linux/drivers/mtd/nand/fsl_elbc_nand.c
<<
>>
Prefs
   1/* Freescale Enhanced Local Bus Controller NAND driver
   2 *
   3 * Copyright © 2006-2007, 2010 Freescale Semiconductor
   4 *
   5 * Authors: Nick Spence <nick.spence@freescale.com>,
   6 *          Scott Wood <scottwood@freescale.com>
   7 *          Jack Lan <jack.lan@freescale.com>
   8 *          Roy Zang <tie-fei.zang@freescale.com>
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/types.h>
  27#include <linux/kernel.h>
  28#include <linux/string.h>
  29#include <linux/ioport.h>
  30#include <linux/of_address.h>
  31#include <linux/of_platform.h>
  32#include <linux/platform_device.h>
  33#include <linux/slab.h>
  34#include <linux/interrupt.h>
  35
  36#include <linux/mtd/mtd.h>
  37#include <linux/mtd/nand.h>
  38#include <linux/mtd/nand_ecc.h>
  39#include <linux/mtd/partitions.h>
  40
  41#include <asm/io.h>
  42#include <asm/fsl_lbc.h>
  43
  44#define MAX_BANKS 8
  45#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
  46#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
  47
  48/* mtd information per set */
  49
  50struct fsl_elbc_mtd {
  51        struct nand_chip chip;
  52        struct fsl_lbc_ctrl *ctrl;
  53
  54        struct device *dev;
  55        int bank;               /* Chip select bank number           */
  56        u8 __iomem *vbase;      /* Chip select base virtual address  */
  57        int page_size;          /* NAND page size (0=512, 1=2048)    */
  58        unsigned int fmr;       /* FCM Flash Mode Register value     */
  59};
  60
  61/* Freescale eLBC FCM controller information */
  62
  63struct fsl_elbc_fcm_ctrl {
  64        struct nand_hw_control controller;
  65        struct fsl_elbc_mtd *chips[MAX_BANKS];
  66
  67        u8 __iomem *addr;        /* Address of assigned FCM buffer        */
  68        unsigned int page;       /* Last page written to / read from      */
  69        unsigned int read_bytes; /* Number of bytes read during command   */
  70        unsigned int column;     /* Saved column from SEQIN               */
  71        unsigned int index;      /* Pointer to next byte to 'read'        */
  72        unsigned int status;     /* status read from LTESR after last op  */
  73        unsigned int mdr;        /* UPM/FCM Data Register value           */
  74        unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
  75        unsigned int oob;        /* Non zero if operating on OOB data     */
  76        unsigned int counter;    /* counter for the initializations       */
  77        unsigned int max_bitflips;  /* Saved during READ0 cmd             */
  78};
  79
  80/* These map to the positions used by the FCM hardware ECC generator */
  81
  82static int fsl_elbc_ooblayout_ecc(struct mtd_info *mtd, int section,
  83                                  struct mtd_oob_region *oobregion)
  84{
  85        struct nand_chip *chip = mtd_to_nand(mtd);
  86        struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
  87
  88        if (section >= chip->ecc.steps)
  89                return -ERANGE;
  90
  91        oobregion->offset = (16 * section) + 6;
  92        if (priv->fmr & FMR_ECCM)
  93                oobregion->offset += 2;
  94
  95        oobregion->length = chip->ecc.bytes;
  96
  97        return 0;
  98}
  99
 100static int fsl_elbc_ooblayout_free(struct mtd_info *mtd, int section,
 101                                   struct mtd_oob_region *oobregion)
 102{
 103        struct nand_chip *chip = mtd_to_nand(mtd);
 104        struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 105
 106        if (section > chip->ecc.steps)
 107                return -ERANGE;
 108
 109        if (!section) {
 110                oobregion->offset = 0;
 111                if (mtd->writesize > 512)
 112                        oobregion->offset++;
 113                oobregion->length = (priv->fmr & FMR_ECCM) ? 7 : 5;
 114        } else {
 115                oobregion->offset = (16 * section) -
 116                                    ((priv->fmr & FMR_ECCM) ? 5 : 7);
 117                if (section < chip->ecc.steps)
 118                        oobregion->length = 13;
 119                else
 120                        oobregion->length = mtd->oobsize - oobregion->offset;
 121        }
 122
 123        return 0;
 124}
 125
 126static const struct mtd_ooblayout_ops fsl_elbc_ooblayout_ops = {
 127        .ecc = fsl_elbc_ooblayout_ecc,
 128        .free = fsl_elbc_ooblayout_free,
 129};
 130
 131/*
 132 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
 133 * interfere with ECC positions, that's why we implement our own descriptors.
 134 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
 135 */
 136static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
 137static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
 138
 139static struct nand_bbt_descr bbt_main_descr = {
 140        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 141                   NAND_BBT_2BIT | NAND_BBT_VERSION,
 142        .offs = 11,
 143        .len = 4,
 144        .veroffs = 15,
 145        .maxblocks = 4,
 146        .pattern = bbt_pattern,
 147};
 148
 149static struct nand_bbt_descr bbt_mirror_descr = {
 150        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 151                   NAND_BBT_2BIT | NAND_BBT_VERSION,
 152        .offs = 11,
 153        .len = 4,
 154        .veroffs = 15,
 155        .maxblocks = 4,
 156        .pattern = mirror_pattern,
 157};
 158
 159/*=================================*/
 160
 161/*
 162 * Set up the FCM hardware block and page address fields, and the fcm
 163 * structure addr field to point to the correct FCM buffer in memory
 164 */
 165static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
 166{
 167        struct nand_chip *chip = mtd_to_nand(mtd);
 168        struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 169        struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 170        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 171        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 172        int buf_num;
 173
 174        elbc_fcm_ctrl->page = page_addr;
 175
 176        if (priv->page_size) {
 177                /*
 178                 * large page size chip : FPAR[PI] save the lowest 6 bits,
 179                 *                        FBAR[BLK] save the other bits.
 180                 */
 181                out_be32(&lbc->fbar, page_addr >> 6);
 182                out_be32(&lbc->fpar,
 183                         ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
 184                         (oob ? FPAR_LP_MS : 0) | column);
 185                buf_num = (page_addr & 1) << 2;
 186        } else {
 187                /*
 188                 * small page size chip : FPAR[PI] save the lowest 5 bits,
 189                 *                        FBAR[BLK] save the other bits.
 190                 */
 191                out_be32(&lbc->fbar, page_addr >> 5);
 192                out_be32(&lbc->fpar,
 193                         ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
 194                         (oob ? FPAR_SP_MS : 0) | column);
 195                buf_num = page_addr & 7;
 196        }
 197
 198        elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
 199        elbc_fcm_ctrl->index = column;
 200
 201        /* for OOB data point to the second half of the buffer */
 202        if (oob)
 203                elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
 204
 205        dev_vdbg(priv->dev, "set_addr: bank=%d, "
 206                            "elbc_fcm_ctrl->addr=0x%p (0x%p), "
 207                            "index %x, pes %d ps %d\n",
 208                 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
 209                 elbc_fcm_ctrl->index,
 210                 chip->phys_erase_shift, chip->page_shift);
 211}
 212
 213/*
 214 * execute FCM command and wait for it to complete
 215 */
 216static int fsl_elbc_run_command(struct mtd_info *mtd)
 217{
 218        struct nand_chip *chip = mtd_to_nand(mtd);
 219        struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 220        struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 221        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 222        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 223
 224        /* Setup the FMR[OP] to execute without write protection */
 225        out_be32(&lbc->fmr, priv->fmr | 3);
 226        if (elbc_fcm_ctrl->use_mdr)
 227                out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
 228
 229        dev_vdbg(priv->dev,
 230                 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
 231                 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
 232        dev_vdbg(priv->dev,
 233                 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
 234                 "fbcr=%08x bank=%d\n",
 235                 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
 236                 in_be32(&lbc->fbcr), priv->bank);
 237
 238        ctrl->irq_status = 0;
 239        /* execute special operation */
 240        out_be32(&lbc->lsor, priv->bank);
 241
 242        /* wait for FCM complete flag or timeout */
 243        wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
 244                           FCM_TIMEOUT_MSECS * HZ/1000);
 245        elbc_fcm_ctrl->status = ctrl->irq_status;
 246        /* store mdr value in case it was needed */
 247        if (elbc_fcm_ctrl->use_mdr)
 248                elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
 249
 250        elbc_fcm_ctrl->use_mdr = 0;
 251
 252        if (elbc_fcm_ctrl->status != LTESR_CC) {
 253                dev_info(priv->dev,
 254                         "command failed: fir %x fcr %x status %x mdr %x\n",
 255                         in_be32(&lbc->fir), in_be32(&lbc->fcr),
 256                         elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
 257                return -EIO;
 258        }
 259
 260        if (chip->ecc.mode != NAND_ECC_HW)
 261                return 0;
 262
 263        elbc_fcm_ctrl->max_bitflips = 0;
 264
 265        if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
 266                uint32_t lteccr = in_be32(&lbc->lteccr);
 267                /*
 268                 * if command was a full page read and the ELBC
 269                 * has the LTECCR register, then bits 12-15 (ppc order) of
 270                 * LTECCR indicates which 512 byte sub-pages had fixed errors.
 271                 * bits 28-31 are uncorrectable errors, marked elsewhere.
 272                 * for small page nand only 1 bit is used.
 273                 * if the ELBC doesn't have the lteccr register it reads 0
 274                 * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
 275                 * count the number of sub-pages with bitflips and update
 276                 * ecc_stats.corrected accordingly.
 277                 */
 278                if (lteccr & 0x000F000F)
 279                        out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
 280                if (lteccr & 0x000F0000) {
 281                        mtd->ecc_stats.corrected++;
 282                        elbc_fcm_ctrl->max_bitflips = 1;
 283                }
 284        }
 285
 286        return 0;
 287}
 288
 289static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
 290{
 291        struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 292        struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 293        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 294
 295        if (priv->page_size) {
 296                out_be32(&lbc->fir,
 297                         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 298                         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 299                         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 300                         (FIR_OP_CM1 << FIR_OP3_SHIFT) |
 301                         (FIR_OP_RBW << FIR_OP4_SHIFT));
 302
 303                out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
 304                                    (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
 305        } else {
 306                out_be32(&lbc->fir,
 307                         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 308                         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 309                         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 310                         (FIR_OP_RBW << FIR_OP3_SHIFT));
 311
 312                if (oob)
 313                        out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
 314                else
 315                        out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
 316        }
 317}
 318
 319/* cmdfunc send commands to the FCM */
 320static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
 321                             int column, int page_addr)
 322{
 323        struct nand_chip *chip = mtd_to_nand(mtd);
 324        struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 325        struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 326        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 327        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 328
 329        elbc_fcm_ctrl->use_mdr = 0;
 330
 331        /* clear the read buffer */
 332        elbc_fcm_ctrl->read_bytes = 0;
 333        if (command != NAND_CMD_PAGEPROG)
 334                elbc_fcm_ctrl->index = 0;
 335
 336        switch (command) {
 337        /* READ0 and READ1 read the entire buffer to use hardware ECC. */
 338        case NAND_CMD_READ1:
 339                column += 256;
 340
 341        /* fall-through */
 342        case NAND_CMD_READ0:
 343                dev_dbg(priv->dev,
 344                        "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
 345                        " 0x%x, column: 0x%x.\n", page_addr, column);
 346
 347
 348                out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
 349                set_addr(mtd, 0, page_addr, 0);
 350
 351                elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 352                elbc_fcm_ctrl->index += column;
 353
 354                fsl_elbc_do_read(chip, 0);
 355                fsl_elbc_run_command(mtd);
 356                return;
 357
 358        /* READOOB reads only the OOB because no ECC is performed. */
 359        case NAND_CMD_READOOB:
 360                dev_vdbg(priv->dev,
 361                         "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
 362                         " 0x%x, column: 0x%x.\n", page_addr, column);
 363
 364                out_be32(&lbc->fbcr, mtd->oobsize - column);
 365                set_addr(mtd, column, page_addr, 1);
 366
 367                elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 368
 369                fsl_elbc_do_read(chip, 1);
 370                fsl_elbc_run_command(mtd);
 371                return;
 372
 373        case NAND_CMD_READID:
 374        case NAND_CMD_PARAM:
 375                dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
 376
 377                out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 378                                    (FIR_OP_UA  << FIR_OP1_SHIFT) |
 379                                    (FIR_OP_RBW << FIR_OP2_SHIFT));
 380                out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
 381                /*
 382                 * although currently it's 8 bytes for READID, we always read
 383                 * the maximum 256 bytes(for PARAM)
 384                 */
 385                out_be32(&lbc->fbcr, 256);
 386                elbc_fcm_ctrl->read_bytes = 256;
 387                elbc_fcm_ctrl->use_mdr = 1;
 388                elbc_fcm_ctrl->mdr = column;
 389                set_addr(mtd, 0, 0, 0);
 390                fsl_elbc_run_command(mtd);
 391                return;
 392
 393        /* ERASE1 stores the block and page address */
 394        case NAND_CMD_ERASE1:
 395                dev_vdbg(priv->dev,
 396                         "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
 397                         "page_addr: 0x%x.\n", page_addr);
 398                set_addr(mtd, 0, page_addr, 0);
 399                return;
 400
 401        /* ERASE2 uses the block and page address from ERASE1 */
 402        case NAND_CMD_ERASE2:
 403                dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
 404
 405                out_be32(&lbc->fir,
 406                         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 407                         (FIR_OP_PA  << FIR_OP1_SHIFT) |
 408                         (FIR_OP_CM2 << FIR_OP2_SHIFT) |
 409                         (FIR_OP_CW1 << FIR_OP3_SHIFT) |
 410                         (FIR_OP_RS  << FIR_OP4_SHIFT));
 411
 412                out_be32(&lbc->fcr,
 413                         (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
 414                         (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
 415                         (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
 416
 417                out_be32(&lbc->fbcr, 0);
 418                elbc_fcm_ctrl->read_bytes = 0;
 419                elbc_fcm_ctrl->use_mdr = 1;
 420
 421                fsl_elbc_run_command(mtd);
 422                return;
 423
 424        /* SEQIN sets up the addr buffer and all registers except the length */
 425        case NAND_CMD_SEQIN: {
 426                __be32 fcr;
 427                dev_vdbg(priv->dev,
 428                         "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
 429                         "page_addr: 0x%x, column: 0x%x.\n",
 430                         page_addr, column);
 431
 432                elbc_fcm_ctrl->column = column;
 433                elbc_fcm_ctrl->use_mdr = 1;
 434
 435                if (column >= mtd->writesize) {
 436                        /* OOB area */
 437                        column -= mtd->writesize;
 438                        elbc_fcm_ctrl->oob = 1;
 439                } else {
 440                        WARN_ON(column != 0);
 441                        elbc_fcm_ctrl->oob = 0;
 442                }
 443
 444                fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
 445                      (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
 446                      (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
 447
 448                if (priv->page_size) {
 449                        out_be32(&lbc->fir,
 450                                 (FIR_OP_CM2 << FIR_OP0_SHIFT) |
 451                                 (FIR_OP_CA  << FIR_OP1_SHIFT) |
 452                                 (FIR_OP_PA  << FIR_OP2_SHIFT) |
 453                                 (FIR_OP_WB  << FIR_OP3_SHIFT) |
 454                                 (FIR_OP_CM3 << FIR_OP4_SHIFT) |
 455                                 (FIR_OP_CW1 << FIR_OP5_SHIFT) |
 456                                 (FIR_OP_RS  << FIR_OP6_SHIFT));
 457                } else {
 458                        out_be32(&lbc->fir,
 459                                 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 460                                 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
 461                                 (FIR_OP_CA  << FIR_OP2_SHIFT) |
 462                                 (FIR_OP_PA  << FIR_OP3_SHIFT) |
 463                                 (FIR_OP_WB  << FIR_OP4_SHIFT) |
 464                                 (FIR_OP_CM3 << FIR_OP5_SHIFT) |
 465                                 (FIR_OP_CW1 << FIR_OP6_SHIFT) |
 466                                 (FIR_OP_RS  << FIR_OP7_SHIFT));
 467
 468                        if (elbc_fcm_ctrl->oob)
 469                                /* OOB area --> READOOB */
 470                                fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
 471                        else
 472                                /* First 256 bytes --> READ0 */
 473                                fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
 474                }
 475
 476                out_be32(&lbc->fcr, fcr);
 477                set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
 478                return;
 479        }
 480
 481        /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
 482        case NAND_CMD_PAGEPROG: {
 483                dev_vdbg(priv->dev,
 484                         "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
 485                         "writing %d bytes.\n", elbc_fcm_ctrl->index);
 486
 487                /* if the write did not start at 0 or is not a full page
 488                 * then set the exact length, otherwise use a full page
 489                 * write so the HW generates the ECC.
 490                 */
 491                if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
 492                    elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
 493                        out_be32(&lbc->fbcr,
 494                                elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
 495                else
 496                        out_be32(&lbc->fbcr, 0);
 497
 498                fsl_elbc_run_command(mtd);
 499                return;
 500        }
 501
 502        /* CMD_STATUS must read the status byte while CEB is active */
 503        /* Note - it does not wait for the ready line */
 504        case NAND_CMD_STATUS:
 505                out_be32(&lbc->fir,
 506                         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 507                         (FIR_OP_RBW << FIR_OP1_SHIFT));
 508                out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
 509                out_be32(&lbc->fbcr, 1);
 510                set_addr(mtd, 0, 0, 0);
 511                elbc_fcm_ctrl->read_bytes = 1;
 512
 513                fsl_elbc_run_command(mtd);
 514
 515                /* The chip always seems to report that it is
 516                 * write-protected, even when it is not.
 517                 */
 518                setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
 519                return;
 520
 521        /* RESET without waiting for the ready line */
 522        case NAND_CMD_RESET:
 523                dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
 524                out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
 525                out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
 526                fsl_elbc_run_command(mtd);
 527                return;
 528
 529        default:
 530                dev_err(priv->dev,
 531                        "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
 532                        command);
 533        }
 534}
 535
 536static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
 537{
 538        /* The hardware does not seem to support multiple
 539         * chips per bank.
 540         */
 541}
 542
 543/*
 544 * Write buf to the FCM Controller Data Buffer
 545 */
 546static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
 547{
 548        struct nand_chip *chip = mtd_to_nand(mtd);
 549        struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 550        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 551        unsigned int bufsize = mtd->writesize + mtd->oobsize;
 552
 553        if (len <= 0) {
 554                dev_err(priv->dev, "write_buf of %d bytes", len);
 555                elbc_fcm_ctrl->status = 0;
 556                return;
 557        }
 558
 559        if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
 560                dev_err(priv->dev,
 561                        "write_buf beyond end of buffer "
 562                        "(%d requested, %u available)\n",
 563                        len, bufsize - elbc_fcm_ctrl->index);
 564                len = bufsize - elbc_fcm_ctrl->index;
 565        }
 566
 567        memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
 568        /*
 569         * This is workaround for the weird elbc hangs during nand write,
 570         * Scott Wood says: "...perhaps difference in how long it takes a
 571         * write to make it through the localbus compared to a write to IMMR
 572         * is causing problems, and sync isn't helping for some reason."
 573         * Reading back the last byte helps though.
 574         */
 575        in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
 576
 577        elbc_fcm_ctrl->index += len;
 578}
 579
 580/*
 581 * read a byte from either the FCM hardware buffer if it has any data left
 582 * otherwise issue a command to read a single byte.
 583 */
 584static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
 585{
 586        struct nand_chip *chip = mtd_to_nand(mtd);
 587        struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 588        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 589
 590        /* If there are still bytes in the FCM, then use the next byte. */
 591        if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
 592                return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
 593
 594        dev_err(priv->dev, "read_byte beyond end of buffer\n");
 595        return ERR_BYTE;
 596}
 597
 598/*
 599 * Read from the FCM Controller Data Buffer
 600 */
 601static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
 602{
 603        struct nand_chip *chip = mtd_to_nand(mtd);
 604        struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 605        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 606        int avail;
 607
 608        if (len < 0)
 609                return;
 610
 611        avail = min((unsigned int)len,
 612                        elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
 613        memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
 614        elbc_fcm_ctrl->index += avail;
 615
 616        if (len > avail)
 617                dev_err(priv->dev,
 618                        "read_buf beyond end of buffer "
 619                        "(%d requested, %d available)\n",
 620                        len, avail);
 621}
 622
 623/* This function is called after Program and Erase Operations to
 624 * check for success or failure.
 625 */
 626static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
 627{
 628        struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 629        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 630
 631        if (elbc_fcm_ctrl->status != LTESR_CC)
 632                return NAND_STATUS_FAIL;
 633
 634        /* The chip always seems to report that it is
 635         * write-protected, even when it is not.
 636         */
 637        return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
 638}
 639
 640static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
 641{
 642        struct nand_chip *chip = mtd_to_nand(mtd);
 643        struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 644        struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 645        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 646        unsigned int al;
 647
 648        /* calculate FMR Address Length field */
 649        al = 0;
 650        if (chip->pagemask & 0xffff0000)
 651                al++;
 652        if (chip->pagemask & 0xff000000)
 653                al++;
 654
 655        priv->fmr |= al << FMR_AL_SHIFT;
 656
 657        dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
 658                chip->numchips);
 659        dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
 660                chip->chipsize);
 661        dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
 662                chip->pagemask);
 663        dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
 664                chip->chip_delay);
 665        dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
 666                chip->badblockpos);
 667        dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
 668                chip->chip_shift);
 669        dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
 670                chip->page_shift);
 671        dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
 672                chip->phys_erase_shift);
 673        dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
 674                chip->ecc.mode);
 675        dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
 676                chip->ecc.steps);
 677        dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
 678                chip->ecc.bytes);
 679        dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
 680                chip->ecc.total);
 681        dev_dbg(priv->dev, "fsl_elbc_init: mtd->ooblayout = %p\n",
 682                mtd->ooblayout);
 683        dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
 684        dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
 685        dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
 686                mtd->erasesize);
 687        dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
 688                mtd->writesize);
 689        dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
 690                mtd->oobsize);
 691
 692        /* adjust Option Register and ECC to match Flash page size */
 693        if (mtd->writesize == 512) {
 694                priv->page_size = 0;
 695                clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
 696        } else if (mtd->writesize == 2048) {
 697                priv->page_size = 1;
 698                setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
 699        } else {
 700                dev_err(priv->dev,
 701                        "fsl_elbc_init: page size %d is not supported\n",
 702                        mtd->writesize);
 703                return -1;
 704        }
 705
 706        return 0;
 707}
 708
 709static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 710                              uint8_t *buf, int oob_required, int page)
 711{
 712        struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 713        struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 714        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 715
 716        fsl_elbc_read_buf(mtd, buf, mtd->writesize);
 717        if (oob_required)
 718                fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
 719
 720        if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
 721                mtd->ecc_stats.failed++;
 722
 723        return elbc_fcm_ctrl->max_bitflips;
 724}
 725
 726/* ECC will be calculated automatically, and errors will be detected in
 727 * waitfunc.
 728 */
 729static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 730                                const uint8_t *buf, int oob_required, int page)
 731{
 732        fsl_elbc_write_buf(mtd, buf, mtd->writesize);
 733        fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
 734
 735        return 0;
 736}
 737
 738/* ECC will be calculated automatically, and errors will be detected in
 739 * waitfunc.
 740 */
 741static int fsl_elbc_write_subpage(struct mtd_info *mtd, struct nand_chip *chip,
 742                                uint32_t offset, uint32_t data_len,
 743                                const uint8_t *buf, int oob_required, int page)
 744{
 745        fsl_elbc_write_buf(mtd, buf, mtd->writesize);
 746        fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
 747
 748        return 0;
 749}
 750
 751static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
 752{
 753        struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 754        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 755        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 756        struct nand_chip *chip = &priv->chip;
 757        struct mtd_info *mtd = nand_to_mtd(chip);
 758
 759        dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
 760
 761        /* Fill in fsl_elbc_mtd structure */
 762        mtd->dev.parent = priv->dev;
 763        nand_set_flash_node(chip, priv->dev->of_node);
 764
 765        /* set timeout to maximum */
 766        priv->fmr = 15 << FMR_CWTO_SHIFT;
 767        if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
 768                priv->fmr |= FMR_ECCM;
 769
 770        /* fill in nand_chip structure */
 771        /* set up function call table */
 772        chip->read_byte = fsl_elbc_read_byte;
 773        chip->write_buf = fsl_elbc_write_buf;
 774        chip->read_buf = fsl_elbc_read_buf;
 775        chip->select_chip = fsl_elbc_select_chip;
 776        chip->cmdfunc = fsl_elbc_cmdfunc;
 777        chip->waitfunc = fsl_elbc_wait;
 778
 779        chip->bbt_td = &bbt_main_descr;
 780        chip->bbt_md = &bbt_mirror_descr;
 781
 782        /* set up nand options */
 783        chip->bbt_options = NAND_BBT_USE_FLASH;
 784
 785        chip->controller = &elbc_fcm_ctrl->controller;
 786        nand_set_controller_data(chip, priv);
 787
 788        chip->ecc.read_page = fsl_elbc_read_page;
 789        chip->ecc.write_page = fsl_elbc_write_page;
 790        chip->ecc.write_subpage = fsl_elbc_write_subpage;
 791
 792        /* If CS Base Register selects full hardware ECC then use it */
 793        if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
 794            BR_DECC_CHK_GEN) {
 795                chip->ecc.mode = NAND_ECC_HW;
 796                mtd_set_ooblayout(mtd, &fsl_elbc_ooblayout_ops);
 797                chip->ecc.size = 512;
 798                chip->ecc.bytes = 3;
 799                chip->ecc.strength = 1;
 800        } else {
 801                /* otherwise fall back to default software ECC */
 802                chip->ecc.mode = NAND_ECC_SOFT;
 803                chip->ecc.algo = NAND_ECC_HAMMING;
 804        }
 805
 806        return 0;
 807}
 808
 809static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
 810{
 811        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 812        struct mtd_info *mtd = nand_to_mtd(&priv->chip);
 813
 814        nand_release(mtd);
 815
 816        kfree(mtd->name);
 817
 818        if (priv->vbase)
 819                iounmap(priv->vbase);
 820
 821        elbc_fcm_ctrl->chips[priv->bank] = NULL;
 822        kfree(priv);
 823        return 0;
 824}
 825
 826static DEFINE_MUTEX(fsl_elbc_nand_mutex);
 827
 828static int fsl_elbc_nand_probe(struct platform_device *pdev)
 829{
 830        struct fsl_lbc_regs __iomem *lbc;
 831        struct fsl_elbc_mtd *priv;
 832        struct resource res;
 833        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
 834        static const char *part_probe_types[]
 835                = { "cmdlinepart", "RedBoot", "ofpart", NULL };
 836        int ret;
 837        int bank;
 838        struct device *dev;
 839        struct device_node *node = pdev->dev.of_node;
 840        struct mtd_info *mtd;
 841
 842        if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
 843                return -ENODEV;
 844        lbc = fsl_lbc_ctrl_dev->regs;
 845        dev = fsl_lbc_ctrl_dev->dev;
 846
 847        /* get, allocate and map the memory resource */
 848        ret = of_address_to_resource(node, 0, &res);
 849        if (ret) {
 850                dev_err(dev, "failed to get resource\n");
 851                return ret;
 852        }
 853
 854        /* find which chip select it is connected to */
 855        for (bank = 0; bank < MAX_BANKS; bank++)
 856                if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
 857                    (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
 858                    (in_be32(&lbc->bank[bank].br) &
 859                     in_be32(&lbc->bank[bank].or) & BR_BA)
 860                     == fsl_lbc_addr(res.start))
 861                        break;
 862
 863        if (bank >= MAX_BANKS) {
 864                dev_err(dev, "address did not match any chip selects\n");
 865                return -ENODEV;
 866        }
 867
 868        priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 869        if (!priv)
 870                return -ENOMEM;
 871
 872        mutex_lock(&fsl_elbc_nand_mutex);
 873        if (!fsl_lbc_ctrl_dev->nand) {
 874                elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
 875                if (!elbc_fcm_ctrl) {
 876                        mutex_unlock(&fsl_elbc_nand_mutex);
 877                        ret = -ENOMEM;
 878                        goto err;
 879                }
 880                elbc_fcm_ctrl->counter++;
 881
 882                nand_hw_control_init(&elbc_fcm_ctrl->controller);
 883                fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
 884        } else {
 885                elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
 886        }
 887        mutex_unlock(&fsl_elbc_nand_mutex);
 888
 889        elbc_fcm_ctrl->chips[bank] = priv;
 890        priv->bank = bank;
 891        priv->ctrl = fsl_lbc_ctrl_dev;
 892        priv->dev = &pdev->dev;
 893        dev_set_drvdata(priv->dev, priv);
 894
 895        priv->vbase = ioremap(res.start, resource_size(&res));
 896        if (!priv->vbase) {
 897                dev_err(dev, "failed to map chip region\n");
 898                ret = -ENOMEM;
 899                goto err;
 900        }
 901
 902        mtd = nand_to_mtd(&priv->chip);
 903        mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
 904        if (!nand_to_mtd(&priv->chip)->name) {
 905                ret = -ENOMEM;
 906                goto err;
 907        }
 908
 909        ret = fsl_elbc_chip_init(priv);
 910        if (ret)
 911                goto err;
 912
 913        ret = nand_scan_ident(mtd, 1, NULL);
 914        if (ret)
 915                goto err;
 916
 917        ret = fsl_elbc_chip_init_tail(mtd);
 918        if (ret)
 919                goto err;
 920
 921        ret = nand_scan_tail(mtd);
 922        if (ret)
 923                goto err;
 924
 925        /* First look for RedBoot table or partitions on the command
 926         * line, these take precedence over device tree information */
 927        mtd_device_parse_register(mtd, part_probe_types, NULL,
 928                                  NULL, 0);
 929
 930        printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
 931               (unsigned long long)res.start, priv->bank);
 932        return 0;
 933
 934err:
 935        fsl_elbc_chip_remove(priv);
 936        return ret;
 937}
 938
 939static int fsl_elbc_nand_remove(struct platform_device *pdev)
 940{
 941        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
 942        struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
 943
 944        fsl_elbc_chip_remove(priv);
 945
 946        mutex_lock(&fsl_elbc_nand_mutex);
 947        elbc_fcm_ctrl->counter--;
 948        if (!elbc_fcm_ctrl->counter) {
 949                fsl_lbc_ctrl_dev->nand = NULL;
 950                kfree(elbc_fcm_ctrl);
 951        }
 952        mutex_unlock(&fsl_elbc_nand_mutex);
 953
 954        return 0;
 955
 956}
 957
 958static const struct of_device_id fsl_elbc_nand_match[] = {
 959        { .compatible = "fsl,elbc-fcm-nand", },
 960        {}
 961};
 962MODULE_DEVICE_TABLE(of, fsl_elbc_nand_match);
 963
 964static struct platform_driver fsl_elbc_nand_driver = {
 965        .driver = {
 966                .name = "fsl,elbc-fcm-nand",
 967                .of_match_table = fsl_elbc_nand_match,
 968        },
 969        .probe = fsl_elbc_nand_probe,
 970        .remove = fsl_elbc_nand_remove,
 971};
 972
 973module_platform_driver(fsl_elbc_nand_driver);
 974
 975MODULE_LICENSE("GPL");
 976MODULE_AUTHOR("Freescale");
 977MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");
 978