IR code. In general, they provide only
 291         * the command part of the IR code. Yet, as it is possible to replace
 292         * the provided IR with another one, it is needed to allow loading
 293         * IR tables from other remotes. So, we support specifying a mask to
 294         * indicate the valid bits of the scancodes.
 295         */
 296        if (dev->scancode_mask)
 297                scancode &= dev->scancode_mask;
 298
 299        /* First check if we already have a mapping for this ir command */
 300        for (i = 0; i < rc_map->len; i++) {
 301                if (rc_map->scan[i].scancode == scancode)
 302                        return i;
 303
 304                /* Keytable is sorted from lowest to highest scancode */
 305                if (rc_map->scan[i].scancode >= scancode)
 306                        break;
 307        }
 308
 309        /* No previous mapping found, we might need to grow the table */
 310        if (rc_map->size == rc_map->len) {
 311                if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
 312                        return -1U;
 313        }
 314
 315        /* i is the proper index to insert our new keycode */
 316        if (i < rc_map->len)
 317                memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
 318                        (rc_map->len - i) * sizeof(struct rc_map_table));
 319        rc_map->scan[i].scancode = scancode;
 320        rc_map->scan[i].keycode = KEY_RESERVED;
 321        rc_map->len++;
 322
 323        return i;
 324}
 325
 326/**
 327 * ir_setkeycode() - set a keycode in the scancode->keycode table
 328 * @idev:       the struct input_dev device descriptor
 329 * @scancode:   the desired scancode
 330 * @keycode:    result
 331 * @return:     -EINVAL if the keycode could not be inserted, otherwise zero.
 332 *
 333 * This routine is used to handle evdev EVIOCSKEY ioctl.
 334 */
 335static int ir_setkeycode(struct input_dev *idev,
 336                         const struct input_keymap_entry *ke,
 337                         unsigned int *old_keycode)
 338{
 339        struct rc_dev *rdev = input_get_drvdata(idev);
 340        struct rc_map *rc_map = &rdev->rc_map;
 341        unsigned int index;
 342        unsigned int scancode;
 343        int retval = 0;
 344        unsigned long flags;
 345
 346        spin_lock_irqsave(&rc_map->lock, flags);
 347
 348        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 349                index = ke->index;
 350                if (index >= rc_map->len) {
 351                        retval = -EINVAL;
 352                        goto out;
 353                }
 354        } else {
 355                retval = input_scancode_to_scalar(ke, &scancode);
 356                if (retval)
 357                        goto out;
 358
 359                index = ir_establish_scancode(rdev, rc_map, scancode, true);
 360                if (index >= rc_map->len) {
 361                        retval = -ENOMEM;
 362                        goto out;
 363                }
 364        }
 365
 366        *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
 367
 368out:
 369        spin_unlock_irqrestore(&rc_map->lock, flags);
 370        return retval;
 371}
 372
 373/**
 374 * ir_setkeytable() - sets several entries in the scancode->keycode table
 375 * @dev:        the struct rc_dev device descriptor
 376 * @to:         the struct rc_map to copy entries to
 377 * @from:       the struct rc_map to copy entries from
 378 * @return:     -ENOMEM if all keycodes could not be inserted, otherwise zero.
 379 *
 380 * This routine is used to handle table initialization.
 381 */
 382static int ir_setkeytable(struct rc_dev *dev,
 383                          const struct rc_map *from)
 384{
 385        struct rc_map *rc_map = &dev->rc_map;
 386        unsigned int i, index;
 387        int rc;
 388
 389        rc = ir_create_table(rc_map, from->name,
 390                             from->rc_type, from->size);
 391        if (rc)
 392                return rc;
 393
 394        IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
 395                   rc_map->size, rc_map->alloc);
 396
 397        for (i = 0; i < from->size; i++) {
 398                index = ir_establish_scancode(dev, rc_map,
 399                                              from->scan[i].scancode, false);
 400                if (index >= rc_map->len) {
 401                        rc = -ENOMEM;
 402                        break;
 403                }
 404
 405                ir_update_mapping(dev, rc_map, index,
 406                                  from->scan[i].keycode);
 407        }
 408
 409        if (rc)
 410                ir_free_table(rc_map);
 411
 412        return rc;
 413}
 414
 415/**
 416 * ir_lookup_by_scancode() - locate mapping by scancode
 417 * @rc_map:     the struct rc_map to search
 418 * @scancode:   scancode to look for in the table
 419 * @return:     index in the table, -1U if not found
 420 *
 421 * This routine performs binary search in RC keykeymap table for
 422 * given scancode.
 423 */
 424static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
 425                                          unsigned int scancode)
 426{
 427        int start = 0;
 428        int end = rc_map->len - 1;
 429        int mid;
 430
 431        while (start <= end) {
 432                mid = (start + end) / 2;
 433                if (rc_map->scan[mid].scancode < scancode)
 434                        start = mid + 1;
 435                else if (rc_map->scan[mid].scancode > scancode)
 436                        end = mid - 1;
 437                else
 438                        return mid;
 439        }
 440
 441        return -1U;
 442}
 443
 444/**
 445 * ir_getkeycode() - get a keycode from the scancode->keycode table
 446 * @idev:       the struct input_dev device descriptor
 447 * @scancode:   the desired scancode
 448 * @keycode:    used to return the keycode, if found, or KEY_RESERVED
 449 * @return:     always returns zero.
 450 *
 451 * This routine is used to handle evdev EVIOCGKEY ioctl.
 452 */
 453static int ir_getkeycode(struct input_dev *idev,
 454                         struct input_keymap_entry *ke)
 455{
 456        struct rc_dev *rdev = input_get_drvdata(idev);
 457        struct rc_map *rc_map = &rdev->rc_map;
 458        struct rc_map_table *entry;
 459        unsigned long flags;
 460        unsigned int index;
 461        unsigned int scancode;
 462        int retval;
 463
 464        spin_lock_irqsave(&rc_map->lock, flags);
 465
 466        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 467                index = ke->index;
 468        } else {
 469                retval = input_scancode_to_scalar(ke, &scancode);
 470                if (retval)
 471                        goto out;
 472
 473                index = ir_lookup_by_scancode(rc_map, scancode);
 474        }
 475
 476        if (index < rc_map->len) {
 477                entry = &rc_map->scan[index];
 478
 479                ke->index = index;
 480                ke->keycode = entry->keycode;
 481                ke->len = sizeof(entry->scancode);
 482                memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
 483
 484        } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
 485                /*
 486                 * We do not really know the valid range of scancodes
 487                 * so let's respond with KEY_RESERVED to anything we
 488                 * do not have mapping for [yet].
 489                 */
 490                ke->index = index;
 491                ke->keycode = KEY_RESERVED;
 492        } else {
 493                retval = -EINVAL;
 494                goto out;
 495        }
 496
 497        retval = 0;
 498
 499out:
 500        spin_unlock_irqrestore(&rc_map->lock, flags);
 501        return retval;
 502}
 503
 504/**
 505 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
 506 * @dev:        the struct rc_dev descriptor of the device
 507 * @scancode:   the scancode to look for
 508 * @return:     the corresponding keycode, or KEY_RESERVED
 509 *
 510 * This routine is used by drivers which need to convert a scancode to a
 511 * keycode. Normally it should not be used since drivers should have no
 512 * interest in keycodes.
 513 */
 514u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
 515{
 516        struct rc_map *rc_map = &dev->rc_map;
 517        unsigned int keycode;
 518        unsigned int index;
 519        unsigned long flags;
 520
 521        spin_lock_irqsave(&rc_map->lock, flags);
 522
 523        index = ir_lookup_by_scancode(rc_map, scancode);
 524        keycode = index < rc_map->len ?
 525                        rc_map->scan[index].keycode : KEY_RESERVED;
 526
 527        spin_unlock_irqrestore(&rc_map->lock, flags);
 528
 529        if (keycode != KEY_RESERVED)
 530                IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
 531                           dev->input_name, scancode, keycode);
 532
 533        return keycode;
 534}
 535EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
 536
 537/**
 538 * ir_do_keyup() - internal function to signal the release of a keypress
 539 * @dev:        the struct rc_dev descriptor of the device
 540 * @sync:       whether or not to call input_sync
 541 *
 542 * This function is used internally to release a keypress, it must be
 543 * called with keylock held.
 544 */
 545static void ir_do_keyup(struct rc_dev *dev, bool sync)
 546{
 547        if (!dev->keypressed)
 548                return;
 549
 550        IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
 551        input_report_key(dev->input_dev, dev->last_keycode, 0);
 552        led_trigger_event(led_feedback, LED_OFF);
 553        if (sync)
 554                input_sync(dev->input_dev);
 555        dev->keypressed = false;
 556}
 557
 558/**
 559 * rc_keyup() - signals the release of a keypress
 560 * @dev:        the struct rc_dev descriptor of the device
 561 *
 562 * This routine is used to signal that a key has been released on the
 563 * remote control.
 564 */
 565void rc_keyup(struct rc_dev *dev)
 566{
 567        unsigned long flags;
 568
 569        spin_lock_irqsave(&dev->keylock, flags);
 570        ir_do_keyup(dev, true);
 571        spin_unlock_irqrestore(&dev->keylock, flags);
 572}
 573EXPORT_SYMBOL_GPL(rc_keyup);
 574
 575/**
 576 * ir_timer_keyup() - generates a keyup event after a timeout
 577 * @cookie:     a pointer to the struct rc_dev for the device
 578 *
 579 * This routine will generate a keyup event some time after a keydown event
 580 * is generated when no further activity has been detected.
 581 */
 582static void ir_timer_keyup(unsigned long cookie)
 583{
 584        struct rc_dev *dev = (struct rc_dev *)cookie;
 585        unsigned long flags;
 586
 587        /*
 588         * ir->keyup_jiffies is used to prevent a race condition if a
 589         * hardware interrupt occurs at this point and the keyup timer
 590         * event is moved further into the future as a result.
 591         *
 592         * The timer will then be reactivated and this function called
 593         * again in the future. We need to exit gracefully in that case
 594         * to allow the input subsystem to do its auto-repeat magic or
 595         * a keyup event might follow immediately after the keydown.
 596         */
 597        spin_lock_irqsave(&dev->keylock, flags);
 598        if (time_is_before_eq_jiffies(dev->keyup_jiffies))
 599                ir_do_keyup(dev, true);
 600        spin_unlock_irqrestore(&dev->keylock, flags);
 601}
 602
 603/**
 604 * rc_repeat() - signals that a key is still pressed
 605 * @dev:        the struct rc_dev descriptor of the device
 606 *
 607 * This routine is used by IR decoders when a repeat message which does
 608 * not include the necessary bits to reproduce the scancode has been
 609 * received.
 610 */
 611void rc_repeat(struct rc_dev *dev)
 612{
 613        unsigned long flags;
 614
 615        spin_lock_irqsave(&dev->keylock, flags);
 616
 617        input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
 618        input_sync(dev->input_dev);
 619
 620        if (!dev->keypressed)
 621                goto out;
 622
 623        dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
 624        mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 625
 626out:
 627        spin_unlock_irqrestore(&dev->keylock, flags);
 628}
 629EXPORT_SYMBOL_GPL(rc_repeat);
 630
 631/**
 632 * ir_do_keydown() - internal function to process a keypress
 633 * @dev:        the struct rc_dev descriptor of the device
 634 * @protocol:   the protocol of the keypress
 635 * @scancode:   the scancode of the keypress
 636 * @keycode:    the keycode of the keypress
 637 * @toggle:     the toggle value of the keypress
 638 *
 639 * This function is used internally to register a keypress, it must be
 640 * called with keylock held.
 641 */
 642static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
 643                          u32 scancode, u32 keycode, u8 toggle)
 644{
 645        bool new_event = (!dev->keypressed               ||
 646                          dev->last_protocol != protocol ||
 647                          dev->last_scancode != scancode ||
 648                          dev->last_toggle   != toggle);
 649
 650        if (new_event && dev->keypressed)
 651                ir_do_keyup(dev, false);
 652
 653        input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
 654
 655        if (new_event && keycode != KEY_RESERVED) {
 656                /* Register a keypress */
 657                dev->keypressed = true;
 658                dev->last_protocol = protocol;
 659                dev->last_scancode = scancode;
 660                dev->last_toggle = toggle;
 661                dev->last_keycode = keycode;
 662
 663                IR_dprintk(1, "%s: key down event, "
 664                           "key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
 665                           dev->input_name, keycode, protocol, scancode);
 666                input_report_key(dev->input_dev, keycode, 1);
 667
 668                led_trigger_event(led_feedback, LED_FULL);
 669        }
 670
 671        input_sync(dev->input_dev);
 672}
 673
 674/**
 675 * rc_keydown() - generates input event for a key press
 676 * @dev:        the struct rc_dev descriptor of the device
 677 * @protocol:   the protocol for the keypress
 678 * @scancode:   the scancode for the keypress
 679 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 680 *              support toggle values, this should be set to zero)
 681 *
 682 * This routine is used to signal that a key has been pressed on the
 683 * remote control.
 684 */
 685void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
 686{
 687        unsigned long flags;
 688        u32 keycode = rc_g_keycode_from_table(dev, scancode);
 689
 690        spin_lock_irqsave(&dev->keylock, flags);
 691        ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 692
 693        if (dev->keypressed) {
 694                dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
 695                mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 696        }
 697        spin_unlock_irqrestore(&dev->keylock, flags);
 698}
 699EXPORT_SYMBOL_GPL(rc_keydown);
 700
 701/**
 702 * rc_keydown_notimeout() - generates input event for a key press without
 703 *                          an automatic keyup event at a later time
 704 * @dev:        the struct rc_dev descriptor of the device
 705 * @protocol:   the protocol for the keypress
 706 * @scancode:   the scancode for the keypress
 707 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 708 *              support toggle values, this should be set to zero)
 709 *
 710 * This routine is used to signal that a key has been pressed on the
 711 * remote control. The driver must manually call rc_keyup() at a later stage.
 712 */
 713void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
 714                          u32 scancode, u8 toggle)
 715{
 716        unsigned long flags;
 717        u32 keycode = rc_g_keycode_from_table(dev, scancode);
 718
 719        spin_lock_irqsave(&dev->keylock, flags);
 720        ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 721        spin_unlock_irqrestore(&dev->keylock, flags);
 722}
 723EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
 724
 725int rc_open(struct rc_dev *rdev)
 726{
 727        int rval = 0;
 728
 729        if (!rdev)
 730                return -EINVAL;
 731
 732        mutex_lock(&rdev->lock);
 733
 734        if (!rdev->users++ && rdev->open != NULL)
 735                rval = rdev->open(rdev);
 736
 737        if (rval)
 738                rdev->users--;
 739
 740        mutex_unlock(&rdev->lock);
 741
 742        return rval;
 743}
 744EXPORT_SYMBOL_GPL(rc_open);
 745
 746static int ir_open(struct input_dev *idev)
 747{
 748        struct rc_dev *rdev = input_get_drvdata(idev);
 749
 750        return rc_open(rdev);
 751}
 752
 753void rc_close(struct rc_dev *rdev)
 754{
 755        if (rdev) {
 756                mutex_lock(&rdev->lock);
 757
 758                if (!--rdev->users && rdev->close != NULL)
 759                        rdev->close(rdev);
 760
 761                mutex_unlock(&rdev->lock);
 762        }
 763}
 764EXPORT_SYMBOL_GPL(rc_close);
 765
 766static void ir_close(struct input_dev *idev)
 767{
 768        struct rc_dev *rdev = input_get_drvdata(idev);
 769        rc_close(rdev);
 770}
 771
 772/* class for /sys/class/rc */
 773static char *rc_devnode(struct device *dev, umode_t *mode)
 774{
 775        return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
 776}
 777
 778static struct class rc_class = {
 779        .name           = "rc",
 780        .devnode        = rc_devnode,
 781};
 782
 783/*
 784 * These are the protocol textual descriptions that are
 785 * used by the sysfs protocols file. Note that the order
 786 * of the entries is relevant.
 787 */
 788static const struct {
 789        u64     type;
 790        const char      *name;
 791        const char      *module_name;
 792} proto_names[] = {
 793        { RC_BIT_NONE,          "none",         NULL                    },
 794        { RC_BIT_OTHER,         "other",        NULL                    },
 795        { RC_BIT_UNKNOWN,       "unknown",      NULL                    },
 796        { RC_BIT_RC5 |
 797          RC_BIT_RC5X,          "rc-5",         "ir-rc5-decoder"        },
 798        { RC_BIT_NEC |
 799          RC_BIT_NECX |
 800          RC_BIT_NEC32,         "nec",          "ir-nec-decoder"        },
 801        { RC_BIT_RC6_0 |
 802          RC_BIT_RC6_6A_20 |
 803          RC_BIT_RC6_6A_24 |
 804          RC_BIT_RC6_6A_32 |
 805          RC_BIT_RC6_MCE,       "rc-6",         "ir-rc6-decoder"        },
 806        { RC_BIT_JVC,           "jvc",          "ir-jvc-decoder"        },
 807        { RC_BIT_SONY12 |
 808          RC_BIT_SONY15 |
 809          RC_BIT_SONY20,        "sony",         "ir-sony-decoder"       },
 810        { RC_BIT_RC5_SZ,        "rc-5-sz",      "ir-rc5-decoder"        },
 811        { RC_BIT_SANYO,         "sanyo",        "ir-sanyo-decoder"      },
 812        { RC_BIT_SHARP,         "sharp",        "ir-sharp-decoder"      },
 813        { RC_BIT_MCE_KBD,       "mce_kbd",      "ir-mce_kbd-decoder"    },
 814        { RC_BIT_XMP,           "xmp",          "ir-xmp-decoder"        },
 815        { RC_BIT_CEC,           "cec",          NULL                    },
 816};
 817
 818/**
 819 * struct rc_filter_attribute - Device attribute relating to a filter type.
 820 * @attr:       Device attribute.
 821 * @type:       Filter type.
 822 * @mask:       false for filter value, true for filter mask.
 823 */
 824struct rc_filter_attribute {
 825        struct device_attribute         attr;
 826        enum rc_filter_type             type;
 827        bool                            mask;
 828};
 829#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
 830
 831#define RC_PROTO_ATTR(_name, _mode, _show, _store, _type)               \
 832        struct rc_filter_attribute dev_attr_##_name = {                 \
 833                .attr = __ATTR(_name, _mode, _show, _store),            \
 834                .type = (_type),                                        \
 835        }
 836#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)       \
 837        struct rc_filter_attribute dev_attr_##_name = {                 \
 838                .attr = __ATTR(_name, _mode, _show, _store),            \
 839                .type = (_type),                                        \
 840                .mask = (_mask),                                        \
 841        }
 842
 843static bool lirc_is_present(void)
 844{
 845#if defined(CONFIG_LIRC_MODULE)
 846        struct module *lirc;
 847
 848        mutex_lock(&module_mutex);
 849        lirc = find_module("lirc_dev");
 850        mutex_unlock(&module_mutex);
 851
 852        return lirc ? true : false;
 853#elif defined(CONFIG_LIRC)
 854        return true;
 855#else
 856        return false;
 857#endif
 858}
 859
 860/**
 861 * show_protocols() - shows the current/wakeup IR protocol(s)
 862 * @device:     the device descriptor
 863 * @mattr:      the device attribute struct
 864 * @buf:        a pointer to the output buffer
 865 *
 866 * This routine is a callback routine for input read the IR protocol type(s).
 867 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
 868 * It returns the protocol names of supported protocols.
 869 * Enabled protocols are printed in brackets.
 870 *
 871 * dev->lock is taken to guard against races between device
 872 * registration, store_protocols and show_protocols.
 873 */
 874static ssize_t show_protocols(struct device *device,
 875                              struct device_attribute *mattr, char *buf)
 876{
 877        struct rc_dev *dev = to_rc_dev(device);
 878        struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
 879        u64 allowed, enabled;
 880        char *tmp = buf;
 881        int i;
 882
 883        /* Device is being removed */
 884        if (!dev)
 885                return -EINVAL;
 886
 887        if (!atomic_read(&dev->initialized))
 888                return -ERESTARTSYS;
 889
 890        mutex_lock(&dev->lock);
 891
 892        if (fattr->type == RC_FILTER_NORMAL) {
 893                enabled = dev->enabled_protocols;
 894                allowed = dev->allowed_protocols;
 895                if (dev->raw && !allowed)
 896                        allowed = ir_raw_get_allowed_protocols();
 897        } else {
 898                enabled = dev->enabled_wakeup_protocols;
 899                allowed = dev->allowed_wakeup_protocols;
 900        }
 901
 902        mutex_unlock(&dev->lock);
 903
 904        IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
 905                   __func__, (long long)allowed, (long long)enabled);
 906
 907        for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
 908                if (allowed & enabled & proto_names[i].type)
 909                        tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
 910                else if (allowed & proto_names[i].type)
 911                        tmp += sprintf(tmp, "%s ", proto_names[i].name);
 912
 913                if (allowed & proto_names[i].type)
 914                        allowed &= ~proto_names[i].type;
 915        }
 916
 917        if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
 918                tmp += sprintf(tmp, "[lirc] ");
 919
 920        if (tmp != buf)
 921                tmp--;
 922        *tmp = '\n';
 923
 924        return tmp + 1 - buf;
 925}
 926
 927/**
 928 * parse_protocol_change() - parses a protocol change request
 929 * @protocols:  pointer to the bitmask of current protocols
 930 * @buf:        pointer to the buffer with a list of changes
 931 *
 932 * Writing "+proto" will add a protocol to the protocol mask.
 933 * Writing "-proto" will remove a protocol from protocol mask.
 934 * Writing "proto" will enable only "proto".
 935 * Writing "none" will disable all protocols.
 936 * Returns the number of changes performed or a negative error code.
 937 */
 938static int parse_protocol_change(u64 *protocols, const char *buf)
 939{
 940        const char *tmp;
 941        unsigned count = 0;
 942        bool enable, disable;
 943        u64 mask;
 944        int i;
 945
 946        while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
 947                if (!*tmp)
 948                        break;
 949
 950                if (*tmp == '+') {
 951                        enable = true;
 952                        disable = false;
 953                        tmp++;
 954                } else if (*tmp == '-') {
 955                        enable = false;
 956                        disable = true;
 957                        tmp++;
 958                } else {
 959                        enable = false;
 960                        disable = false;
 961                }
 962
 963                for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
 964                        if (!strcasecmp(tmp, proto_names[i].name)) {
 965                                mask = proto_names[i].type;
 966                                break;
 967                        }
 968                }
 969
 970                if (i == ARRAY_SIZE(proto_names)) {
 971                        if (!strcasecmp(tmp, "lirc"))
 972                                mask = 0;
 973                        else {
 974                                IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
 975                                return -EINVAL;
 976                        }
 977                }
 978
 979                count++;
 980
 981                if (enable)
 982                        *protocols |= mask;
 983                else if (disable)
 984                        *protocols &= ~mask;
 985                else
 986                        *protocols = mask;
 987        }
 988
 989        if (!count) {
 990                IR_dprintk(1, "Protocol not specified\n");
 991                return -EINVAL;
 992        }
 993
 994        return count;
 995}
 996
 997static void ir_raw_load_modules(u64 *protocols)
 998
 999{
1000        u64 available;
1001        int i, ret;
1002
1003        for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1004                if (proto_names[i].type == RC_BIT_NONE ||
1005                    proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
1006                        continue;
1007
1008                available = ir_raw_get_allowed_protocols();
1009                if (!(*protocols & proto_names[i].type & ~available))
1010                        continue;
1011
1012                if (!proto_names[i].module_name) {
1013                        pr_err("Can't enable IR protocol %s\n",
1014                               proto_names[i].name);
1015                        *protocols &= ~proto_names[i].type;
1016                        continue;
1017                }
1018
1019                ret = request_module("%s", proto_names[i].module_name);
1020                if (ret < 0) {
1021                        pr_err("Couldn't load IR protocol module %s\n",
1022                               proto_names[i].module_name);
1023                        *protocols &= ~proto_names[i].type;
1024                        continue;
1025                }
1026                msleep(20);
1027                available = ir_raw_get_allowed_protocols();
1028                if (!(*protocols & proto_names[i].type & ~available))
1029                        continue;
1030
1031                pr_err("Loaded IR protocol module %s, \
1032                       but protocol %s still not available\n",
1033                       proto_names[i].module_name,
1034                       proto_names[i].name);
1035                *protocols &= ~proto_names[i].type;
1036        }
1037}
1038
1039/**
1040 * store_protocols() - changes the current/wakeup IR protocol(s)
1041 * @device:     the device descriptor
1042 * @mattr:      the device attribute struct
1043 * @buf:        a pointer to the input buffer
1044 * @len:        length of the input buffer
1045 *
1046 * This routine is for changing the IR protocol type.
1047 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1048 * See parse_protocol_change() for the valid commands.
1049 * Returns @len on success or a negative error code.
1050 *
1051 * dev->lock is taken to guard against races between device
1052 * registration, store_protocols and show_protocols.
1053 */
1054static ssize_t store_protocols(struct device *device,
1055                               struct device_attribute *mattr,
1056                               const char *buf, size_t len)
1057{
1058        struct rc_dev *dev = to_rc_dev(device);
1059        struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
1060        u64 *current_protocols;
1061        int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
1062        struct rc_scancode_filter *filter;
1063        int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1064        u64 old_protocols, new_protocols;
1065        ssize_t rc;
1066
1067        /* Device is being removed */
1068        if (!dev)
1069                return -EINVAL;
1070
1071        if (!atomic_read(&dev->initialized))
1072                return -ERESTARTSYS;
1073
1074        if (fattr->type == RC_FILTER_NORMAL) {
1075                IR_dprintk(1, "Normal protocol change requested\n");
1076                current_protocols = &dev->enabled_protocols;
1077                change_protocol = dev->change_protocol;
1078                filter = &dev->scancode_filter;
1079                set_filter = dev->s_filter;
1080        } else {
1081                IR_dprintk(1, "Wakeup protocol change requested\n");
1082                current_protocols = &dev->enabled_wakeup_protocols;
1083                change_protocol = dev->change_wakeup_protocol;
1084                filter = &dev->scancode_wakeup_filter;
1085                set_filter = dev->s_wakeup_filter;
1086        }
1087
1088        if (!change_protocol) {
1089                IR_dprintk(1, "Protocol switching not supported\n");
1090                return -EINVAL;
1091        }
1092
1093        mutex_lock(&dev->lock);
1094
1095        old_protocols = *current_protocols;
1096        new_protocols = old_protocols;
1097        rc = parse_protocol_change(&new_protocols, buf);
1098        if (rc < 0)
1099                goto out;
1100
1101        rc = change_protocol(dev, &new_protocols);
1102        if (rc < 0) {
1103                IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1104                           (long long)new_protocols);
1105                goto out;
1106        }
1107
1108        if (dev->driver_type == RC_DRIVER_IR_RAW)
1109                ir_raw_load_modules(&new_protocols);
1110
1111        if (new_protocols != old_protocols) {
1112                *current_protocols = new_protocols;
1113                IR_dprintk(1, "Protocols changed to 0x%llx\n",
1114                           (long long)new_protocols);
1115        }
1116
1117        /*
1118         * If a protocol change was attempted the filter may need updating, even
1119         * if the actual protocol mask hasn't changed (since the driver may have
1120         * cleared the filter).
1121         * Try setting the same filter with the new protocol (if any).
1122         * Fall back to clearing the filter.
1123         */
1124        if (set_filter && filter->mask) {
1125                if (new_protocols)
1126                        rc = set_filter(dev, filter);
1127                else
1128                        rc = -1;
1129
1130                if (rc < 0) {
1131                        filter->data = 0;
1132                        filter->mask = 0;
1133                        set_filter(dev, filter);
1134                }
1135        }
1136
1137        rc = len;
1138
1139out:
1140        mutex_unlock(&dev->lock);
1141        return rc;
1142}
1143
1144/**
1145 * show_filter() - shows the current scancode filter value or mask
1146 * @device:     the device descriptor
1147 * @attr:       the device attribute struct
1148 * @buf:        a pointer to the output buffer
1149 *
1150 * This routine is a callback routine to read a scancode filter value or mask.
1151 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1152 * It prints the current scancode filter value or mask of the appropriate filter
1153 * type in hexadecimal into @buf and returns the size of the buffer.
1154 *
1155 * Bits of the filter value corresponding to set bits in the filter mask are
1156 * compared against input scancodes and non-matching scancodes are discarded.
1157 *
1158 * dev->lock is taken to guard against races between device registration,
1159 * store_filter and show_filter.
1160 */
1161static ssize_t show_filter(struct device *device,
1162                           struct device_attribute *attr,
1163                           char *buf)
1164{
1165        struct rc_dev *dev = to_rc_dev(device);
1166        struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1167        struct rc_scancode_filter *filter;
1168        u32 val;
1169
1170        /* Device is being removed */
1171        if (!dev)
1172                return -EINVAL;
1173
1174        if (!atomic_read(&dev->initialized))
1175                return -ERESTARTSYS;
1176
1177        mutex_lock(&dev->lock);
1178
1179        if (fattr->type == RC_FILTER_NORMAL)
1180                filter = &dev->scancode_filter;
1181        else
1182                filter = &dev->scancode_wakeup_filter;
1183
1184        if (fattr->mask)
1185                val = filter->mask;
1186        else
1187                val = filter->data;
1188        mutex_unlock(&dev->lock);
1189
1190        return sprintf(buf, "%#x\n", val);
1191}
1192
1193/**
1194 * store_filter() - changes the scancode filter value
1195 * @device:     the device descriptor
1196 * @attr:       the device attribute struct
1197 * @buf:        a pointer to the input buffer
1198 * @len:        length of the input buffer
1199 *
1200 * This routine is for changing a scancode filter value or mask.
1201 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1202 * Returns -EINVAL if an invalid filter value for the current protocol was
1203 * specified or if scancode filtering is not supported by the driver, otherwise
1204 * returns @len.
1205 *
1206 * Bits of the filter value corresponding to set bits in the filter mask are
1207 * compared against input scancodes and non-matching scancodes are discarded.
1208 *
1209 * dev->lock is taken to guard against races between device registration,
1210 * store_filter and show_filter.
1211 */
1212static ssize_t store_filter(struct device *device,
1213                            struct device_attribute *attr,
1214                            const char *buf, size_t len)
1215{
1216        struct rc_dev *dev = to_rc_dev(device);
1217        struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1218        struct rc_scancode_filter new_filter, *filter;
1219        int ret;
1220        unsigned long val;
1221        int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1222        u64 *enabled_protocols;
1223
1224        /* Device is being removed */
1225        if (!dev)
1226                return -EINVAL;
1227
1228        if (!atomic_read(&dev->initialized))
1229                return -ERESTARTSYS;
1230
1231        ret = kstrtoul(buf, 0, &val);
1232        if (ret < 0)
1233                return ret;
1234
1235        if (fattr->type == RC_FILTER_NORMAL) {
1236                set_filter = dev->s_filter;
1237                enabled_protocols = &dev->enabled_protocols;
1238                filter = &dev->scancode_filter;
1239        } else {
1240                set_filter = dev->s_wakeup_filter;
1241                enabled_protocols = &dev->enabled_wakeup_protocols;
1242                filter = &dev->scancode_wakeup_filter;
1243        }
1244
1245        if (!set_filter)
1246                return -EINVAL;
1247
1248        mutex_lock(&dev->lock);
1249
1250        new_filter = *filter;
1251        if (fattr->mask)
1252                new_filter.mask = val;
1253        else
1254                new_filter.data = val;
1255
1256        if (!*enabled_protocols && val) {
1257                /* refuse to set a filter unless a protocol is enabled */
1258                ret = -EINVAL;
1259                goto unlock;
1260        }
1261
1262        ret = set_filter(dev, &new_filter);
1263        if (ret < 0)
1264                goto unlock;
1265
1266        *filter = new_filter;
1267
1268unlock:
1269        mutex_unlock(&dev->lock);
1270        return (ret < 0) ? ret : len;
1271}
1272
1273static void rc_dev_release(struct device *device)
1274{
1275        struct rc_dev *dev = to_rc_dev(device);
1276
1277        kfree(dev);
1278}
1279
1280#define ADD_HOTPLUG_VAR(fmt, val...)                                    \
1281        do {                                                            \
1282                int err = add_uevent_var(env, fmt, val);                \
1283                if (err)                                                \
1284                        return err;                                     \
1285        } while (0)
1286
1287static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1288{
1289        struct rc_dev *dev = to_rc_dev(device);
1290
1291        if (dev->rc_map.name)
1292                ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1293        if (dev->driver_name)
1294                ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1295
1296        return 0;
1297}
1298
1299/*
1300 * Static device attribute struct with the sysfs attributes for IR's
1301 */
1302static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
1303                     show_protocols, store_protocols, RC_FILTER_NORMAL);
1304static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
1305                     show_protocols, store_protocols, RC_FILTER_WAKEUP);
1306static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1307                      show_filter, store_filter, RC_FILTER_NORMAL, false);
1308static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1309                      show_filter, store_filter, RC_FILTER_NORMAL, true);
1310static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1311                      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1312static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1313                      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1314
1315static struct attribute *rc_dev_protocol_attrs[] = {
1316        &dev_attr_protocols.attr.attr,
1317        NULL,
1318};
1319
1320static struct attribute_group rc_dev_protocol_attr_grp = {
1321        .attrs  = rc_dev_protocol_attrs,
1322};
1323
1324static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1325        &dev_attr_wakeup_protocols.attr.attr,
1326        NULL,
1327};
1328
1329static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
1330        .attrs  = rc_dev_wakeup_protocol_attrs,
1331};
1332
1333static struct attribute *rc_dev_filter_attrs[] = {
1334        &dev_attr_filter.attr.attr,
1335        &dev_attr_filter_mask.attr.attr,
1336        NULL,
1337};
1338
1339static struct attribute_group rc_dev_filter_attr_grp = {
1340        .attrs  = rc_dev_filter_attrs,
1341};
1342
1343static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1344        &dev_attr_wakeup_filter.attr.attr,
1345        &dev_attr_wakeup_filter_mask.attr.attr,
1346        NULL,
1347};
1348
1349static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1350        .attrs  = rc_dev_wakeup_filter_attrs,
1351};
1352
1353static struct device_type rc_dev_type = {
1354        .release        = rc_dev_release,
1355        .uevent         = rc_dev_uevent,
1356};
1357
1358struct rc_dev *rc_allocate_device(void)
1359{
1360        struct rc_dev *dev;
1361
1362        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1363        if (!dev)
1364                return NULL;
1365
1366        dev->input_dev = input_allocate_device();
1367        if (!dev->input_dev) {
1368                kfree(dev);
1369                return NULL;
1370        }
1371
1372        dev->input_dev->getkeycode = ir_getkeycode;
1373        dev->input_dev->setkeycode = ir_setkeycode;
1374        input_set_drvdata(dev->input_dev, dev);
1375
1376        spin_lock_init(&dev->rc_map.lock);
1377        spin_lock_init(&dev->keylock);
1378        mutex_init(&dev->lock);
1379        setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1380
1381        dev->dev.type = &rc_dev_type;
1382        dev->dev.class = &rc_class;
1383        device_initialize(&dev->dev);
1384
1385        __module_get(THIS_MODULE);
1386        return dev;
1387}
1388EXPORT_SYMBOL_GPL(rc_allocate_device);
1389
1390void rc_free_device(struct rc_dev *dev)
1391{
1392        if (!dev)
1393                return;
1394
1395        input_free_device(dev->input_dev);
1396
1397        put_device(&dev->dev);
1398
1399        /* kfree(dev) will be called by the callback function
1400           rc_dev_release() */
1401
1402        module_put(THIS_MODULE);
1403}
1404EXPORT_SYMBOL_GPL(rc_free_device);
1405
1406int rc_register_device(struct rc_dev *dev)
1407{
1408        static bool raw_init = false; /* raw decoders loaded? */
1409        struct rc_map *rc_map;
1410        const char *path;
1411        int attr = 0;
1412        int minor;
1413        int rc;
1414
1415        if (!dev || !dev->map_name)
1416                return -EINVAL;
1417
1418        rc_map = rc_map_get(dev->map_name);
1419        if (!rc_map)
1420                rc_map = rc_map_get(RC_MAP_EMPTY);
1421        if (!rc_map || !rc_map->scan || rc_map->size == 0)
1422                return -EINVAL;
1423
1424        set_bit(EV_KEY, dev->input_dev->evbit);
1425        set_bit(EV_REP, dev->input_dev->evbit);
1426        set_bit(EV_MSC, dev->input_dev->evbit);
1427        set_bit(MSC_SCAN, dev->input_dev->mscbit);
1428        if (dev->open)
1429                dev->input_dev->open = ir_open;
1430        if (dev->close)
1431                dev->input_dev->close = ir_close;
1432
1433        minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1434        if (minor < 0)
1435                return minor;
1436
1437        dev->minor = minor;
1438        dev_set_name(&dev->dev, "rc%u", dev->minor);
1439        dev_set_drvdata(&dev->dev, dev);
1440        atomic_set(&dev->initialized, 0);
1441
1442        dev->dev.groups = dev->sysfs_groups;
1443        dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1444        if (dev->s_filter)
1445                dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1446        if (dev->s_wakeup_filter)
1447                dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1448        if (dev->change_wakeup_protocol)
1449                dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
1450        dev->sysfs_groups[attr++] = NULL;
1451
1452        rc = device_add(&dev->dev);
1453        if (rc)
1454                goto out_unlock;
1455
1456        rc = ir_setkeytable(dev, rc_map);
1457        if (rc)
1458                goto out_dev;
1459
1460        dev->input_dev->dev.parent = &dev->dev;
1461        memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1462        dev->input_dev->phys = dev->input_phys;
1463        dev->input_dev->name = dev->input_name;
1464
1465        rc = input_register_device(dev->input_dev);
1466        if (rc)
1467                goto out_table;
1468
1469        /*
1470         * Default delay of 250ms is too short for some protocols, especially
1471         * since the timeout is currently set to 250ms. Increase it to 500ms,
1472         * to avoid wrong repetition of the keycodes. Note that this must be
1473         * set after the call to input_register_device().
1474         */
1475        dev->input_dev->rep[REP_DELAY] = 500;
1476
1477        /*
1478         * As a repeat event on protocols like RC-5 and NEC take as long as
1479         * 110/114ms, using 33ms as a repeat period is not the right thing
1480         * to do.
1481         */
1482        dev->input_dev->rep[REP_PERIOD] = 125;
1483
1484        path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1485        dev_info(&dev->dev, "%s as %s\n",
1486                dev->input_name ?: "Unspecified device", path ?: "N/A");
1487        kfree(path);
1488
1489        if (dev->driver_type == RC_DRIVER_IR_RAW) {
1490                if (!raw_init) {
1491                        request_module_nowait("ir-lirc-codec");
1492                        raw_init = true;
1493                }
1494                rc = ir_raw_event_register(dev);
1495                if (rc < 0)
1496                        goto out_input;
1497        }
1498
1499        if (dev->change_protocol) {
1500                u64 rc_type = (1ll << rc_map->rc_type);
1501                rc = dev->change_protocol(dev, &rc_type);
1502                if (rc < 0)
1503                        goto out_raw;
1504                dev->enabled_protocols = rc_type;
1505        }
1506
1507        /* Allow the RC sysfs nodes to be accessible */
1508        atomic_set(&dev->initialized, 1);
1509
1510        IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n",
1511                   dev->minor,
1512                   dev->driver_name ? dev->driver_name : "unknown",
1513                   rc_map->name ? rc_map->name : "unknown",
1514                   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1515
1516        return 0;
1517
1518out_raw:
1519        if (dev->driver_type == RC_DRIVER_IR_RAW)
1520                ir_raw_event_unregister(dev);
1521out_input:
1522        input_unregister_device(dev->input_dev);
1523        dev->input_dev = NULL;
1524out_table:
1525        ir_free_table(&dev->rc_map);
1526out_dev:
1527        device_del(&dev->dev);
1528out_unlock:
1529        ida_simple_remove(&rc_ida, minor);
1530        return rc;
1531}
1532EXPORT_SYMBOL_GPL(rc_register_device);
1533
1534void rc_unregister_device(struct rc_dev *dev)
1535{
1536        if (!dev)
1537                return;
1538
1539        del_timer_sync(&dev->timer_keyup);
1540
1541        if (dev->driver_type == RC_DRIVER_IR_RAW)
1542                ir_raw_event_unregister(dev);
1543
1544        /* Freeing the table should also call the stop callback */
1545        ir_free_table(&dev->rc_map);
1546        IR_dprintk(1, "Freed keycode table\n");
1547
1548        input_unregister_device(dev->input_dev);
1549        dev->input_dev = NULL;
1550
1551        device_del(&dev->dev);
1552
1553        ida_simple_remove(&rc_ida, dev->minor);
1554
1555        rc_free_device(dev);
1556}
1557
1558EXPORT_SYMBOL_GPL(rc_unregister_device);
1559
1560/*
1561 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1562 */
1563
1564static int __init rc_core_init(void)
1565{
1566        int rc = class_register(&rc_class);
1567        if (rc) {
1568                printk(KERN_ERR "rc_core: unable to register rc class\n");
1569                return rc;
1570        }
1571
1572        led_trigger_register_simple("rc-feedback", &led_feedback);
1573        rc_map_register(&empty_map);
1574
1575        return 0;
1576}
1577
1578static void __exit rc_core_exit(void)
1579{
1580        class_unregister(&rc_class);
1581        led_trigger_unregister_simple(led_feedback);
1582        rc_map_unregister(&empty_map);
1583}
1584
1585subsys_initcall(rc_core_init);
1586module_exit(rc_core_exit);
1587
1588int rc_core_debug;    /* ir_debug level (0,1,2) */
1589EXPORT_SYMBOL_GPL(rc_core_debug);
1590module_param_named(debug, rc_core_debug, int, 0644);
1591
1592MODULE_AUTHOR("Mauro Carvalho Chehab");
1593MODULE_LICENSE("GPL");
1594