linux/drivers/misc/vmw_vmci/vmci_queue_pair.c
<<
>>
Prefs
   1/*
   2 * VMware VMCI Driver
   3 *
   4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the
   8 * Free Software Foundation version 2 and no later version.
   9 *
  10 * This program is distributed in the hope that it will be useful, but
  11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  12 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13 * for more details.
  14 */
  15
  16#include <linux/vmw_vmci_defs.h>
  17#include <linux/vmw_vmci_api.h>
  18#include <linux/highmem.h>
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/module.h>
  22#include <linux/mutex.h>
  23#include <linux/pagemap.h>
  24#include <linux/pci.h>
  25#include <linux/sched.h>
  26#include <linux/slab.h>
  27#include <linux/uio.h>
  28#include <linux/wait.h>
  29#include <linux/vmalloc.h>
  30#include <linux/skbuff.h>
  31
  32#include "vmci_handle_array.h"
  33#include "vmci_queue_pair.h"
  34#include "vmci_datagram.h"
  35#include "vmci_resource.h"
  36#include "vmci_context.h"
  37#include "vmci_driver.h"
  38#include "vmci_event.h"
  39#include "vmci_route.h"
  40
  41/*
  42 * In the following, we will distinguish between two kinds of VMX processes -
  43 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
  44 * VMCI page files in the VMX and supporting VM to VM communication and the
  45 * newer ones that use the guest memory directly. We will in the following
  46 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
  47 * new-style VMX'en.
  48 *
  49 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
  50 * removed for readability) - see below for more details on the transtions:
  51 *
  52 *            --------------  NEW  -------------
  53 *            |                                |
  54 *           \_/                              \_/
  55 *     CREATED_NO_MEM <-----------------> CREATED_MEM
  56 *            |    |                           |
  57 *            |    o-----------------------o   |
  58 *            |                            |   |
  59 *           \_/                          \_/ \_/
  60 *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
  61 *            |                            |   |
  62 *            |     o----------------------o   |
  63 *            |     |                          |
  64 *           \_/   \_/                        \_/
  65 *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
  66 *            |                                |
  67 *            |                                |
  68 *            -------------> gone <-------------
  69 *
  70 * In more detail. When a VMCI queue pair is first created, it will be in the
  71 * VMCIQPB_NEW state. It will then move into one of the following states:
  72 *
  73 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
  74 *
  75 *     - the created was performed by a host endpoint, in which case there is
  76 *       no backing memory yet.
  77 *
  78 *     - the create was initiated by an old-style VMX, that uses
  79 *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
  80 *       a later point in time. This state can be distinguished from the one
  81 *       above by the context ID of the creator. A host side is not allowed to
  82 *       attach until the page store has been set.
  83 *
  84 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
  85 *     is created by a VMX using the queue pair device backend that
  86 *     sets the UVAs of the queue pair immediately and stores the
  87 *     information for later attachers. At this point, it is ready for
  88 *     the host side to attach to it.
  89 *
  90 * Once the queue pair is in one of the created states (with the exception of
  91 * the case mentioned for older VMX'en above), it is possible to attach to the
  92 * queue pair. Again we have two new states possible:
  93 *
  94 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
  95 *   paths:
  96 *
  97 *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
  98 *       pair, and attaches to a queue pair previously created by the host side.
  99 *
 100 *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
 101 *       already created by a guest.
 102 *
 103 *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
 104 *       vmci_qp_broker_set_page_store (see below).
 105 *
 106 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
 107 *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
 108 *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
 109 *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
 110 *     will be entered.
 111 *
 112 * From the attached queue pair, the queue pair can enter the shutdown states
 113 * when either side of the queue pair detaches. If the guest side detaches
 114 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
 115 * the content of the queue pair will no longer be available. If the host
 116 * side detaches first, the queue pair will either enter the
 117 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
 118 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
 119 * (e.g., the host detaches while a guest is stunned).
 120 *
 121 * New-style VMX'en will also unmap guest memory, if the guest is
 122 * quiesced, e.g., during a snapshot operation. In that case, the guest
 123 * memory will no longer be available, and the queue pair will transition from
 124 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
 125 * in which case the queue pair will transition from the *_NO_MEM state at that
 126 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
 127 * since the peer may have either attached or detached in the meantime. The
 128 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
 129 * *_MEM state, and vice versa.
 130 */
 131
 132/*
 133 * VMCIMemcpy{To,From}QueueFunc() prototypes.  Functions of these
 134 * types are passed around to enqueue and dequeue routines.  Note that
 135 * often the functions passed are simply wrappers around memcpy
 136 * itself.
 137 *
 138 * Note: In order for the memcpy typedefs to be compatible with the VMKernel,
 139 * there's an unused last parameter for the hosted side.  In
 140 * ESX, that parameter holds a buffer type.
 141 */
 142typedef int vmci_memcpy_to_queue_func(struct vmci_queue *queue,
 143                                      u64 queue_offset, const void *src,
 144                                      size_t src_offset, size_t size);
 145typedef int vmci_memcpy_from_queue_func(void *dest, size_t dest_offset,
 146                                        const struct vmci_queue *queue,
 147                                        u64 queue_offset, size_t size);
 148
 149/* The Kernel specific component of the struct vmci_queue structure. */
 150struct vmci_queue_kern_if {
 151        struct mutex __mutex;   /* Protects the queue. */
 152        struct mutex *mutex;    /* Shared by producer and consumer queues. */
 153        size_t num_pages;       /* Number of pages incl. header. */
 154        bool host;              /* Host or guest? */
 155        union {
 156                struct {
 157                        dma_addr_t *pas;
 158                        void **vas;
 159                } g;            /* Used by the guest. */
 160                struct {
 161                        struct page **page;
 162                        struct page **header_page;
 163                } h;            /* Used by the host. */
 164        } u;
 165};
 166
 167/*
 168 * This structure is opaque to the clients.
 169 */
 170struct vmci_qp {
 171        struct vmci_handle handle;
 172        struct vmci_queue *produce_q;
 173        struct vmci_queue *consume_q;
 174        u64 produce_q_size;
 175        u64 consume_q_size;
 176        u32 peer;
 177        u32 flags;
 178        u32 priv_flags;
 179        bool guest_endpoint;
 180        unsigned int blocked;
 181        unsigned int generation;
 182        wait_queue_head_t event;
 183};
 184
 185enum qp_broker_state {
 186        VMCIQPB_NEW,
 187        VMCIQPB_CREATED_NO_MEM,
 188        VMCIQPB_CREATED_MEM,
 189        VMCIQPB_ATTACHED_NO_MEM,
 190        VMCIQPB_ATTACHED_MEM,
 191        VMCIQPB_SHUTDOWN_NO_MEM,
 192        VMCIQPB_SHUTDOWN_MEM,
 193        VMCIQPB_GONE
 194};
 195
 196#define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
 197                                     _qpb->state == VMCIQPB_ATTACHED_MEM || \
 198                                     _qpb->state == VMCIQPB_SHUTDOWN_MEM)
 199
 200/*
 201 * In the queue pair broker, we always use the guest point of view for
 202 * the produce and consume queue values and references, e.g., the
 203 * produce queue size stored is the guests produce queue size. The
 204 * host endpoint will need to swap these around. The only exception is
 205 * the local queue pairs on the host, in which case the host endpoint
 206 * that creates the queue pair will have the right orientation, and
 207 * the attaching host endpoint will need to swap.
 208 */
 209struct qp_entry {
 210        struct list_head list_item;
 211        struct vmci_handle handle;
 212        u32 peer;
 213        u32 flags;
 214        u64 produce_size;
 215        u64 consume_size;
 216        u32 ref_count;
 217};
 218
 219struct qp_broker_entry {
 220        struct vmci_resource resource;
 221        struct qp_entry qp;
 222        u32 create_id;
 223        u32 attach_id;
 224        enum qp_broker_state state;
 225        bool require_trusted_attach;
 226        bool created_by_trusted;
 227        bool vmci_page_files;   /* Created by VMX using VMCI page files */
 228        struct vmci_queue *produce_q;
 229        struct vmci_queue *consume_q;
 230        struct vmci_queue_header saved_produce_q;
 231        struct vmci_queue_header saved_consume_q;
 232        vmci_event_release_cb wakeup_cb;
 233        void *client_data;
 234        void *local_mem;        /* Kernel memory for local queue pair */
 235};
 236
 237struct qp_guest_endpoint {
 238        struct vmci_resource resource;
 239        struct qp_entry qp;
 240        u64 num_ppns;
 241        void *produce_q;
 242        void *consume_q;
 243        struct ppn_set ppn_set;
 244};
 245
 246struct qp_list {
 247        struct list_head head;
 248        struct mutex mutex;     /* Protect queue list. */
 249};
 250
 251static struct qp_list qp_broker_list = {
 252        .head = LIST_HEAD_INIT(qp_broker_list.head),
 253        .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
 254};
 255
 256static struct qp_list qp_guest_endpoints = {
 257        .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
 258        .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
 259};
 260
 261#define INVALID_VMCI_GUEST_MEM_ID  0
 262#define QPE_NUM_PAGES(_QPE) ((u32) \
 263                             (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
 264                              DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
 265
 266
 267/*
 268 * Frees kernel VA space for a given queue and its queue header, and
 269 * frees physical data pages.
 270 */
 271static void qp_free_queue(void *q, u64 size)
 272{
 273        struct vmci_queue *queue = q;
 274
 275        if (queue) {
 276                u64 i;
 277
 278                /* Given size does not include header, so add in a page here. */
 279                for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
 280                        dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
 281                                          queue->kernel_if->u.g.vas[i],
 282                                          queue->kernel_if->u.g.pas[i]);
 283                }
 284
 285                vfree(queue);
 286        }
 287}
 288
 289/*
 290 * Allocates kernel queue pages of specified size with IOMMU mappings,
 291 * plus space for the queue structure/kernel interface and the queue
 292 * header.
 293 */
 294static void *qp_alloc_queue(u64 size, u32 flags)
 295{
 296        u64 i;
 297        struct vmci_queue *queue;
 298        size_t pas_size;
 299        size_t vas_size;
 300        size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
 301        const u64 num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
 302
 303        if (num_pages >
 304                 (SIZE_MAX - queue_size) /
 305                 (sizeof(*queue->kernel_if->u.g.pas) +
 306                  sizeof(*queue->kernel_if->u.g.vas)))
 307                return NULL;
 308
 309        pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
 310        vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
 311        queue_size += pas_size + vas_size;
 312
 313        queue = vmalloc(queue_size);
 314        if (!queue)
 315                return NULL;
 316
 317        queue->q_header = NULL;
 318        queue->saved_header = NULL;
 319        queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
 320        queue->kernel_if->mutex = NULL;
 321        queue->kernel_if->num_pages = num_pages;
 322        queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
 323        queue->kernel_if->u.g.vas =
 324                (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
 325        queue->kernel_if->host = false;
 326
 327        for (i = 0; i < num_pages; i++) {
 328                queue->kernel_if->u.g.vas[i] =
 329                        dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
 330                                           &queue->kernel_if->u.g.pas[i],
 331                                           GFP_KERNEL);
 332                if (!queue->kernel_if->u.g.vas[i]) {
 333                        /* Size excl. the header. */
 334                        qp_free_queue(queue, i * PAGE_SIZE);
 335                        return NULL;
 336                }
 337        }
 338
 339        /* Queue header is the first page. */
 340        queue->q_header = queue->kernel_if->u.g.vas[0];
 341
 342        return queue;
 343}
 344
 345/*
 346 * Copies from a given buffer or iovector to a VMCI Queue.  Uses
 347 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
 348 * by traversing the offset -> page translation structure for the queue.
 349 * Assumes that offset + size does not wrap around in the queue.
 350 */
 351static int __qp_memcpy_to_queue(struct vmci_queue *queue,
 352                                u64 queue_offset,
 353                                const void *src,
 354                                size_t size,
 355                                bool is_iovec)
 356{
 357        struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
 358        size_t bytes_copied = 0;
 359
 360        while (bytes_copied < size) {
 361                const u64 page_index =
 362                        (queue_offset + bytes_copied) / PAGE_SIZE;
 363                const size_t page_offset =
 364                    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
 365                void *va;
 366                size_t to_copy;
 367
 368                if (kernel_if->host)
 369                        va = kmap(kernel_if->u.h.page[page_index]);
 370                else
 371                        va = kernel_if->u.g.vas[page_index + 1];
 372                        /* Skip header. */
 373
 374                if (size - bytes_copied > PAGE_SIZE - page_offset)
 375                        /* Enough payload to fill up from this page. */
 376                        to_copy = PAGE_SIZE - page_offset;
 377                else
 378                        to_copy = size - bytes_copied;
 379
 380                if (is_iovec) {
 381                        struct msghdr *msg = (struct msghdr *)src;
 382                        int err;
 383
 384                        /* The iovec will track bytes_copied internally. */
 385                        err = memcpy_from_msg((u8 *)va + page_offset,
 386                                              msg, to_copy);
 387                        if (err != 0) {
 388                                if (kernel_if->host)
 389                                        kunmap(kernel_if->u.h.page[page_index]);
 390                                return VMCI_ERROR_INVALID_ARGS;
 391                        }
 392                } else {
 393                        memcpy((u8 *)va + page_offset,
 394                               (u8 *)src + bytes_copied, to_copy);
 395                }
 396
 397                bytes_copied += to_copy;
 398                if (kernel_if->host)
 399                        kunmap(kernel_if->u.h.page[page_index]);
 400        }
 401
 402        return VMCI_SUCCESS;
 403}
 404
 405/*
 406 * Copies to a given buffer or iovector from a VMCI Queue.  Uses
 407 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
 408 * by traversing the offset -> page translation structure for the queue.
 409 * Assumes that offset + size does not wrap around in the queue.
 410 */
 411static int __qp_memcpy_from_queue(void *dest,
 412                                  const struct vmci_queue *queue,
 413                                  u64 queue_offset,
 414                                  size_t size,
 415                                  bool is_iovec)
 416{
 417        struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
 418        size_t bytes_copied = 0;
 419
 420        while (bytes_copied < size) {
 421                const u64 page_index =
 422                        (queue_offset + bytes_copied) / PAGE_SIZE;
 423                const size_t page_offset =
 424                    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
 425                void *va;
 426                size_t to_copy;
 427
 428                if (kernel_if->host)
 429                        va = kmap(kernel_if->u.h.page[page_index]);
 430                else
 431                        va = kernel_if->u.g.vas[page_index + 1];
 432                        /* Skip header. */
 433
 434                if (size - bytes_copied > PAGE_SIZE - page_offset)
 435                        /* Enough payload to fill up this page. */
 436                        to_copy = PAGE_SIZE - page_offset;
 437                else
 438                        to_copy = size - bytes_copied;
 439
 440                if (is_iovec) {
 441                        struct msghdr *msg = dest;
 442                        int err;
 443
 444                        /* The iovec will track bytes_copied internally. */
 445                        err = memcpy_to_msg(msg, (u8 *)va + page_offset,
 446                                             to_copy);
 447                        if (err != 0) {
 448                                if (kernel_if->host)
 449                                        kunmap(kernel_if->u.h.page[page_index]);
 450                                return VMCI_ERROR_INVALID_ARGS;
 451                        }
 452                } else {
 453                        memcpy((u8 *)dest + bytes_copied,
 454                               (u8 *)va + page_offset, to_copy);
 455                }
 456
 457                bytes_copied += to_copy;
 458                if (kernel_if->host)
 459                        kunmap(kernel_if->u.h.page[page_index]);
 460        }
 461
 462        return VMCI_SUCCESS;
 463}
 464
 465/*
 466 * Allocates two list of PPNs --- one for the pages in the produce queue,
 467 * and the other for the pages in the consume queue. Intializes the list
 468 * of PPNs with the page frame numbers of the KVA for the two queues (and
 469 * the queue headers).
 470 */
 471static int qp_alloc_ppn_set(void *prod_q,
 472                            u64 num_produce_pages,
 473                            void *cons_q,
 474                            u64 num_consume_pages, struct ppn_set *ppn_set)
 475{
 476        u32 *produce_ppns;
 477        u32 *consume_ppns;
 478        struct vmci_queue *produce_q = prod_q;
 479        struct vmci_queue *consume_q = cons_q;
 480        u64 i;
 481
 482        if (!produce_q || !num_produce_pages || !consume_q ||
 483            !num_consume_pages || !ppn_set)
 484                return VMCI_ERROR_INVALID_ARGS;
 485
 486        if (ppn_set->initialized)
 487                return VMCI_ERROR_ALREADY_EXISTS;
 488
 489        produce_ppns =
 490            kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
 491        if (!produce_ppns)
 492                return VMCI_ERROR_NO_MEM;
 493
 494        consume_ppns =
 495            kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
 496        if (!consume_ppns) {
 497                kfree(produce_ppns);
 498                return VMCI_ERROR_NO_MEM;
 499        }
 500
 501        for (i = 0; i < num_produce_pages; i++) {
 502                unsigned long pfn;
 503
 504                produce_ppns[i] =
 505                        produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
 506                pfn = produce_ppns[i];
 507
 508                /* Fail allocation if PFN isn't supported by hypervisor. */
 509                if (sizeof(pfn) > sizeof(*produce_ppns)
 510                    && pfn != produce_ppns[i])
 511                        goto ppn_error;
 512        }
 513
 514        for (i = 0; i < num_consume_pages; i++) {
 515                unsigned long pfn;
 516
 517                consume_ppns[i] =
 518                        consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
 519                pfn = consume_ppns[i];
 520
 521                /* Fail allocation if PFN isn't supported by hypervisor. */
 522                if (sizeof(pfn) > sizeof(*consume_ppns)
 523                    && pfn != consume_ppns[i])
 524                        goto ppn_error;
 525        }
 526
 527        ppn_set->num_produce_pages = num_produce_pages;
 528        ppn_set->num_consume_pages = num_consume_pages;
 529        ppn_set->produce_ppns = produce_ppns;
 530        ppn_set->consume_ppns = consume_ppns;
 531        ppn_set->initialized = true;
 532        return VMCI_SUCCESS;
 533
 534 ppn_error:
 535        kfree(produce_ppns);
 536        kfree(consume_ppns);
 537        return VMCI_ERROR_INVALID_ARGS;
 538}
 539
 540/*
 541 * Frees the two list of PPNs for a queue pair.
 542 */
 543static void qp_free_ppn_set(struct ppn_set *ppn_set)
 544{
 545        if (ppn_set->initialized) {
 546                /* Do not call these functions on NULL inputs. */
 547                kfree(ppn_set->produce_ppns);
 548                kfree(ppn_set->consume_ppns);
 549        }
 550        memset(ppn_set, 0, sizeof(*ppn_set));
 551}
 552
 553/*
 554 * Populates the list of PPNs in the hypercall structure with the PPNS
 555 * of the produce queue and the consume queue.
 556 */
 557static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
 558{
 559        memcpy(call_buf, ppn_set->produce_ppns,
 560               ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
 561        memcpy(call_buf +
 562               ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
 563               ppn_set->consume_ppns,
 564               ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
 565
 566        return VMCI_SUCCESS;
 567}
 568
 569static int qp_memcpy_to_queue(struct vmci_queue *queue,
 570                              u64 queue_offset,
 571                              const void *src, size_t src_offset, size_t size)
 572{
 573        return __qp_memcpy_to_queue(queue, queue_offset,
 574                                    (u8 *)src + src_offset, size, false);
 575}
 576
 577static int qp_memcpy_from_queue(void *dest,
 578                                size_t dest_offset,
 579                                const struct vmci_queue *queue,
 580                                u64 queue_offset, size_t size)
 581{
 582        return __qp_memcpy_from_queue((u8 *)dest + dest_offset,
 583                                      queue, queue_offset, size, false);
 584}
 585
 586/*
 587 * Copies from a given iovec from a VMCI Queue.
 588 */
 589static int qp_memcpy_to_queue_iov(struct vmci_queue *queue,
 590                                  u64 queue_offset,
 591                                  const void *msg,
 592                                  size_t src_offset, size_t size)
 593{
 594
 595        /*
 596         * We ignore src_offset because src is really a struct iovec * and will
 597         * maintain offset internally.
 598         */
 599        return __qp_memcpy_to_queue(queue, queue_offset, msg, size, true);
 600}
 601
 602/*
 603 * Copies to a given iovec from a VMCI Queue.
 604 */
 605static int qp_memcpy_from_queue_iov(void *dest,
 606                                    size_t dest_offset,
 607                                    const struct vmci_queue *queue,
 608                                    u64 queue_offset, size_t size)
 609{
 610        /*
 611         * We ignore dest_offset because dest is really a struct iovec * and
 612         * will maintain offset internally.
 613         */
 614        return __qp_memcpy_from_queue(dest, queue, queue_offset, size, true);
 615}
 616
 617/*
 618 * Allocates kernel VA space of specified size plus space for the queue
 619 * and kernel interface.  This is different from the guest queue allocator,
 620 * because we do not allocate our own queue header/data pages here but
 621 * share those of the guest.
 622 */
 623static struct vmci_queue *qp_host_alloc_queue(u64 size)
 624{
 625        struct vmci_queue *queue;
 626        size_t queue_page_size;
 627        const u64 num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
 628        const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
 629
 630        if (num_pages > (SIZE_MAX - queue_size) /
 631                 sizeof(*queue->kernel_if->u.h.page))
 632                return NULL;
 633
 634        queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
 635
 636        queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
 637        if (queue) {
 638                queue->q_header = NULL;
 639                queue->saved_header = NULL;
 640                queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
 641                queue->kernel_if->host = true;
 642                queue->kernel_if->mutex = NULL;
 643                queue->kernel_if->num_pages = num_pages;
 644                queue->kernel_if->u.h.header_page =
 645                    (struct page **)((u8 *)queue + queue_size);
 646                queue->kernel_if->u.h.page =
 647                        &queue->kernel_if->u.h.header_page[1];
 648        }
 649
 650        return queue;
 651}
 652
 653/*
 654 * Frees kernel memory for a given queue (header plus translation
 655 * structure).
 656 */
 657static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
 658{
 659        kfree(queue);
 660}
 661
 662/*
 663 * Initialize the mutex for the pair of queues.  This mutex is used to
 664 * protect the q_header and the buffer from changing out from under any
 665 * users of either queue.  Of course, it's only any good if the mutexes
 666 * are actually acquired.  Queue structure must lie on non-paged memory
 667 * or we cannot guarantee access to the mutex.
 668 */
 669static void qp_init_queue_mutex(struct vmci_queue *produce_q,
 670                                struct vmci_queue *consume_q)
 671{
 672        /*
 673         * Only the host queue has shared state - the guest queues do not
 674         * need to synchronize access using a queue mutex.
 675         */
 676
 677        if (produce_q->kernel_if->host) {
 678                produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
 679                consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
 680                mutex_init(produce_q->kernel_if->mutex);
 681        }
 682}
 683
 684/*
 685 * Cleans up the mutex for the pair of queues.
 686 */
 687static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
 688                                   struct vmci_queue *consume_q)
 689{
 690        if (produce_q->kernel_if->host) {
 691                produce_q->kernel_if->mutex = NULL;
 692                consume_q->kernel_if->mutex = NULL;
 693        }
 694}
 695
 696/*
 697 * Acquire the mutex for the queue.  Note that the produce_q and
 698 * the consume_q share a mutex.  So, only one of the two need to
 699 * be passed in to this routine.  Either will work just fine.
 700 */
 701static void qp_acquire_queue_mutex(struct vmci_queue *queue)
 702{
 703        if (queue->kernel_if->host)
 704                mutex_lock(queue->kernel_if->mutex);
 705}
 706
 707/*
 708 * Release the mutex for the queue.  Note that the produce_q and
 709 * the consume_q share a mutex.  So, only one of the two need to
 710 * be passed in to this routine.  Either will work just fine.
 711 */
 712static void qp_release_queue_mutex(struct vmci_queue *queue)
 713{
 714        if (queue->kernel_if->host)
 715                mutex_unlock(queue->kernel_if->mutex);
 716}
 717
 718/*
 719 * Helper function to release pages in the PageStoreAttachInfo
 720 * previously obtained using get_user_pages.
 721 */
 722static void qp_release_pages(struct page **pages,
 723                             u64 num_pages, bool dirty)
 724{
 725        int i;
 726
 727        for (i = 0; i < num_pages; i++) {
 728                if (dirty)
 729                        set_page_dirty(pages[i]);
 730
 731                put_page(pages[i]);
 732                pages[i] = NULL;
 733        }
 734}
 735
 736/*
 737 * Lock the user pages referenced by the {produce,consume}Buffer
 738 * struct into memory and populate the {produce,consume}Pages
 739 * arrays in the attach structure with them.
 740 */
 741static int qp_host_get_user_memory(u64 produce_uva,
 742                                   u64 consume_uva,
 743                                   struct vmci_queue *produce_q,
 744                                   struct vmci_queue *consume_q)
 745{
 746        int retval;
 747        int err = VMCI_SUCCESS;
 748
 749        retval = get_user_pages_fast((uintptr_t) produce_uva,
 750                                     produce_q->kernel_if->num_pages, 1,
 751                                     produce_q->kernel_if->u.h.header_page);
 752        if (retval < produce_q->kernel_if->num_pages) {
 753                pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
 754                        retval);
 755                qp_release_pages(produce_q->kernel_if->u.h.header_page,
 756                                 retval, false);
 757                err = VMCI_ERROR_NO_MEM;
 758                goto out;
 759        }
 760
 761        retval = get_user_pages_fast((uintptr_t) consume_uva,
 762                                     consume_q->kernel_if->num_pages, 1,
 763                                     consume_q->kernel_if->u.h.header_page);
 764        if (retval < consume_q->kernel_if->num_pages) {
 765                pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
 766                        retval);
 767                qp_release_pages(consume_q->kernel_if->u.h.header_page,
 768                                 retval, false);
 769                qp_release_pages(produce_q->kernel_if->u.h.header_page,
 770                                 produce_q->kernel_if->num_pages, false);
 771                err = VMCI_ERROR_NO_MEM;
 772        }
 773
 774 out:
 775        return err;
 776}
 777
 778/*
 779 * Registers the specification of the user pages used for backing a queue
 780 * pair. Enough information to map in pages is stored in the OS specific
 781 * part of the struct vmci_queue structure.
 782 */
 783static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
 784                                        struct vmci_queue *produce_q,
 785                                        struct vmci_queue *consume_q)
 786{
 787        u64 produce_uva;
 788        u64 consume_uva;
 789
 790        /*
 791         * The new style and the old style mapping only differs in
 792         * that we either get a single or two UVAs, so we split the
 793         * single UVA range at the appropriate spot.
 794         */
 795        produce_uva = page_store->pages;
 796        consume_uva = page_store->pages +
 797            produce_q->kernel_if->num_pages * PAGE_SIZE;
 798        return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
 799                                       consume_q);
 800}
 801
 802/*
 803 * Releases and removes the references to user pages stored in the attach
 804 * struct.  Pages are released from the page cache and may become
 805 * swappable again.
 806 */
 807static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
 808                                           struct vmci_queue *consume_q)
 809{
 810        qp_release_pages(produce_q->kernel_if->u.h.header_page,
 811                         produce_q->kernel_if->num_pages, true);
 812        memset(produce_q->kernel_if->u.h.header_page, 0,
 813               sizeof(*produce_q->kernel_if->u.h.header_page) *
 814               produce_q->kernel_if->num_pages);
 815        qp_release_pages(consume_q->kernel_if->u.h.header_page,
 816                         consume_q->kernel_if->num_pages, true);
 817        memset(consume_q->kernel_if->u.h.header_page, 0,
 818               sizeof(*consume_q->kernel_if->u.h.header_page) *
 819               consume_q->kernel_if->num_pages);
 820}
 821
 822/*
 823 * Once qp_host_register_user_memory has been performed on a
 824 * queue, the queue pair headers can be mapped into the
 825 * kernel. Once mapped, they must be unmapped with
 826 * qp_host_unmap_queues prior to calling
 827 * qp_host_unregister_user_memory.
 828 * Pages are pinned.
 829 */
 830static int qp_host_map_queues(struct vmci_queue *produce_q,
 831                              struct vmci_queue *consume_q)
 832{
 833        int result;
 834
 835        if (!produce_q->q_header || !consume_q->q_header) {
 836                struct page *headers[2];
 837
 838                if (produce_q->q_header != consume_q->q_header)
 839                        return VMCI_ERROR_QUEUEPAIR_MISMATCH;
 840
 841                if (produce_q->kernel_if->u.h.header_page == NULL ||
 842                    *produce_q->kernel_if->u.h.header_page == NULL)
 843                        return VMCI_ERROR_UNAVAILABLE;
 844
 845                headers[0] = *produce_q->kernel_if->u.h.header_page;
 846                headers[1] = *consume_q->kernel_if->u.h.header_page;
 847
 848                produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
 849                if (produce_q->q_header != NULL) {
 850                        consume_q->q_header =
 851                            (struct vmci_queue_header *)((u8 *)
 852                                                         produce_q->q_header +
 853                                                         PAGE_SIZE);
 854                        result = VMCI_SUCCESS;
 855                } else {
 856                        pr_warn("vmap failed\n");
 857                        result = VMCI_ERROR_NO_MEM;
 858                }
 859        } else {
 860                result = VMCI_SUCCESS;
 861        }
 862
 863        return result;
 864}
 865
 866/*
 867 * Unmaps previously mapped queue pair headers from the kernel.
 868 * Pages are unpinned.
 869 */
 870static int qp_host_unmap_queues(u32 gid,
 871                                struct vmci_queue *produce_q,
 872                                struct vmci_queue *consume_q)
 873{
 874        if (produce_q->q_header) {
 875                if (produce_q->q_header < consume_q->q_header)
 876                        vunmap(produce_q->q_header);
 877                else
 878                        vunmap(consume_q->q_header);
 879
 880                produce_q->q_header = NULL;
 881                consume_q->q_header = NULL;
 882        }
 883
 884        return VMCI_SUCCESS;
 885}
 886
 887/*
 888 * Finds the entry in the list corresponding to a given handle. Assumes
 889 * that the list is locked.
 890 */
 891static struct qp_entry *qp_list_find(struct qp_list *qp_list,
 892                                     struct vmci_handle handle)
 893{
 894        struct qp_entry *entry;
 895
 896        if (vmci_handle_is_invalid(handle))
 897                return NULL;
 898
 899        list_for_each_entry(entry, &qp_list->head, list_item) {
 900                if (vmci_handle_is_equal(entry->handle, handle))
 901                        return entry;
 902        }
 903
 904        return NULL;
 905}
 906
 907/*
 908 * Finds the entry in the list corresponding to a given handle.
 909 */
 910static struct qp_guest_endpoint *
 911qp_guest_handle_to_entry(struct vmci_handle handle)
 912{
 913        struct qp_guest_endpoint *entry;
 914        struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
 915
 916        entry = qp ? container_of(
 917                qp, struct qp_guest_endpoint, qp) : NULL;
 918        return entry;
 919}
 920
 921/*
 922 * Finds the entry in the list corresponding to a given handle.
 923 */
 924static struct qp_broker_entry *
 925qp_broker_handle_to_entry(struct vmci_handle handle)
 926{
 927        struct qp_broker_entry *entry;
 928        struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
 929
 930        entry = qp ? container_of(
 931                qp, struct qp_broker_entry, qp) : NULL;
 932        return entry;
 933}
 934
 935/*
 936 * Dispatches a queue pair event message directly into the local event
 937 * queue.
 938 */
 939static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
 940{
 941        u32 context_id = vmci_get_context_id();
 942        struct vmci_event_qp ev;
 943
 944        ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
 945        ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
 946                                          VMCI_CONTEXT_RESOURCE_ID);
 947        ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
 948        ev.msg.event_data.event =
 949            attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
 950        ev.payload.peer_id = context_id;
 951        ev.payload.handle = handle;
 952
 953        return vmci_event_dispatch(&ev.msg.hdr);
 954}
 955
 956/*
 957 * Allocates and initializes a qp_guest_endpoint structure.
 958 * Allocates a queue_pair rid (and handle) iff the given entry has
 959 * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
 960 * are reserved handles.  Assumes that the QP list mutex is held
 961 * by the caller.
 962 */
 963static struct qp_guest_endpoint *
 964qp_guest_endpoint_create(struct vmci_handle handle,
 965                         u32 peer,
 966                         u32 flags,
 967                         u64 produce_size,
 968                         u64 consume_size,
 969                         void *produce_q,
 970                         void *consume_q)
 971{
 972        int result;
 973        struct qp_guest_endpoint *entry;
 974        /* One page each for the queue headers. */
 975        const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
 976            DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
 977
 978        if (vmci_handle_is_invalid(handle)) {
 979                u32 context_id = vmci_get_context_id();
 980
 981                handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
 982        }
 983
 984        entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 985        if (entry) {
 986                entry->qp.peer = peer;
 987                entry->qp.flags = flags;
 988                entry->qp.produce_size = produce_size;
 989                entry->qp.consume_size = consume_size;
 990                entry->qp.ref_count = 0;
 991                entry->num_ppns = num_ppns;
 992                entry->produce_q = produce_q;
 993                entry->consume_q = consume_q;
 994                INIT_LIST_HEAD(&entry->qp.list_item);
 995
 996                /* Add resource obj */
 997                result = vmci_resource_add(&entry->resource,
 998                                           VMCI_RESOURCE_TYPE_QPAIR_GUEST,
 999                                           handle);
1000                entry->qp.handle = vmci_resource_handle(&entry->resource);
1001                if ((result != VMCI_SUCCESS) ||
1002                    qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
1003                        pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1004                                handle.context, handle.resource, result);
1005                        kfree(entry);
1006                        entry = NULL;
1007                }
1008        }
1009        return entry;
1010}
1011
1012/*
1013 * Frees a qp_guest_endpoint structure.
1014 */
1015static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
1016{
1017        qp_free_ppn_set(&entry->ppn_set);
1018        qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
1019        qp_free_queue(entry->produce_q, entry->qp.produce_size);
1020        qp_free_queue(entry->consume_q, entry->qp.consume_size);
1021        /* Unlink from resource hash table and free callback */
1022        vmci_resource_remove(&entry->resource);
1023
1024        kfree(entry);
1025}
1026
1027/*
1028 * Helper to make a queue_pairAlloc hypercall when the driver is
1029 * supporting a guest device.
1030 */
1031static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
1032{
1033        struct vmci_qp_alloc_msg *alloc_msg;
1034        size_t msg_size;
1035        int result;
1036
1037        if (!entry || entry->num_ppns <= 2)
1038                return VMCI_ERROR_INVALID_ARGS;
1039
1040        msg_size = sizeof(*alloc_msg) +
1041            (size_t) entry->num_ppns * sizeof(u32);
1042        alloc_msg = kmalloc(msg_size, GFP_KERNEL);
1043        if (!alloc_msg)
1044                return VMCI_ERROR_NO_MEM;
1045
1046        alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1047                                              VMCI_QUEUEPAIR_ALLOC);
1048        alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
1049        alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
1050        alloc_msg->handle = entry->qp.handle;
1051        alloc_msg->peer = entry->qp.peer;
1052        alloc_msg->flags = entry->qp.flags;
1053        alloc_msg->produce_size = entry->qp.produce_size;
1054        alloc_msg->consume_size = entry->qp.consume_size;
1055        alloc_msg->num_ppns = entry->num_ppns;
1056
1057        result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
1058                                     &entry->ppn_set);
1059        if (result == VMCI_SUCCESS)
1060                result = vmci_send_datagram(&alloc_msg->hdr);
1061
1062        kfree(alloc_msg);
1063
1064        return result;
1065}
1066
1067/*
1068 * Helper to make a queue_pairDetach hypercall when the driver is
1069 * supporting a guest device.
1070 */
1071static int qp_detatch_hypercall(struct vmci_handle handle)
1072{
1073        struct vmci_qp_detach_msg detach_msg;
1074
1075        detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1076                                              VMCI_QUEUEPAIR_DETACH);
1077        detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
1078        detach_msg.hdr.payload_size = sizeof(handle);
1079        detach_msg.handle = handle;
1080
1081        return vmci_send_datagram(&detach_msg.hdr);
1082}
1083
1084/*
1085 * Adds the given entry to the list. Assumes that the list is locked.
1086 */
1087static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1088{
1089        if (entry)
1090                list_add(&entry->list_item, &qp_list->head);
1091}
1092
1093/*
1094 * Removes the given entry from the list. Assumes that the list is locked.
1095 */
1096static void qp_list_remove_entry(struct qp_list *qp_list,
1097                                 struct qp_entry *entry)
1098{
1099        if (entry)
1100                list_del(&entry->list_item);
1101}
1102
1103/*
1104 * Helper for VMCI queue_pair detach interface. Frees the physical
1105 * pages for the queue pair.
1106 */
1107static int qp_detatch_guest_work(struct vmci_handle handle)
1108{
1109        int result;
1110        struct qp_guest_endpoint *entry;
1111        u32 ref_count = ~0;     /* To avoid compiler warning below */
1112
1113        mutex_lock(&qp_guest_endpoints.mutex);
1114
1115        entry = qp_guest_handle_to_entry(handle);
1116        if (!entry) {
1117                mutex_unlock(&qp_guest_endpoints.mutex);
1118                return VMCI_ERROR_NOT_FOUND;
1119        }
1120
1121        if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1122                result = VMCI_SUCCESS;
1123
1124                if (entry->qp.ref_count > 1) {
1125                        result = qp_notify_peer_local(false, handle);
1126                        /*
1127                         * We can fail to notify a local queuepair
1128                         * because we can't allocate.  We still want
1129                         * to release the entry if that happens, so
1130                         * don't bail out yet.
1131                         */
1132                }
1133        } else {
1134                result = qp_detatch_hypercall(handle);
1135                if (result < VMCI_SUCCESS) {
1136                        /*
1137                         * We failed to notify a non-local queuepair.
1138                         * That other queuepair might still be
1139                         * accessing the shared memory, so don't
1140                         * release the entry yet.  It will get cleaned
1141                         * up by VMCIqueue_pair_Exit() if necessary
1142                         * (assuming we are going away, otherwise why
1143                         * did this fail?).
1144                         */
1145
1146                        mutex_unlock(&qp_guest_endpoints.mutex);
1147                        return result;
1148                }
1149        }
1150
1151        /*
1152         * If we get here then we either failed to notify a local queuepair, or
1153         * we succeeded in all cases.  Release the entry if required.
1154         */
1155
1156        entry->qp.ref_count--;
1157        if (entry->qp.ref_count == 0)
1158                qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1159
1160        /* If we didn't remove the entry, this could change once we unlock. */
1161        if (entry)
1162                ref_count = entry->qp.ref_count;
1163
1164        mutex_unlock(&qp_guest_endpoints.mutex);
1165
1166        if (ref_count == 0)
1167                qp_guest_endpoint_destroy(entry);
1168
1169        return result;
1170}
1171
1172/*
1173 * This functions handles the actual allocation of a VMCI queue
1174 * pair guest endpoint. Allocates physical pages for the queue
1175 * pair. It makes OS dependent calls through generic wrappers.
1176 */
1177static int qp_alloc_guest_work(struct vmci_handle *handle,
1178                               struct vmci_queue **produce_q,
1179                               u64 produce_size,
1180                               struct vmci_queue **consume_q,
1181                               u64 consume_size,
1182                               u32 peer,
1183                               u32 flags,
1184                               u32 priv_flags)
1185{
1186        const u64 num_produce_pages =
1187            DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1188        const u64 num_consume_pages =
1189            DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1190        void *my_produce_q = NULL;
1191        void *my_consume_q = NULL;
1192        int result;
1193        struct qp_guest_endpoint *queue_pair_entry = NULL;
1194
1195        if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1196                return VMCI_ERROR_NO_ACCESS;
1197
1198        mutex_lock(&qp_guest_endpoints.mutex);
1199
1200        queue_pair_entry = qp_guest_handle_to_entry(*handle);
1201        if (queue_pair_entry) {
1202                if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1203                        /* Local attach case. */
1204                        if (queue_pair_entry->qp.ref_count > 1) {
1205                                pr_devel("Error attempting to attach more than once\n");
1206                                result = VMCI_ERROR_UNAVAILABLE;
1207                                goto error_keep_entry;
1208                        }
1209
1210                        if (queue_pair_entry->qp.produce_size != consume_size ||
1211                            queue_pair_entry->qp.consume_size !=
1212                            produce_size ||
1213                            queue_pair_entry->qp.flags !=
1214                            (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1215                                pr_devel("Error mismatched queue pair in local attach\n");
1216                                result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1217                                goto error_keep_entry;
1218                        }
1219
1220                        /*
1221                         * Do a local attach.  We swap the consume and
1222                         * produce queues for the attacher and deliver
1223                         * an attach event.
1224                         */
1225                        result = qp_notify_peer_local(true, *handle);
1226                        if (result < VMCI_SUCCESS)
1227                                goto error_keep_entry;
1228
1229                        my_produce_q = queue_pair_entry->consume_q;
1230                        my_consume_q = queue_pair_entry->produce_q;
1231                        goto out;
1232                }
1233
1234                result = VMCI_ERROR_ALREADY_EXISTS;
1235                goto error_keep_entry;
1236        }
1237
1238        my_produce_q = qp_alloc_queue(produce_size, flags);
1239        if (!my_produce_q) {
1240                pr_warn("Error allocating pages for produce queue\n");
1241                result = VMCI_ERROR_NO_MEM;
1242                goto error;
1243        }
1244
1245        my_consume_q = qp_alloc_queue(consume_size, flags);
1246        if (!my_consume_q) {
1247                pr_warn("Error allocating pages for consume queue\n");
1248                result = VMCI_ERROR_NO_MEM;
1249                goto error;
1250        }
1251
1252        queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1253                                                    produce_size, consume_size,
1254                                                    my_produce_q, my_consume_q);
1255        if (!queue_pair_entry) {
1256                pr_warn("Error allocating memory in %s\n", __func__);
1257                result = VMCI_ERROR_NO_MEM;
1258                goto error;
1259        }
1260
1261        result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1262                                  num_consume_pages,
1263                                  &queue_pair_entry->ppn_set);
1264        if (result < VMCI_SUCCESS) {
1265                pr_warn("qp_alloc_ppn_set failed\n");
1266                goto error;
1267        }
1268
1269        /*
1270         * It's only necessary to notify the host if this queue pair will be
1271         * attached to from another context.
1272         */
1273        if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1274                /* Local create case. */
1275                u32 context_id = vmci_get_context_id();
1276
1277                /*
1278                 * Enforce similar checks on local queue pairs as we
1279                 * do for regular ones.  The handle's context must
1280                 * match the creator or attacher context id (here they
1281                 * are both the current context id) and the
1282                 * attach-only flag cannot exist during create.  We
1283                 * also ensure specified peer is this context or an
1284                 * invalid one.
1285                 */
1286                if (queue_pair_entry->qp.handle.context != context_id ||
1287                    (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1288                     queue_pair_entry->qp.peer != context_id)) {
1289                        result = VMCI_ERROR_NO_ACCESS;
1290                        goto error;
1291                }
1292
1293                if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1294                        result = VMCI_ERROR_NOT_FOUND;
1295                        goto error;
1296                }
1297        } else {
1298                result = qp_alloc_hypercall(queue_pair_entry);
1299                if (result < VMCI_SUCCESS) {
1300                        pr_warn("qp_alloc_hypercall result = %d\n", result);
1301                        goto error;
1302                }
1303        }
1304
1305        qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1306                            (struct vmci_queue *)my_consume_q);
1307
1308        qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1309
1310 out:
1311        queue_pair_entry->qp.ref_count++;
1312        *handle = queue_pair_entry->qp.handle;
1313        *produce_q = (struct vmci_queue *)my_produce_q;
1314        *consume_q = (struct vmci_queue *)my_consume_q;
1315
1316        /*
1317         * We should initialize the queue pair header pages on a local
1318         * queue pair create.  For non-local queue pairs, the
1319         * hypervisor initializes the header pages in the create step.
1320         */
1321        if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1322            queue_pair_entry->qp.ref_count == 1) {
1323                vmci_q_header_init((*produce_q)->q_header, *handle);
1324                vmci_q_header_init((*consume_q)->q_header, *handle);
1325        }
1326
1327        mutex_unlock(&qp_guest_endpoints.mutex);
1328
1329        return VMCI_SUCCESS;
1330
1331 error:
1332        mutex_unlock(&qp_guest_endpoints.mutex);
1333        if (queue_pair_entry) {
1334                /* The queues will be freed inside the destroy routine. */
1335                qp_guest_endpoint_destroy(queue_pair_entry);
1336        } else {
1337                qp_free_queue(my_produce_q, produce_size);
1338                qp_free_queue(my_consume_q, consume_size);
1339        }
1340        return result;
1341
1342 error_keep_entry:
1343        /* This path should only be used when an existing entry was found. */
1344        mutex_unlock(&qp_guest_endpoints.mutex);
1345        return result;
1346}
1347
1348/*
1349 * The first endpoint issuing a queue pair allocation will create the state
1350 * of the queue pair in the queue pair broker.
1351 *
1352 * If the creator is a guest, it will associate a VMX virtual address range
1353 * with the queue pair as specified by the page_store. For compatibility with
1354 * older VMX'en, that would use a separate step to set the VMX virtual
1355 * address range, the virtual address range can be registered later using
1356 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1357 * used.
1358 *
1359 * If the creator is the host, a page_store of NULL should be used as well,
1360 * since the host is not able to supply a page store for the queue pair.
1361 *
1362 * For older VMX and host callers, the queue pair will be created in the
1363 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1364 * created in VMCOQPB_CREATED_MEM state.
1365 */
1366static int qp_broker_create(struct vmci_handle handle,
1367                            u32 peer,
1368                            u32 flags,
1369                            u32 priv_flags,
1370                            u64 produce_size,
1371                            u64 consume_size,
1372                            struct vmci_qp_page_store *page_store,
1373                            struct vmci_ctx *context,
1374                            vmci_event_release_cb wakeup_cb,
1375                            void *client_data, struct qp_broker_entry **ent)
1376{
1377        struct qp_broker_entry *entry = NULL;
1378        const u32 context_id = vmci_ctx_get_id(context);
1379        bool is_local = flags & VMCI_QPFLAG_LOCAL;
1380        int result;
1381        u64 guest_produce_size;
1382        u64 guest_consume_size;
1383
1384        /* Do not create if the caller asked not to. */
1385        if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1386                return VMCI_ERROR_NOT_FOUND;
1387
1388        /*
1389         * Creator's context ID should match handle's context ID or the creator
1390         * must allow the context in handle's context ID as the "peer".
1391         */
1392        if (handle.context != context_id && handle.context != peer)
1393                return VMCI_ERROR_NO_ACCESS;
1394
1395        if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1396                return VMCI_ERROR_DST_UNREACHABLE;
1397
1398        /*
1399         * Creator's context ID for local queue pairs should match the
1400         * peer, if a peer is specified.
1401         */
1402        if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1403                return VMCI_ERROR_NO_ACCESS;
1404
1405        entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1406        if (!entry)
1407                return VMCI_ERROR_NO_MEM;
1408
1409        if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1410                /*
1411                 * The queue pair broker entry stores values from the guest
1412                 * point of view, so a creating host side endpoint should swap
1413                 * produce and consume values -- unless it is a local queue
1414                 * pair, in which case no swapping is necessary, since the local
1415                 * attacher will swap queues.
1416                 */
1417
1418                guest_produce_size = consume_size;
1419                guest_consume_size = produce_size;
1420        } else {
1421                guest_produce_size = produce_size;
1422                guest_consume_size = consume_size;
1423        }
1424
1425        entry->qp.handle = handle;
1426        entry->qp.peer = peer;
1427        entry->qp.flags = flags;
1428        entry->qp.produce_size = guest_produce_size;
1429        entry->qp.consume_size = guest_consume_size;
1430        entry->qp.ref_count = 1;
1431        entry->create_id = context_id;
1432        entry->attach_id = VMCI_INVALID_ID;
1433        entry->state = VMCIQPB_NEW;
1434        entry->require_trusted_attach =
1435            !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1436        entry->created_by_trusted =
1437            !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1438        entry->vmci_page_files = false;
1439        entry->wakeup_cb = wakeup_cb;
1440        entry->client_data = client_data;
1441        entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1442        if (entry->produce_q == NULL) {
1443                result = VMCI_ERROR_NO_MEM;
1444                goto error;
1445        }
1446        entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1447        if (entry->consume_q == NULL) {
1448                result = VMCI_ERROR_NO_MEM;
1449                goto error;
1450        }
1451
1452        qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1453
1454        INIT_LIST_HEAD(&entry->qp.list_item);
1455
1456        if (is_local) {
1457                u8 *tmp;
1458
1459                entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1460                                           PAGE_SIZE, GFP_KERNEL);
1461                if (entry->local_mem == NULL) {
1462                        result = VMCI_ERROR_NO_MEM;
1463                        goto error;
1464                }
1465                entry->state = VMCIQPB_CREATED_MEM;
1466                entry->produce_q->q_header = entry->local_mem;
1467                tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1468                    (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1469                entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1470        } else if (page_store) {
1471                /*
1472                 * The VMX already initialized the queue pair headers, so no
1473                 * need for the kernel side to do that.
1474                 */
1475                result = qp_host_register_user_memory(page_store,
1476                                                      entry->produce_q,
1477                                                      entry->consume_q);
1478                if (result < VMCI_SUCCESS)
1479                        goto error;
1480
1481                entry->state = VMCIQPB_CREATED_MEM;
1482        } else {
1483                /*
1484                 * A create without a page_store may be either a host
1485                 * side create (in which case we are waiting for the
1486                 * guest side to supply the memory) or an old style
1487                 * queue pair create (in which case we will expect a
1488                 * set page store call as the next step).
1489                 */
1490                entry->state = VMCIQPB_CREATED_NO_MEM;
1491        }
1492
1493        qp_list_add_entry(&qp_broker_list, &entry->qp);
1494        if (ent != NULL)
1495                *ent = entry;
1496
1497        /* Add to resource obj */
1498        result = vmci_resource_add(&entry->resource,
1499                                   VMCI_RESOURCE_TYPE_QPAIR_HOST,
1500                                   handle);
1501        if (result != VMCI_SUCCESS) {
1502                pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1503                        handle.context, handle.resource, result);
1504                goto error;
1505        }
1506
1507        entry->qp.handle = vmci_resource_handle(&entry->resource);
1508        if (is_local) {
1509                vmci_q_header_init(entry->produce_q->q_header,
1510                                   entry->qp.handle);
1511                vmci_q_header_init(entry->consume_q->q_header,
1512                                   entry->qp.handle);
1513        }
1514
1515        vmci_ctx_qp_create(context, entry->qp.handle);
1516
1517        return VMCI_SUCCESS;
1518
1519 error:
1520        if (entry != NULL) {
1521                qp_host_free_queue(entry->produce_q, guest_produce_size);
1522                qp_host_free_queue(entry->consume_q, guest_consume_size);
1523                kfree(entry);
1524        }
1525
1526        return result;
1527}
1528
1529/*
1530 * Enqueues an event datagram to notify the peer VM attached to
1531 * the given queue pair handle about attach/detach event by the
1532 * given VM.  Returns Payload size of datagram enqueued on
1533 * success, error code otherwise.
1534 */
1535static int qp_notify_peer(bool attach,
1536                          struct vmci_handle handle,
1537                          u32 my_id,
1538                          u32 peer_id)
1539{
1540        int rv;
1541        struct vmci_event_qp ev;
1542
1543        if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1544            peer_id == VMCI_INVALID_ID)
1545                return VMCI_ERROR_INVALID_ARGS;
1546
1547        /*
1548         * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1549         * number of pending events from the hypervisor to a given VM
1550         * otherwise a rogue VM could do an arbitrary number of attach
1551         * and detach operations causing memory pressure in the host
1552         * kernel.
1553         */
1554
1555        ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1556        ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1557                                          VMCI_CONTEXT_RESOURCE_ID);
1558        ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1559        ev.msg.event_data.event = attach ?
1560            VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1561        ev.payload.handle = handle;
1562        ev.payload.peer_id = my_id;
1563
1564        rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1565                                    &ev.msg.hdr, false);
1566        if (rv < VMCI_SUCCESS)
1567                pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1568                        attach ? "ATTACH" : "DETACH", peer_id);
1569
1570        return rv;
1571}
1572
1573/*
1574 * The second endpoint issuing a queue pair allocation will attach to
1575 * the queue pair registered with the queue pair broker.
1576 *
1577 * If the attacher is a guest, it will associate a VMX virtual address
1578 * range with the queue pair as specified by the page_store. At this
1579 * point, the already attach host endpoint may start using the queue
1580 * pair, and an attach event is sent to it. For compatibility with
1581 * older VMX'en, that used a separate step to set the VMX virtual
1582 * address range, the virtual address range can be registered later
1583 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1584 * NULL should be used, and the attach event will be generated once
1585 * the actual page store has been set.
1586 *
1587 * If the attacher is the host, a page_store of NULL should be used as
1588 * well, since the page store information is already set by the guest.
1589 *
1590 * For new VMX and host callers, the queue pair will be moved to the
1591 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1592 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1593 */
1594static int qp_broker_attach(struct qp_broker_entry *entry,
1595                            u32 peer,
1596                            u32 flags,
1597                            u32 priv_flags,
1598                            u64 produce_size,
1599                            u64 consume_size,
1600                            struct vmci_qp_page_store *page_store,
1601                            struct vmci_ctx *context,
1602                            vmci_event_release_cb wakeup_cb,
1603                            void *client_data,
1604                            struct qp_broker_entry **ent)
1605{
1606        const u32 context_id = vmci_ctx_get_id(context);
1607        bool is_local = flags & VMCI_QPFLAG_LOCAL;
1608        int result;
1609
1610        if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1611            entry->state != VMCIQPB_CREATED_MEM)
1612                return VMCI_ERROR_UNAVAILABLE;
1613
1614        if (is_local) {
1615                if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1616                    context_id != entry->create_id) {
1617                        return VMCI_ERROR_INVALID_ARGS;
1618                }
1619        } else if (context_id == entry->create_id ||
1620                   context_id == entry->attach_id) {
1621                return VMCI_ERROR_ALREADY_EXISTS;
1622        }
1623
1624        if (VMCI_CONTEXT_IS_VM(context_id) &&
1625            VMCI_CONTEXT_IS_VM(entry->create_id))
1626                return VMCI_ERROR_DST_UNREACHABLE;
1627
1628        /*
1629         * If we are attaching from a restricted context then the queuepair
1630         * must have been created by a trusted endpoint.
1631         */
1632        if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1633            !entry->created_by_trusted)
1634                return VMCI_ERROR_NO_ACCESS;
1635
1636        /*
1637         * If we are attaching to a queuepair that was created by a restricted
1638         * context then we must be trusted.
1639         */
1640        if (entry->require_trusted_attach &&
1641            (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1642                return VMCI_ERROR_NO_ACCESS;
1643
1644        /*
1645         * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1646         * control check is not performed.
1647         */
1648        if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1649                return VMCI_ERROR_NO_ACCESS;
1650
1651        if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1652                /*
1653                 * Do not attach if the caller doesn't support Host Queue Pairs
1654                 * and a host created this queue pair.
1655                 */
1656
1657                if (!vmci_ctx_supports_host_qp(context))
1658                        return VMCI_ERROR_INVALID_RESOURCE;
1659
1660        } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1661                struct vmci_ctx *create_context;
1662                bool supports_host_qp;
1663
1664                /*
1665                 * Do not attach a host to a user created queue pair if that
1666                 * user doesn't support host queue pair end points.
1667                 */
1668
1669                create_context = vmci_ctx_get(entry->create_id);
1670                supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1671                vmci_ctx_put(create_context);
1672
1673                if (!supports_host_qp)
1674                        return VMCI_ERROR_INVALID_RESOURCE;
1675        }
1676
1677        if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1678                return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1679
1680        if (context_id != VMCI_HOST_CONTEXT_ID) {
1681                /*
1682                 * The queue pair broker entry stores values from the guest
1683                 * point of view, so an attaching guest should match the values
1684                 * stored in the entry.
1685                 */
1686
1687                if (entry->qp.produce_size != produce_size ||
1688                    entry->qp.consume_size != consume_size) {
1689                        return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1690                }
1691        } else if (entry->qp.produce_size != consume_size ||
1692                   entry->qp.consume_size != produce_size) {
1693                return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1694        }
1695
1696        if (context_id != VMCI_HOST_CONTEXT_ID) {
1697                /*
1698                 * If a guest attached to a queue pair, it will supply
1699                 * the backing memory.  If this is a pre NOVMVM vmx,
1700                 * the backing memory will be supplied by calling
1701                 * vmci_qp_broker_set_page_store() following the
1702                 * return of the vmci_qp_broker_alloc() call. If it is
1703                 * a vmx of version NOVMVM or later, the page store
1704                 * must be supplied as part of the
1705                 * vmci_qp_broker_alloc call.  Under all circumstances
1706                 * must the initially created queue pair not have any
1707                 * memory associated with it already.
1708                 */
1709
1710                if (entry->state != VMCIQPB_CREATED_NO_MEM)
1711                        return VMCI_ERROR_INVALID_ARGS;
1712
1713                if (page_store != NULL) {
1714                        /*
1715                         * Patch up host state to point to guest
1716                         * supplied memory. The VMX already
1717                         * initialized the queue pair headers, so no
1718                         * need for the kernel side to do that.
1719                         */
1720
1721                        result = qp_host_register_user_memory(page_store,
1722                                                              entry->produce_q,
1723                                                              entry->consume_q);
1724                        if (result < VMCI_SUCCESS)
1725                                return result;
1726
1727                        entry->state = VMCIQPB_ATTACHED_MEM;
1728                } else {
1729                        entry->state = VMCIQPB_ATTACHED_NO_MEM;
1730                }
1731        } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1732                /*
1733                 * The host side is attempting to attach to a queue
1734                 * pair that doesn't have any memory associated with
1735                 * it. This must be a pre NOVMVM vmx that hasn't set
1736                 * the page store information yet, or a quiesced VM.
1737                 */
1738
1739                return VMCI_ERROR_UNAVAILABLE;
1740        } else {
1741                /* The host side has successfully attached to a queue pair. */
1742                entry->state = VMCIQPB_ATTACHED_MEM;
1743        }
1744
1745        if (entry->state == VMCIQPB_ATTACHED_MEM) {
1746                result =
1747                    qp_notify_peer(true, entry->qp.handle, context_id,
1748                                   entry->create_id);
1749                if (result < VMCI_SUCCESS)
1750                        pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1751                                entry->create_id, entry->qp.handle.context,
1752                                entry->qp.handle.resource);
1753        }
1754
1755        entry->attach_id = context_id;
1756        entry->qp.ref_count++;
1757        if (wakeup_cb) {
1758                entry->wakeup_cb = wakeup_cb;
1759                entry->client_data = client_data;
1760        }
1761
1762        /*
1763         * When attaching to local queue pairs, the context already has
1764         * an entry tracking the queue pair, so don't add another one.
1765         */
1766        if (!is_local)
1767                vmci_ctx_qp_create(context, entry->qp.handle);
1768
1769        if (ent != NULL)
1770                *ent = entry;
1771
1772        return VMCI_SUCCESS;
1773}
1774
1775/*
1776 * queue_pair_Alloc for use when setting up queue pair endpoints
1777 * on the host.
1778 */
1779static int qp_broker_alloc(struct vmci_handle handle,
1780                           u32 peer,
1781                           u32 flags,
1782                           u32 priv_flags,
1783                           u64 produce_size,
1784                           u64 consume_size,
1785                           struct vmci_qp_page_store *page_store,
1786                           struct vmci_ctx *context,
1787                           vmci_event_release_cb wakeup_cb,
1788                           void *client_data,
1789                           struct qp_broker_entry **ent,
1790                           bool *swap)
1791{
1792        const u32 context_id = vmci_ctx_get_id(context);
1793        bool create;
1794        struct qp_broker_entry *entry = NULL;
1795        bool is_local = flags & VMCI_QPFLAG_LOCAL;
1796        int result;
1797
1798        if (vmci_handle_is_invalid(handle) ||
1799            (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1800            !(produce_size || consume_size) ||
1801            !context || context_id == VMCI_INVALID_ID ||
1802            handle.context == VMCI_INVALID_ID) {
1803                return VMCI_ERROR_INVALID_ARGS;
1804        }
1805
1806        if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1807                return VMCI_ERROR_INVALID_ARGS;
1808
1809        /*
1810         * In the initial argument check, we ensure that non-vmkernel hosts
1811         * are not allowed to create local queue pairs.
1812         */
1813
1814        mutex_lock(&qp_broker_list.mutex);
1815
1816        if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1817                pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1818                         context_id, handle.context, handle.resource);
1819                mutex_unlock(&qp_broker_list.mutex);
1820                return VMCI_ERROR_ALREADY_EXISTS;
1821        }
1822
1823        if (handle.resource != VMCI_INVALID_ID)
1824                entry = qp_broker_handle_to_entry(handle);
1825
1826        if (!entry) {
1827                create = true;
1828                result =
1829                    qp_broker_create(handle, peer, flags, priv_flags,
1830                                     produce_size, consume_size, page_store,
1831                                     context, wakeup_cb, client_data, ent);
1832        } else {
1833                create = false;
1834                result =
1835                    qp_broker_attach(entry, peer, flags, priv_flags,
1836                                     produce_size, consume_size, page_store,
1837                                     context, wakeup_cb, client_data, ent);
1838        }
1839
1840        mutex_unlock(&qp_broker_list.mutex);
1841
1842        if (swap)
1843                *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1844                    !(create && is_local);
1845
1846        return result;
1847}
1848
1849/*
1850 * This function implements the kernel API for allocating a queue
1851 * pair.
1852 */
1853static int qp_alloc_host_work(struct vmci_handle *handle,
1854                              struct vmci_queue **produce_q,
1855                              u64 produce_size,
1856                              struct vmci_queue **consume_q,
1857                              u64 consume_size,
1858                              u32 peer,
1859                              u32 flags,
1860                              u32 priv_flags,
1861                              vmci_event_release_cb wakeup_cb,
1862                              void *client_data)
1863{
1864        struct vmci_handle new_handle;
1865        struct vmci_ctx *context;
1866        struct qp_broker_entry *entry;
1867        int result;
1868        bool swap;
1869
1870        if (vmci_handle_is_invalid(*handle)) {
1871                new_handle = vmci_make_handle(
1872                        VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1873        } else
1874                new_handle = *handle;
1875
1876        context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1877        entry = NULL;
1878        result =
1879            qp_broker_alloc(new_handle, peer, flags, priv_flags,
1880                            produce_size, consume_size, NULL, context,
1881                            wakeup_cb, client_data, &entry, &swap);
1882        if (result == VMCI_SUCCESS) {
1883                if (swap) {
1884                        /*
1885                         * If this is a local queue pair, the attacher
1886                         * will swap around produce and consume
1887                         * queues.
1888                         */
1889
1890                        *produce_q = entry->consume_q;
1891                        *consume_q = entry->produce_q;
1892                } else {
1893                        *produce_q = entry->produce_q;
1894                        *consume_q = entry->consume_q;
1895                }
1896
1897                *handle = vmci_resource_handle(&entry->resource);
1898        } else {
1899                *handle = VMCI_INVALID_HANDLE;
1900                pr_devel("queue pair broker failed to alloc (result=%d)\n",
1901                         result);
1902        }
1903        vmci_ctx_put(context);
1904        return result;
1905}
1906
1907/*
1908 * Allocates a VMCI queue_pair. Only checks validity of input
1909 * arguments. The real work is done in the host or guest
1910 * specific function.
1911 */
1912int vmci_qp_alloc(struct vmci_handle *handle,
1913                  struct vmci_queue **produce_q,
1914                  u64 produce_size,
1915                  struct vmci_queue **consume_q,
1916                  u64 consume_size,
1917                  u32 peer,
1918                  u32 flags,
1919                  u32 priv_flags,
1920                  bool guest_endpoint,
1921                  vmci_event_release_cb wakeup_cb,
1922                  void *client_data)
1923{
1924        if (!handle || !produce_q || !consume_q ||
1925            (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1926                return VMCI_ERROR_INVALID_ARGS;
1927
1928        if (guest_endpoint) {
1929                return qp_alloc_guest_work(handle, produce_q,
1930                                           produce_size, consume_q,
1931                                           consume_size, peer,
1932                                           flags, priv_flags);
1933        } else {
1934                return qp_alloc_host_work(handle, produce_q,
1935                                          produce_size, consume_q,
1936                                          consume_size, peer, flags,
1937                                          priv_flags, wakeup_cb, client_data);
1938        }
1939}
1940
1941/*
1942 * This function implements the host kernel API for detaching from
1943 * a queue pair.
1944 */
1945static int qp_detatch_host_work(struct vmci_handle handle)
1946{
1947        int result;
1948        struct vmci_ctx *context;
1949
1950        context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1951
1952        result = vmci_qp_broker_detach(handle, context);
1953
1954        vmci_ctx_put(context);
1955        return result;
1956}
1957
1958/*
1959 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1960 * Real work is done in the host or guest specific function.
1961 */
1962static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1963{
1964        if (vmci_handle_is_invalid(handle))
1965                return VMCI_ERROR_INVALID_ARGS;
1966
1967        if (guest_endpoint)
1968                return qp_detatch_guest_work(handle);
1969        else
1970                return qp_detatch_host_work(handle);
1971}
1972
1973/*
1974 * Returns the entry from the head of the list. Assumes that the list is
1975 * locked.
1976 */
1977static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1978{
1979        if (!list_empty(&qp_list->head)) {
1980                struct qp_entry *entry =
1981                    list_first_entry(&qp_list->head, struct qp_entry,
1982                                     list_item);
1983                return entry;
1984        }
1985
1986        return NULL;
1987}
1988
1989void vmci_qp_broker_exit(void)
1990{
1991        struct qp_entry *entry;
1992        struct qp_broker_entry *be;
1993
1994        mutex_lock(&qp_broker_list.mutex);
1995
1996        while ((entry = qp_list_get_head(&qp_broker_list))) {
1997                be = (struct qp_broker_entry *)entry;
1998
1999                qp_list_remove_entry(&qp_broker_list, entry);
2000                kfree(be);
2001        }
2002
2003        mutex_unlock(&qp_broker_list.mutex);
2004}
2005
2006/*
2007 * Requests that a queue pair be allocated with the VMCI queue
2008 * pair broker. Allocates a queue pair entry if one does not
2009 * exist. Attaches to one if it exists, and retrieves the page
2010 * files backing that queue_pair.  Assumes that the queue pair
2011 * broker lock is held.
2012 */
2013int vmci_qp_broker_alloc(struct vmci_handle handle,
2014                         u32 peer,
2015                         u32 flags,
2016                         u32 priv_flags,
2017                         u64 produce_size,
2018                         u64 consume_size,
2019                         struct vmci_qp_page_store *page_store,
2020                         struct vmci_ctx *context)
2021{
2022        return qp_broker_alloc(handle, peer, flags, priv_flags,
2023                               produce_size, consume_size,
2024                               page_store, context, NULL, NULL, NULL, NULL);
2025}
2026
2027/*
2028 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
2029 * step to add the UVAs of the VMX mapping of the queue pair. This function
2030 * provides backwards compatibility with such VMX'en, and takes care of
2031 * registering the page store for a queue pair previously allocated by the
2032 * VMX during create or attach. This function will move the queue pair state
2033 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
2034 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
2035 * attached state with memory, the queue pair is ready to be used by the
2036 * host peer, and an attached event will be generated.
2037 *
2038 * Assumes that the queue pair broker lock is held.
2039 *
2040 * This function is only used by the hosted platform, since there is no
2041 * issue with backwards compatibility for vmkernel.
2042 */
2043int vmci_qp_broker_set_page_store(struct vmci_handle handle,
2044                                  u64 produce_uva,
2045                                  u64 consume_uva,
2046                                  struct vmci_ctx *context)
2047{
2048        struct qp_broker_entry *entry;
2049        int result;
2050        const u32 context_id = vmci_ctx_get_id(context);
2051
2052        if (vmci_handle_is_invalid(handle) || !context ||
2053            context_id == VMCI_INVALID_ID)
2054                return VMCI_ERROR_INVALID_ARGS;
2055
2056        /*
2057         * We only support guest to host queue pairs, so the VMX must
2058         * supply UVAs for the mapped page files.
2059         */
2060
2061        if (produce_uva == 0 || consume_uva == 0)
2062                return VMCI_ERROR_INVALID_ARGS;
2063
2064        mutex_lock(&qp_broker_list.mutex);
2065
2066        if (!vmci_ctx_qp_exists(context, handle)) {
2067                pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2068                        context_id, handle.context, handle.resource);
2069                result = VMCI_ERROR_NOT_FOUND;
2070                goto out;
2071        }
2072
2073        entry = qp_broker_handle_to_entry(handle);
2074        if (!entry) {
2075                result = VMCI_ERROR_NOT_FOUND;
2076                goto out;
2077        }
2078
2079        /*
2080         * If I'm the owner then I can set the page store.
2081         *
2082         * Or, if a host created the queue_pair and I'm the attached peer
2083         * then I can set the page store.
2084         */
2085        if (entry->create_id != context_id &&
2086            (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2087             entry->attach_id != context_id)) {
2088                result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2089                goto out;
2090        }
2091
2092        if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2093            entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2094                result = VMCI_ERROR_UNAVAILABLE;
2095                goto out;
2096        }
2097
2098        result = qp_host_get_user_memory(produce_uva, consume_uva,
2099                                         entry->produce_q, entry->consume_q);
2100        if (result < VMCI_SUCCESS)
2101                goto out;
2102
2103        result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2104        if (result < VMCI_SUCCESS) {
2105                qp_host_unregister_user_memory(entry->produce_q,
2106                                               entry->consume_q);
2107                goto out;
2108        }
2109
2110        if (entry->state == VMCIQPB_CREATED_NO_MEM)
2111                entry->state = VMCIQPB_CREATED_MEM;
2112        else
2113                entry->state = VMCIQPB_ATTACHED_MEM;
2114
2115        entry->vmci_page_files = true;
2116
2117        if (entry->state == VMCIQPB_ATTACHED_MEM) {
2118                result =
2119                    qp_notify_peer(true, handle, context_id, entry->create_id);
2120                if (result < VMCI_SUCCESS) {
2121                        pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2122                                entry->create_id, entry->qp.handle.context,
2123                                entry->qp.handle.resource);
2124                }
2125        }
2126
2127        result = VMCI_SUCCESS;
2128 out:
2129        mutex_unlock(&qp_broker_list.mutex);
2130        return result;
2131}
2132
2133/*
2134 * Resets saved queue headers for the given QP broker
2135 * entry. Should be used when guest memory becomes available
2136 * again, or the guest detaches.
2137 */
2138static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2139{
2140        entry->produce_q->saved_header = NULL;
2141        entry->consume_q->saved_header = NULL;
2142}
2143
2144/*
2145 * The main entry point for detaching from a queue pair registered with the
2146 * queue pair broker. If more than one endpoint is attached to the queue
2147 * pair, the first endpoint will mainly decrement a reference count and
2148 * generate a notification to its peer. The last endpoint will clean up
2149 * the queue pair state registered with the broker.
2150 *
2151 * When a guest endpoint detaches, it will unmap and unregister the guest
2152 * memory backing the queue pair. If the host is still attached, it will
2153 * no longer be able to access the queue pair content.
2154 *
2155 * If the queue pair is already in a state where there is no memory
2156 * registered for the queue pair (any *_NO_MEM state), it will transition to
2157 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2158 * endpoint is the first of two endpoints to detach. If the host endpoint is
2159 * the first out of two to detach, the queue pair will move to the
2160 * VMCIQPB_SHUTDOWN_MEM state.
2161 */
2162int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2163{
2164        struct qp_broker_entry *entry;
2165        const u32 context_id = vmci_ctx_get_id(context);
2166        u32 peer_id;
2167        bool is_local = false;
2168        int result;
2169
2170        if (vmci_handle_is_invalid(handle) || !context ||
2171            context_id == VMCI_INVALID_ID) {
2172                return VMCI_ERROR_INVALID_ARGS;
2173        }
2174
2175        mutex_lock(&qp_broker_list.mutex);
2176
2177        if (!vmci_ctx_qp_exists(context, handle)) {
2178                pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2179                         context_id, handle.context, handle.resource);
2180                result = VMCI_ERROR_NOT_FOUND;
2181                goto out;
2182        }
2183
2184        entry = qp_broker_handle_to_entry(handle);
2185        if (!entry) {
2186                pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2187                         context_id, handle.context, handle.resource);
2188                result = VMCI_ERROR_NOT_FOUND;
2189                goto out;
2190        }
2191
2192        if (context_id != entry->create_id && context_id != entry->attach_id) {
2193                result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2194                goto out;
2195        }
2196
2197        if (context_id == entry->create_id) {
2198                peer_id = entry->attach_id;
2199                entry->create_id = VMCI_INVALID_ID;
2200        } else {
2201                peer_id = entry->create_id;
2202                entry->attach_id = VMCI_INVALID_ID;
2203        }
2204        entry->qp.ref_count--;
2205
2206        is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2207
2208        if (context_id != VMCI_HOST_CONTEXT_ID) {
2209                bool headers_mapped;
2210
2211                /*
2212                 * Pre NOVMVM vmx'en may detach from a queue pair
2213                 * before setting the page store, and in that case
2214                 * there is no user memory to detach from. Also, more
2215                 * recent VMX'en may detach from a queue pair in the
2216                 * quiesced state.
2217                 */
2218
2219                qp_acquire_queue_mutex(entry->produce_q);
2220                headers_mapped = entry->produce_q->q_header ||
2221                    entry->consume_q->q_header;
2222                if (QPBROKERSTATE_HAS_MEM(entry)) {
2223                        result =
2224                            qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2225                                                 entry->produce_q,
2226                                                 entry->consume_q);
2227                        if (result < VMCI_SUCCESS)
2228                                pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2229                                        handle.context, handle.resource,
2230                                        result);
2231
2232                        if (entry->vmci_page_files)
2233                                qp_host_unregister_user_memory(entry->produce_q,
2234                                                               entry->
2235                                                               consume_q);
2236                        else
2237                                qp_host_unregister_user_memory(entry->produce_q,
2238                                                               entry->
2239                                                               consume_q);
2240
2241                }
2242
2243                if (!headers_mapped)
2244                        qp_reset_saved_headers(entry);
2245
2246                qp_release_queue_mutex(entry->produce_q);
2247
2248                if (!headers_mapped && entry->wakeup_cb)
2249                        entry->wakeup_cb(entry->client_data);
2250
2251        } else {
2252                if (entry->wakeup_cb) {
2253                        entry->wakeup_cb = NULL;
2254                        entry->client_data = NULL;
2255                }
2256        }
2257
2258        if (entry->qp.ref_count == 0) {
2259                qp_list_remove_entry(&qp_broker_list, &entry->qp);
2260
2261                if (is_local)
2262                        kfree(entry->local_mem);
2263
2264                qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2265                qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2266                qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2267                /* Unlink from resource hash table and free callback */
2268                vmci_resource_remove(&entry->resource);
2269
2270                kfree(entry);
2271
2272                vmci_ctx_qp_destroy(context, handle);
2273        } else {
2274                qp_notify_peer(false, handle, context_id, peer_id);
2275                if (context_id == VMCI_HOST_CONTEXT_ID &&
2276                    QPBROKERSTATE_HAS_MEM(entry)) {
2277                        entry->state = VMCIQPB_SHUTDOWN_MEM;
2278                } else {
2279                        entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2280                }
2281
2282                if (!is_local)
2283                        vmci_ctx_qp_destroy(context, handle);
2284
2285        }
2286        result = VMCI_SUCCESS;
2287 out:
2288        mutex_unlock(&qp_broker_list.mutex);
2289        return result;
2290}
2291
2292/*
2293 * Establishes the necessary mappings for a queue pair given a
2294 * reference to the queue pair guest memory. This is usually
2295 * called when a guest is unquiesced and the VMX is allowed to
2296 * map guest memory once again.
2297 */
2298int vmci_qp_broker_map(struct vmci_handle handle,
2299                       struct vmci_ctx *context,
2300                       u64 guest_mem)
2301{
2302        struct qp_broker_entry *entry;
2303        const u32 context_id = vmci_ctx_get_id(context);
2304        bool is_local = false;
2305        int result;
2306
2307        if (vmci_handle_is_invalid(handle) || !context ||
2308            context_id == VMCI_INVALID_ID)
2309                return VMCI_ERROR_INVALID_ARGS;
2310
2311        mutex_lock(&qp_broker_list.mutex);
2312
2313        if (!vmci_ctx_qp_exists(context, handle)) {
2314                pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2315                         context_id, handle.context, handle.resource);
2316                result = VMCI_ERROR_NOT_FOUND;
2317                goto out;
2318        }
2319
2320        entry = qp_broker_handle_to_entry(handle);
2321        if (!entry) {
2322                pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2323                         context_id, handle.context, handle.resource);
2324                result = VMCI_ERROR_NOT_FOUND;
2325                goto out;
2326        }
2327
2328        if (context_id != entry->create_id && context_id != entry->attach_id) {
2329                result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2330                goto out;
2331        }
2332
2333        is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2334        result = VMCI_SUCCESS;
2335
2336        if (context_id != VMCI_HOST_CONTEXT_ID) {
2337                struct vmci_qp_page_store page_store;
2338
2339                page_store.pages = guest_mem;
2340                page_store.len = QPE_NUM_PAGES(entry->qp);
2341
2342                qp_acquire_queue_mutex(entry->produce_q);
2343                qp_reset_saved_headers(entry);
2344                result =
2345                    qp_host_register_user_memory(&page_store,
2346                                                 entry->produce_q,
2347                                                 entry->consume_q);
2348                qp_release_queue_mutex(entry->produce_q);
2349                if (result == VMCI_SUCCESS) {
2350                        /* Move state from *_NO_MEM to *_MEM */
2351
2352                        entry->state++;
2353
2354                        if (entry->wakeup_cb)
2355                                entry->wakeup_cb(entry->client_data);
2356                }
2357        }
2358
2359 out:
2360        mutex_unlock(&qp_broker_list.mutex);
2361        return result;
2362}
2363
2364/*
2365 * Saves a snapshot of the queue headers for the given QP broker
2366 * entry. Should be used when guest memory is unmapped.
2367 * Results:
2368 * VMCI_SUCCESS on success, appropriate error code if guest memory
2369 * can't be accessed..
2370 */
2371static int qp_save_headers(struct qp_broker_entry *entry)
2372{
2373        int result;
2374
2375        if (entry->produce_q->saved_header != NULL &&
2376            entry->consume_q->saved_header != NULL) {
2377                /*
2378                 *  If the headers have already been saved, we don't need to do
2379                 *  it again, and we don't want to map in the headers
2380                 *  unnecessarily.
2381                 */
2382
2383                return VMCI_SUCCESS;
2384        }
2385
2386        if (NULL == entry->produce_q->q_header ||
2387            NULL == entry->consume_q->q_header) {
2388                result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2389                if (result < VMCI_SUCCESS)
2390                        return result;
2391        }
2392
2393        memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2394               sizeof(entry->saved_produce_q));
2395        entry->produce_q->saved_header = &entry->saved_produce_q;
2396        memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2397               sizeof(entry->saved_consume_q));
2398        entry->consume_q->saved_header = &entry->saved_consume_q;
2399
2400        return VMCI_SUCCESS;
2401}
2402
2403/*
2404 * Removes all references to the guest memory of a given queue pair, and
2405 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2406 * called when a VM is being quiesced where access to guest memory should
2407 * avoided.
2408 */
2409int vmci_qp_broker_unmap(struct vmci_handle handle,
2410                         struct vmci_ctx *context,
2411                         u32 gid)
2412{
2413        struct qp_broker_entry *entry;
2414        const u32 context_id = vmci_ctx_get_id(context);
2415        bool is_local = false;
2416        int result;
2417
2418        if (vmci_handle_is_invalid(handle) || !context ||
2419            context_id == VMCI_INVALID_ID)
2420                return VMCI_ERROR_INVALID_ARGS;
2421
2422        mutex_lock(&qp_broker_list.mutex);
2423
2424        if (!vmci_ctx_qp_exists(context, handle)) {
2425                pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2426                         context_id, handle.context, handle.resource);
2427                result = VMCI_ERROR_NOT_FOUND;
2428                goto out;
2429        }
2430
2431        entry = qp_broker_handle_to_entry(handle);
2432        if (!entry) {
2433                pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2434                         context_id, handle.context, handle.resource);
2435                result = VMCI_ERROR_NOT_FOUND;
2436                goto out;
2437        }
2438
2439        if (context_id != entry->create_id && context_id != entry->attach_id) {
2440                result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2441                goto out;
2442        }
2443
2444        is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2445
2446        if (context_id != VMCI_HOST_CONTEXT_ID) {
2447                qp_acquire_queue_mutex(entry->produce_q);
2448                result = qp_save_headers(entry);
2449                if (result < VMCI_SUCCESS)
2450                        pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2451                                handle.context, handle.resource, result);
2452
2453                qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2454
2455                /*
2456                 * On hosted, when we unmap queue pairs, the VMX will also
2457                 * unmap the guest memory, so we invalidate the previously
2458                 * registered memory. If the queue pair is mapped again at a
2459                 * later point in time, we will need to reregister the user
2460                 * memory with a possibly new user VA.
2461                 */
2462                qp_host_unregister_user_memory(entry->produce_q,
2463                                               entry->consume_q);
2464
2465                /*
2466                 * Move state from *_MEM to *_NO_MEM.
2467                 */
2468                entry->state--;
2469
2470                qp_release_queue_mutex(entry->produce_q);
2471        }
2472
2473        result = VMCI_SUCCESS;
2474
2475 out:
2476        mutex_unlock(&qp_broker_list.mutex);
2477        return result;
2478}
2479
2480/*
2481 * Destroys all guest queue pair endpoints. If active guest queue
2482 * pairs still exist, hypercalls to attempt detach from these
2483 * queue pairs will be made. Any failure to detach is silently
2484 * ignored.
2485 */
2486void vmci_qp_guest_endpoints_exit(void)
2487{
2488        struct qp_entry *entry;
2489        struct qp_guest_endpoint *ep;
2490
2491        mutex_lock(&qp_guest_endpoints.mutex);
2492
2493        while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2494                ep = (struct qp_guest_endpoint *)entry;
2495
2496                /* Don't make a hypercall for local queue_pairs. */
2497                if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2498                        qp_detatch_hypercall(entry->handle);
2499
2500                /* We cannot fail the exit, so let's reset ref_count. */
2501                entry->ref_count = 0;
2502                qp_list_remove_entry(&qp_guest_endpoints, entry);
2503
2504                qp_guest_endpoint_destroy(ep);
2505        }
2506
2507        mutex_unlock(&qp_guest_endpoints.mutex);
2508}
2509
2510/*
2511 * Helper routine that will lock the queue pair before subsequent
2512 * operations.
2513 * Note: Non-blocking on the host side is currently only implemented in ESX.
2514 * Since non-blocking isn't yet implemented on the host personality we
2515 * have no reason to acquire a spin lock.  So to avoid the use of an
2516 * unnecessary lock only acquire the mutex if we can block.
2517 */
2518static void qp_lock(const struct vmci_qp *qpair)
2519{
2520        qp_acquire_queue_mutex(qpair->produce_q);
2521}
2522
2523/*
2524 * Helper routine that unlocks the queue pair after calling
2525 * qp_lock.
2526 */
2527static void qp_unlock(const struct vmci_qp *qpair)
2528{
2529        qp_release_queue_mutex(qpair->produce_q);
2530}
2531
2532/*
2533 * The queue headers may not be mapped at all times. If a queue is
2534 * currently not mapped, it will be attempted to do so.
2535 */
2536static int qp_map_queue_headers(struct vmci_queue *produce_q,
2537                                struct vmci_queue *consume_q)
2538{
2539        int result;
2540
2541        if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2542                result = qp_host_map_queues(produce_q, consume_q);
2543                if (result < VMCI_SUCCESS)
2544                        return (produce_q->saved_header &&
2545                                consume_q->saved_header) ?
2546                            VMCI_ERROR_QUEUEPAIR_NOT_READY :
2547                            VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2548        }
2549
2550        return VMCI_SUCCESS;
2551}
2552
2553/*
2554 * Helper routine that will retrieve the produce and consume
2555 * headers of a given queue pair. If the guest memory of the
2556 * queue pair is currently not available, the saved queue headers
2557 * will be returned, if these are available.
2558 */
2559static int qp_get_queue_headers(const struct vmci_qp *qpair,
2560                                struct vmci_queue_header **produce_q_header,
2561                                struct vmci_queue_header **consume_q_header)
2562{
2563        int result;
2564
2565        result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2566        if (result == VMCI_SUCCESS) {
2567                *produce_q_header = qpair->produce_q->q_header;
2568                *consume_q_header = qpair->consume_q->q_header;
2569        } else if (qpair->produce_q->saved_header &&
2570                   qpair->consume_q->saved_header) {
2571                *produce_q_header = qpair->produce_q->saved_header;
2572                *consume_q_header = qpair->consume_q->saved_header;
2573                result = VMCI_SUCCESS;
2574        }
2575
2576        return result;
2577}
2578
2579/*
2580 * Callback from VMCI queue pair broker indicating that a queue
2581 * pair that was previously not ready, now either is ready or
2582 * gone forever.
2583 */
2584static int qp_wakeup_cb(void *client_data)
2585{
2586        struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2587
2588        qp_lock(qpair);
2589        while (qpair->blocked > 0) {
2590                qpair->blocked--;
2591                qpair->generation++;
2592                wake_up(&qpair->event);
2593        }
2594        qp_unlock(qpair);
2595
2596        return VMCI_SUCCESS;
2597}
2598
2599/*
2600 * Makes the calling thread wait for the queue pair to become
2601 * ready for host side access.  Returns true when thread is
2602 * woken up after queue pair state change, false otherwise.
2603 */
2604static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2605{
2606        unsigned int generation;
2607
2608        qpair->blocked++;
2609        generation = qpair->generation;
2610        qp_unlock(qpair);
2611        wait_event(qpair->event, generation != qpair->generation);
2612        qp_lock(qpair);
2613
2614        return true;
2615}
2616
2617/*
2618 * Enqueues a given buffer to the produce queue using the provided
2619 * function. As many bytes as possible (space available in the queue)
2620 * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2621 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2622 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2623 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2624 * an error occured when accessing the buffer,
2625 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2626 * available.  Otherwise, the number of bytes written to the queue is
2627 * returned.  Updates the tail pointer of the produce queue.
2628 */
2629static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2630                                 struct vmci_queue *consume_q,
2631                                 const u64 produce_q_size,
2632                                 const void *buf,
2633                                 size_t buf_size,
2634                                 vmci_memcpy_to_queue_func memcpy_to_queue)
2635{
2636        s64 free_space;
2637        u64 tail;
2638        size_t written;
2639        ssize_t result;
2640
2641        result = qp_map_queue_headers(produce_q, consume_q);
2642        if (unlikely(result != VMCI_SUCCESS))
2643                return result;
2644
2645        free_space = vmci_q_header_free_space(produce_q->q_header,
2646                                              consume_q->q_header,
2647                                              produce_q_size);
2648        if (free_space == 0)
2649                return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2650
2651        if (free_space < VMCI_SUCCESS)
2652                return (ssize_t) free_space;
2653
2654        written = (size_t) (free_space > buf_size ? buf_size : free_space);
2655        tail = vmci_q_header_producer_tail(produce_q->q_header);
2656        if (likely(tail + written < produce_q_size)) {
2657                result = memcpy_to_queue(produce_q, tail, buf, 0, written);
2658        } else {
2659                /* Tail pointer wraps around. */
2660
2661                const size_t tmp = (size_t) (produce_q_size - tail);
2662
2663                result = memcpy_to_queue(produce_q, tail, buf, 0, tmp);
2664                if (result >= VMCI_SUCCESS)
2665                        result = memcpy_to_queue(produce_q, 0, buf, tmp,
2666                                                 written - tmp);
2667        }
2668
2669        if (result < VMCI_SUCCESS)
2670                return result;
2671
2672        vmci_q_header_add_producer_tail(produce_q->q_header, written,
2673                                        produce_q_size);
2674        return written;
2675}
2676
2677/*
2678 * Dequeues data (if available) from the given consume queue. Writes data
2679 * to the user provided buffer using the provided function.
2680 * Assumes the queue->mutex has been acquired.
2681 * Results:
2682 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2683 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2684 * (as defined by the queue size).
2685 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2686 * Otherwise the number of bytes dequeued is returned.
2687 * Side effects:
2688 * Updates the head pointer of the consume queue.
2689 */
2690static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2691                                 struct vmci_queue *consume_q,
2692                                 const u64 consume_q_size,
2693                                 void *buf,
2694                                 size_t buf_size,
2695                                 vmci_memcpy_from_queue_func memcpy_from_queue,
2696                                 bool update_consumer)
2697{
2698        s64 buf_ready;
2699        u64 head;
2700        size_t read;
2701        ssize_t result;
2702
2703        result = qp_map_queue_headers(produce_q, consume_q);
2704        if (unlikely(result != VMCI_SUCCESS))
2705                return result;
2706
2707        buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2708                                            produce_q->q_header,
2709                                            consume_q_size);
2710        if (buf_ready == 0)
2711                return VMCI_ERROR_QUEUEPAIR_NODATA;
2712
2713        if (buf_ready < VMCI_SUCCESS)
2714                return (ssize_t) buf_ready;
2715
2716        read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2717        head = vmci_q_header_consumer_head(produce_q->q_header);
2718        if (likely(head + read < consume_q_size)) {
2719                result = memcpy_from_queue(buf, 0, consume_q, head, read);
2720        } else {
2721                /* Head pointer wraps around. */
2722
2723                const size_t tmp = (size_t) (consume_q_size - head);
2724
2725                result = memcpy_from_queue(buf, 0, consume_q, head, tmp);
2726                if (result >= VMCI_SUCCESS)
2727                        result = memcpy_from_queue(buf, tmp, consume_q, 0,
2728                                                   read - tmp);
2729
2730        }
2731
2732        if (result < VMCI_SUCCESS)
2733                return result;
2734
2735        if (update_consumer)
2736                vmci_q_header_add_consumer_head(produce_q->q_header,
2737                                                read, consume_q_size);
2738
2739        return read;
2740}
2741
2742/*
2743 * vmci_qpair_alloc() - Allocates a queue pair.
2744 * @qpair:      Pointer for the new vmci_qp struct.
2745 * @handle:     Handle to track the resource.
2746 * @produce_qsize:      Desired size of the producer queue.
2747 * @consume_qsize:      Desired size of the consumer queue.
2748 * @peer:       ContextID of the peer.
2749 * @flags:      VMCI flags.
2750 * @priv_flags: VMCI priviledge flags.
2751 *
2752 * This is the client interface for allocating the memory for a
2753 * vmci_qp structure and then attaching to the underlying
2754 * queue.  If an error occurs allocating the memory for the
2755 * vmci_qp structure no attempt is made to attach.  If an
2756 * error occurs attaching, then the structure is freed.
2757 */
2758int vmci_qpair_alloc(struct vmci_qp **qpair,
2759                     struct vmci_handle *handle,
2760                     u64 produce_qsize,
2761                     u64 consume_qsize,
2762                     u32 peer,
2763                     u32 flags,
2764                     u32 priv_flags)
2765{
2766        struct vmci_qp *my_qpair;
2767        int retval;
2768        struct vmci_handle src = VMCI_INVALID_HANDLE;
2769        struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2770        enum vmci_route route;
2771        vmci_event_release_cb wakeup_cb;
2772        void *client_data;
2773
2774        /*
2775         * Restrict the size of a queuepair.  The device already
2776         * enforces a limit on the total amount of memory that can be
2777         * allocated to queuepairs for a guest.  However, we try to
2778         * allocate this memory before we make the queuepair
2779         * allocation hypercall.  On Linux, we allocate each page
2780         * separately, which means rather than fail, the guest will
2781         * thrash while it tries to allocate, and will become
2782         * increasingly unresponsive to the point where it appears to
2783         * be hung.  So we place a limit on the size of an individual
2784         * queuepair here, and leave the device to enforce the
2785         * restriction on total queuepair memory.  (Note that this
2786         * doesn't prevent all cases; a user with only this much
2787         * physical memory could still get into trouble.)  The error
2788         * used by the device is NO_RESOURCES, so use that here too.
2789         */
2790
2791        if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2792            produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2793                return VMCI_ERROR_NO_RESOURCES;
2794
2795        retval = vmci_route(&src, &dst, false, &route);
2796        if (retval < VMCI_SUCCESS)
2797                route = vmci_guest_code_active() ?
2798                    VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2799
2800        if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2801                pr_devel("NONBLOCK OR PINNED set");
2802                return VMCI_ERROR_INVALID_ARGS;
2803        }
2804
2805        my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2806        if (!my_qpair)
2807                return VMCI_ERROR_NO_MEM;
2808
2809        my_qpair->produce_q_size = produce_qsize;
2810        my_qpair->consume_q_size = consume_qsize;
2811        my_qpair->peer = peer;
2812        my_qpair->flags = flags;
2813        my_qpair->priv_flags = priv_flags;
2814
2815        wakeup_cb = NULL;
2816        client_data = NULL;
2817
2818        if (VMCI_ROUTE_AS_HOST == route) {
2819                my_qpair->guest_endpoint = false;
2820                if (!(flags & VMCI_QPFLAG_LOCAL)) {
2821                        my_qpair->blocked = 0;
2822                        my_qpair->generation = 0;
2823                        init_waitqueue_head(&my_qpair->event);
2824                        wakeup_cb = qp_wakeup_cb;
2825                        client_data = (void *)my_qpair;
2826                }
2827        } else {
2828                my_qpair->guest_endpoint = true;
2829        }
2830
2831        retval = vmci_qp_alloc(handle,
2832                               &my_qpair->produce_q,
2833                               my_qpair->produce_q_size,
2834                               &my_qpair->consume_q,
2835                               my_qpair->consume_q_size,
2836                               my_qpair->peer,
2837                               my_qpair->flags,
2838                               my_qpair->priv_flags,
2839                               my_qpair->guest_endpoint,
2840                               wakeup_cb, client_data);
2841
2842        if (retval < VMCI_SUCCESS) {
2843                kfree(my_qpair);
2844                return retval;
2845        }
2846
2847        *qpair = my_qpair;
2848        my_qpair->handle = *handle;
2849
2850        return retval;
2851}
2852EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2853
2854/*
2855 * vmci_qpair_detach() - Detatches the client from a queue pair.
2856 * @qpair:      Reference of a pointer to the qpair struct.
2857 *
2858 * This is the client interface for detaching from a VMCIQPair.
2859 * Note that this routine will free the memory allocated for the
2860 * vmci_qp structure too.
2861 */
2862int vmci_qpair_detach(struct vmci_qp **qpair)
2863{
2864        int result;
2865        struct vmci_qp *old_qpair;
2866
2867        if (!qpair || !(*qpair))
2868                return VMCI_ERROR_INVALID_ARGS;
2869
2870        old_qpair = *qpair;
2871        result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2872
2873        /*
2874         * The guest can fail to detach for a number of reasons, and
2875         * if it does so, it will cleanup the entry (if there is one).
2876         * The host can fail too, but it won't cleanup the entry
2877         * immediately, it will do that later when the context is
2878         * freed.  Either way, we need to release the qpair struct
2879         * here; there isn't much the caller can do, and we don't want
2880         * to leak.
2881         */
2882
2883        memset(old_qpair, 0, sizeof(*old_qpair));
2884        old_qpair->handle = VMCI_INVALID_HANDLE;
2885        old_qpair->peer = VMCI_INVALID_ID;
2886        kfree(old_qpair);
2887        *qpair = NULL;
2888
2889        return result;
2890}
2891EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2892
2893/*
2894 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2895 * @qpair:      Pointer to the queue pair struct.
2896 * @producer_tail:      Reference used for storing producer tail index.
2897 * @consumer_head:      Reference used for storing the consumer head index.
2898 *
2899 * This is the client interface for getting the current indexes of the
2900 * QPair from the point of the view of the caller as the producer.
2901 */
2902int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2903                                   u64 *producer_tail,
2904                                   u64 *consumer_head)
2905{
2906        struct vmci_queue_header *produce_q_header;
2907        struct vmci_queue_header *consume_q_header;
2908        int result;
2909
2910        if (!qpair)
2911                return VMCI_ERROR_INVALID_ARGS;
2912
2913        qp_lock(qpair);
2914        result =
2915            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2916        if (result == VMCI_SUCCESS)
2917                vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2918                                           producer_tail, consumer_head);
2919        qp_unlock(qpair);
2920
2921        if (result == VMCI_SUCCESS &&
2922            ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2923             (consumer_head && *consumer_head >= qpair->produce_q_size)))
2924                return VMCI_ERROR_INVALID_SIZE;
2925
2926        return result;
2927}
2928EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2929
2930/*
2931 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the comsumer.
2932 * @qpair:      Pointer to the queue pair struct.
2933 * @consumer_tail:      Reference used for storing consumer tail index.
2934 * @producer_head:      Reference used for storing the producer head index.
2935 *
2936 * This is the client interface for getting the current indexes of the
2937 * QPair from the point of the view of the caller as the consumer.
2938 */
2939int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2940                                   u64 *consumer_tail,
2941                                   u64 *producer_head)
2942{
2943        struct vmci_queue_header *produce_q_header;
2944        struct vmci_queue_header *consume_q_header;
2945        int result;
2946
2947        if (!qpair)
2948                return VMCI_ERROR_INVALID_ARGS;
2949
2950        qp_lock(qpair);
2951        result =
2952            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2953        if (result == VMCI_SUCCESS)
2954                vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2955                                           consumer_tail, producer_head);
2956        qp_unlock(qpair);
2957
2958        if (result == VMCI_SUCCESS &&
2959            ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2960             (producer_head && *producer_head >= qpair->consume_q_size)))
2961                return VMCI_ERROR_INVALID_SIZE;
2962
2963        return result;
2964}
2965EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2966
2967/*
2968 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2969 * @qpair:      Pointer to the queue pair struct.
2970 *
2971 * This is the client interface for getting the amount of free
2972 * space in the QPair from the point of the view of the caller as
2973 * the producer which is the common case.  Returns < 0 if err, else
2974 * available bytes into which data can be enqueued if > 0.
2975 */
2976s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2977{
2978        struct vmci_queue_header *produce_q_header;
2979        struct vmci_queue_header *consume_q_header;
2980        s64 result;
2981
2982        if (!qpair)
2983                return VMCI_ERROR_INVALID_ARGS;
2984
2985        qp_lock(qpair);
2986        result =
2987            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2988        if (result == VMCI_SUCCESS)
2989                result = vmci_q_header_free_space(produce_q_header,
2990                                                  consume_q_header,
2991                                                  qpair->produce_q_size);
2992        else
2993                result = 0;
2994
2995        qp_unlock(qpair);
2996
2997        return result;
2998}
2999EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
3000
3001/*
3002 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
3003 * @qpair:      Pointer to the queue pair struct.
3004 *
3005 * This is the client interface for getting the amount of free
3006 * space in the QPair from the point of the view of the caller as
3007 * the consumer which is not the common case.  Returns < 0 if err, else
3008 * available bytes into which data can be enqueued if > 0.
3009 */
3010s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
3011{
3012        struct vmci_queue_header *produce_q_header;
3013        struct vmci_queue_header *consume_q_header;
3014        s64 result;
3015
3016        if (!qpair)
3017                return VMCI_ERROR_INVALID_ARGS;
3018
3019        qp_lock(qpair);
3020        result =
3021            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3022        if (result == VMCI_SUCCESS)
3023                result = vmci_q_header_free_space(consume_q_header,
3024                                                  produce_q_header,
3025                                                  qpair->consume_q_size);
3026        else
3027                result = 0;
3028
3029        qp_unlock(qpair);
3030
3031        return result;
3032}
3033EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
3034
3035/*
3036 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
3037 * producer queue.
3038 * @qpair:      Pointer to the queue pair struct.
3039 *
3040 * This is the client interface for getting the amount of
3041 * enqueued data in the QPair from the point of the view of the
3042 * caller as the producer which is not the common case.  Returns < 0 if err,
3043 * else available bytes that may be read.
3044 */
3045s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
3046{
3047        struct vmci_queue_header *produce_q_header;
3048        struct vmci_queue_header *consume_q_header;
3049        s64 result;
3050
3051        if (!qpair)
3052                return VMCI_ERROR_INVALID_ARGS;
3053
3054        qp_lock(qpair);
3055        result =
3056            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3057        if (result == VMCI_SUCCESS)
3058                result = vmci_q_header_buf_ready(produce_q_header,
3059                                                 consume_q_header,
3060                                                 qpair->produce_q_size);
3061        else
3062                result = 0;
3063
3064        qp_unlock(qpair);
3065
3066        return result;
3067}
3068EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
3069
3070/*
3071 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
3072 * consumer queue.
3073 * @qpair:      Pointer to the queue pair struct.
3074 *
3075 * This is the client interface for getting the amount of
3076 * enqueued data in the QPair from the point of the view of the
3077 * caller as the consumer which is the normal case.  Returns < 0 if err,
3078 * else available bytes that may be read.
3079 */
3080s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
3081{
3082        struct vmci_queue_header *produce_q_header;
3083        struct vmci_queue_header *consume_q_header;
3084        s64 result;
3085
3086        if (!qpair)
3087                return VMCI_ERROR_INVALID_ARGS;
3088
3089        qp_lock(qpair);
3090        result =
3091            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3092        if (result == VMCI_SUCCESS)
3093                result = vmci_q_header_buf_ready(consume_q_header,
3094                                                 produce_q_header,
3095                                                 qpair->consume_q_size);
3096        else
3097                result = 0;
3098
3099        qp_unlock(qpair);
3100
3101        return result;
3102}
3103EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3104
3105/*
3106 * vmci_qpair_enqueue() - Throw data on the queue.
3107 * @qpair:      Pointer to the queue pair struct.
3108 * @buf:        Pointer to buffer containing data
3109 * @buf_size:   Length of buffer.
3110 * @buf_type:   Buffer type (Unused).
3111 *
3112 * This is the client interface for enqueueing data into the queue.
3113 * Returns number of bytes enqueued or < 0 on error.
3114 */
3115ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3116                           const void *buf,
3117                           size_t buf_size,
3118                           int buf_type)
3119{
3120        ssize_t result;
3121
3122        if (!qpair || !buf)
3123                return VMCI_ERROR_INVALID_ARGS;
3124
3125        qp_lock(qpair);
3126
3127        do {
3128                result = qp_enqueue_locked(qpair->produce_q,
3129                                           qpair->consume_q,
3130                                           qpair->produce_q_size,
3131                                           buf, buf_size,
3132                                           qp_memcpy_to_queue);
3133
3134                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3135                    !qp_wait_for_ready_queue(qpair))
3136                        result = VMCI_ERROR_WOULD_BLOCK;
3137
3138        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3139
3140        qp_unlock(qpair);
3141
3142        return result;
3143}
3144EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3145
3146/*
3147 * vmci_qpair_dequeue() - Get data from the queue.
3148 * @qpair:      Pointer to the queue pair struct.
3149 * @buf:        Pointer to buffer for the data
3150 * @buf_size:   Length of buffer.
3151 * @buf_type:   Buffer type (Unused).
3152 *
3153 * This is the client interface for dequeueing data from the queue.
3154 * Returns number of bytes dequeued or < 0 on error.
3155 */
3156ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3157                           void *buf,
3158                           size_t buf_size,
3159                           int buf_type)
3160{
3161        ssize_t result;
3162
3163        if (!qpair || !buf)
3164                return VMCI_ERROR_INVALID_ARGS;
3165
3166        qp_lock(qpair);
3167
3168        do {
3169                result = qp_dequeue_locked(qpair->produce_q,
3170                                           qpair->consume_q,
3171                                           qpair->consume_q_size,
3172                                           buf, buf_size,
3173                                           qp_memcpy_from_queue, true);
3174
3175                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3176                    !qp_wait_for_ready_queue(qpair))
3177                        result = VMCI_ERROR_WOULD_BLOCK;
3178
3179        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3180
3181        qp_unlock(qpair);
3182
3183        return result;
3184}
3185EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3186
3187/*
3188 * vmci_qpair_peek() - Peek at the data in the queue.
3189 * @qpair:      Pointer to the queue pair struct.
3190 * @buf:        Pointer to buffer for the data
3191 * @buf_size:   Length of buffer.
3192 * @buf_type:   Buffer type (Unused on Linux).
3193 *
3194 * This is the client interface for peeking into a queue.  (I.e.,
3195 * copy data from the queue without updating the head pointer.)
3196 * Returns number of bytes dequeued or < 0 on error.
3197 */
3198ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3199                        void *buf,
3200                        size_t buf_size,
3201                        int buf_type)
3202{
3203        ssize_t result;
3204
3205        if (!qpair || !buf)
3206                return VMCI_ERROR_INVALID_ARGS;
3207
3208        qp_lock(qpair);
3209
3210        do {
3211                result = qp_dequeue_locked(qpair->produce_q,
3212                                           qpair->consume_q,
3213                                           qpair->consume_q_size,
3214                                           buf, buf_size,
3215                                           qp_memcpy_from_queue, false);
3216
3217                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3218                    !qp_wait_for_ready_queue(qpair))
3219                        result = VMCI_ERROR_WOULD_BLOCK;
3220
3221        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3222
3223        qp_unlock(qpair);
3224
3225        return result;
3226}
3227EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3228
3229/*
3230 * vmci_qpair_enquev() - Throw data on the queue using iov.
3231 * @qpair:      Pointer to the queue pair struct.
3232 * @iov:        Pointer to buffer containing data
3233 * @iov_size:   Length of buffer.
3234 * @buf_type:   Buffer type (Unused).
3235 *
3236 * This is the client interface for enqueueing data into the queue.
3237 * This function uses IO vectors to handle the work. Returns number
3238 * of bytes enqueued or < 0 on error.
3239 */
3240ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3241                          struct msghdr *msg,
3242                          size_t iov_size,
3243                          int buf_type)
3244{
3245        ssize_t result;
3246
3247        if (!qpair)
3248                return VMCI_ERROR_INVALID_ARGS;
3249
3250        qp_lock(qpair);
3251
3252        do {
3253                result = qp_enqueue_locked(qpair->produce_q,
3254                                           qpair->consume_q,
3255                                           qpair->produce_q_size,
3256                                           msg, iov_size,
3257                                           qp_memcpy_to_queue_iov);
3258
3259                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3260                    !qp_wait_for_ready_queue(qpair))
3261                        result = VMCI_ERROR_WOULD_BLOCK;
3262
3263        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3264
3265        qp_unlock(qpair);
3266
3267        return result;
3268}
3269EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3270
3271/*
3272 * vmci_qpair_dequev() - Get data from the queue using iov.
3273 * @qpair:      Pointer to the queue pair struct.
3274 * @iov:        Pointer to buffer for the data
3275 * @iov_size:   Length of buffer.
3276 * @buf_type:   Buffer type (Unused).
3277 *
3278 * This is the client interface for dequeueing data from the queue.
3279 * This function uses IO vectors to handle the work. Returns number
3280 * of bytes dequeued or < 0 on error.
3281 */
3282ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3283                          struct msghdr *msg,
3284                          size_t iov_size,
3285                          int buf_type)
3286{
3287        ssize_t result;
3288
3289        if (!qpair)
3290                return VMCI_ERROR_INVALID_ARGS;
3291
3292        qp_lock(qpair);
3293
3294        do {
3295                result = qp_dequeue_locked(qpair->produce_q,
3296                                           qpair->consume_q,
3297                                           qpair->consume_q_size,
3298                                           msg, iov_size,
3299                                           qp_memcpy_from_queue_iov,
3300                                           true);
3301
3302                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3303                    !qp_wait_for_ready_queue(qpair))
3304                        result = VMCI_ERROR_WOULD_BLOCK;
3305
3306        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3307
3308        qp_unlock(qpair);
3309
3310        return result;
3311}
3312EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3313
3314/*
3315 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3316 * @qpair:      Pointer to the queue pair struct.
3317 * @iov:        Pointer to buffer for the data
3318 * @iov_size:   Length of buffer.
3319 * @buf_type:   Buffer type (Unused on Linux).
3320 *
3321 * This is the client interface for peeking into a queue.  (I.e.,
3322 * copy data from the queue without updating the head pointer.)
3323 * This function uses IO vectors to handle the work. Returns number
3324 * of bytes peeked or < 0 on error.
3325 */
3326ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3327                         struct msghdr *msg,
3328                         size_t iov_size,
3329                         int buf_type)
3330{
3331        ssize_t result;
3332
3333        if (!qpair)
3334                return VMCI_ERROR_INVALID_ARGS;
3335
3336        qp_lock(qpair);
3337
3338        do {
3339                result = qp_dequeue_locked(qpair->produce_q,
3340                                           qpair->consume_q,
3341                                           qpair->consume_q_size,
3342                                           msg, iov_size,
3343                                           qp_memcpy_from_queue_iov,
3344                                           false);
3345
3346                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3347                    !qp_wait_for_ready_queue(qpair))
3348                        result = VMCI_ERROR_WOULD_BLOCK;
3349
3350        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3351
3352        qp_unlock(qpair);
3353        return result;
3354}
3355EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
3356