linux/drivers/mmc/core/core.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/suspend.h>
  28#include <linux/fault-inject.h>
  29#include <linux/random.h>
  30#include <linux/slab.h>
  31#include <linux/of.h>
  32
  33#include <linux/mmc/card.h>
  34#include <linux/mmc/host.h>
  35#include <linux/mmc/mmc.h>
  36#include <linux/mmc/sd.h>
  37#include <linux/mmc/slot-gpio.h>
  38
  39#define CREATE_TRACE_POINTS
  40#include <trace/events/mmc.h>
  41
  42#include "core.h"
  43#include "bus.h"
  44#include "host.h"
  45#include "sdio_bus.h"
  46#include "pwrseq.h"
  47
  48#include "mmc_ops.h"
  49#include "sd_ops.h"
  50#include "sdio_ops.h"
  51
  52/* If the device is not responding */
  53#define MMC_CORE_TIMEOUT_MS     (10 * 60 * 1000) /* 10 minute timeout */
  54
  55/*
  56 * Background operations can take a long time, depending on the housekeeping
  57 * operations the card has to perform.
  58 */
  59#define MMC_BKOPS_MAX_TIMEOUT   (4 * 60 * 1000) /* max time to wait in ms */
  60
  61/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  62#define MMC_ERASE_TIMEOUT_MS    (60 * 1000) /* 60 s */
  63
  64static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  65
  66/*
  67 * Enabling software CRCs on the data blocks can be a significant (30%)
  68 * performance cost, and for other reasons may not always be desired.
  69 * So we allow it it to be disabled.
  70 */
  71bool use_spi_crc = 1;
  72module_param(use_spi_crc, bool, 0);
  73
  74static int mmc_schedule_delayed_work(struct delayed_work *work,
  75                                     unsigned long delay)
  76{
  77        /*
  78         * We use the system_freezable_wq, because of two reasons.
  79         * First, it allows several works (not the same work item) to be
  80         * executed simultaneously. Second, the queue becomes frozen when
  81         * userspace becomes frozen during system PM.
  82         */
  83        return queue_delayed_work(system_freezable_wq, work, delay);
  84}
  85
  86#ifdef CONFIG_FAIL_MMC_REQUEST
  87
  88/*
  89 * Internal function. Inject random data errors.
  90 * If mmc_data is NULL no errors are injected.
  91 */
  92static void mmc_should_fail_request(struct mmc_host *host,
  93                                    struct mmc_request *mrq)
  94{
  95        struct mmc_command *cmd = mrq->cmd;
  96        struct mmc_data *data = mrq->data;
  97        static const int data_errors[] = {
  98                -ETIMEDOUT,
  99                -EILSEQ,
 100                -EIO,
 101        };
 102
 103        if (!data)
 104                return;
 105
 106        if (cmd->error || data->error ||
 107            !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 108                return;
 109
 110        data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 111        data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 112}
 113
 114#else /* CONFIG_FAIL_MMC_REQUEST */
 115
 116static inline void mmc_should_fail_request(struct mmc_host *host,
 117                                           struct mmc_request *mrq)
 118{
 119}
 120
 121#endif /* CONFIG_FAIL_MMC_REQUEST */
 122
 123static inline void mmc_complete_cmd(struct mmc_request *mrq)
 124{
 125        if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 126                complete_all(&mrq->cmd_completion);
 127}
 128
 129void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 130{
 131        if (!mrq->cap_cmd_during_tfr)
 132                return;
 133
 134        mmc_complete_cmd(mrq);
 135
 136        pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 137                 mmc_hostname(host), mrq->cmd->opcode);
 138}
 139EXPORT_SYMBOL(mmc_command_done);
 140
 141/**
 142 *      mmc_request_done - finish processing an MMC request
 143 *      @host: MMC host which completed request
 144 *      @mrq: MMC request which request
 145 *
 146 *      MMC drivers should call this function when they have completed
 147 *      their processing of a request.
 148 */
 149void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 150{
 151        struct mmc_command *cmd = mrq->cmd;
 152        int err = cmd->error;
 153
 154        /* Flag re-tuning needed on CRC errors */
 155        if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
 156            cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
 157            (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 158            (mrq->data && mrq->data->error == -EILSEQ) ||
 159            (mrq->stop && mrq->stop->error == -EILSEQ)))
 160                mmc_retune_needed(host);
 161
 162        if (err && cmd->retries && mmc_host_is_spi(host)) {
 163                if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 164                        cmd->retries = 0;
 165        }
 166
 167        if (host->ongoing_mrq == mrq)
 168                host->ongoing_mrq = NULL;
 169
 170        mmc_complete_cmd(mrq);
 171
 172        trace_mmc_request_done(host, mrq);
 173
 174        if (err && cmd->retries && !mmc_card_removed(host->card)) {
 175                /*
 176                 * Request starter must handle retries - see
 177                 * mmc_wait_for_req_done().
 178                 */
 179                if (mrq->done)
 180                        mrq->done(mrq);
 181        } else {
 182                mmc_should_fail_request(host, mrq);
 183
 184                if (!host->ongoing_mrq)
 185                        led_trigger_event(host->led, LED_OFF);
 186
 187                if (mrq->sbc) {
 188                        pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 189                                mmc_hostname(host), mrq->sbc->opcode,
 190                                mrq->sbc->error,
 191                                mrq->sbc->resp[0], mrq->sbc->resp[1],
 192                                mrq->sbc->resp[2], mrq->sbc->resp[3]);
 193                }
 194
 195                pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 196                        mmc_hostname(host), cmd->opcode, err,
 197                        cmd->resp[0], cmd->resp[1],
 198                        cmd->resp[2], cmd->resp[3]);
 199
 200                if (mrq->data) {
 201                        pr_debug("%s:     %d bytes transferred: %d\n",
 202                                mmc_hostname(host),
 203                                mrq->data->bytes_xfered, mrq->data->error);
 204                }
 205
 206                if (mrq->stop) {
 207                        pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 208                                mmc_hostname(host), mrq->stop->opcode,
 209                                mrq->stop->error,
 210                                mrq->stop->resp[0], mrq->stop->resp[1],
 211                                mrq->stop->resp[2], mrq->stop->resp[3]);
 212                }
 213
 214                if (mrq->done)
 215                        mrq->done(mrq);
 216        }
 217}
 218
 219EXPORT_SYMBOL(mmc_request_done);
 220
 221static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 222{
 223        int err;
 224
 225        /* Assumes host controller has been runtime resumed by mmc_claim_host */
 226        err = mmc_retune(host);
 227        if (err) {
 228                mrq->cmd->error = err;
 229                mmc_request_done(host, mrq);
 230                return;
 231        }
 232
 233        /*
 234         * For sdio rw commands we must wait for card busy otherwise some
 235         * sdio devices won't work properly.
 236         */
 237        if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
 238                int tries = 500; /* Wait aprox 500ms at maximum */
 239
 240                while (host->ops->card_busy(host) && --tries)
 241                        mmc_delay(1);
 242
 243                if (tries == 0) {
 244                        mrq->cmd->error = -EBUSY;
 245                        mmc_request_done(host, mrq);
 246                        return;
 247                }
 248        }
 249
 250        if (mrq->cap_cmd_during_tfr) {
 251                host->ongoing_mrq = mrq;
 252                /*
 253                 * Retry path could come through here without having waiting on
 254                 * cmd_completion, so ensure it is reinitialised.
 255                 */
 256                reinit_completion(&mrq->cmd_completion);
 257        }
 258
 259        trace_mmc_request_start(host, mrq);
 260
 261        host->ops->request(host, mrq);
 262}
 263
 264static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 265{
 266#ifdef CONFIG_MMC_DEBUG
 267        unsigned int i, sz;
 268        struct scatterlist *sg;
 269#endif
 270        mmc_retune_hold(host);
 271
 272        if (mmc_card_removed(host->card))
 273                return -ENOMEDIUM;
 274
 275        if (mrq->sbc) {
 276                pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 277                         mmc_hostname(host), mrq->sbc->opcode,
 278                         mrq->sbc->arg, mrq->sbc->flags);
 279        }
 280
 281        pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 282                 mmc_hostname(host), mrq->cmd->opcode,
 283                 mrq->cmd->arg, mrq->cmd->flags);
 284
 285        if (mrq->data) {
 286                pr_debug("%s:     blksz %d blocks %d flags %08x "
 287                        "tsac %d ms nsac %d\n",
 288                        mmc_hostname(host), mrq->data->blksz,
 289                        mrq->data->blocks, mrq->data->flags,
 290                        mrq->data->timeout_ns / 1000000,
 291                        mrq->data->timeout_clks);
 292        }
 293
 294        if (mrq->stop) {
 295                pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 296                         mmc_hostname(host), mrq->stop->opcode,
 297                         mrq->stop->arg, mrq->stop->flags);
 298        }
 299
 300        WARN_ON(!host->claimed);
 301
 302        mrq->cmd->error = 0;
 303        mrq->cmd->mrq = mrq;
 304        if (mrq->sbc) {
 305                mrq->sbc->error = 0;
 306                mrq->sbc->mrq = mrq;
 307        }
 308        if (mrq->data) {
 309                BUG_ON(mrq->data->blksz > host->max_blk_size);
 310                BUG_ON(mrq->data->blocks > host->max_blk_count);
 311                BUG_ON(mrq->data->blocks * mrq->data->blksz >
 312                        host->max_req_size);
 313
 314#ifdef CONFIG_MMC_DEBUG
 315                sz = 0;
 316                for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 317                        sz += sg->length;
 318                BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
 319#endif
 320
 321                mrq->cmd->data = mrq->data;
 322                mrq->data->error = 0;
 323                mrq->data->mrq = mrq;
 324                if (mrq->stop) {
 325                        mrq->data->stop = mrq->stop;
 326                        mrq->stop->error = 0;
 327                        mrq->stop->mrq = mrq;
 328                }
 329        }
 330        led_trigger_event(host->led, LED_FULL);
 331        __mmc_start_request(host, mrq);
 332
 333        return 0;
 334}
 335
 336/**
 337 *      mmc_start_bkops - start BKOPS for supported cards
 338 *      @card: MMC card to start BKOPS
 339 *      @form_exception: A flag to indicate if this function was
 340 *                       called due to an exception raised by the card
 341 *
 342 *      Start background operations whenever requested.
 343 *      When the urgent BKOPS bit is set in a R1 command response
 344 *      then background operations should be started immediately.
 345*/
 346void mmc_start_bkops(struct mmc_card *card, bool from_exception)
 347{
 348        int err;
 349        int timeout;
 350        bool use_busy_signal;
 351
 352        BUG_ON(!card);
 353
 354        if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
 355                return;
 356
 357        err = mmc_read_bkops_status(card);
 358        if (err) {
 359                pr_err("%s: Failed to read bkops status: %d\n",
 360                       mmc_hostname(card->host), err);
 361                return;
 362        }
 363
 364        if (!card->ext_csd.raw_bkops_status)
 365                return;
 366
 367        if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
 368            from_exception)
 369                return;
 370
 371        mmc_claim_host(card->host);
 372        if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
 373                timeout = MMC_BKOPS_MAX_TIMEOUT;
 374                use_busy_signal = true;
 375        } else {
 376                timeout = 0;
 377                use_busy_signal = false;
 378        }
 379
 380        mmc_retune_hold(card->host);
 381
 382        err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 383                        EXT_CSD_BKOPS_START, 1, timeout,
 384                        use_busy_signal, true, false);
 385        if (err) {
 386                pr_warn("%s: Error %d starting bkops\n",
 387                        mmc_hostname(card->host), err);
 388                mmc_retune_release(card->host);
 389                goto out;
 390        }
 391
 392        /*
 393         * For urgent bkops status (LEVEL_2 and more)
 394         * bkops executed synchronously, otherwise
 395         * the operation is in progress
 396         */
 397        if (!use_busy_signal)
 398                mmc_card_set_doing_bkops(card);
 399        else
 400                mmc_retune_release(card->host);
 401out:
 402        mmc_release_host(card->host);
 403}
 404EXPORT_SYMBOL(mmc_start_bkops);
 405
 406/*
 407 * mmc_wait_data_done() - done callback for data request
 408 * @mrq: done data request
 409 *
 410 * Wakes up mmc context, passed as a callback to host controller driver
 411 */
 412static void mmc_wait_data_done(struct mmc_request *mrq)
 413{
 414        struct mmc_context_info *context_info = &mrq->host->context_info;
 415
 416        context_info->is_done_rcv = true;
 417        wake_up_interruptible(&context_info->wait);
 418}
 419
 420static void mmc_wait_done(struct mmc_request *mrq)
 421{
 422        complete(&mrq->completion);
 423}
 424
 425static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 426{
 427        struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 428
 429        /*
 430         * If there is an ongoing transfer, wait for the command line to become
 431         * available.
 432         */
 433        if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 434                wait_for_completion(&ongoing_mrq->cmd_completion);
 435}
 436
 437/*
 438 *__mmc_start_data_req() - starts data request
 439 * @host: MMC host to start the request
 440 * @mrq: data request to start
 441 *
 442 * Sets the done callback to be called when request is completed by the card.
 443 * Starts data mmc request execution
 444 * If an ongoing transfer is already in progress, wait for the command line
 445 * to become available before sending another command.
 446 */
 447static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
 448{
 449        int err;
 450
 451        mmc_wait_ongoing_tfr_cmd(host);
 452
 453        mrq->done = mmc_wait_data_done;
 454        mrq->host = host;
 455
 456        init_completion(&mrq->cmd_completion);
 457
 458        err = mmc_start_request(host, mrq);
 459        if (err) {
 460                mrq->cmd->error = err;
 461                mmc_complete_cmd(mrq);
 462                mmc_wait_data_done(mrq);
 463        }
 464
 465        return err;
 466}
 467
 468static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 469{
 470        int err;
 471
 472        mmc_wait_ongoing_tfr_cmd(host);
 473
 474        init_completion(&mrq->completion);
 475        mrq->done = mmc_wait_done;
 476
 477        init_completion(&mrq->cmd_completion);
 478
 479        err = mmc_start_request(host, mrq);
 480        if (err) {
 481                mrq->cmd->error = err;
 482                mmc_complete_cmd(mrq);
 483                complete(&mrq->completion);
 484        }
 485
 486        return err;
 487}
 488
 489/*
 490 * mmc_wait_for_data_req_done() - wait for request completed
 491 * @host: MMC host to prepare the command.
 492 * @mrq: MMC request to wait for
 493 *
 494 * Blocks MMC context till host controller will ack end of data request
 495 * execution or new request notification arrives from the block layer.
 496 * Handles command retries.
 497 *
 498 * Returns enum mmc_blk_status after checking errors.
 499 */
 500static int mmc_wait_for_data_req_done(struct mmc_host *host,
 501                                      struct mmc_request *mrq,
 502                                      struct mmc_async_req *next_req)
 503{
 504        struct mmc_command *cmd;
 505        struct mmc_context_info *context_info = &host->context_info;
 506        int err;
 507        unsigned long flags;
 508
 509        while (1) {
 510                wait_event_interruptible(context_info->wait,
 511                                (context_info->is_done_rcv ||
 512                                 context_info->is_new_req));
 513                spin_lock_irqsave(&context_info->lock, flags);
 514                context_info->is_waiting_last_req = false;
 515                spin_unlock_irqrestore(&context_info->lock, flags);
 516                if (context_info->is_done_rcv) {
 517                        context_info->is_done_rcv = false;
 518                        context_info->is_new_req = false;
 519                        cmd = mrq->cmd;
 520
 521                        if (!cmd->error || !cmd->retries ||
 522                            mmc_card_removed(host->card)) {
 523                                err = host->areq->err_check(host->card,
 524                                                            host->areq);
 525                                break; /* return err */
 526                        } else {
 527                                mmc_retune_recheck(host);
 528                                pr_info("%s: req failed (CMD%u): %d, retrying...\n",
 529                                        mmc_hostname(host),
 530                                        cmd->opcode, cmd->error);
 531                                cmd->retries--;
 532                                cmd->error = 0;
 533                                __mmc_start_request(host, mrq);
 534                                continue; /* wait for done/new event again */
 535                        }
 536                } else if (context_info->is_new_req) {
 537                        context_info->is_new_req = false;
 538                        if (!next_req)
 539                                return MMC_BLK_NEW_REQUEST;
 540                }
 541        }
 542        mmc_retune_release(host);
 543        return err;
 544}
 545
 546void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 547{
 548        struct mmc_command *cmd;
 549
 550        while (1) {
 551                wait_for_completion(&mrq->completion);
 552
 553                cmd = mrq->cmd;
 554
 555                /*
 556                 * If host has timed out waiting for the sanitize
 557                 * to complete, card might be still in programming state
 558                 * so let's try to bring the card out of programming
 559                 * state.
 560                 */
 561                if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
 562                        if (!mmc_interrupt_hpi(host->card)) {
 563                                pr_warn("%s: %s: Interrupted sanitize\n",
 564                                        mmc_hostname(host), __func__);
 565                                cmd->error = 0;
 566                                break;
 567                        } else {
 568                                pr_err("%s: %s: Failed to interrupt sanitize\n",
 569                                       mmc_hostname(host), __func__);
 570                        }
 571                }
 572                if (!cmd->error || !cmd->retries ||
 573                    mmc_card_removed(host->card))
 574                        break;
 575
 576                mmc_retune_recheck(host);
 577
 578                pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 579                         mmc_hostname(host), cmd->opcode, cmd->error);
 580                cmd->retries--;
 581                cmd->error = 0;
 582                __mmc_start_request(host, mrq);
 583        }
 584
 585        mmc_retune_release(host);
 586}
 587EXPORT_SYMBOL(mmc_wait_for_req_done);
 588
 589/**
 590 *      mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 591 *      @host: MMC host
 592 *      @mrq: MMC request
 593 *
 594 *      mmc_is_req_done() is used with requests that have
 595 *      mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 596 *      starting a request and before waiting for it to complete. That is,
 597 *      either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 598 *      and before mmc_wait_for_req_done(). If it is called at other times the
 599 *      result is not meaningful.
 600 */
 601bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 602{
 603        if (host->areq)
 604                return host->context_info.is_done_rcv;
 605        else
 606                return completion_done(&mrq->completion);
 607}
 608EXPORT_SYMBOL(mmc_is_req_done);
 609
 610/**
 611 *      mmc_pre_req - Prepare for a new request
 612 *      @host: MMC host to prepare command
 613 *      @mrq: MMC request to prepare for
 614 *      @is_first_req: true if there is no previous started request
 615 *                     that may run in parellel to this call, otherwise false
 616 *
 617 *      mmc_pre_req() is called in prior to mmc_start_req() to let
 618 *      host prepare for the new request. Preparation of a request may be
 619 *      performed while another request is running on the host.
 620 */
 621static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
 622                 bool is_first_req)
 623{
 624        if (host->ops->pre_req)
 625                host->ops->pre_req(host, mrq, is_first_req);
 626}
 627
 628/**
 629 *      mmc_post_req - Post process a completed request
 630 *      @host: MMC host to post process command
 631 *      @mrq: MMC request to post process for
 632 *      @err: Error, if non zero, clean up any resources made in pre_req
 633 *
 634 *      Let the host post process a completed request. Post processing of
 635 *      a request may be performed while another reuqest is running.
 636 */
 637static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 638                         int err)
 639{
 640        if (host->ops->post_req)
 641                host->ops->post_req(host, mrq, err);
 642}
 643
 644/**
 645 *      mmc_start_req - start a non-blocking request
 646 *      @host: MMC host to start command
 647 *      @areq: async request to start
 648 *      @error: out parameter returns 0 for success, otherwise non zero
 649 *
 650 *      Start a new MMC custom command request for a host.
 651 *      If there is on ongoing async request wait for completion
 652 *      of that request and start the new one and return.
 653 *      Does not wait for the new request to complete.
 654 *
 655 *      Returns the completed request, NULL in case of none completed.
 656 *      Wait for the an ongoing request (previoulsy started) to complete and
 657 *      return the completed request. If there is no ongoing request, NULL
 658 *      is returned without waiting. NULL is not an error condition.
 659 */
 660struct mmc_async_req *mmc_start_req(struct mmc_host *host,
 661                                    struct mmc_async_req *areq, int *error)
 662{
 663        int err = 0;
 664        int start_err = 0;
 665        struct mmc_async_req *data = host->areq;
 666
 667        /* Prepare a new request */
 668        if (areq)
 669                mmc_pre_req(host, areq->mrq, !host->areq);
 670
 671        if (host->areq) {
 672                err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
 673                if (err == MMC_BLK_NEW_REQUEST) {
 674                        if (error)
 675                                *error = err;
 676                        /*
 677                         * The previous request was not completed,
 678                         * nothing to return
 679                         */
 680                        return NULL;
 681                }
 682                /*
 683                 * Check BKOPS urgency for each R1 response
 684                 */
 685                if (host->card && mmc_card_mmc(host->card) &&
 686                    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
 687                     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
 688                    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
 689
 690                        /* Cancel the prepared request */
 691                        if (areq)
 692                                mmc_post_req(host, areq->mrq, -EINVAL);
 693
 694                        mmc_start_bkops(host->card, true);
 695
 696                        /* prepare the request again */
 697                        if (areq)
 698                                mmc_pre_req(host, areq->mrq, !host->areq);
 699                }
 700        }
 701
 702        if (!err && areq)
 703                start_err = __mmc_start_data_req(host, areq->mrq);
 704
 705        if (host->areq)
 706                mmc_post_req(host, host->areq->mrq, 0);
 707
 708         /* Cancel a prepared request if it was not started. */
 709        if ((err || start_err) && areq)
 710                mmc_post_req(host, areq->mrq, -EINVAL);
 711
 712        if (err)
 713                host->areq = NULL;
 714        else
 715                host->areq = areq;
 716
 717        if (error)
 718                *error = err;
 719        return data;
 720}
 721EXPORT_SYMBOL(mmc_start_req);
 722
 723/**
 724 *      mmc_wait_for_req - start a request and wait for completion
 725 *      @host: MMC host to start command
 726 *      @mrq: MMC request to start
 727 *
 728 *      Start a new MMC custom command request for a host, and wait
 729 *      for the command to complete. In the case of 'cap_cmd_during_tfr'
 730 *      requests, the transfer is ongoing and the caller can issue further
 731 *      commands that do not use the data lines, and then wait by calling
 732 *      mmc_wait_for_req_done().
 733 *      Does not attempt to parse the response.
 734 */
 735void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 736{
 737        __mmc_start_req(host, mrq);
 738
 739        if (!mrq->cap_cmd_during_tfr)
 740                mmc_wait_for_req_done(host, mrq);
 741}
 742EXPORT_SYMBOL(mmc_wait_for_req);
 743
 744/**
 745 *      mmc_interrupt_hpi - Issue for High priority Interrupt
 746 *      @card: the MMC card associated with the HPI transfer
 747 *
 748 *      Issued High Priority Interrupt, and check for card status
 749 *      until out-of prg-state.
 750 */
 751int mmc_interrupt_hpi(struct mmc_card *card)
 752{
 753        int err;
 754        u32 status;
 755        unsigned long prg_wait;
 756
 757        BUG_ON(!card);
 758
 759        if (!card->ext_csd.hpi_en) {
 760                pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
 761                return 1;
 762        }
 763
 764        mmc_claim_host(card->host);
 765        err = mmc_send_status(card, &status);
 766        if (err) {
 767                pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
 768                goto out;
 769        }
 770
 771        switch (R1_CURRENT_STATE(status)) {
 772        case R1_STATE_IDLE:
 773        case R1_STATE_READY:
 774        case R1_STATE_STBY:
 775        case R1_STATE_TRAN:
 776                /*
 777                 * In idle and transfer states, HPI is not needed and the caller
 778                 * can issue the next intended command immediately
 779                 */
 780                goto out;
 781        case R1_STATE_PRG:
 782                break;
 783        default:
 784                /* In all other states, it's illegal to issue HPI */
 785                pr_debug("%s: HPI cannot be sent. Card state=%d\n",
 786                        mmc_hostname(card->host), R1_CURRENT_STATE(status));
 787                err = -EINVAL;
 788                goto out;
 789        }
 790
 791        err = mmc_send_hpi_cmd(card, &status);
 792        if (err)
 793                goto out;
 794
 795        prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
 796        do {
 797                err = mmc_send_status(card, &status);
 798
 799                if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
 800                        break;
 801                if (time_after(jiffies, prg_wait))
 802                        err = -ETIMEDOUT;
 803        } while (!err);
 804
 805out:
 806        mmc_release_host(card->host);
 807        return err;
 808}
 809EXPORT_SYMBOL(mmc_interrupt_hpi);
 810
 811/**
 812 *      mmc_wait_for_cmd - start a command and wait for completion
 813 *      @host: MMC host to start command
 814 *      @cmd: MMC command to start
 815 *      @retries: maximum number of retries
 816 *
 817 *      Start a new MMC command for a host, and wait for the command
 818 *      to complete.  Return any error that occurred while the command
 819 *      was executing.  Do not attempt to parse the response.
 820 */
 821int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 822{
 823        struct mmc_request mrq = {NULL};
 824
 825        WARN_ON(!host->claimed);
 826
 827        memset(cmd->resp, 0, sizeof(cmd->resp));
 828        cmd->retries = retries;
 829
 830        mrq.cmd = cmd;
 831        cmd->data = NULL;
 832
 833        mmc_wait_for_req(host, &mrq);
 834
 835        return cmd->error;
 836}
 837
 838EXPORT_SYMBOL(mmc_wait_for_cmd);
 839
 840/**
 841 *      mmc_stop_bkops - stop ongoing BKOPS
 842 *      @card: MMC card to check BKOPS
 843 *
 844 *      Send HPI command to stop ongoing background operations to
 845 *      allow rapid servicing of foreground operations, e.g. read/
 846 *      writes. Wait until the card comes out of the programming state
 847 *      to avoid errors in servicing read/write requests.
 848 */
 849int mmc_stop_bkops(struct mmc_card *card)
 850{
 851        int err = 0;
 852
 853        BUG_ON(!card);
 854        err = mmc_interrupt_hpi(card);
 855
 856        /*
 857         * If err is EINVAL, we can't issue an HPI.
 858         * It should complete the BKOPS.
 859         */
 860        if (!err || (err == -EINVAL)) {
 861                mmc_card_clr_doing_bkops(card);
 862                mmc_retune_release(card->host);
 863                err = 0;
 864        }
 865
 866        return err;
 867}
 868EXPORT_SYMBOL(mmc_stop_bkops);
 869
 870int mmc_read_bkops_status(struct mmc_card *card)
 871{
 872        int err;
 873        u8 *ext_csd;
 874
 875        mmc_claim_host(card->host);
 876        err = mmc_get_ext_csd(card, &ext_csd);
 877        mmc_release_host(card->host);
 878        if (err)
 879                return err;
 880
 881        card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
 882        card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
 883        kfree(ext_csd);
 884        return 0;
 885}
 886EXPORT_SYMBOL(mmc_read_bkops_status);
 887
 888/**
 889 *      mmc_set_data_timeout - set the timeout for a data command
 890 *      @data: data phase for command
 891 *      @card: the MMC card associated with the data transfer
 892 *
 893 *      Computes the data timeout parameters according to the
 894 *      correct algorithm given the card type.
 895 */
 896void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 897{
 898        unsigned int mult;
 899
 900        /*
 901         * SDIO cards only define an upper 1 s limit on access.
 902         */
 903        if (mmc_card_sdio(card)) {
 904                data->timeout_ns = 1000000000;
 905                data->timeout_clks = 0;
 906                return;
 907        }
 908
 909        /*
 910         * SD cards use a 100 multiplier rather than 10
 911         */
 912        mult = mmc_card_sd(card) ? 100 : 10;
 913
 914        /*
 915         * Scale up the multiplier (and therefore the timeout) by
 916         * the r2w factor for writes.
 917         */
 918        if (data->flags & MMC_DATA_WRITE)
 919                mult <<= card->csd.r2w_factor;
 920
 921        data->timeout_ns = card->csd.tacc_ns * mult;
 922        data->timeout_clks = card->csd.tacc_clks * mult;
 923
 924        /*
 925         * SD cards also have an upper limit on the timeout.
 926         */
 927        if (mmc_card_sd(card)) {
 928                unsigned int timeout_us, limit_us;
 929
 930                timeout_us = data->timeout_ns / 1000;
 931                if (card->host->ios.clock)
 932                        timeout_us += data->timeout_clks * 1000 /
 933                                (card->host->ios.clock / 1000);
 934
 935                if (data->flags & MMC_DATA_WRITE)
 936                        /*
 937                         * The MMC spec "It is strongly recommended
 938                         * for hosts to implement more than 500ms
 939                         * timeout value even if the card indicates
 940                         * the 250ms maximum busy length."  Even the
 941                         * previous value of 300ms is known to be
 942                         * insufficient for some cards.
 943                         */
 944                        limit_us = 3000000;
 945                else
 946                        limit_us = 100000;
 947
 948                /*
 949                 * SDHC cards always use these fixed values.
 950                 */
 951                if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
 952                        data->timeout_ns = limit_us * 1000;
 953                        data->timeout_clks = 0;
 954                }
 955
 956                /* assign limit value if invalid */
 957                if (timeout_us == 0)
 958                        data->timeout_ns = limit_us * 1000;
 959        }
 960
 961        /*
 962         * Some cards require longer data read timeout than indicated in CSD.
 963         * Address this by setting the read timeout to a "reasonably high"
 964         * value. For the cards tested, 600ms has proven enough. If necessary,
 965         * this value can be increased if other problematic cards require this.
 966         */
 967        if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 968                data->timeout_ns = 600000000;
 969                data->timeout_clks = 0;
 970        }
 971
 972        /*
 973         * Some cards need very high timeouts if driven in SPI mode.
 974         * The worst observed timeout was 900ms after writing a
 975         * continuous stream of data until the internal logic
 976         * overflowed.
 977         */
 978        if (mmc_host_is_spi(card->host)) {
 979                if (data->flags & MMC_DATA_WRITE) {
 980                        if (data->timeout_ns < 1000000000)
 981                                data->timeout_ns = 1000000000;  /* 1s */
 982                } else {
 983                        if (data->timeout_ns < 100000000)
 984                                data->timeout_ns =  100000000;  /* 100ms */
 985                }
 986        }
 987}
 988EXPORT_SYMBOL(mmc_set_data_timeout);
 989
 990/**
 991 *      mmc_align_data_size - pads a transfer size to a more optimal value
 992 *      @card: the MMC card associated with the data transfer
 993 *      @sz: original transfer size
 994 *
 995 *      Pads the original data size with a number of extra bytes in
 996 *      order to avoid controller bugs and/or performance hits
 997 *      (e.g. some controllers revert to PIO for certain sizes).
 998 *
 999 *      Returns the improved size, which might be unmodified.
1000 *
1001 *      Note that this function is only relevant when issuing a
1002 *      single scatter gather entry.
1003 */
1004unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
1005{
1006        /*
1007         * FIXME: We don't have a system for the controller to tell
1008         * the core about its problems yet, so for now we just 32-bit
1009         * align the size.
1010         */
1011        sz = ((sz + 3) / 4) * 4;
1012
1013        return sz;
1014}
1015EXPORT_SYMBOL(mmc_align_data_size);
1016
1017/**
1018 *      __mmc_claim_host - exclusively claim a host
1019 *      @host: mmc host to claim
1020 *      @abort: whether or not the operation should be aborted
1021 *
1022 *      Claim a host for a set of operations.  If @abort is non null and
1023 *      dereference a non-zero value then this will return prematurely with
1024 *      that non-zero value without acquiring the lock.  Returns zero
1025 *      with the lock held otherwise.
1026 */
1027int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
1028{
1029        DECLARE_WAITQUEUE(wait, current);
1030        unsigned long flags;
1031        int stop;
1032        bool pm = false;
1033
1034        might_sleep();
1035
1036        add_wait_queue(&host->wq, &wait);
1037        spin_lock_irqsave(&host->lock, flags);
1038        while (1) {
1039                set_current_state(TASK_UNINTERRUPTIBLE);
1040                stop = abort ? atomic_read(abort) : 0;
1041                if (stop || !host->claimed || host->claimer == current)
1042                        break;
1043                spin_unlock_irqrestore(&host->lock, flags);
1044                schedule();
1045                spin_lock_irqsave(&host->lock, flags);
1046        }
1047        set_current_state(TASK_RUNNING);
1048        if (!stop) {
1049                host->claimed = 1;
1050                host->claimer = current;
1051                host->claim_cnt += 1;
1052                if (host->claim_cnt == 1)
1053                        pm = true;
1054        } else
1055                wake_up(&host->wq);
1056        spin_unlock_irqrestore(&host->lock, flags);
1057        remove_wait_queue(&host->wq, &wait);
1058
1059        if (pm)
1060                pm_runtime_get_sync(mmc_dev(host));
1061
1062        return stop;
1063}
1064EXPORT_SYMBOL(__mmc_claim_host);
1065
1066/**
1067 *      mmc_release_host - release a host
1068 *      @host: mmc host to release
1069 *
1070 *      Release a MMC host, allowing others to claim the host
1071 *      for their operations.
1072 */
1073void mmc_release_host(struct mmc_host *host)
1074{
1075        unsigned long flags;
1076
1077        WARN_ON(!host->claimed);
1078
1079        spin_lock_irqsave(&host->lock, flags);
1080        if (--host->claim_cnt) {
1081                /* Release for nested claim */
1082                spin_unlock_irqrestore(&host->lock, flags);
1083        } else {
1084                host->claimed = 0;
1085                host->claimer = NULL;
1086                spin_unlock_irqrestore(&host->lock, flags);
1087                wake_up(&host->wq);
1088                pm_runtime_mark_last_busy(mmc_dev(host));
1089                pm_runtime_put_autosuspend(mmc_dev(host));
1090        }
1091}
1092EXPORT_SYMBOL(mmc_release_host);
1093
1094/*
1095 * This is a helper function, which fetches a runtime pm reference for the
1096 * card device and also claims the host.
1097 */
1098void mmc_get_card(struct mmc_card *card)
1099{
1100        pm_runtime_get_sync(&card->dev);
1101        mmc_claim_host(card->host);
1102}
1103EXPORT_SYMBOL(mmc_get_card);
1104
1105/*
1106 * This is a helper function, which releases the host and drops the runtime
1107 * pm reference for the card device.
1108 */
1109void mmc_put_card(struct mmc_card *card)
1110{
1111        mmc_release_host(card->host);
1112        pm_runtime_mark_last_busy(&card->dev);
1113        pm_runtime_put_autosuspend(&card->dev);
1114}
1115EXPORT_SYMBOL(mmc_put_card);
1116
1117/*
1118 * Internal function that does the actual ios call to the host driver,
1119 * optionally printing some debug output.
1120 */
1121static inline void mmc_set_ios(struct mmc_host *host)
1122{
1123        struct mmc_ios *ios = &host->ios;
1124
1125        pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1126                "width %u timing %u\n",
1127                 mmc_hostname(host), ios->clock, ios->bus_mode,
1128                 ios->power_mode, ios->chip_select, ios->vdd,
1129                 1 << ios->bus_width, ios->timing);
1130
1131        host->ops->set_ios(host, ios);
1132}
1133
1134/*
1135 * Control chip select pin on a host.
1136 */
1137void mmc_set_chip_select(struct mmc_host *host, int mode)
1138{
1139        host->ios.chip_select = mode;
1140        mmc_set_ios(host);
1141}
1142
1143/*
1144 * Sets the host clock to the highest possible frequency that
1145 * is below "hz".
1146 */
1147void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1148{
1149        WARN_ON(hz && hz < host->f_min);
1150
1151        if (hz > host->f_max)
1152                hz = host->f_max;
1153
1154        host->ios.clock = hz;
1155        mmc_set_ios(host);
1156}
1157
1158int mmc_execute_tuning(struct mmc_card *card)
1159{
1160        struct mmc_host *host = card->host;
1161        u32 opcode;
1162        int err;
1163
1164        if (!host->ops->execute_tuning)
1165                return 0;
1166
1167        if (mmc_card_mmc(card))
1168                opcode = MMC_SEND_TUNING_BLOCK_HS200;
1169        else
1170                opcode = MMC_SEND_TUNING_BLOCK;
1171
1172        err = host->ops->execute_tuning(host, opcode);
1173
1174        if (err)
1175                pr_err("%s: tuning execution failed: %d\n",
1176                        mmc_hostname(host), err);
1177        else
1178                mmc_retune_enable(host);
1179
1180        return err;
1181}
1182
1183/*
1184 * Change the bus mode (open drain/push-pull) of a host.
1185 */
1186void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1187{
1188        host->ios.bus_mode = mode;
1189        mmc_set_ios(host);
1190}
1191
1192/*
1193 * Change data bus width of a host.
1194 */
1195void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1196{
1197        host->ios.bus_width = width;
1198        mmc_set_ios(host);
1199}
1200
1201/*
1202 * Set initial state after a power cycle or a hw_reset.
1203 */
1204void mmc_set_initial_state(struct mmc_host *host)
1205{
1206        mmc_retune_disable(host);
1207
1208        if (mmc_host_is_spi(host))
1209                host->ios.chip_select = MMC_CS_HIGH;
1210        else
1211                host->ios.chip_select = MMC_CS_DONTCARE;
1212        host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1213        host->ios.bus_width = MMC_BUS_WIDTH_1;
1214        host->ios.timing = MMC_TIMING_LEGACY;
1215        host->ios.drv_type = 0;
1216        host->ios.enhanced_strobe = false;
1217
1218        /*
1219         * Make sure we are in non-enhanced strobe mode before we
1220         * actually enable it in ext_csd.
1221         */
1222        if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1223             host->ops->hs400_enhanced_strobe)
1224                host->ops->hs400_enhanced_strobe(host, &host->ios);
1225
1226        mmc_set_ios(host);
1227}
1228
1229/**
1230 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1231 * @vdd:        voltage (mV)
1232 * @low_bits:   prefer low bits in boundary cases
1233 *
1234 * This function returns the OCR bit number according to the provided @vdd
1235 * value. If conversion is not possible a negative errno value returned.
1236 *
1237 * Depending on the @low_bits flag the function prefers low or high OCR bits
1238 * on boundary voltages. For example,
1239 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1240 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1241 *
1242 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1243 */
1244static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1245{
1246        const int max_bit = ilog2(MMC_VDD_35_36);
1247        int bit;
1248
1249        if (vdd < 1650 || vdd > 3600)
1250                return -EINVAL;
1251
1252        if (vdd >= 1650 && vdd <= 1950)
1253                return ilog2(MMC_VDD_165_195);
1254
1255        if (low_bits)
1256                vdd -= 1;
1257
1258        /* Base 2000 mV, step 100 mV, bit's base 8. */
1259        bit = (vdd - 2000) / 100 + 8;
1260        if (bit > max_bit)
1261                return max_bit;
1262        return bit;
1263}
1264
1265/**
1266 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1267 * @vdd_min:    minimum voltage value (mV)
1268 * @vdd_max:    maximum voltage value (mV)
1269 *
1270 * This function returns the OCR mask bits according to the provided @vdd_min
1271 * and @vdd_max values. If conversion is not possible the function returns 0.
1272 *
1273 * Notes wrt boundary cases:
1274 * This function sets the OCR bits for all boundary voltages, for example
1275 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1276 * MMC_VDD_34_35 mask.
1277 */
1278u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1279{
1280        u32 mask = 0;
1281
1282        if (vdd_max < vdd_min)
1283                return 0;
1284
1285        /* Prefer high bits for the boundary vdd_max values. */
1286        vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1287        if (vdd_max < 0)
1288                return 0;
1289
1290        /* Prefer low bits for the boundary vdd_min values. */
1291        vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1292        if (vdd_min < 0)
1293                return 0;
1294
1295        /* Fill the mask, from max bit to min bit. */
1296        while (vdd_max >= vdd_min)
1297                mask |= 1 << vdd_max--;
1298
1299        return mask;
1300}
1301EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1302
1303#ifdef CONFIG_OF
1304
1305/**
1306 * mmc_of_parse_voltage - return mask of supported voltages
1307 * @np: The device node need to be parsed.
1308 * @mask: mask of voltages available for MMC/SD/SDIO
1309 *
1310 * Parse the "voltage-ranges" DT property, returning zero if it is not
1311 * found, negative errno if the voltage-range specification is invalid,
1312 * or one if the voltage-range is specified and successfully parsed.
1313 */
1314int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1315{
1316        const u32 *voltage_ranges;
1317        int num_ranges, i;
1318
1319        voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1320        num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1321        if (!voltage_ranges) {
1322                pr_debug("%s: voltage-ranges unspecified\n", np->full_name);
1323                return 0;
1324        }
1325        if (!num_ranges) {
1326                pr_err("%s: voltage-ranges empty\n", np->full_name);
1327                return -EINVAL;
1328        }
1329
1330        for (i = 0; i < num_ranges; i++) {
1331                const int j = i * 2;
1332                u32 ocr_mask;
1333
1334                ocr_mask = mmc_vddrange_to_ocrmask(
1335                                be32_to_cpu(voltage_ranges[j]),
1336                                be32_to_cpu(voltage_ranges[j + 1]));
1337                if (!ocr_mask) {
1338                        pr_err("%s: voltage-range #%d is invalid\n",
1339                                np->full_name, i);
1340                        return -EINVAL;
1341                }
1342                *mask |= ocr_mask;
1343        }
1344
1345        return 1;
1346}
1347EXPORT_SYMBOL(mmc_of_parse_voltage);
1348
1349#endif /* CONFIG_OF */
1350
1351static int mmc_of_get_func_num(struct device_node *node)
1352{
1353        u32 reg;
1354        int ret;
1355
1356        ret = of_property_read_u32(node, "reg", &reg);
1357        if (ret < 0)
1358                return ret;
1359
1360        return reg;
1361}
1362
1363struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1364                unsigned func_num)
1365{
1366        struct device_node *node;
1367
1368        if (!host->parent || !host->parent->of_node)
1369                return NULL;
1370
1371        for_each_child_of_node(host->parent->of_node, node) {
1372                if (mmc_of_get_func_num(node) == func_num)
1373                        return node;
1374        }
1375
1376        return NULL;
1377}
1378
1379#ifdef CONFIG_REGULATOR
1380
1381/**
1382 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1383 * @vdd_bit:    OCR bit number
1384 * @min_uV:     minimum voltage value (mV)
1385 * @max_uV:     maximum voltage value (mV)
1386 *
1387 * This function returns the voltage range according to the provided OCR
1388 * bit number. If conversion is not possible a negative errno value returned.
1389 */
1390static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1391{
1392        int             tmp;
1393
1394        if (!vdd_bit)
1395                return -EINVAL;
1396
1397        /*
1398         * REVISIT mmc_vddrange_to_ocrmask() may have set some
1399         * bits this regulator doesn't quite support ... don't
1400         * be too picky, most cards and regulators are OK with
1401         * a 0.1V range goof (it's a small error percentage).
1402         */
1403        tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1404        if (tmp == 0) {
1405                *min_uV = 1650 * 1000;
1406                *max_uV = 1950 * 1000;
1407        } else {
1408                *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1409                *max_uV = *min_uV + 100 * 1000;
1410        }
1411
1412        return 0;
1413}
1414
1415/**
1416 * mmc_regulator_get_ocrmask - return mask of supported voltages
1417 * @supply: regulator to use
1418 *
1419 * This returns either a negative errno, or a mask of voltages that
1420 * can be provided to MMC/SD/SDIO devices using the specified voltage
1421 * regulator.  This would normally be called before registering the
1422 * MMC host adapter.
1423 */
1424int mmc_regulator_get_ocrmask(struct regulator *supply)
1425{
1426        int                     result = 0;
1427        int                     count;
1428        int                     i;
1429        int                     vdd_uV;
1430        int                     vdd_mV;
1431
1432        count = regulator_count_voltages(supply);
1433        if (count < 0)
1434                return count;
1435
1436        for (i = 0; i < count; i++) {
1437                vdd_uV = regulator_list_voltage(supply, i);
1438                if (vdd_uV <= 0)
1439                        continue;
1440
1441                vdd_mV = vdd_uV / 1000;
1442                result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1443        }
1444
1445        if (!result) {
1446                vdd_uV = regulator_get_voltage(supply);
1447                if (vdd_uV <= 0)
1448                        return vdd_uV;
1449
1450                vdd_mV = vdd_uV / 1000;
1451                result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1452        }
1453
1454        return result;
1455}
1456EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1457
1458/**
1459 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1460 * @mmc: the host to regulate
1461 * @supply: regulator to use
1462 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1463 *
1464 * Returns zero on success, else negative errno.
1465 *
1466 * MMC host drivers may use this to enable or disable a regulator using
1467 * a particular supply voltage.  This would normally be called from the
1468 * set_ios() method.
1469 */
1470int mmc_regulator_set_ocr(struct mmc_host *mmc,
1471                        struct regulator *supply,
1472                        unsigned short vdd_bit)
1473{
1474        int                     result = 0;
1475        int                     min_uV, max_uV;
1476
1477        if (vdd_bit) {
1478                mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1479
1480                result = regulator_set_voltage(supply, min_uV, max_uV);
1481                if (result == 0 && !mmc->regulator_enabled) {
1482                        result = regulator_enable(supply);
1483                        if (!result)
1484                                mmc->regulator_enabled = true;
1485                }
1486        } else if (mmc->regulator_enabled) {
1487                result = regulator_disable(supply);
1488                if (result == 0)
1489                        mmc->regulator_enabled = false;
1490        }
1491
1492        if (result)
1493                dev_err(mmc_dev(mmc),
1494                        "could not set regulator OCR (%d)\n", result);
1495        return result;
1496}
1497EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1498
1499static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1500                                                  int min_uV, int target_uV,
1501                                                  int max_uV)
1502{
1503        /*
1504         * Check if supported first to avoid errors since we may try several
1505         * signal levels during power up and don't want to show errors.
1506         */
1507        if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1508                return -EINVAL;
1509
1510        return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1511                                             max_uV);
1512}
1513
1514/**
1515 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1516 *
1517 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1518 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1519 * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1520 * SD card spec also define VQMMC in terms of VMMC.
1521 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1522 *
1523 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1524 * requested voltage.  This is definitely a good idea for UHS where there's a
1525 * separate regulator on the card that's trying to make 1.8V and it's best if
1526 * we match.
1527 *
1528 * This function is expected to be used by a controller's
1529 * start_signal_voltage_switch() function.
1530 */
1531int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1532{
1533        struct device *dev = mmc_dev(mmc);
1534        int ret, volt, min_uV, max_uV;
1535
1536        /* If no vqmmc supply then we can't change the voltage */
1537        if (IS_ERR(mmc->supply.vqmmc))
1538                return -EINVAL;
1539
1540        switch (ios->signal_voltage) {
1541        case MMC_SIGNAL_VOLTAGE_120:
1542                return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1543                                                1100000, 1200000, 1300000);
1544        case MMC_SIGNAL_VOLTAGE_180:
1545                return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1546                                                1700000, 1800000, 1950000);
1547        case MMC_SIGNAL_VOLTAGE_330:
1548                ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1549                if (ret < 0)
1550                        return ret;
1551
1552                dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1553                        __func__, volt, max_uV);
1554
1555                min_uV = max(volt - 300000, 2700000);
1556                max_uV = min(max_uV + 200000, 3600000);
1557
1558                /*
1559                 * Due to a limitation in the current implementation of
1560                 * regulator_set_voltage_triplet() which is taking the lowest
1561                 * voltage possible if below the target, search for a suitable
1562                 * voltage in two steps and try to stay close to vmmc
1563                 * with a 0.3V tolerance at first.
1564                 */
1565                if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1566                                                min_uV, volt, max_uV))
1567                        return 0;
1568
1569                return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1570                                                2700000, volt, 3600000);
1571        default:
1572                return -EINVAL;
1573        }
1574}
1575EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1576
1577#endif /* CONFIG_REGULATOR */
1578
1579int mmc_regulator_get_supply(struct mmc_host *mmc)
1580{
1581        struct device *dev = mmc_dev(mmc);
1582        int ret;
1583
1584        mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1585        mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1586
1587        if (IS_ERR(mmc->supply.vmmc)) {
1588                if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1589                        return -EPROBE_DEFER;
1590                dev_dbg(dev, "No vmmc regulator found\n");
1591        } else {
1592                ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1593                if (ret > 0)
1594                        mmc->ocr_avail = ret;
1595                else
1596                        dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1597        }
1598
1599        if (IS_ERR(mmc->supply.vqmmc)) {
1600                if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1601                        return -EPROBE_DEFER;
1602                dev_dbg(dev, "No vqmmc regulator found\n");
1603        }
1604
1605        return 0;
1606}
1607EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1608
1609/*
1610 * Mask off any voltages we don't support and select
1611 * the lowest voltage
1612 */
1613u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1614{
1615        int bit;
1616
1617        /*
1618         * Sanity check the voltages that the card claims to
1619         * support.
1620         */
1621        if (ocr & 0x7F) {
1622                dev_warn(mmc_dev(host),
1623                "card claims to support voltages below defined range\n");
1624                ocr &= ~0x7F;
1625        }
1626
1627        ocr &= host->ocr_avail;
1628        if (!ocr) {
1629                dev_warn(mmc_dev(host), "no support for card's volts\n");
1630                return 0;
1631        }
1632
1633        if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1634                bit = ffs(ocr) - 1;
1635                ocr &= 3 << bit;
1636                mmc_power_cycle(host, ocr);
1637        } else {
1638                bit = fls(ocr) - 1;
1639                ocr &= 3 << bit;
1640                if (bit != host->ios.vdd)
1641                        dev_warn(mmc_dev(host), "exceeding card's volts\n");
1642        }
1643
1644        return ocr;
1645}
1646
1647int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1648{
1649        int err = 0;
1650        int old_signal_voltage = host->ios.signal_voltage;
1651
1652        host->ios.signal_voltage = signal_voltage;
1653        if (host->ops->start_signal_voltage_switch)
1654                err = host->ops->start_signal_voltage_switch(host, &host->ios);
1655
1656        if (err)
1657                host->ios.signal_voltage = old_signal_voltage;
1658
1659        return err;
1660
1661}
1662
1663int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1664{
1665        struct mmc_command cmd = {0};
1666        int err = 0;
1667        u32 clock;
1668
1669        BUG_ON(!host);
1670
1671        /*
1672         * Send CMD11 only if the request is to switch the card to
1673         * 1.8V signalling.
1674         */
1675        if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1676                return __mmc_set_signal_voltage(host, signal_voltage);
1677
1678        /*
1679         * If we cannot switch voltages, return failure so the caller
1680         * can continue without UHS mode
1681         */
1682        if (!host->ops->start_signal_voltage_switch)
1683                return -EPERM;
1684        if (!host->ops->card_busy)
1685                pr_warn("%s: cannot verify signal voltage switch\n",
1686                        mmc_hostname(host));
1687
1688        cmd.opcode = SD_SWITCH_VOLTAGE;
1689        cmd.arg = 0;
1690        cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1691
1692        err = mmc_wait_for_cmd(host, &cmd, 0);
1693        if (err)
1694                return err;
1695
1696        if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1697                return -EIO;
1698
1699        /*
1700         * The card should drive cmd and dat[0:3] low immediately
1701         * after the response of cmd11, but wait 1 ms to be sure
1702         */
1703        mmc_delay(1);
1704        if (host->ops->card_busy && !host->ops->card_busy(host)) {
1705                err = -EAGAIN;
1706                goto power_cycle;
1707        }
1708        /*
1709         * During a signal voltage level switch, the clock must be gated
1710         * for 5 ms according to the SD spec
1711         */
1712        clock = host->ios.clock;
1713        host->ios.clock = 0;
1714        mmc_set_ios(host);
1715
1716        if (__mmc_set_signal_voltage(host, signal_voltage)) {
1717                /*
1718                 * Voltages may not have been switched, but we've already
1719                 * sent CMD11, so a power cycle is required anyway
1720                 */
1721                err = -EAGAIN;
1722                goto power_cycle;
1723        }
1724
1725        /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1726        mmc_delay(10);
1727        host->ios.clock = clock;
1728        mmc_set_ios(host);
1729
1730        /* Wait for at least 1 ms according to spec */
1731        mmc_delay(1);
1732
1733        /*
1734         * Failure to switch is indicated by the card holding
1735         * dat[0:3] low
1736         */
1737        if (host->ops->card_busy && host->ops->card_busy(host))
1738                err = -EAGAIN;
1739
1740power_cycle:
1741        if (err) {
1742                pr_debug("%s: Signal voltage switch failed, "
1743                        "power cycling card\n", mmc_hostname(host));
1744                mmc_power_cycle(host, ocr);
1745        }
1746
1747        return err;
1748}
1749
1750/*
1751 * Select timing parameters for host.
1752 */
1753void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1754{
1755        host->ios.timing = timing;
1756        mmc_set_ios(host);
1757}
1758
1759/*
1760 * Select appropriate driver type for host.
1761 */
1762void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1763{
1764        host->ios.drv_type = drv_type;
1765        mmc_set_ios(host);
1766}
1767
1768int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1769                              int card_drv_type, int *drv_type)
1770{
1771        struct mmc_host *host = card->host;
1772        int host_drv_type = SD_DRIVER_TYPE_B;
1773
1774        *drv_type = 0;
1775
1776        if (!host->ops->select_drive_strength)
1777                return 0;
1778
1779        /* Use SD definition of driver strength for hosts */
1780        if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1781                host_drv_type |= SD_DRIVER_TYPE_A;
1782
1783        if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1784                host_drv_type |= SD_DRIVER_TYPE_C;
1785
1786        if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1787                host_drv_type |= SD_DRIVER_TYPE_D;
1788
1789        /*
1790         * The drive strength that the hardware can support
1791         * depends on the board design.  Pass the appropriate
1792         * information and let the hardware specific code
1793         * return what is possible given the options
1794         */
1795        return host->ops->select_drive_strength(card, max_dtr,
1796                                                host_drv_type,
1797                                                card_drv_type,
1798                                                drv_type);
1799}
1800
1801/*
1802 * Apply power to the MMC stack.  This is a two-stage process.
1803 * First, we enable power to the card without the clock running.
1804 * We then wait a bit for the power to stabilise.  Finally,
1805 * enable the bus drivers and clock to the card.
1806 *
1807 * We must _NOT_ enable the clock prior to power stablising.
1808 *
1809 * If a host does all the power sequencing itself, ignore the
1810 * initial MMC_POWER_UP stage.
1811 */
1812void mmc_power_up(struct mmc_host *host, u32 ocr)
1813{
1814        if (host->ios.power_mode == MMC_POWER_ON)
1815                return;
1816
1817        mmc_pwrseq_pre_power_on(host);
1818
1819        host->ios.vdd = fls(ocr) - 1;
1820        host->ios.power_mode = MMC_POWER_UP;
1821        /* Set initial state and call mmc_set_ios */
1822        mmc_set_initial_state(host);
1823
1824        /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1825        if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1826                dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1827        else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1828                dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1829        else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1830                dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1831
1832        /*
1833         * This delay should be sufficient to allow the power supply
1834         * to reach the minimum voltage.
1835         */
1836        mmc_delay(10);
1837
1838        mmc_pwrseq_post_power_on(host);
1839
1840        host->ios.clock = host->f_init;
1841
1842        host->ios.power_mode = MMC_POWER_ON;
1843        mmc_set_ios(host);
1844
1845        /*
1846         * This delay must be at least 74 clock sizes, or 1 ms, or the
1847         * time required to reach a stable voltage.
1848         */
1849        mmc_delay(10);
1850}
1851
1852void mmc_power_off(struct mmc_host *host)
1853{
1854        if (host->ios.power_mode == MMC_POWER_OFF)
1855                return;
1856
1857        mmc_pwrseq_power_off(host);
1858
1859        host->ios.clock = 0;
1860        host->ios.vdd = 0;
1861
1862        host->ios.power_mode = MMC_POWER_OFF;
1863        /* Set initial state and call mmc_set_ios */
1864        mmc_set_initial_state(host);
1865
1866        /*
1867         * Some configurations, such as the 802.11 SDIO card in the OLPC
1868         * XO-1.5, require a short delay after poweroff before the card
1869         * can be successfully turned on again.
1870         */
1871        mmc_delay(1);
1872}
1873
1874void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1875{
1876        mmc_power_off(host);
1877        /* Wait at least 1 ms according to SD spec */
1878        mmc_delay(1);
1879        mmc_power_up(host, ocr);
1880}
1881
1882/*
1883 * Cleanup when the last reference to the bus operator is dropped.
1884 */
1885static void __mmc_release_bus(struct mmc_host *host)
1886{
1887        BUG_ON(!host);
1888        BUG_ON(host->bus_refs);
1889        BUG_ON(!host->bus_dead);
1890
1891        host->bus_ops = NULL;
1892}
1893
1894/*
1895 * Increase reference count of bus operator
1896 */
1897static inline void mmc_bus_get(struct mmc_host *host)
1898{
1899        unsigned long flags;
1900
1901        spin_lock_irqsave(&host->lock, flags);
1902        host->bus_refs++;
1903        spin_unlock_irqrestore(&host->lock, flags);
1904}
1905
1906/*
1907 * Decrease reference count of bus operator and free it if
1908 * it is the last reference.
1909 */
1910static inline void mmc_bus_put(struct mmc_host *host)
1911{
1912        unsigned long flags;
1913
1914        spin_lock_irqsave(&host->lock, flags);
1915        host->bus_refs--;
1916        if ((host->bus_refs == 0) && host->bus_ops)
1917                __mmc_release_bus(host);
1918        spin_unlock_irqrestore(&host->lock, flags);
1919}
1920
1921/*
1922 * Assign a mmc bus handler to a host. Only one bus handler may control a
1923 * host at any given time.
1924 */
1925void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1926{
1927        unsigned long flags;
1928
1929        BUG_ON(!host);
1930        BUG_ON(!ops);
1931
1932        WARN_ON(!host->claimed);
1933
1934        spin_lock_irqsave(&host->lock, flags);
1935
1936        BUG_ON(host->bus_ops);
1937        BUG_ON(host->bus_refs);
1938
1939        host->bus_ops = ops;
1940        host->bus_refs = 1;
1941        host->bus_dead = 0;
1942
1943        spin_unlock_irqrestore(&host->lock, flags);
1944}
1945
1946/*
1947 * Remove the current bus handler from a host.
1948 */
1949void mmc_detach_bus(struct mmc_host *host)
1950{
1951        unsigned long flags;
1952
1953        BUG_ON(!host);
1954
1955        WARN_ON(!host->claimed);
1956        WARN_ON(!host->bus_ops);
1957
1958        spin_lock_irqsave(&host->lock, flags);
1959
1960        host->bus_dead = 1;
1961
1962        spin_unlock_irqrestore(&host->lock, flags);
1963
1964        mmc_bus_put(host);
1965}
1966
1967static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1968                                bool cd_irq)
1969{
1970#ifdef CONFIG_MMC_DEBUG
1971        unsigned long flags;
1972        spin_lock_irqsave(&host->lock, flags);
1973        WARN_ON(host->removed);
1974        spin_unlock_irqrestore(&host->lock, flags);
1975#endif
1976
1977        /*
1978         * If the device is configured as wakeup, we prevent a new sleep for
1979         * 5 s to give provision for user space to consume the event.
1980         */
1981        if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1982                device_can_wakeup(mmc_dev(host)))
1983                pm_wakeup_event(mmc_dev(host), 5000);
1984
1985        host->detect_change = 1;
1986        mmc_schedule_delayed_work(&host->detect, delay);
1987}
1988
1989/**
1990 *      mmc_detect_change - process change of state on a MMC socket
1991 *      @host: host which changed state.
1992 *      @delay: optional delay to wait before detection (jiffies)
1993 *
1994 *      MMC drivers should call this when they detect a card has been
1995 *      inserted or removed. The MMC layer will confirm that any
1996 *      present card is still functional, and initialize any newly
1997 *      inserted.
1998 */
1999void mmc_detect_change(struct mmc_host *host, unsigned long delay)
2000{
2001        _mmc_detect_change(host, delay, true);
2002}
2003EXPORT_SYMBOL(mmc_detect_change);
2004
2005void mmc_init_erase(struct mmc_card *card)
2006{
2007        unsigned int sz;
2008
2009        if (is_power_of_2(card->erase_size))
2010                card->erase_shift = ffs(card->erase_size) - 1;
2011        else
2012                card->erase_shift = 0;
2013
2014        /*
2015         * It is possible to erase an arbitrarily large area of an SD or MMC
2016         * card.  That is not desirable because it can take a long time
2017         * (minutes) potentially delaying more important I/O, and also the
2018         * timeout calculations become increasingly hugely over-estimated.
2019         * Consequently, 'pref_erase' is defined as a guide to limit erases
2020         * to that size and alignment.
2021         *
2022         * For SD cards that define Allocation Unit size, limit erases to one
2023         * Allocation Unit at a time.
2024         * For MMC, have a stab at ai good value and for modern cards it will
2025         * end up being 4MiB. Note that if the value is too small, it can end
2026         * up taking longer to erase. Also note, erase_size is already set to
2027         * High Capacity Erase Size if available when this function is called.
2028         */
2029        if (mmc_card_sd(card) && card->ssr.au) {
2030                card->pref_erase = card->ssr.au;
2031                card->erase_shift = ffs(card->ssr.au) - 1;
2032        } else if (card->erase_size) {
2033                sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
2034                if (sz < 128)
2035                        card->pref_erase = 512 * 1024 / 512;
2036                else if (sz < 512)
2037                        card->pref_erase = 1024 * 1024 / 512;
2038                else if (sz < 1024)
2039                        card->pref_erase = 2 * 1024 * 1024 / 512;
2040                else
2041                        card->pref_erase = 4 * 1024 * 1024 / 512;
2042                if (card->pref_erase < card->erase_size)
2043                        card->pref_erase = card->erase_size;
2044                else {
2045                        sz = card->pref_erase % card->erase_size;
2046                        if (sz)
2047                                card->pref_erase += card->erase_size - sz;
2048                }
2049        } else
2050                card->pref_erase = 0;
2051}
2052
2053static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
2054                                          unsigned int arg, unsigned int qty)
2055{
2056        unsigned int erase_timeout;
2057
2058        if (arg == MMC_DISCARD_ARG ||
2059            (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
2060                erase_timeout = card->ext_csd.trim_timeout;
2061        } else if (card->ext_csd.erase_group_def & 1) {
2062                /* High Capacity Erase Group Size uses HC timeouts */
2063                if (arg == MMC_TRIM_ARG)
2064                        erase_timeout = card->ext_csd.trim_timeout;
2065                else
2066                        erase_timeout = card->ext_csd.hc_erase_timeout;
2067        } else {
2068                /* CSD Erase Group Size uses write timeout */
2069                unsigned int mult = (10 << card->csd.r2w_factor);
2070                unsigned int timeout_clks = card->csd.tacc_clks * mult;
2071                unsigned int timeout_us;
2072
2073                /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
2074                if (card->csd.tacc_ns < 1000000)
2075                        timeout_us = (card->csd.tacc_ns * mult) / 1000;
2076                else
2077                        timeout_us = (card->csd.tacc_ns / 1000) * mult;
2078
2079                /*
2080                 * ios.clock is only a target.  The real clock rate might be
2081                 * less but not that much less, so fudge it by multiplying by 2.
2082                 */
2083                timeout_clks <<= 1;
2084                timeout_us += (timeout_clks * 1000) /
2085                              (card->host->ios.clock / 1000);
2086
2087                erase_timeout = timeout_us / 1000;
2088
2089                /*
2090                 * Theoretically, the calculation could underflow so round up
2091                 * to 1ms in that case.
2092                 */
2093                if (!erase_timeout)
2094                        erase_timeout = 1;
2095        }
2096
2097        /* Multiplier for secure operations */
2098        if (arg & MMC_SECURE_ARGS) {
2099                if (arg == MMC_SECURE_ERASE_ARG)
2100                        erase_timeout *= card->ext_csd.sec_erase_mult;
2101                else
2102                        erase_timeout *= card->ext_csd.sec_trim_mult;
2103        }
2104
2105        erase_timeout *= qty;
2106
2107        /*
2108         * Ensure at least a 1 second timeout for SPI as per
2109         * 'mmc_set_data_timeout()'
2110         */
2111        if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2112                erase_timeout = 1000;
2113
2114        return erase_timeout;
2115}
2116
2117static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2118                                         unsigned int arg,
2119                                         unsigned int qty)
2120{
2121        unsigned int erase_timeout;
2122
2123        if (card->ssr.erase_timeout) {
2124                /* Erase timeout specified in SD Status Register (SSR) */
2125                erase_timeout = card->ssr.erase_timeout * qty +
2126                                card->ssr.erase_offset;
2127        } else {
2128                /*
2129                 * Erase timeout not specified in SD Status Register (SSR) so
2130                 * use 250ms per write block.
2131                 */
2132                erase_timeout = 250 * qty;
2133        }
2134
2135        /* Must not be less than 1 second */
2136        if (erase_timeout < 1000)
2137                erase_timeout = 1000;
2138
2139        return erase_timeout;
2140}
2141
2142static unsigned int mmc_erase_timeout(struct mmc_card *card,
2143                                      unsigned int arg,
2144                                      unsigned int qty)
2145{
2146        if (mmc_card_sd(card))
2147                return mmc_sd_erase_timeout(card, arg, qty);
2148        else
2149                return mmc_mmc_erase_timeout(card, arg, qty);
2150}
2151
2152static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2153                        unsigned int to, unsigned int arg)
2154{
2155        struct mmc_command cmd = {0};
2156        unsigned int qty = 0, busy_timeout = 0;
2157        bool use_r1b_resp = false;
2158        unsigned long timeout;
2159        int err;
2160
2161        mmc_retune_hold(card->host);
2162
2163        /*
2164         * qty is used to calculate the erase timeout which depends on how many
2165         * erase groups (or allocation units in SD terminology) are affected.
2166         * We count erasing part of an erase group as one erase group.
2167         * For SD, the allocation units are always a power of 2.  For MMC, the
2168         * erase group size is almost certainly also power of 2, but it does not
2169         * seem to insist on that in the JEDEC standard, so we fall back to
2170         * division in that case.  SD may not specify an allocation unit size,
2171         * in which case the timeout is based on the number of write blocks.
2172         *
2173         * Note that the timeout for secure trim 2 will only be correct if the
2174         * number of erase groups specified is the same as the total of all
2175         * preceding secure trim 1 commands.  Since the power may have been
2176         * lost since the secure trim 1 commands occurred, it is generally
2177         * impossible to calculate the secure trim 2 timeout correctly.
2178         */
2179        if (card->erase_shift)
2180                qty += ((to >> card->erase_shift) -
2181                        (from >> card->erase_shift)) + 1;
2182        else if (mmc_card_sd(card))
2183                qty += to - from + 1;
2184        else
2185                qty += ((to / card->erase_size) -
2186                        (from / card->erase_size)) + 1;
2187
2188        if (!mmc_card_blockaddr(card)) {
2189                from <<= 9;
2190                to <<= 9;
2191        }
2192
2193        if (mmc_card_sd(card))
2194                cmd.opcode = SD_ERASE_WR_BLK_START;
2195        else
2196                cmd.opcode = MMC_ERASE_GROUP_START;
2197        cmd.arg = from;
2198        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2199        err = mmc_wait_for_cmd(card->host, &cmd, 0);
2200        if (err) {
2201                pr_err("mmc_erase: group start error %d, "
2202                       "status %#x\n", err, cmd.resp[0]);
2203                err = -EIO;
2204                goto out;
2205        }
2206
2207        memset(&cmd, 0, sizeof(struct mmc_command));
2208        if (mmc_card_sd(card))
2209                cmd.opcode = SD_ERASE_WR_BLK_END;
2210        else
2211                cmd.opcode = MMC_ERASE_GROUP_END;
2212        cmd.arg = to;
2213        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2214        err = mmc_wait_for_cmd(card->host, &cmd, 0);
2215        if (err) {
2216                pr_err("mmc_erase: group end error %d, status %#x\n",
2217                       err, cmd.resp[0]);
2218                err = -EIO;
2219                goto out;
2220        }
2221
2222        memset(&cmd, 0, sizeof(struct mmc_command));
2223        cmd.opcode = MMC_ERASE;
2224        cmd.arg = arg;
2225        busy_timeout = mmc_erase_timeout(card, arg, qty);
2226        /*
2227         * If the host controller supports busy signalling and the timeout for
2228         * the erase operation does not exceed the max_busy_timeout, we should
2229         * use R1B response. Or we need to prevent the host from doing hw busy
2230         * detection, which is done by converting to a R1 response instead.
2231         */
2232        if (card->host->max_busy_timeout &&
2233            busy_timeout > card->host->max_busy_timeout) {
2234                cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2235        } else {
2236                cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2237                cmd.busy_timeout = busy_timeout;
2238                use_r1b_resp = true;
2239        }
2240
2241        err = mmc_wait_for_cmd(card->host, &cmd, 0);
2242        if (err) {
2243                pr_err("mmc_erase: erase error %d, status %#x\n",
2244                       err, cmd.resp[0]);
2245                err = -EIO;
2246                goto out;
2247        }
2248
2249        if (mmc_host_is_spi(card->host))
2250                goto out;
2251
2252        /*
2253         * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2254         * shall be avoided.
2255         */
2256        if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2257                goto out;
2258
2259        timeout = jiffies + msecs_to_jiffies(busy_timeout);
2260        do {
2261                memset(&cmd, 0, sizeof(struct mmc_command));
2262                cmd.opcode = MMC_SEND_STATUS;
2263                cmd.arg = card->rca << 16;
2264                cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2265                /* Do not retry else we can't see errors */
2266                err = mmc_wait_for_cmd(card->host, &cmd, 0);
2267                if (err || (cmd.resp[0] & 0xFDF92000)) {
2268                        pr_err("error %d requesting status %#x\n",
2269                                err, cmd.resp[0]);
2270                        err = -EIO;
2271                        goto out;
2272                }
2273
2274                /* Timeout if the device never becomes ready for data and
2275                 * never leaves the program state.
2276                 */
2277                if (time_after(jiffies, timeout)) {
2278                        pr_err("%s: Card stuck in programming state! %s\n",
2279                                mmc_hostname(card->host), __func__);
2280                        err =  -EIO;
2281                        goto out;
2282                }
2283
2284        } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2285                 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2286out:
2287        mmc_retune_release(card->host);
2288        return err;
2289}
2290
2291static unsigned int mmc_align_erase_size(struct mmc_card *card,
2292                                         unsigned int *from,
2293                                         unsigned int *to,
2294                                         unsigned int nr)
2295{
2296        unsigned int from_new = *from, nr_new = nr, rem;
2297
2298        /*
2299         * When the 'card->erase_size' is power of 2, we can use round_up/down()
2300         * to align the erase size efficiently.
2301         */
2302        if (is_power_of_2(card->erase_size)) {
2303                unsigned int temp = from_new;
2304
2305                from_new = round_up(temp, card->erase_size);
2306                rem = from_new - temp;
2307
2308                if (nr_new > rem)
2309                        nr_new -= rem;
2310                else
2311                        return 0;
2312
2313                nr_new = round_down(nr_new, card->erase_size);
2314        } else {
2315                rem = from_new % card->erase_size;
2316                if (rem) {
2317                        rem = card->erase_size - rem;
2318                        from_new += rem;
2319                        if (nr_new > rem)
2320                                nr_new -= rem;
2321                        else
2322                                return 0;
2323                }
2324
2325                rem = nr_new % card->erase_size;
2326                if (rem)
2327                        nr_new -= rem;
2328        }
2329
2330        if (nr_new == 0)
2331                return 0;
2332
2333        *to = from_new + nr_new;
2334        *from = from_new;
2335
2336        return nr_new;
2337}
2338
2339/**
2340 * mmc_erase - erase sectors.
2341 * @card: card to erase
2342 * @from: first sector to erase
2343 * @nr: number of sectors to erase
2344 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2345 *
2346 * Caller must claim host before calling this function.
2347 */
2348int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2349              unsigned int arg)
2350{
2351        unsigned int rem, to = from + nr;
2352        int err;
2353
2354        if (!(card->host->caps & MMC_CAP_ERASE) ||
2355            !(card->csd.cmdclass & CCC_ERASE))
2356                return -EOPNOTSUPP;
2357
2358        if (!card->erase_size)
2359                return -EOPNOTSUPP;
2360
2361        if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2362                return -EOPNOTSUPP;
2363
2364        if ((arg & MMC_SECURE_ARGS) &&
2365            !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2366                return -EOPNOTSUPP;
2367
2368        if ((arg & MMC_TRIM_ARGS) &&
2369            !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2370                return -EOPNOTSUPP;
2371
2372        if (arg == MMC_SECURE_ERASE_ARG) {
2373                if (from % card->erase_size || nr % card->erase_size)
2374                        return -EINVAL;
2375        }
2376
2377        if (arg == MMC_ERASE_ARG)
2378                nr = mmc_align_erase_size(card, &from, &to, nr);
2379
2380        if (nr == 0)
2381                return 0;
2382
2383        if (to <= from)
2384                return -EINVAL;
2385
2386        /* 'from' and 'to' are inclusive */
2387        to -= 1;
2388
2389        /*
2390         * Special case where only one erase-group fits in the timeout budget:
2391         * If the region crosses an erase-group boundary on this particular
2392         * case, we will be trimming more than one erase-group which, does not
2393         * fit in the timeout budget of the controller, so we need to split it
2394         * and call mmc_do_erase() twice if necessary. This special case is
2395         * identified by the card->eg_boundary flag.
2396         */
2397        rem = card->erase_size - (from % card->erase_size);
2398        if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2399                err = mmc_do_erase(card, from, from + rem - 1, arg);
2400                from += rem;
2401                if ((err) || (to <= from))
2402                        return err;
2403        }
2404
2405        return mmc_do_erase(card, from, to, arg);
2406}
2407EXPORT_SYMBOL(mmc_erase);
2408
2409int mmc_can_erase(struct mmc_card *card)
2410{
2411        if ((card->host->caps & MMC_CAP_ERASE) &&
2412            (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2413                return 1;
2414        return 0;
2415}
2416EXPORT_SYMBOL(mmc_can_erase);
2417
2418int mmc_can_trim(struct mmc_card *card)
2419{
2420        if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2421            (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2422                return 1;
2423        return 0;
2424}
2425EXPORT_SYMBOL(mmc_can_trim);
2426
2427int mmc_can_discard(struct mmc_card *card)
2428{
2429        /*
2430         * As there's no way to detect the discard support bit at v4.5
2431         * use the s/w feature support filed.
2432         */
2433        if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2434                return 1;
2435        return 0;
2436}
2437EXPORT_SYMBOL(mmc_can_discard);
2438
2439int mmc_can_sanitize(struct mmc_card *card)
2440{
2441        if (!mmc_can_trim(card) && !mmc_can_erase(card))
2442                return 0;
2443        if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2444                return 1;
2445        return 0;
2446}
2447EXPORT_SYMBOL(mmc_can_sanitize);
2448
2449int mmc_can_secure_erase_trim(struct mmc_card *card)
2450{
2451        if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2452            !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2453                return 1;
2454        return 0;
2455}
2456EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2457
2458int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2459                            unsigned int nr)
2460{
2461        if (!card->erase_size)
2462                return 0;
2463        if (from % card->erase_size || nr % card->erase_size)
2464                return 0;
2465        return 1;
2466}
2467EXPORT_SYMBOL(mmc_erase_group_aligned);
2468
2469static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2470                                            unsigned int arg)
2471{
2472        struct mmc_host *host = card->host;
2473        unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2474        unsigned int last_timeout = 0;
2475        unsigned int max_busy_timeout = host->max_busy_timeout ?
2476                        host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2477
2478        if (card->erase_shift) {
2479                max_qty = UINT_MAX >> card->erase_shift;
2480                min_qty = card->pref_erase >> card->erase_shift;
2481        } else if (mmc_card_sd(card)) {
2482                max_qty = UINT_MAX;
2483                min_qty = card->pref_erase;
2484        } else {
2485                max_qty = UINT_MAX / card->erase_size;
2486                min_qty = card->pref_erase / card->erase_size;
2487        }
2488
2489        /*
2490         * We should not only use 'host->max_busy_timeout' as the limitation
2491         * when deciding the max discard sectors. We should set a balance value
2492         * to improve the erase speed, and it can not get too long timeout at
2493         * the same time.
2494         *
2495         * Here we set 'card->pref_erase' as the minimal discard sectors no
2496         * matter what size of 'host->max_busy_timeout', but if the
2497         * 'host->max_busy_timeout' is large enough for more discard sectors,
2498         * then we can continue to increase the max discard sectors until we
2499         * get a balance value. In cases when the 'host->max_busy_timeout'
2500         * isn't specified, use the default max erase timeout.
2501         */
2502        do {
2503                y = 0;
2504                for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2505                        timeout = mmc_erase_timeout(card, arg, qty + x);
2506
2507                        if (qty + x > min_qty && timeout > max_busy_timeout)
2508                                break;
2509
2510                        if (timeout < last_timeout)
2511                                break;
2512                        last_timeout = timeout;
2513                        y = x;
2514                }
2515                qty += y;
2516        } while (y);
2517
2518        if (!qty)
2519                return 0;
2520
2521        /*
2522         * When specifying a sector range to trim, chances are we might cross
2523         * an erase-group boundary even if the amount of sectors is less than
2524         * one erase-group.
2525         * If we can only fit one erase-group in the controller timeout budget,
2526         * we have to care that erase-group boundaries are not crossed by a
2527         * single trim operation. We flag that special case with "eg_boundary".
2528         * In all other cases we can just decrement qty and pretend that we
2529         * always touch (qty + 1) erase-groups as a simple optimization.
2530         */
2531        if (qty == 1)
2532                card->eg_boundary = 1;
2533        else
2534                qty--;
2535
2536        /* Convert qty to sectors */
2537        if (card->erase_shift)
2538                max_discard = qty << card->erase_shift;
2539        else if (mmc_card_sd(card))
2540                max_discard = qty + 1;
2541        else
2542                max_discard = qty * card->erase_size;
2543
2544        return max_discard;
2545}
2546
2547unsigned int mmc_calc_max_discard(struct mmc_card *card)
2548{
2549        struct mmc_host *host = card->host;
2550        unsigned int max_discard, max_trim;
2551
2552        /*
2553         * Without erase_group_def set, MMC erase timeout depends on clock
2554         * frequence which can change.  In that case, the best choice is
2555         * just the preferred erase size.
2556         */
2557        if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2558                return card->pref_erase;
2559
2560        max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2561        if (mmc_can_trim(card)) {
2562                max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2563                if (max_trim < max_discard)
2564                        max_discard = max_trim;
2565        } else if (max_discard < card->erase_size) {
2566                max_discard = 0;
2567        }
2568        pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2569                mmc_hostname(host), max_discard, host->max_busy_timeout ?
2570                host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2571        return max_discard;
2572}
2573EXPORT_SYMBOL(mmc_calc_max_discard);
2574
2575int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2576{
2577        struct mmc_command cmd = {0};
2578
2579        if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2580            mmc_card_hs400(card) || mmc_card_hs400es(card))
2581                return 0;
2582
2583        cmd.opcode = MMC_SET_BLOCKLEN;
2584        cmd.arg = blocklen;
2585        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2586        return mmc_wait_for_cmd(card->host, &cmd, 5);
2587}
2588EXPORT_SYMBOL(mmc_set_blocklen);
2589
2590int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2591                        bool is_rel_write)
2592{
2593        struct mmc_command cmd = {0};
2594
2595        cmd.opcode = MMC_SET_BLOCK_COUNT;
2596        cmd.arg = blockcount & 0x0000FFFF;
2597        if (is_rel_write)
2598                cmd.arg |= 1 << 31;
2599        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2600        return mmc_wait_for_cmd(card->host, &cmd, 5);
2601}
2602EXPORT_SYMBOL(mmc_set_blockcount);
2603
2604static void mmc_hw_reset_for_init(struct mmc_host *host)
2605{
2606        if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2607                return;
2608        host->ops->hw_reset(host);
2609}
2610
2611int mmc_hw_reset(struct mmc_host *host)
2612{
2613        int ret;
2614
2615        if (!host->card)
2616                return -EINVAL;
2617
2618        mmc_bus_get(host);
2619        if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2620                mmc_bus_put(host);
2621                return -EOPNOTSUPP;
2622        }
2623
2624        ret = host->bus_ops->reset(host);
2625        mmc_bus_put(host);
2626
2627        if (ret)
2628                pr_warn("%s: tried to reset card, got error %d\n",
2629                        mmc_hostname(host), ret);
2630
2631        return ret;
2632}
2633EXPORT_SYMBOL(mmc_hw_reset);
2634
2635static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2636{
2637        host->f_init = freq;
2638
2639#ifdef CONFIG_MMC_DEBUG
2640        pr_info("%s: %s: trying to init card at %u Hz\n",
2641                mmc_hostname(host), __func__, host->f_init);
2642#endif
2643        mmc_power_up(host, host->ocr_avail);
2644
2645        /*
2646         * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2647         * do a hardware reset if possible.
2648         */
2649        mmc_hw_reset_for_init(host);
2650
2651        /*
2652         * sdio_reset sends CMD52 to reset card.  Since we do not know
2653         * if the card is being re-initialized, just send it.  CMD52
2654         * should be ignored by SD/eMMC cards.
2655         * Skip it if we already know that we do not support SDIO commands
2656         */
2657        if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2658                sdio_reset(host);
2659
2660        mmc_go_idle(host);
2661
2662        if (!(host->caps2 & MMC_CAP2_NO_SD))
2663                mmc_send_if_cond(host, host->ocr_avail);
2664
2665        /* Order's important: probe SDIO, then SD, then MMC */
2666        if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2667                if (!mmc_attach_sdio(host))
2668                        return 0;
2669
2670        if (!(host->caps2 & MMC_CAP2_NO_SD))
2671                if (!mmc_attach_sd(host))
2672                        return 0;
2673
2674        if (!(host->caps2 & MMC_CAP2_NO_MMC))
2675                if (!mmc_attach_mmc(host))
2676                        return 0;
2677
2678        mmc_power_off(host);
2679        return -EIO;
2680}
2681
2682int _mmc_detect_card_removed(struct mmc_host *host)
2683{
2684        int ret;
2685
2686        if (!host->card || mmc_card_removed(host->card))
2687                return 1;
2688
2689        ret = host->bus_ops->alive(host);
2690
2691        /*
2692         * Card detect status and alive check may be out of sync if card is
2693         * removed slowly, when card detect switch changes while card/slot
2694         * pads are still contacted in hardware (refer to "SD Card Mechanical
2695         * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2696         * detect work 200ms later for this case.
2697         */
2698        if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2699                mmc_detect_change(host, msecs_to_jiffies(200));
2700                pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2701        }
2702
2703        if (ret) {
2704                mmc_card_set_removed(host->card);
2705                pr_debug("%s: card remove detected\n", mmc_hostname(host));
2706        }
2707
2708        return ret;
2709}
2710
2711int mmc_detect_card_removed(struct mmc_host *host)
2712{
2713        struct mmc_card *card = host->card;
2714        int ret;
2715
2716        WARN_ON(!host->claimed);
2717
2718        if (!card)
2719                return 1;
2720
2721        if (!mmc_card_is_removable(host))
2722                return 0;
2723
2724        ret = mmc_card_removed(card);
2725        /*
2726         * The card will be considered unchanged unless we have been asked to
2727         * detect a change or host requires polling to provide card detection.
2728         */
2729        if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2730                return ret;
2731
2732        host->detect_change = 0;
2733        if (!ret) {
2734                ret = _mmc_detect_card_removed(host);
2735                if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2736                        /*
2737                         * Schedule a detect work as soon as possible to let a
2738                         * rescan handle the card removal.
2739                         */
2740                        cancel_delayed_work(&host->detect);
2741                        _mmc_detect_change(host, 0, false);
2742                }
2743        }
2744
2745        return ret;
2746}
2747EXPORT_SYMBOL(mmc_detect_card_removed);
2748
2749void mmc_rescan(struct work_struct *work)
2750{
2751        struct mmc_host *host =
2752                container_of(work, struct mmc_host, detect.work);
2753        int i;
2754
2755        if (host->rescan_disable)
2756                return;
2757
2758        /* If there is a non-removable card registered, only scan once */
2759        if (!mmc_card_is_removable(host) && host->rescan_entered)
2760                return;
2761        host->rescan_entered = 1;
2762
2763        if (host->trigger_card_event && host->ops->card_event) {
2764                mmc_claim_host(host);
2765                host->ops->card_event(host);
2766                mmc_release_host(host);
2767                host->trigger_card_event = false;
2768        }
2769
2770        mmc_bus_get(host);
2771
2772        /*
2773         * if there is a _removable_ card registered, check whether it is
2774         * still present
2775         */
2776        if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2777                host->bus_ops->detect(host);
2778
2779        host->detect_change = 0;
2780
2781        /*
2782         * Let mmc_bus_put() free the bus/bus_ops if we've found that
2783         * the card is no longer present.
2784         */
2785        mmc_bus_put(host);
2786        mmc_bus_get(host);
2787
2788        /* if there still is a card present, stop here */
2789        if (host->bus_ops != NULL) {
2790                mmc_bus_put(host);
2791                goto out;
2792        }
2793
2794        /*
2795         * Only we can add a new handler, so it's safe to
2796         * release the lock here.
2797         */
2798        mmc_bus_put(host);
2799
2800        mmc_claim_host(host);
2801        if (mmc_card_is_removable(host) && host->ops->get_cd &&
2802                        host->ops->get_cd(host) == 0) {
2803                mmc_power_off(host);
2804                mmc_release_host(host);
2805                goto out;
2806        }
2807
2808        for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2809                if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2810                        break;
2811                if (freqs[i] <= host->f_min)
2812                        break;
2813        }
2814        mmc_release_host(host);
2815
2816 out:
2817        if (host->caps & MMC_CAP_NEEDS_POLL)
2818                mmc_schedule_delayed_work(&host->detect, HZ);
2819}
2820
2821void mmc_start_host(struct mmc_host *host)
2822{
2823        host->f_init = max(freqs[0], host->f_min);
2824        host->rescan_disable = 0;
2825        host->ios.power_mode = MMC_POWER_UNDEFINED;
2826
2827        mmc_claim_host(host);
2828        if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2829                mmc_power_off(host);
2830        else
2831                mmc_power_up(host, host->ocr_avail);
2832        mmc_release_host(host);
2833
2834        mmc_gpiod_request_cd_irq(host);
2835        _mmc_detect_change(host, 0, false);
2836}
2837
2838void mmc_stop_host(struct mmc_host *host)
2839{
2840#ifdef CONFIG_MMC_DEBUG
2841        unsigned long flags;
2842        spin_lock_irqsave(&host->lock, flags);
2843        host->removed = 1;
2844        spin_unlock_irqrestore(&host->lock, flags);
2845#endif
2846        if (host->slot.cd_irq >= 0)
2847                disable_irq(host->slot.cd_irq);
2848
2849        host->rescan_disable = 1;
2850        cancel_delayed_work_sync(&host->detect);
2851
2852        /* clear pm flags now and let card drivers set them as needed */
2853        host->pm_flags = 0;
2854
2855        mmc_bus_get(host);
2856        if (host->bus_ops && !host->bus_dead) {
2857                /* Calling bus_ops->remove() with a claimed host can deadlock */
2858                host->bus_ops->remove(host);
2859                mmc_claim_host(host);
2860                mmc_detach_bus(host);
2861                mmc_power_off(host);
2862                mmc_release_host(host);
2863                mmc_bus_put(host);
2864                return;
2865        }
2866        mmc_bus_put(host);
2867
2868        BUG_ON(host->card);
2869
2870        mmc_claim_host(host);
2871        mmc_power_off(host);
2872        mmc_release_host(host);
2873}
2874
2875int mmc_power_save_host(struct mmc_host *host)
2876{
2877        int ret = 0;
2878
2879#ifdef CONFIG_MMC_DEBUG
2880        pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2881#endif
2882
2883        mmc_bus_get(host);
2884
2885        if (!host->bus_ops || host->bus_dead) {
2886                mmc_bus_put(host);
2887                return -EINVAL;
2888        }
2889
2890        if (host->bus_ops->power_save)
2891                ret = host->bus_ops->power_save(host);
2892
2893        mmc_bus_put(host);
2894
2895        mmc_power_off(host);
2896
2897        return ret;
2898}
2899EXPORT_SYMBOL(mmc_power_save_host);
2900
2901int mmc_power_restore_host(struct mmc_host *host)
2902{
2903        int ret;
2904
2905#ifdef CONFIG_MMC_DEBUG
2906        pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2907#endif
2908
2909        mmc_bus_get(host);
2910
2911        if (!host->bus_ops || host->bus_dead) {
2912                mmc_bus_put(host);
2913                return -EINVAL;
2914        }
2915
2916        mmc_power_up(host, host->card->ocr);
2917        ret = host->bus_ops->power_restore(host);
2918
2919        mmc_bus_put(host);
2920
2921        return ret;
2922}
2923EXPORT_SYMBOL(mmc_power_restore_host);
2924
2925/*
2926 * Flush the cache to the non-volatile storage.
2927 */
2928int mmc_flush_cache(struct mmc_card *card)
2929{
2930        int err = 0;
2931
2932        if (mmc_card_mmc(card) &&
2933                        (card->ext_csd.cache_size > 0) &&
2934                        (card->ext_csd.cache_ctrl & 1)) {
2935                err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2936                                EXT_CSD_FLUSH_CACHE, 1, 0);
2937                if (err)
2938                        pr_err("%s: cache flush error %d\n",
2939                                        mmc_hostname(card->host), err);
2940        }
2941
2942        return err;
2943}
2944EXPORT_SYMBOL(mmc_flush_cache);
2945
2946#ifdef CONFIG_PM_SLEEP
2947/* Do the card removal on suspend if card is assumed removeable
2948 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2949   to sync the card.
2950*/
2951static int mmc_pm_notify(struct notifier_block *notify_block,
2952                        unsigned long mode, void *unused)
2953{
2954        struct mmc_host *host = container_of(
2955                notify_block, struct mmc_host, pm_notify);
2956        unsigned long flags;
2957        int err = 0;
2958
2959        switch (mode) {
2960        case PM_HIBERNATION_PREPARE:
2961        case PM_SUSPEND_PREPARE:
2962        case PM_RESTORE_PREPARE:
2963                spin_lock_irqsave(&host->lock, flags);
2964                host->rescan_disable = 1;
2965                spin_unlock_irqrestore(&host->lock, flags);
2966                cancel_delayed_work_sync(&host->detect);
2967
2968                if (!host->bus_ops)
2969                        break;
2970
2971                /* Validate prerequisites for suspend */
2972                if (host->bus_ops->pre_suspend)
2973                        err = host->bus_ops->pre_suspend(host);
2974                if (!err)
2975                        break;
2976
2977                /* Calling bus_ops->remove() with a claimed host can deadlock */
2978                host->bus_ops->remove(host);
2979                mmc_claim_host(host);
2980                mmc_detach_bus(host);
2981                mmc_power_off(host);
2982                mmc_release_host(host);
2983                host->pm_flags = 0;
2984                break;
2985
2986        case PM_POST_SUSPEND:
2987        case PM_POST_HIBERNATION:
2988        case PM_POST_RESTORE:
2989
2990                spin_lock_irqsave(&host->lock, flags);
2991                host->rescan_disable = 0;
2992                spin_unlock_irqrestore(&host->lock, flags);
2993                _mmc_detect_change(host, 0, false);
2994
2995        }
2996
2997        return 0;
2998}
2999
3000void mmc_register_pm_notifier(struct mmc_host *host)
3001{
3002        host->pm_notify.notifier_call = mmc_pm_notify;
3003        register_pm_notifier(&host->pm_notify);
3004}
3005
3006void mmc_unregister_pm_notifier(struct mmc_host *host)
3007{
3008        unregister_pm_notifier(&host->pm_notify);
3009}
3010#endif
3011
3012/**
3013 * mmc_init_context_info() - init synchronization context
3014 * @host: mmc host
3015 *
3016 * Init struct context_info needed to implement asynchronous
3017 * request mechanism, used by mmc core, host driver and mmc requests
3018 * supplier.
3019 */
3020void mmc_init_context_info(struct mmc_host *host)
3021{
3022        spin_lock_init(&host->context_info.lock);
3023        host->context_info.is_new_req = false;
3024        host->context_info.is_done_rcv = false;
3025        host->context_info.is_waiting_last_req = false;
3026        init_waitqueue_head(&host->context_info.wait);
3027}
3028
3029static int __init mmc_init(void)
3030{
3031        int ret;
3032
3033        ret = mmc_register_bus();
3034        if (ret)
3035                return ret;
3036
3037        ret = mmc_register_host_class();
3038        if (ret)
3039                goto unregister_bus;
3040
3041        ret = sdio_register_bus();
3042        if (ret)
3043                goto unregister_host_class;
3044
3045        return 0;
3046
3047unregister_host_class:
3048        mmc_unregister_host_class();
3049unregister_bus:
3050        mmc_unregister_bus();
3051        return ret;
3052}
3053
3054static void __exit mmc_exit(void)
3055{
3056        sdio_unregister_bus();
3057        mmc_unregister_host_class();
3058        mmc_unregister_bus();
3059}
3060
3061subsys_initcall(mmc_init);
3062module_exit(mmc_exit);
3063
3064MODULE_LICENSE("GPL");
3065