linux/drivers/net/ethernet/chelsio/cxgb4vf/sge.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
   3 * driver for Linux.
   4 *
   5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
   6 *
   7 * This software is available to you under a choice of one of two
   8 * licenses.  You may choose to be licensed under the terms of the GNU
   9 * General Public License (GPL) Version 2, available from the file
  10 * COPYING in the main directory of this source tree, or the
  11 * OpenIB.org BSD license below:
  12 *
  13 *     Redistribution and use in source and binary forms, with or
  14 *     without modification, are permitted provided that the following
  15 *     conditions are met:
  16 *
  17 *      - Redistributions of source code must retain the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer.
  20 *
  21 *      - Redistributions in binary form must reproduce the above
  22 *        copyright notice, this list of conditions and the following
  23 *        disclaimer in the documentation and/or other materials
  24 *        provided with the distribution.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33 * SOFTWARE.
  34 */
  35
  36#include <linux/skbuff.h>
  37#include <linux/netdevice.h>
  38#include <linux/etherdevice.h>
  39#include <linux/if_vlan.h>
  40#include <linux/ip.h>
  41#include <net/ipv6.h>
  42#include <net/tcp.h>
  43#include <linux/dma-mapping.h>
  44#include <linux/prefetch.h>
  45
  46#include "t4vf_common.h"
  47#include "t4vf_defs.h"
  48
  49#include "../cxgb4/t4_regs.h"
  50#include "../cxgb4/t4_values.h"
  51#include "../cxgb4/t4fw_api.h"
  52#include "../cxgb4/t4_msg.h"
  53
  54/*
  55 * Constants ...
  56 */
  57enum {
  58        /*
  59         * Egress Queue sizes, producer and consumer indices are all in units
  60         * of Egress Context Units bytes.  Note that as far as the hardware is
  61         * concerned, the free list is an Egress Queue (the host produces free
  62         * buffers which the hardware consumes) and free list entries are
  63         * 64-bit PCI DMA addresses.
  64         */
  65        EQ_UNIT = SGE_EQ_IDXSIZE,
  66        FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
  67        TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
  68
  69        /*
  70         * Max number of TX descriptors we clean up at a time.  Should be
  71         * modest as freeing skbs isn't cheap and it happens while holding
  72         * locks.  We just need to free packets faster than they arrive, we
  73         * eventually catch up and keep the amortized cost reasonable.
  74         */
  75        MAX_TX_RECLAIM = 16,
  76
  77        /*
  78         * Max number of Rx buffers we replenish at a time.  Again keep this
  79         * modest, allocating buffers isn't cheap either.
  80         */
  81        MAX_RX_REFILL = 16,
  82
  83        /*
  84         * Period of the Rx queue check timer.  This timer is infrequent as it
  85         * has something to do only when the system experiences severe memory
  86         * shortage.
  87         */
  88        RX_QCHECK_PERIOD = (HZ / 2),
  89
  90        /*
  91         * Period of the TX queue check timer and the maximum number of TX
  92         * descriptors to be reclaimed by the TX timer.
  93         */
  94        TX_QCHECK_PERIOD = (HZ / 2),
  95        MAX_TIMER_TX_RECLAIM = 100,
  96
  97        /*
  98         * Suspend an Ethernet TX queue with fewer available descriptors than
  99         * this.  We always want to have room for a maximum sized packet:
 100         * inline immediate data + MAX_SKB_FRAGS. This is the same as
 101         * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
 102         * (see that function and its helpers for a description of the
 103         * calculation).
 104         */
 105        ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
 106        ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
 107                                   ((ETHTXQ_MAX_FRAGS-1) & 1) +
 108                                   2),
 109        ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
 110                          sizeof(struct cpl_tx_pkt_lso_core) +
 111                          sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
 112        ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
 113
 114        ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
 115
 116        /*
 117         * Max TX descriptor space we allow for an Ethernet packet to be
 118         * inlined into a WR.  This is limited by the maximum value which
 119         * we can specify for immediate data in the firmware Ethernet TX
 120         * Work Request.
 121         */
 122        MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_M,
 123
 124        /*
 125         * Max size of a WR sent through a control TX queue.
 126         */
 127        MAX_CTRL_WR_LEN = 256,
 128
 129        /*
 130         * Maximum amount of data which we'll ever need to inline into a
 131         * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
 132         */
 133        MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
 134                          ? MAX_IMM_TX_PKT_LEN
 135                          : MAX_CTRL_WR_LEN),
 136
 137        /*
 138         * For incoming packets less than RX_COPY_THRES, we copy the data into
 139         * an skb rather than referencing the data.  We allocate enough
 140         * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
 141         * of the data (header).
 142         */
 143        RX_COPY_THRES = 256,
 144        RX_PULL_LEN = 128,
 145
 146        /*
 147         * Main body length for sk_buffs used for RX Ethernet packets with
 148         * fragments.  Should be >= RX_PULL_LEN but possibly bigger to give
 149         * pskb_may_pull() some room.
 150         */
 151        RX_SKB_LEN = 512,
 152};
 153
 154/*
 155 * Software state per TX descriptor.
 156 */
 157struct tx_sw_desc {
 158        struct sk_buff *skb;            /* socket buffer of TX data source */
 159        struct ulptx_sgl *sgl;          /* scatter/gather list in TX Queue */
 160};
 161
 162/*
 163 * Software state per RX Free List descriptor.  We keep track of the allocated
 164 * FL page, its size, and its PCI DMA address (if the page is mapped).  The FL
 165 * page size and its PCI DMA mapped state are stored in the low bits of the
 166 * PCI DMA address as per below.
 167 */
 168struct rx_sw_desc {
 169        struct page *page;              /* Free List page buffer */
 170        dma_addr_t dma_addr;            /* PCI DMA address (if mapped) */
 171                                        /*   and flags (see below) */
 172};
 173
 174/*
 175 * The low bits of rx_sw_desc.dma_addr have special meaning.  Note that the
 176 * SGE also uses the low 4 bits to determine the size of the buffer.  It uses
 177 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
 178 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
 179 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
 180 * to the SGE.  Thus, our software state of "is the buffer mapped for DMA" is
 181 * maintained in an inverse sense so the hardware never sees that bit high.
 182 */
 183enum {
 184        RX_LARGE_BUF    = 1 << 0,       /* buffer is SGE_FL_BUFFER_SIZE[1] */
 185        RX_UNMAPPED_BUF = 1 << 1,       /* buffer is not mapped */
 186};
 187
 188/**
 189 *      get_buf_addr - return DMA buffer address of software descriptor
 190 *      @sdesc: pointer to the software buffer descriptor
 191 *
 192 *      Return the DMA buffer address of a software descriptor (stripping out
 193 *      our low-order flag bits).
 194 */
 195static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
 196{
 197        return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
 198}
 199
 200/**
 201 *      is_buf_mapped - is buffer mapped for DMA?
 202 *      @sdesc: pointer to the software buffer descriptor
 203 *
 204 *      Determine whether the buffer associated with a software descriptor in
 205 *      mapped for DMA or not.
 206 */
 207static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
 208{
 209        return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
 210}
 211
 212/**
 213 *      need_skb_unmap - does the platform need unmapping of sk_buffs?
 214 *
 215 *      Returns true if the platform needs sk_buff unmapping.  The compiler
 216 *      optimizes away unnecessary code if this returns true.
 217 */
 218static inline int need_skb_unmap(void)
 219{
 220#ifdef CONFIG_NEED_DMA_MAP_STATE
 221        return 1;
 222#else
 223        return 0;
 224#endif
 225}
 226
 227/**
 228 *      txq_avail - return the number of available slots in a TX queue
 229 *      @tq: the TX queue
 230 *
 231 *      Returns the number of available descriptors in a TX queue.
 232 */
 233static inline unsigned int txq_avail(const struct sge_txq *tq)
 234{
 235        return tq->size - 1 - tq->in_use;
 236}
 237
 238/**
 239 *      fl_cap - return the capacity of a Free List
 240 *      @fl: the Free List
 241 *
 242 *      Returns the capacity of a Free List.  The capacity is less than the
 243 *      size because an Egress Queue Index Unit worth of descriptors needs to
 244 *      be left unpopulated, otherwise the Producer and Consumer indices PIDX
 245 *      and CIDX will match and the hardware will think the FL is empty.
 246 */
 247static inline unsigned int fl_cap(const struct sge_fl *fl)
 248{
 249        return fl->size - FL_PER_EQ_UNIT;
 250}
 251
 252/**
 253 *      fl_starving - return whether a Free List is starving.
 254 *      @adapter: pointer to the adapter
 255 *      @fl: the Free List
 256 *
 257 *      Tests specified Free List to see whether the number of buffers
 258 *      available to the hardware has falled below our "starvation"
 259 *      threshold.
 260 */
 261static inline bool fl_starving(const struct adapter *adapter,
 262                               const struct sge_fl *fl)
 263{
 264        const struct sge *s = &adapter->sge;
 265
 266        return fl->avail - fl->pend_cred <= s->fl_starve_thres;
 267}
 268
 269/**
 270 *      map_skb -  map an skb for DMA to the device
 271 *      @dev: the egress net device
 272 *      @skb: the packet to map
 273 *      @addr: a pointer to the base of the DMA mapping array
 274 *
 275 *      Map an skb for DMA to the device and return an array of DMA addresses.
 276 */
 277static int map_skb(struct device *dev, const struct sk_buff *skb,
 278                   dma_addr_t *addr)
 279{
 280        const skb_frag_t *fp, *end;
 281        const struct skb_shared_info *si;
 282
 283        *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
 284        if (dma_mapping_error(dev, *addr))
 285                goto out_err;
 286
 287        si = skb_shinfo(skb);
 288        end = &si->frags[si->nr_frags];
 289        for (fp = si->frags; fp < end; fp++) {
 290                *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
 291                                           DMA_TO_DEVICE);
 292                if (dma_mapping_error(dev, *addr))
 293                        goto unwind;
 294        }
 295        return 0;
 296
 297unwind:
 298        while (fp-- > si->frags)
 299                dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
 300        dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
 301
 302out_err:
 303        return -ENOMEM;
 304}
 305
 306static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
 307                      const struct ulptx_sgl *sgl, const struct sge_txq *tq)
 308{
 309        const struct ulptx_sge_pair *p;
 310        unsigned int nfrags = skb_shinfo(skb)->nr_frags;
 311
 312        if (likely(skb_headlen(skb)))
 313                dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
 314                                 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
 315        else {
 316                dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
 317                               be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
 318                nfrags--;
 319        }
 320
 321        /*
 322         * the complexity below is because of the possibility of a wrap-around
 323         * in the middle of an SGL
 324         */
 325        for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
 326                if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
 327unmap:
 328                        dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
 329                                       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
 330                        dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
 331                                       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
 332                        p++;
 333                } else if ((u8 *)p == (u8 *)tq->stat) {
 334                        p = (const struct ulptx_sge_pair *)tq->desc;
 335                        goto unmap;
 336                } else if ((u8 *)p + 8 == (u8 *)tq->stat) {
 337                        const __be64 *addr = (const __be64 *)tq->desc;
 338
 339                        dma_unmap_page(dev, be64_to_cpu(addr[0]),
 340                                       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
 341                        dma_unmap_page(dev, be64_to_cpu(addr[1]),
 342                                       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
 343                        p = (const struct ulptx_sge_pair *)&addr[2];
 344                } else {
 345                        const __be64 *addr = (const __be64 *)tq->desc;
 346
 347                        dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
 348                                       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
 349                        dma_unmap_page(dev, be64_to_cpu(addr[0]),
 350                                       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
 351                        p = (const struct ulptx_sge_pair *)&addr[1];
 352                }
 353        }
 354        if (nfrags) {
 355                __be64 addr;
 356
 357                if ((u8 *)p == (u8 *)tq->stat)
 358                        p = (const struct ulptx_sge_pair *)tq->desc;
 359                addr = ((u8 *)p + 16 <= (u8 *)tq->stat
 360                        ? p->addr[0]
 361                        : *(const __be64 *)tq->desc);
 362                dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
 363                               DMA_TO_DEVICE);
 364        }
 365}
 366
 367/**
 368 *      free_tx_desc - reclaims TX descriptors and their buffers
 369 *      @adapter: the adapter
 370 *      @tq: the TX queue to reclaim descriptors from
 371 *      @n: the number of descriptors to reclaim
 372 *      @unmap: whether the buffers should be unmapped for DMA
 373 *
 374 *      Reclaims TX descriptors from an SGE TX queue and frees the associated
 375 *      TX buffers.  Called with the TX queue lock held.
 376 */
 377static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
 378                         unsigned int n, bool unmap)
 379{
 380        struct tx_sw_desc *sdesc;
 381        unsigned int cidx = tq->cidx;
 382        struct device *dev = adapter->pdev_dev;
 383
 384        const int need_unmap = need_skb_unmap() && unmap;
 385
 386        sdesc = &tq->sdesc[cidx];
 387        while (n--) {
 388                /*
 389                 * If we kept a reference to the original TX skb, we need to
 390                 * unmap it from PCI DMA space (if required) and free it.
 391                 */
 392                if (sdesc->skb) {
 393                        if (need_unmap)
 394                                unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
 395                        dev_consume_skb_any(sdesc->skb);
 396                        sdesc->skb = NULL;
 397                }
 398
 399                sdesc++;
 400                if (++cidx == tq->size) {
 401                        cidx = 0;
 402                        sdesc = tq->sdesc;
 403                }
 404        }
 405        tq->cidx = cidx;
 406}
 407
 408/*
 409 * Return the number of reclaimable descriptors in a TX queue.
 410 */
 411static inline int reclaimable(const struct sge_txq *tq)
 412{
 413        int hw_cidx = be16_to_cpu(tq->stat->cidx);
 414        int reclaimable = hw_cidx - tq->cidx;
 415        if (reclaimable < 0)
 416                reclaimable += tq->size;
 417        return reclaimable;
 418}
 419
 420/**
 421 *      reclaim_completed_tx - reclaims completed TX descriptors
 422 *      @adapter: the adapter
 423 *      @tq: the TX queue to reclaim completed descriptors from
 424 *      @unmap: whether the buffers should be unmapped for DMA
 425 *
 426 *      Reclaims TX descriptors that the SGE has indicated it has processed,
 427 *      and frees the associated buffers if possible.  Called with the TX
 428 *      queue locked.
 429 */
 430static inline void reclaim_completed_tx(struct adapter *adapter,
 431                                        struct sge_txq *tq,
 432                                        bool unmap)
 433{
 434        int avail = reclaimable(tq);
 435
 436        if (avail) {
 437                /*
 438                 * Limit the amount of clean up work we do at a time to keep
 439                 * the TX lock hold time O(1).
 440                 */
 441                if (avail > MAX_TX_RECLAIM)
 442                        avail = MAX_TX_RECLAIM;
 443
 444                free_tx_desc(adapter, tq, avail, unmap);
 445                tq->in_use -= avail;
 446        }
 447}
 448
 449/**
 450 *      get_buf_size - return the size of an RX Free List buffer.
 451 *      @adapter: pointer to the associated adapter
 452 *      @sdesc: pointer to the software buffer descriptor
 453 */
 454static inline int get_buf_size(const struct adapter *adapter,
 455                               const struct rx_sw_desc *sdesc)
 456{
 457        const struct sge *s = &adapter->sge;
 458
 459        return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
 460                ? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE);
 461}
 462
 463/**
 464 *      free_rx_bufs - free RX buffers on an SGE Free List
 465 *      @adapter: the adapter
 466 *      @fl: the SGE Free List to free buffers from
 467 *      @n: how many buffers to free
 468 *
 469 *      Release the next @n buffers on an SGE Free List RX queue.   The
 470 *      buffers must be made inaccessible to hardware before calling this
 471 *      function.
 472 */
 473static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
 474{
 475        while (n--) {
 476                struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
 477
 478                if (is_buf_mapped(sdesc))
 479                        dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
 480                                       get_buf_size(adapter, sdesc),
 481                                       PCI_DMA_FROMDEVICE);
 482                put_page(sdesc->page);
 483                sdesc->page = NULL;
 484                if (++fl->cidx == fl->size)
 485                        fl->cidx = 0;
 486                fl->avail--;
 487        }
 488}
 489
 490/**
 491 *      unmap_rx_buf - unmap the current RX buffer on an SGE Free List
 492 *      @adapter: the adapter
 493 *      @fl: the SGE Free List
 494 *
 495 *      Unmap the current buffer on an SGE Free List RX queue.   The
 496 *      buffer must be made inaccessible to HW before calling this function.
 497 *
 498 *      This is similar to @free_rx_bufs above but does not free the buffer.
 499 *      Do note that the FL still loses any further access to the buffer.
 500 *      This is used predominantly to "transfer ownership" of an FL buffer
 501 *      to another entity (typically an skb's fragment list).
 502 */
 503static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
 504{
 505        struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
 506
 507        if (is_buf_mapped(sdesc))
 508                dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
 509                               get_buf_size(adapter, sdesc),
 510                               PCI_DMA_FROMDEVICE);
 511        sdesc->page = NULL;
 512        if (++fl->cidx == fl->size)
 513                fl->cidx = 0;
 514        fl->avail--;
 515}
 516
 517/**
 518 *      ring_fl_db - righ doorbell on free list
 519 *      @adapter: the adapter
 520 *      @fl: the Free List whose doorbell should be rung ...
 521 *
 522 *      Tell the Scatter Gather Engine that there are new free list entries
 523 *      available.
 524 */
 525static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
 526{
 527        u32 val = adapter->params.arch.sge_fl_db;
 528
 529        /* The SGE keeps track of its Producer and Consumer Indices in terms
 530         * of Egress Queue Units so we can only tell it about integral numbers
 531         * of multiples of Free List Entries per Egress Queue Units ...
 532         */
 533        if (fl->pend_cred >= FL_PER_EQ_UNIT) {
 534                if (is_t4(adapter->params.chip))
 535                        val |= PIDX_V(fl->pend_cred / FL_PER_EQ_UNIT);
 536                else
 537                        val |= PIDX_T5_V(fl->pend_cred / FL_PER_EQ_UNIT);
 538
 539                /* Make sure all memory writes to the Free List queue are
 540                 * committed before we tell the hardware about them.
 541                 */
 542                wmb();
 543
 544                /* If we don't have access to the new User Doorbell (T5+), use
 545                 * the old doorbell mechanism; otherwise use the new BAR2
 546                 * mechanism.
 547                 */
 548                if (unlikely(fl->bar2_addr == NULL)) {
 549                        t4_write_reg(adapter,
 550                                     T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
 551                                     QID_V(fl->cntxt_id) | val);
 552                } else {
 553                        writel(val | QID_V(fl->bar2_qid),
 554                               fl->bar2_addr + SGE_UDB_KDOORBELL);
 555
 556                        /* This Write memory Barrier will force the write to
 557                         * the User Doorbell area to be flushed.
 558                         */
 559                        wmb();
 560                }
 561                fl->pend_cred %= FL_PER_EQ_UNIT;
 562        }
 563}
 564
 565/**
 566 *      set_rx_sw_desc - initialize software RX buffer descriptor
 567 *      @sdesc: pointer to the softwore RX buffer descriptor
 568 *      @page: pointer to the page data structure backing the RX buffer
 569 *      @dma_addr: PCI DMA address (possibly with low-bit flags)
 570 */
 571static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
 572                                  dma_addr_t dma_addr)
 573{
 574        sdesc->page = page;
 575        sdesc->dma_addr = dma_addr;
 576}
 577
 578/*
 579 * Support for poisoning RX buffers ...
 580 */
 581#define POISON_BUF_VAL -1
 582
 583static inline void poison_buf(struct page *page, size_t sz)
 584{
 585#if POISON_BUF_VAL >= 0
 586        memset(page_address(page), POISON_BUF_VAL, sz);
 587#endif
 588}
 589
 590/**
 591 *      refill_fl - refill an SGE RX buffer ring
 592 *      @adapter: the adapter
 593 *      @fl: the Free List ring to refill
 594 *      @n: the number of new buffers to allocate
 595 *      @gfp: the gfp flags for the allocations
 596 *
 597 *      (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
 598 *      allocated with the supplied gfp flags.  The caller must assure that
 599 *      @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
 600 *      EGRESS QUEUE UNITS_ indicates an empty Free List!  Returns the number
 601 *      of buffers allocated.  If afterwards the queue is found critically low,
 602 *      mark it as starving in the bitmap of starving FLs.
 603 */
 604static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
 605                              int n, gfp_t gfp)
 606{
 607        struct sge *s = &adapter->sge;
 608        struct page *page;
 609        dma_addr_t dma_addr;
 610        unsigned int cred = fl->avail;
 611        __be64 *d = &fl->desc[fl->pidx];
 612        struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
 613
 614        /*
 615         * Sanity: ensure that the result of adding n Free List buffers
 616         * won't result in wrapping the SGE's Producer Index around to
 617         * it's Consumer Index thereby indicating an empty Free List ...
 618         */
 619        BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
 620
 621        gfp |= __GFP_NOWARN;
 622
 623        /*
 624         * If we support large pages, prefer large buffers and fail over to
 625         * small pages if we can't allocate large pages to satisfy the refill.
 626         * If we don't support large pages, drop directly into the small page
 627         * allocation code.
 628         */
 629        if (s->fl_pg_order == 0)
 630                goto alloc_small_pages;
 631
 632        while (n) {
 633                page = __dev_alloc_pages(gfp, s->fl_pg_order);
 634                if (unlikely(!page)) {
 635                        /*
 636                         * We've failed inour attempt to allocate a "large
 637                         * page".  Fail over to the "small page" allocation
 638                         * below.
 639                         */
 640                        fl->large_alloc_failed++;
 641                        break;
 642                }
 643                poison_buf(page, PAGE_SIZE << s->fl_pg_order);
 644
 645                dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
 646                                        PAGE_SIZE << s->fl_pg_order,
 647                                        PCI_DMA_FROMDEVICE);
 648                if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
 649                        /*
 650                         * We've run out of DMA mapping space.  Free up the
 651                         * buffer and return with what we've managed to put
 652                         * into the free list.  We don't want to fail over to
 653                         * the small page allocation below in this case
 654                         * because DMA mapping resources are typically
 655                         * critical resources once they become scarse.
 656                         */
 657                        __free_pages(page, s->fl_pg_order);
 658                        goto out;
 659                }
 660                dma_addr |= RX_LARGE_BUF;
 661                *d++ = cpu_to_be64(dma_addr);
 662
 663                set_rx_sw_desc(sdesc, page, dma_addr);
 664                sdesc++;
 665
 666                fl->avail++;
 667                if (++fl->pidx == fl->size) {
 668                        fl->pidx = 0;
 669                        sdesc = fl->sdesc;
 670                        d = fl->desc;
 671                }
 672                n--;
 673        }
 674
 675alloc_small_pages:
 676        while (n--) {
 677                page = __dev_alloc_page(gfp);
 678                if (unlikely(!page)) {
 679                        fl->alloc_failed++;
 680                        break;
 681                }
 682                poison_buf(page, PAGE_SIZE);
 683
 684                dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
 685                                       PCI_DMA_FROMDEVICE);
 686                if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
 687                        put_page(page);
 688                        break;
 689                }
 690                *d++ = cpu_to_be64(dma_addr);
 691
 692                set_rx_sw_desc(sdesc, page, dma_addr);
 693                sdesc++;
 694
 695                fl->avail++;
 696                if (++fl->pidx == fl->size) {
 697                        fl->pidx = 0;
 698                        sdesc = fl->sdesc;
 699                        d = fl->desc;
 700                }
 701        }
 702
 703out:
 704        /*
 705         * Update our accounting state to incorporate the new Free List
 706         * buffers, tell the hardware about them and return the number of
 707         * buffers which we were able to allocate.
 708         */
 709        cred = fl->avail - cred;
 710        fl->pend_cred += cred;
 711        ring_fl_db(adapter, fl);
 712
 713        if (unlikely(fl_starving(adapter, fl))) {
 714                smp_wmb();
 715                set_bit(fl->cntxt_id, adapter->sge.starving_fl);
 716        }
 717
 718        return cred;
 719}
 720
 721/*
 722 * Refill a Free List to its capacity or the Maximum Refill Increment,
 723 * whichever is smaller ...
 724 */
 725static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
 726{
 727        refill_fl(adapter, fl,
 728                  min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
 729                  GFP_ATOMIC);
 730}
 731
 732/**
 733 *      alloc_ring - allocate resources for an SGE descriptor ring
 734 *      @dev: the PCI device's core device
 735 *      @nelem: the number of descriptors
 736 *      @hwsize: the size of each hardware descriptor
 737 *      @swsize: the size of each software descriptor
 738 *      @busaddrp: the physical PCI bus address of the allocated ring
 739 *      @swringp: return address pointer for software ring
 740 *      @stat_size: extra space in hardware ring for status information
 741 *
 742 *      Allocates resources for an SGE descriptor ring, such as TX queues,
 743 *      free buffer lists, response queues, etc.  Each SGE ring requires
 744 *      space for its hardware descriptors plus, optionally, space for software
 745 *      state associated with each hardware entry (the metadata).  The function
 746 *      returns three values: the virtual address for the hardware ring (the
 747 *      return value of the function), the PCI bus address of the hardware
 748 *      ring (in *busaddrp), and the address of the software ring (in swringp).
 749 *      Both the hardware and software rings are returned zeroed out.
 750 */
 751static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
 752                        size_t swsize, dma_addr_t *busaddrp, void *swringp,
 753                        size_t stat_size)
 754{
 755        /*
 756         * Allocate the hardware ring and PCI DMA bus address space for said.
 757         */
 758        size_t hwlen = nelem * hwsize + stat_size;
 759        void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
 760
 761        if (!hwring)
 762                return NULL;
 763
 764        /*
 765         * If the caller wants a software ring, allocate it and return a
 766         * pointer to it in *swringp.
 767         */
 768        BUG_ON((swsize != 0) != (swringp != NULL));
 769        if (swsize) {
 770                void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
 771
 772                if (!swring) {
 773                        dma_free_coherent(dev, hwlen, hwring, *busaddrp);
 774                        return NULL;
 775                }
 776                *(void **)swringp = swring;
 777        }
 778
 779        /*
 780         * Zero out the hardware ring and return its address as our function
 781         * value.
 782         */
 783        memset(hwring, 0, hwlen);
 784        return hwring;
 785}
 786
 787/**
 788 *      sgl_len - calculates the size of an SGL of the given capacity
 789 *      @n: the number of SGL entries
 790 *
 791 *      Calculates the number of flits (8-byte units) needed for a Direct
 792 *      Scatter/Gather List that can hold the given number of entries.
 793 */
 794static inline unsigned int sgl_len(unsigned int n)
 795{
 796        /*
 797         * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
 798         * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
 799         * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
 800         * repeated sequences of { Length[i], Length[i+1], Address[i],
 801         * Address[i+1] } (this ensures that all addresses are on 64-bit
 802         * boundaries).  If N is even, then Length[N+1] should be set to 0 and
 803         * Address[N+1] is omitted.
 804         *
 805         * The following calculation incorporates all of the above.  It's
 806         * somewhat hard to follow but, briefly: the "+2" accounts for the
 807         * first two flits which include the DSGL header, Length0 and
 808         * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
 809         * flits for every pair of the remaining N) +1 if (n-1) is odd; and
 810         * finally the "+((n-1)&1)" adds the one remaining flit needed if
 811         * (n-1) is odd ...
 812         */
 813        n--;
 814        return (3 * n) / 2 + (n & 1) + 2;
 815}
 816
 817/**
 818 *      flits_to_desc - returns the num of TX descriptors for the given flits
 819 *      @flits: the number of flits
 820 *
 821 *      Returns the number of TX descriptors needed for the supplied number
 822 *      of flits.
 823 */
 824static inline unsigned int flits_to_desc(unsigned int flits)
 825{
 826        BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
 827        return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
 828}
 829
 830/**
 831 *      is_eth_imm - can an Ethernet packet be sent as immediate data?
 832 *      @skb: the packet
 833 *
 834 *      Returns whether an Ethernet packet is small enough to fit completely as
 835 *      immediate data.
 836 */
 837static inline int is_eth_imm(const struct sk_buff *skb)
 838{
 839        /*
 840         * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
 841         * which does not accommodate immediate data.  We could dike out all
 842         * of the support code for immediate data but that would tie our hands
 843         * too much if we ever want to enhace the firmware.  It would also
 844         * create more differences between the PF and VF Drivers.
 845         */
 846        return false;
 847}
 848
 849/**
 850 *      calc_tx_flits - calculate the number of flits for a packet TX WR
 851 *      @skb: the packet
 852 *
 853 *      Returns the number of flits needed for a TX Work Request for the
 854 *      given Ethernet packet, including the needed WR and CPL headers.
 855 */
 856static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
 857{
 858        unsigned int flits;
 859
 860        /*
 861         * If the skb is small enough, we can pump it out as a work request
 862         * with only immediate data.  In that case we just have to have the
 863         * TX Packet header plus the skb data in the Work Request.
 864         */
 865        if (is_eth_imm(skb))
 866                return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
 867                                    sizeof(__be64));
 868
 869        /*
 870         * Otherwise, we're going to have to construct a Scatter gather list
 871         * of the skb body and fragments.  We also include the flits necessary
 872         * for the TX Packet Work Request and CPL.  We always have a firmware
 873         * Write Header (incorporated as part of the cpl_tx_pkt_lso and
 874         * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
 875         * message or, if we're doing a Large Send Offload, an LSO CPL message
 876         * with an embedded TX Packet Write CPL message.
 877         */
 878        flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
 879        if (skb_shinfo(skb)->gso_size)
 880                flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
 881                          sizeof(struct cpl_tx_pkt_lso_core) +
 882                          sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
 883        else
 884                flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
 885                          sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
 886        return flits;
 887}
 888
 889/**
 890 *      write_sgl - populate a Scatter/Gather List for a packet
 891 *      @skb: the packet
 892 *      @tq: the TX queue we are writing into
 893 *      @sgl: starting location for writing the SGL
 894 *      @end: points right after the end of the SGL
 895 *      @start: start offset into skb main-body data to include in the SGL
 896 *      @addr: the list of DMA bus addresses for the SGL elements
 897 *
 898 *      Generates a Scatter/Gather List for the buffers that make up a packet.
 899 *      The caller must provide adequate space for the SGL that will be written.
 900 *      The SGL includes all of the packet's page fragments and the data in its
 901 *      main body except for the first @start bytes.  @pos must be 16-byte
 902 *      aligned and within a TX descriptor with available space.  @end points
 903 *      write after the end of the SGL but does not account for any potential
 904 *      wrap around, i.e., @end > @tq->stat.
 905 */
 906static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
 907                      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
 908                      const dma_addr_t *addr)
 909{
 910        unsigned int i, len;
 911        struct ulptx_sge_pair *to;
 912        const struct skb_shared_info *si = skb_shinfo(skb);
 913        unsigned int nfrags = si->nr_frags;
 914        struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
 915
 916        len = skb_headlen(skb) - start;
 917        if (likely(len)) {
 918                sgl->len0 = htonl(len);
 919                sgl->addr0 = cpu_to_be64(addr[0] + start);
 920                nfrags++;
 921        } else {
 922                sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
 923                sgl->addr0 = cpu_to_be64(addr[1]);
 924        }
 925
 926        sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
 927                              ULPTX_NSGE_V(nfrags));
 928        if (likely(--nfrags == 0))
 929                return;
 930        /*
 931         * Most of the complexity below deals with the possibility we hit the
 932         * end of the queue in the middle of writing the SGL.  For this case
 933         * only we create the SGL in a temporary buffer and then copy it.
 934         */
 935        to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
 936
 937        for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
 938                to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
 939                to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
 940                to->addr[0] = cpu_to_be64(addr[i]);
 941                to->addr[1] = cpu_to_be64(addr[++i]);
 942        }
 943        if (nfrags) {
 944                to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
 945                to->len[1] = cpu_to_be32(0);
 946                to->addr[0] = cpu_to_be64(addr[i + 1]);
 947        }
 948        if (unlikely((u8 *)end > (u8 *)tq->stat)) {
 949                unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
 950
 951                if (likely(part0))
 952                        memcpy(sgl->sge, buf, part0);
 953                part1 = (u8 *)end - (u8 *)tq->stat;
 954                memcpy(tq->desc, (u8 *)buf + part0, part1);
 955                end = (void *)tq->desc + part1;
 956        }
 957        if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
 958                *end = 0;
 959}
 960
 961/**
 962 *      check_ring_tx_db - check and potentially ring a TX queue's doorbell
 963 *      @adapter: the adapter
 964 *      @tq: the TX queue
 965 *      @n: number of new descriptors to give to HW
 966 *
 967 *      Ring the doorbel for a TX queue.
 968 */
 969static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
 970                              int n)
 971{
 972        /* Make sure that all writes to the TX Descriptors are committed
 973         * before we tell the hardware about them.
 974         */
 975        wmb();
 976
 977        /* If we don't have access to the new User Doorbell (T5+), use the old
 978         * doorbell mechanism; otherwise use the new BAR2 mechanism.
 979         */
 980        if (unlikely(tq->bar2_addr == NULL)) {
 981                u32 val = PIDX_V(n);
 982
 983                t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
 984                             QID_V(tq->cntxt_id) | val);
 985        } else {
 986                u32 val = PIDX_T5_V(n);
 987
 988                /* T4 and later chips share the same PIDX field offset within
 989                 * the doorbell, but T5 and later shrank the field in order to
 990                 * gain a bit for Doorbell Priority.  The field was absurdly
 991                 * large in the first place (14 bits) so we just use the T5
 992                 * and later limits and warn if a Queue ID is too large.
 993                 */
 994                WARN_ON(val & DBPRIO_F);
 995
 996                /* If we're only writing a single Egress Unit and the BAR2
 997                 * Queue ID is 0, we can use the Write Combining Doorbell
 998                 * Gather Buffer; otherwise we use the simple doorbell.
 999                 */
1000                if (n == 1 && tq->bar2_qid == 0) {
1001                        unsigned int index = (tq->pidx
1002                                              ? (tq->pidx - 1)
1003                                              : (tq->size - 1));
1004                        __be64 *src = (__be64 *)&tq->desc[index];
1005                        __be64 __iomem *dst = (__be64 __iomem *)(tq->bar2_addr +
1006                                                         SGE_UDB_WCDOORBELL);
1007                        unsigned int count = EQ_UNIT / sizeof(__be64);
1008
1009                        /* Copy the TX Descriptor in a tight loop in order to
1010                         * try to get it to the adapter in a single Write
1011                         * Combined transfer on the PCI-E Bus.  If the Write
1012                         * Combine fails (say because of an interrupt, etc.)
1013                         * the hardware will simply take the last write as a
1014                         * simple doorbell write with a PIDX Increment of 1
1015                         * and will fetch the TX Descriptor from memory via
1016                         * DMA.
1017                         */
1018                        while (count) {
1019                                /* the (__force u64) is because the compiler
1020                                 * doesn't understand the endian swizzling
1021                                 * going on
1022                                 */
1023                                writeq((__force u64)*src, dst);
1024                                src++;
1025                                dst++;
1026                                count--;
1027                        }
1028                } else
1029                        writel(val | QID_V(tq->bar2_qid),
1030                               tq->bar2_addr + SGE_UDB_KDOORBELL);
1031
1032                /* This Write Memory Barrier will force the write to the User
1033                 * Doorbell area to be flushed.  This is needed to prevent
1034                 * writes on different CPUs for the same queue from hitting
1035                 * the adapter out of order.  This is required when some Work
1036                 * Requests take the Write Combine Gather Buffer path (user
1037                 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1038                 * take the traditional path where we simply increment the
1039                 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1040                 * hardware DMA read the actual Work Request.
1041                 */
1042                wmb();
1043        }
1044}
1045
1046/**
1047 *      inline_tx_skb - inline a packet's data into TX descriptors
1048 *      @skb: the packet
1049 *      @tq: the TX queue where the packet will be inlined
1050 *      @pos: starting position in the TX queue to inline the packet
1051 *
1052 *      Inline a packet's contents directly into TX descriptors, starting at
1053 *      the given position within the TX DMA ring.
1054 *      Most of the complexity of this operation is dealing with wrap arounds
1055 *      in the middle of the packet we want to inline.
1056 */
1057static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
1058                          void *pos)
1059{
1060        u64 *p;
1061        int left = (void *)tq->stat - pos;
1062
1063        if (likely(skb->len <= left)) {
1064                if (likely(!skb->data_len))
1065                        skb_copy_from_linear_data(skb, pos, skb->len);
1066                else
1067                        skb_copy_bits(skb, 0, pos, skb->len);
1068                pos += skb->len;
1069        } else {
1070                skb_copy_bits(skb, 0, pos, left);
1071                skb_copy_bits(skb, left, tq->desc, skb->len - left);
1072                pos = (void *)tq->desc + (skb->len - left);
1073        }
1074
1075        /* 0-pad to multiple of 16 */
1076        p = PTR_ALIGN(pos, 8);
1077        if ((uintptr_t)p & 8)
1078                *p = 0;
1079}
1080
1081/*
1082 * Figure out what HW csum a packet wants and return the appropriate control
1083 * bits.
1084 */
1085static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1086{
1087        int csum_type;
1088        const struct iphdr *iph = ip_hdr(skb);
1089
1090        if (iph->version == 4) {
1091                if (iph->protocol == IPPROTO_TCP)
1092                        csum_type = TX_CSUM_TCPIP;
1093                else if (iph->protocol == IPPROTO_UDP)
1094                        csum_type = TX_CSUM_UDPIP;
1095                else {
1096nocsum:
1097                        /*
1098                         * unknown protocol, disable HW csum
1099                         * and hope a bad packet is detected
1100                         */
1101                        return TXPKT_L4CSUM_DIS_F;
1102                }
1103        } else {
1104                /*
1105                 * this doesn't work with extension headers
1106                 */
1107                const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1108
1109                if (ip6h->nexthdr == IPPROTO_TCP)
1110                        csum_type = TX_CSUM_TCPIP6;
1111                else if (ip6h->nexthdr == IPPROTO_UDP)
1112                        csum_type = TX_CSUM_UDPIP6;
1113                else
1114                        goto nocsum;
1115        }
1116
1117        if (likely(csum_type >= TX_CSUM_TCPIP)) {
1118                u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
1119                int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1120
1121                if (chip <= CHELSIO_T5)
1122                        hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1123                else
1124                        hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1125                return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1126        } else {
1127                int start = skb_transport_offset(skb);
1128
1129                return TXPKT_CSUM_TYPE_V(csum_type) |
1130                        TXPKT_CSUM_START_V(start) |
1131                        TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1132        }
1133}
1134
1135/*
1136 * Stop an Ethernet TX queue and record that state change.
1137 */
1138static void txq_stop(struct sge_eth_txq *txq)
1139{
1140        netif_tx_stop_queue(txq->txq);
1141        txq->q.stops++;
1142}
1143
1144/*
1145 * Advance our software state for a TX queue by adding n in use descriptors.
1146 */
1147static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1148{
1149        tq->in_use += n;
1150        tq->pidx += n;
1151        if (tq->pidx >= tq->size)
1152                tq->pidx -= tq->size;
1153}
1154
1155/**
1156 *      t4vf_eth_xmit - add a packet to an Ethernet TX queue
1157 *      @skb: the packet
1158 *      @dev: the egress net device
1159 *
1160 *      Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1161 */
1162int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1163{
1164        u32 wr_mid;
1165        u64 cntrl, *end;
1166        int qidx, credits, max_pkt_len;
1167        unsigned int flits, ndesc;
1168        struct adapter *adapter;
1169        struct sge_eth_txq *txq;
1170        const struct port_info *pi;
1171        struct fw_eth_tx_pkt_vm_wr *wr;
1172        struct cpl_tx_pkt_core *cpl;
1173        const struct skb_shared_info *ssi;
1174        dma_addr_t addr[MAX_SKB_FRAGS + 1];
1175        const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
1176                                        sizeof(wr->ethmacsrc) +
1177                                        sizeof(wr->ethtype) +
1178                                        sizeof(wr->vlantci));
1179
1180        /*
1181         * The chip minimum packet length is 10 octets but the firmware
1182         * command that we are using requires that we copy the Ethernet header
1183         * (including the VLAN tag) into the header so we reject anything
1184         * smaller than that ...
1185         */
1186        if (unlikely(skb->len < fw_hdr_copy_len))
1187                goto out_free;
1188
1189        /* Discard the packet if the length is greater than mtu */
1190        max_pkt_len = ETH_HLEN + dev->mtu;
1191        if (skb_vlan_tagged(skb))
1192                max_pkt_len += VLAN_HLEN;
1193        if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1194                goto out_free;
1195
1196        /*
1197         * Figure out which TX Queue we're going to use.
1198         */
1199        pi = netdev_priv(dev);
1200        adapter = pi->adapter;
1201        qidx = skb_get_queue_mapping(skb);
1202        BUG_ON(qidx >= pi->nqsets);
1203        txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1204
1205        /*
1206         * Take this opportunity to reclaim any TX Descriptors whose DMA
1207         * transfers have completed.
1208         */
1209        reclaim_completed_tx(adapter, &txq->q, true);
1210
1211        /*
1212         * Calculate the number of flits and TX Descriptors we're going to
1213         * need along with how many TX Descriptors will be left over after
1214         * we inject our Work Request.
1215         */
1216        flits = calc_tx_flits(skb);
1217        ndesc = flits_to_desc(flits);
1218        credits = txq_avail(&txq->q) - ndesc;
1219
1220        if (unlikely(credits < 0)) {
1221                /*
1222                 * Not enough room for this packet's Work Request.  Stop the
1223                 * TX Queue and return a "busy" condition.  The queue will get
1224                 * started later on when the firmware informs us that space
1225                 * has opened up.
1226                 */
1227                txq_stop(txq);
1228                dev_err(adapter->pdev_dev,
1229                        "%s: TX ring %u full while queue awake!\n",
1230                        dev->name, qidx);
1231                return NETDEV_TX_BUSY;
1232        }
1233
1234        if (!is_eth_imm(skb) &&
1235            unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1236                /*
1237                 * We need to map the skb into PCI DMA space (because it can't
1238                 * be in-lined directly into the Work Request) and the mapping
1239                 * operation failed.  Record the error and drop the packet.
1240                 */
1241                txq->mapping_err++;
1242                goto out_free;
1243        }
1244
1245        wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1246        if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1247                /*
1248                 * After we're done injecting the Work Request for this
1249                 * packet, we'll be below our "stop threshold" so stop the TX
1250                 * Queue now and schedule a request for an SGE Egress Queue
1251                 * Update message.  The queue will get started later on when
1252                 * the firmware processes this Work Request and sends us an
1253                 * Egress Queue Status Update message indicating that space
1254                 * has opened up.
1255                 */
1256                txq_stop(txq);
1257                wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1258        }
1259
1260        /*
1261         * Start filling in our Work Request.  Note that we do _not_ handle
1262         * the WR Header wrapping around the TX Descriptor Ring.  If our
1263         * maximum header size ever exceeds one TX Descriptor, we'll need to
1264         * do something else here.
1265         */
1266        BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1267        wr = (void *)&txq->q.desc[txq->q.pidx];
1268        wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1269        wr->r3[0] = cpu_to_be32(0);
1270        wr->r3[1] = cpu_to_be32(0);
1271        skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1272        end = (u64 *)wr + flits;
1273
1274        /*
1275         * If this is a Large Send Offload packet we'll put in an LSO CPL
1276         * message with an encapsulated TX Packet CPL message.  Otherwise we
1277         * just use a TX Packet CPL message.
1278         */
1279        ssi = skb_shinfo(skb);
1280        if (ssi->gso_size) {
1281                struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1282                bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1283                int l3hdr_len = skb_network_header_len(skb);
1284                int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1285
1286                wr->op_immdlen =
1287                        cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1288                                    FW_WR_IMMDLEN_V(sizeof(*lso) +
1289                                                    sizeof(*cpl)));
1290                /*
1291                 * Fill in the LSO CPL message.
1292                 */
1293                lso->lso_ctrl =
1294                        cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1295                                    LSO_FIRST_SLICE_F |
1296                                    LSO_LAST_SLICE_F |
1297                                    LSO_IPV6_V(v6) |
1298                                    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1299                                    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1300                                    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1301                lso->ipid_ofst = cpu_to_be16(0);
1302                lso->mss = cpu_to_be16(ssi->gso_size);
1303                lso->seqno_offset = cpu_to_be32(0);
1304                if (is_t4(adapter->params.chip))
1305                        lso->len = cpu_to_be32(skb->len);
1306                else
1307                        lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1308
1309                /*
1310                 * Set up TX Packet CPL pointer, control word and perform
1311                 * accounting.
1312                 */
1313                cpl = (void *)(lso + 1);
1314
1315                if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1316                        cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1317                else
1318                        cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1319
1320                cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1321                                           TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1322                         TXPKT_IPHDR_LEN_V(l3hdr_len);
1323                txq->tso++;
1324                txq->tx_cso += ssi->gso_segs;
1325        } else {
1326                int len;
1327
1328                len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1329                wr->op_immdlen =
1330                        cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1331                                    FW_WR_IMMDLEN_V(len));
1332
1333                /*
1334                 * Set up TX Packet CPL pointer, control word and perform
1335                 * accounting.
1336                 */
1337                cpl = (void *)(wr + 1);
1338                if (skb->ip_summed == CHECKSUM_PARTIAL) {
1339                        cntrl = hwcsum(adapter->params.chip, skb) |
1340                                TXPKT_IPCSUM_DIS_F;
1341                        txq->tx_cso++;
1342                } else
1343                        cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1344        }
1345
1346        /*
1347         * If there's a VLAN tag present, add that to the list of things to
1348         * do in this Work Request.
1349         */
1350        if (skb_vlan_tag_present(skb)) {
1351                txq->vlan_ins++;
1352                cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1353        }
1354
1355        /*
1356         * Fill in the TX Packet CPL message header.
1357         */
1358        cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1359                                 TXPKT_INTF_V(pi->port_id) |
1360                                 TXPKT_PF_V(0));
1361        cpl->pack = cpu_to_be16(0);
1362        cpl->len = cpu_to_be16(skb->len);
1363        cpl->ctrl1 = cpu_to_be64(cntrl);
1364
1365#ifdef T4_TRACE
1366        T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1367                  "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1368                  ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1369#endif
1370
1371        /*
1372         * Fill in the body of the TX Packet CPL message with either in-lined
1373         * data or a Scatter/Gather List.
1374         */
1375        if (is_eth_imm(skb)) {
1376                /*
1377                 * In-line the packet's data and free the skb since we don't
1378                 * need it any longer.
1379                 */
1380                inline_tx_skb(skb, &txq->q, cpl + 1);
1381                dev_consume_skb_any(skb);
1382        } else {
1383                /*
1384                 * Write the skb's Scatter/Gather list into the TX Packet CPL
1385                 * message and retain a pointer to the skb so we can free it
1386                 * later when its DMA completes.  (We store the skb pointer
1387                 * in the Software Descriptor corresponding to the last TX
1388                 * Descriptor used by the Work Request.)
1389                 *
1390                 * The retained skb will be freed when the corresponding TX
1391                 * Descriptors are reclaimed after their DMAs complete.
1392                 * However, this could take quite a while since, in general,
1393                 * the hardware is set up to be lazy about sending DMA
1394                 * completion notifications to us and we mostly perform TX
1395                 * reclaims in the transmit routine.
1396                 *
1397                 * This is good for performamce but means that we rely on new
1398                 * TX packets arriving to run the destructors of completed
1399                 * packets, which open up space in their sockets' send queues.
1400                 * Sometimes we do not get such new packets causing TX to
1401                 * stall.  A single UDP transmitter is a good example of this
1402                 * situation.  We have a clean up timer that periodically
1403                 * reclaims completed packets but it doesn't run often enough
1404                 * (nor do we want it to) to prevent lengthy stalls.  A
1405                 * solution to this problem is to run the destructor early,
1406                 * after the packet is queued but before it's DMAd.  A con is
1407                 * that we lie to socket memory accounting, but the amount of
1408                 * extra memory is reasonable (limited by the number of TX
1409                 * descriptors), the packets do actually get freed quickly by
1410                 * new packets almost always, and for protocols like TCP that
1411                 * wait for acks to really free up the data the extra memory
1412                 * is even less.  On the positive side we run the destructors
1413                 * on the sending CPU rather than on a potentially different
1414                 * completing CPU, usually a good thing.
1415                 *
1416                 * Run the destructor before telling the DMA engine about the
1417                 * packet to make sure it doesn't complete and get freed
1418                 * prematurely.
1419                 */
1420                struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1421                struct sge_txq *tq = &txq->q;
1422                int last_desc;
1423
1424                /*
1425                 * If the Work Request header was an exact multiple of our TX
1426                 * Descriptor length, then it's possible that the starting SGL
1427                 * pointer lines up exactly with the end of our TX Descriptor
1428                 * ring.  If that's the case, wrap around to the beginning
1429                 * here ...
1430                 */
1431                if (unlikely((void *)sgl == (void *)tq->stat)) {
1432                        sgl = (void *)tq->desc;
1433                        end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
1434                }
1435
1436                write_sgl(skb, tq, sgl, end, 0, addr);
1437                skb_orphan(skb);
1438
1439                last_desc = tq->pidx + ndesc - 1;
1440                if (last_desc >= tq->size)
1441                        last_desc -= tq->size;
1442                tq->sdesc[last_desc].skb = skb;
1443                tq->sdesc[last_desc].sgl = sgl;
1444        }
1445
1446        /*
1447         * Advance our internal TX Queue state, tell the hardware about
1448         * the new TX descriptors and return success.
1449         */
1450        txq_advance(&txq->q, ndesc);
1451        netif_trans_update(dev);
1452        ring_tx_db(adapter, &txq->q, ndesc);
1453        return NETDEV_TX_OK;
1454
1455out_free:
1456        /*
1457         * An error of some sort happened.  Free the TX skb and tell the
1458         * OS that we've "dealt" with the packet ...
1459         */
1460        dev_kfree_skb_any(skb);
1461        return NETDEV_TX_OK;
1462}
1463
1464/**
1465 *      copy_frags - copy fragments from gather list into skb_shared_info
1466 *      @skb: destination skb
1467 *      @gl: source internal packet gather list
1468 *      @offset: packet start offset in first page
1469 *
1470 *      Copy an internal packet gather list into a Linux skb_shared_info
1471 *      structure.
1472 */
1473static inline void copy_frags(struct sk_buff *skb,
1474                              const struct pkt_gl *gl,
1475                              unsigned int offset)
1476{
1477        int i;
1478
1479        /* usually there's just one frag */
1480        __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1481                             gl->frags[0].offset + offset,
1482                             gl->frags[0].size - offset);
1483        skb_shinfo(skb)->nr_frags = gl->nfrags;
1484        for (i = 1; i < gl->nfrags; i++)
1485                __skb_fill_page_desc(skb, i, gl->frags[i].page,
1486                                     gl->frags[i].offset,
1487                                     gl->frags[i].size);
1488
1489        /* get a reference to the last page, we don't own it */
1490        get_page(gl->frags[gl->nfrags - 1].page);
1491}
1492
1493/**
1494 *      t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1495 *      @gl: the gather list
1496 *      @skb_len: size of sk_buff main body if it carries fragments
1497 *      @pull_len: amount of data to move to the sk_buff's main body
1498 *
1499 *      Builds an sk_buff from the given packet gather list.  Returns the
1500 *      sk_buff or %NULL if sk_buff allocation failed.
1501 */
1502static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
1503                                         unsigned int skb_len,
1504                                         unsigned int pull_len)
1505{
1506        struct sk_buff *skb;
1507
1508        /*
1509         * If the ingress packet is small enough, allocate an skb large enough
1510         * for all of the data and copy it inline.  Otherwise, allocate an skb
1511         * with enough room to pull in the header and reference the rest of
1512         * the data via the skb fragment list.
1513         *
1514         * Below we rely on RX_COPY_THRES being less than the smallest Rx
1515         * buff!  size, which is expected since buffers are at least
1516         * PAGE_SIZEd.  In this case packets up to RX_COPY_THRES have only one
1517         * fragment.
1518         */
1519        if (gl->tot_len <= RX_COPY_THRES) {
1520                /* small packets have only one fragment */
1521                skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1522                if (unlikely(!skb))
1523                        goto out;
1524                __skb_put(skb, gl->tot_len);
1525                skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1526        } else {
1527                skb = alloc_skb(skb_len, GFP_ATOMIC);
1528                if (unlikely(!skb))
1529                        goto out;
1530                __skb_put(skb, pull_len);
1531                skb_copy_to_linear_data(skb, gl->va, pull_len);
1532
1533                copy_frags(skb, gl, pull_len);
1534                skb->len = gl->tot_len;
1535                skb->data_len = skb->len - pull_len;
1536                skb->truesize += skb->data_len;
1537        }
1538
1539out:
1540        return skb;
1541}
1542
1543/**
1544 *      t4vf_pktgl_free - free a packet gather list
1545 *      @gl: the gather list
1546 *
1547 *      Releases the pages of a packet gather list.  We do not own the last
1548 *      page on the list and do not free it.
1549 */
1550static void t4vf_pktgl_free(const struct pkt_gl *gl)
1551{
1552        int frag;
1553
1554        frag = gl->nfrags - 1;
1555        while (frag--)
1556                put_page(gl->frags[frag].page);
1557}
1558
1559/**
1560 *      do_gro - perform Generic Receive Offload ingress packet processing
1561 *      @rxq: ingress RX Ethernet Queue
1562 *      @gl: gather list for ingress packet
1563 *      @pkt: CPL header for last packet fragment
1564 *
1565 *      Perform Generic Receive Offload (GRO) ingress packet processing.
1566 *      We use the standard Linux GRO interfaces for this.
1567 */
1568static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1569                   const struct cpl_rx_pkt *pkt)
1570{
1571        struct adapter *adapter = rxq->rspq.adapter;
1572        struct sge *s = &adapter->sge;
1573        int ret;
1574        struct sk_buff *skb;
1575
1576        skb = napi_get_frags(&rxq->rspq.napi);
1577        if (unlikely(!skb)) {
1578                t4vf_pktgl_free(gl);
1579                rxq->stats.rx_drops++;
1580                return;
1581        }
1582
1583        copy_frags(skb, gl, s->pktshift);
1584        skb->len = gl->tot_len - s->pktshift;
1585        skb->data_len = skb->len;
1586        skb->truesize += skb->data_len;
1587        skb->ip_summed = CHECKSUM_UNNECESSARY;
1588        skb_record_rx_queue(skb, rxq->rspq.idx);
1589
1590        if (pkt->vlan_ex) {
1591                __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1592                                        be16_to_cpu(pkt->vlan));
1593                rxq->stats.vlan_ex++;
1594        }
1595        ret = napi_gro_frags(&rxq->rspq.napi);
1596
1597        if (ret == GRO_HELD)
1598                rxq->stats.lro_pkts++;
1599        else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1600                rxq->stats.lro_merged++;
1601        rxq->stats.pkts++;
1602        rxq->stats.rx_cso++;
1603}
1604
1605/**
1606 *      t4vf_ethrx_handler - process an ingress ethernet packet
1607 *      @rspq: the response queue that received the packet
1608 *      @rsp: the response queue descriptor holding the RX_PKT message
1609 *      @gl: the gather list of packet fragments
1610 *
1611 *      Process an ingress ethernet packet and deliver it to the stack.
1612 */
1613int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1614                       const struct pkt_gl *gl)
1615{
1616        struct sk_buff *skb;
1617        const struct cpl_rx_pkt *pkt = (void *)rsp;
1618        bool csum_ok = pkt->csum_calc && !pkt->err_vec &&
1619                       (rspq->netdev->features & NETIF_F_RXCSUM);
1620        struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1621        struct adapter *adapter = rspq->adapter;
1622        struct sge *s = &adapter->sge;
1623
1624        /*
1625         * If this is a good TCP packet and we have Generic Receive Offload
1626         * enabled, handle the packet in the GRO path.
1627         */
1628        if ((pkt->l2info & cpu_to_be32(RXF_TCP_F)) &&
1629            (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1630            !pkt->ip_frag) {
1631                do_gro(rxq, gl, pkt);
1632                return 0;
1633        }
1634
1635        /*
1636         * Convert the Packet Gather List into an skb.
1637         */
1638        skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1639        if (unlikely(!skb)) {
1640                t4vf_pktgl_free(gl);
1641                rxq->stats.rx_drops++;
1642                return 0;
1643        }
1644        __skb_pull(skb, s->pktshift);
1645        skb->protocol = eth_type_trans(skb, rspq->netdev);
1646        skb_record_rx_queue(skb, rspq->idx);
1647        rxq->stats.pkts++;
1648
1649        if (csum_ok && !pkt->err_vec &&
1650            (be32_to_cpu(pkt->l2info) & (RXF_UDP_F | RXF_TCP_F))) {
1651                if (!pkt->ip_frag) {
1652                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1653                        rxq->stats.rx_cso++;
1654                } else if (pkt->l2info & htonl(RXF_IP_F)) {
1655                        __sum16 c = (__force __sum16)pkt->csum;
1656                        skb->csum = csum_unfold(c);
1657                        skb->ip_summed = CHECKSUM_COMPLETE;
1658                        rxq->stats.rx_cso++;
1659                }
1660        } else
1661                skb_checksum_none_assert(skb);
1662
1663        if (pkt->vlan_ex) {
1664                rxq->stats.vlan_ex++;
1665                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(pkt->vlan));
1666        }
1667
1668        netif_receive_skb(skb);
1669
1670        return 0;
1671}
1672
1673/**
1674 *      is_new_response - check if a response is newly written
1675 *      @rc: the response control descriptor
1676 *      @rspq: the response queue
1677 *
1678 *      Returns true if a response descriptor contains a yet unprocessed
1679 *      response.
1680 */
1681static inline bool is_new_response(const struct rsp_ctrl *rc,
1682                                   const struct sge_rspq *rspq)
1683{
1684        return ((rc->type_gen >> RSPD_GEN_S) & 0x1) == rspq->gen;
1685}
1686
1687/**
1688 *      restore_rx_bufs - put back a packet's RX buffers
1689 *      @gl: the packet gather list
1690 *      @fl: the SGE Free List
1691 *      @nfrags: how many fragments in @si
1692 *
1693 *      Called when we find out that the current packet, @si, can't be
1694 *      processed right away for some reason.  This is a very rare event and
1695 *      there's no effort to make this suspension/resumption process
1696 *      particularly efficient.
1697 *
1698 *      We implement the suspension by putting all of the RX buffers associated
1699 *      with the current packet back on the original Free List.  The buffers
1700 *      have already been unmapped and are left unmapped, we mark them as
1701 *      unmapped in order to prevent further unmapping attempts.  (Effectively
1702 *      this function undoes the series of @unmap_rx_buf calls which were done
1703 *      to create the current packet's gather list.)  This leaves us ready to
1704 *      restart processing of the packet the next time we start processing the
1705 *      RX Queue ...
1706 */
1707static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1708                            int frags)
1709{
1710        struct rx_sw_desc *sdesc;
1711
1712        while (frags--) {
1713                if (fl->cidx == 0)
1714                        fl->cidx = fl->size - 1;
1715                else
1716                        fl->cidx--;
1717                sdesc = &fl->sdesc[fl->cidx];
1718                sdesc->page = gl->frags[frags].page;
1719                sdesc->dma_addr |= RX_UNMAPPED_BUF;
1720                fl->avail++;
1721        }
1722}
1723
1724/**
1725 *      rspq_next - advance to the next entry in a response queue
1726 *      @rspq: the queue
1727 *
1728 *      Updates the state of a response queue to advance it to the next entry.
1729 */
1730static inline void rspq_next(struct sge_rspq *rspq)
1731{
1732        rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1733        if (unlikely(++rspq->cidx == rspq->size)) {
1734                rspq->cidx = 0;
1735                rspq->gen ^= 1;
1736                rspq->cur_desc = rspq->desc;
1737        }
1738}
1739
1740/**
1741 *      process_responses - process responses from an SGE response queue
1742 *      @rspq: the ingress response queue to process
1743 *      @budget: how many responses can be processed in this round
1744 *
1745 *      Process responses from a Scatter Gather Engine response queue up to
1746 *      the supplied budget.  Responses include received packets as well as
1747 *      control messages from firmware or hardware.
1748 *
1749 *      Additionally choose the interrupt holdoff time for the next interrupt
1750 *      on this queue.  If the system is under memory shortage use a fairly
1751 *      long delay to help recovery.
1752 */
1753static int process_responses(struct sge_rspq *rspq, int budget)
1754{
1755        struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1756        struct adapter *adapter = rspq->adapter;
1757        struct sge *s = &adapter->sge;
1758        int budget_left = budget;
1759
1760        while (likely(budget_left)) {
1761                int ret, rsp_type;
1762                const struct rsp_ctrl *rc;
1763
1764                rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1765                if (!is_new_response(rc, rspq))
1766                        break;
1767
1768                /*
1769                 * Figure out what kind of response we've received from the
1770                 * SGE.
1771                 */
1772                dma_rmb();
1773                rsp_type = RSPD_TYPE_G(rc->type_gen);
1774                if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
1775                        struct page_frag *fp;
1776                        struct pkt_gl gl;
1777                        const struct rx_sw_desc *sdesc;
1778                        u32 bufsz, frag;
1779                        u32 len = be32_to_cpu(rc->pldbuflen_qid);
1780
1781                        /*
1782                         * If we get a "new buffer" message from the SGE we
1783                         * need to move on to the next Free List buffer.
1784                         */
1785                        if (len & RSPD_NEWBUF_F) {
1786                                /*
1787                                 * We get one "new buffer" message when we
1788                                 * first start up a queue so we need to ignore
1789                                 * it when our offset into the buffer is 0.
1790                                 */
1791                                if (likely(rspq->offset > 0)) {
1792                                        free_rx_bufs(rspq->adapter, &rxq->fl,
1793                                                     1);
1794                                        rspq->offset = 0;
1795                                }
1796                                len = RSPD_LEN_G(len);
1797                        }
1798                        gl.tot_len = len;
1799
1800                        /*
1801                         * Gather packet fragments.
1802                         */
1803                        for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1804                                BUG_ON(frag >= MAX_SKB_FRAGS);
1805                                BUG_ON(rxq->fl.avail == 0);
1806                                sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
1807                                bufsz = get_buf_size(adapter, sdesc);
1808                                fp->page = sdesc->page;
1809                                fp->offset = rspq->offset;
1810                                fp->size = min(bufsz, len);
1811                                len -= fp->size;
1812                                if (!len)
1813                                        break;
1814                                unmap_rx_buf(rspq->adapter, &rxq->fl);
1815                        }
1816                        gl.nfrags = frag+1;
1817
1818                        /*
1819                         * Last buffer remains mapped so explicitly make it
1820                         * coherent for CPU access and start preloading first
1821                         * cache line ...
1822                         */
1823                        dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1824                                                get_buf_addr(sdesc),
1825                                                fp->size, DMA_FROM_DEVICE);
1826                        gl.va = (page_address(gl.frags[0].page) +
1827                                 gl.frags[0].offset);
1828                        prefetch(gl.va);
1829
1830                        /*
1831                         * Hand the new ingress packet to the handler for
1832                         * this Response Queue.
1833                         */
1834                        ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1835                        if (likely(ret == 0))
1836                                rspq->offset += ALIGN(fp->size, s->fl_align);
1837                        else
1838                                restore_rx_bufs(&gl, &rxq->fl, frag);
1839                } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
1840                        ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1841                } else {
1842                        WARN_ON(rsp_type > RSPD_TYPE_CPL_X);
1843                        ret = 0;
1844                }
1845
1846                if (unlikely(ret)) {
1847                        /*
1848                         * Couldn't process descriptor, back off for recovery.
1849                         * We use the SGE's last timer which has the longest
1850                         * interrupt coalescing value ...
1851                         */
1852                        const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1853                        rspq->next_intr_params =
1854                                QINTR_TIMER_IDX_V(NOMEM_TIMER_IDX);
1855                        break;
1856                }
1857
1858                rspq_next(rspq);
1859                budget_left--;
1860        }
1861
1862        /*
1863         * If this is a Response Queue with an associated Free List and
1864         * at least two Egress Queue units available in the Free List
1865         * for new buffer pointers, refill the Free List.
1866         */
1867        if (rspq->offset >= 0 &&
1868            fl_cap(&rxq->fl) - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1869                __refill_fl(rspq->adapter, &rxq->fl);
1870        return budget - budget_left;
1871}
1872
1873/**
1874 *      napi_rx_handler - the NAPI handler for RX processing
1875 *      @napi: the napi instance
1876 *      @budget: how many packets we can process in this round
1877 *
1878 *      Handler for new data events when using NAPI.  This does not need any
1879 *      locking or protection from interrupts as data interrupts are off at
1880 *      this point and other adapter interrupts do not interfere (the latter
1881 *      in not a concern at all with MSI-X as non-data interrupts then have
1882 *      a separate handler).
1883 */
1884static int napi_rx_handler(struct napi_struct *napi, int budget)
1885{
1886        unsigned int intr_params;
1887        struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1888        int work_done = process_responses(rspq, budget);
1889        u32 val;
1890
1891        if (likely(work_done < budget)) {
1892                napi_complete(napi);
1893                intr_params = rspq->next_intr_params;
1894                rspq->next_intr_params = rspq->intr_params;
1895        } else
1896                intr_params = QINTR_TIMER_IDX_V(SGE_TIMER_UPD_CIDX);
1897
1898        if (unlikely(work_done == 0))
1899                rspq->unhandled_irqs++;
1900
1901        val = CIDXINC_V(work_done) | SEINTARM_V(intr_params);
1902        /* If we don't have access to the new User GTS (T5+), use the old
1903         * doorbell mechanism; otherwise use the new BAR2 mechanism.
1904         */
1905        if (unlikely(!rspq->bar2_addr)) {
1906                t4_write_reg(rspq->adapter,
1907                             T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1908                             val | INGRESSQID_V((u32)rspq->cntxt_id));
1909        } else {
1910                writel(val | INGRESSQID_V(rspq->bar2_qid),
1911                       rspq->bar2_addr + SGE_UDB_GTS);
1912                wmb();
1913        }
1914        return work_done;
1915}
1916
1917/*
1918 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1919 * (i.e., response queue serviced by NAPI polling).
1920 */
1921irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1922{
1923        struct sge_rspq *rspq = cookie;
1924
1925        napi_schedule(&rspq->napi);
1926        return IRQ_HANDLED;
1927}
1928
1929/*
1930 * Process the indirect interrupt entries in the interrupt queue and kick off
1931 * NAPI for each queue that has generated an entry.
1932 */
1933static unsigned int process_intrq(struct adapter *adapter)
1934{
1935        struct sge *s = &adapter->sge;
1936        struct sge_rspq *intrq = &s->intrq;
1937        unsigned int work_done;
1938        u32 val;
1939
1940        spin_lock(&adapter->sge.intrq_lock);
1941        for (work_done = 0; ; work_done++) {
1942                const struct rsp_ctrl *rc;
1943                unsigned int qid, iq_idx;
1944                struct sge_rspq *rspq;
1945
1946                /*
1947                 * Grab the next response from the interrupt queue and bail
1948                 * out if it's not a new response.
1949                 */
1950                rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1951                if (!is_new_response(rc, intrq))
1952                        break;
1953
1954                /*
1955                 * If the response isn't a forwarded interrupt message issue a
1956                 * error and go on to the next response message.  This should
1957                 * never happen ...
1958                 */
1959                dma_rmb();
1960                if (unlikely(RSPD_TYPE_G(rc->type_gen) != RSPD_TYPE_INTR_X)) {
1961                        dev_err(adapter->pdev_dev,
1962                                "Unexpected INTRQ response type %d\n",
1963                                RSPD_TYPE_G(rc->type_gen));
1964                        continue;
1965                }
1966
1967                /*
1968                 * Extract the Queue ID from the interrupt message and perform
1969                 * sanity checking to make sure it really refers to one of our
1970                 * Ingress Queues which is active and matches the queue's ID.
1971                 * None of these error conditions should ever happen so we may
1972                 * want to either make them fatal and/or conditionalized under
1973                 * DEBUG.
1974                 */
1975                qid = RSPD_QID_G(be32_to_cpu(rc->pldbuflen_qid));
1976                iq_idx = IQ_IDX(s, qid);
1977                if (unlikely(iq_idx >= MAX_INGQ)) {
1978                        dev_err(adapter->pdev_dev,
1979                                "Ingress QID %d out of range\n", qid);
1980                        continue;
1981                }
1982                rspq = s->ingr_map[iq_idx];
1983                if (unlikely(rspq == NULL)) {
1984                        dev_err(adapter->pdev_dev,
1985                                "Ingress QID %d RSPQ=NULL\n", qid);
1986                        continue;
1987                }
1988                if (unlikely(rspq->abs_id != qid)) {
1989                        dev_err(adapter->pdev_dev,
1990                                "Ingress QID %d refers to RSPQ %d\n",
1991                                qid, rspq->abs_id);
1992                        continue;
1993                }
1994
1995                /*
1996                 * Schedule NAPI processing on the indicated Response Queue
1997                 * and move on to the next entry in the Forwarded Interrupt
1998                 * Queue.
1999                 */
2000                napi_schedule(&rspq->napi);
2001                rspq_next(intrq);
2002        }
2003
2004        val = CIDXINC_V(work_done) | SEINTARM_V(intrq->intr_params);
2005        /* If we don't have access to the new User GTS (T5+), use the old
2006         * doorbell mechanism; otherwise use the new BAR2 mechanism.
2007         */
2008        if (unlikely(!intrq->bar2_addr)) {
2009                t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
2010                             val | INGRESSQID_V(intrq->cntxt_id));
2011        } else {
2012                writel(val | INGRESSQID_V(intrq->bar2_qid),
2013                       intrq->bar2_addr + SGE_UDB_GTS);
2014                wmb();
2015        }
2016
2017        spin_unlock(&adapter->sge.intrq_lock);
2018
2019        return work_done;
2020}
2021
2022/*
2023 * The MSI interrupt handler handles data events from SGE response queues as
2024 * well as error and other async events as they all use the same MSI vector.
2025 */
2026static irqreturn_t t4vf_intr_msi(int irq, void *cookie)
2027{
2028        struct adapter *adapter = cookie;
2029
2030        process_intrq(adapter);
2031        return IRQ_HANDLED;
2032}
2033
2034/**
2035 *      t4vf_intr_handler - select the top-level interrupt handler
2036 *      @adapter: the adapter
2037 *
2038 *      Selects the top-level interrupt handler based on the type of interrupts
2039 *      (MSI-X or MSI).
2040 */
2041irq_handler_t t4vf_intr_handler(struct adapter *adapter)
2042{
2043        BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2044        if (adapter->flags & USING_MSIX)
2045                return t4vf_sge_intr_msix;
2046        else
2047                return t4vf_intr_msi;
2048}
2049
2050/**
2051 *      sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
2052 *      @data: the adapter
2053 *
2054 *      Runs periodically from a timer to perform maintenance of SGE RX queues.
2055 *
2056 *      a) Replenishes RX queues that have run out due to memory shortage.
2057 *      Normally new RX buffers are added when existing ones are consumed but
2058 *      when out of memory a queue can become empty.  We schedule NAPI to do
2059 *      the actual refill.
2060 */
2061static void sge_rx_timer_cb(unsigned long data)
2062{
2063        struct adapter *adapter = (struct adapter *)data;
2064        struct sge *s = &adapter->sge;
2065        unsigned int i;
2066
2067        /*
2068         * Scan the "Starving Free Lists" flag array looking for any Free
2069         * Lists in need of more free buffers.  If we find one and it's not
2070         * being actively polled, then bump its "starving" counter and attempt
2071         * to refill it.  If we're successful in adding enough buffers to push
2072         * the Free List over the starving threshold, then we can clear its
2073         * "starving" status.
2074         */
2075        for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
2076                unsigned long m;
2077
2078                for (m = s->starving_fl[i]; m; m &= m - 1) {
2079                        unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2080                        struct sge_fl *fl = s->egr_map[id];
2081
2082                        clear_bit(id, s->starving_fl);
2083                        smp_mb__after_atomic();
2084
2085                        /*
2086                         * Since we are accessing fl without a lock there's a
2087                         * small probability of a false positive where we
2088                         * schedule napi but the FL is no longer starving.
2089                         * No biggie.
2090                         */
2091                        if (fl_starving(adapter, fl)) {
2092                                struct sge_eth_rxq *rxq;
2093
2094                                rxq = container_of(fl, struct sge_eth_rxq, fl);
2095                                if (napi_reschedule(&rxq->rspq.napi))
2096                                        fl->starving++;
2097                                else
2098                                        set_bit(id, s->starving_fl);
2099                        }
2100                }
2101        }
2102
2103        /*
2104         * Reschedule the next scan for starving Free Lists ...
2105         */
2106        mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2107}
2108
2109/**
2110 *      sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
2111 *      @data: the adapter
2112 *
2113 *      Runs periodically from a timer to perform maintenance of SGE TX queues.
2114 *
2115 *      b) Reclaims completed Tx packets for the Ethernet queues.  Normally
2116 *      packets are cleaned up by new Tx packets, this timer cleans up packets
2117 *      when no new packets are being submitted.  This is essential for pktgen,
2118 *      at least.
2119 */
2120static void sge_tx_timer_cb(unsigned long data)
2121{
2122        struct adapter *adapter = (struct adapter *)data;
2123        struct sge *s = &adapter->sge;
2124        unsigned int i, budget;
2125
2126        budget = MAX_TIMER_TX_RECLAIM;
2127        i = s->ethtxq_rover;
2128        do {
2129                struct sge_eth_txq *txq = &s->ethtxq[i];
2130
2131                if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
2132                        int avail = reclaimable(&txq->q);
2133
2134                        if (avail > budget)
2135                                avail = budget;
2136
2137                        free_tx_desc(adapter, &txq->q, avail, true);
2138                        txq->q.in_use -= avail;
2139                        __netif_tx_unlock(txq->txq);
2140
2141                        budget -= avail;
2142                        if (!budget)
2143                                break;
2144                }
2145
2146                i++;
2147                if (i >= s->ethqsets)
2148                        i = 0;
2149        } while (i != s->ethtxq_rover);
2150        s->ethtxq_rover = i;
2151
2152        /*
2153         * If we found too many reclaimable packets schedule a timer in the
2154         * near future to continue where we left off.  Otherwise the next timer
2155         * will be at its normal interval.
2156         */
2157        mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2158}
2159
2160/**
2161 *      bar2_address - return the BAR2 address for an SGE Queue's Registers
2162 *      @adapter: the adapter
2163 *      @qid: the SGE Queue ID
2164 *      @qtype: the SGE Queue Type (Egress or Ingress)
2165 *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2166 *
2167 *      Returns the BAR2 address for the SGE Queue Registers associated with
2168 *      @qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
2169 *      returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2170 *      Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2171 *      Registers are supported (e.g. the Write Combining Doorbell Buffer).
2172 */
2173static void __iomem *bar2_address(struct adapter *adapter,
2174                                  unsigned int qid,
2175                                  enum t4_bar2_qtype qtype,
2176                                  unsigned int *pbar2_qid)
2177{
2178        u64 bar2_qoffset;
2179        int ret;
2180
2181        ret = t4vf_bar2_sge_qregs(adapter, qid, qtype,
2182                                  &bar2_qoffset, pbar2_qid);
2183        if (ret)
2184                return NULL;
2185
2186        return adapter->bar2 + bar2_qoffset;
2187}
2188
2189/**
2190 *      t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2191 *      @adapter: the adapter
2192 *      @rspq: pointer to to the new rxq's Response Queue to be filled in
2193 *      @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2194 *      @dev: the network device associated with the new rspq
2195 *      @intr_dest: MSI-X vector index (overriden in MSI mode)
2196 *      @fl: pointer to the new rxq's Free List to be filled in
2197 *      @hnd: the interrupt handler to invoke for the rspq
2198 */
2199int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2200                       bool iqasynch, struct net_device *dev,
2201                       int intr_dest,
2202                       struct sge_fl *fl, rspq_handler_t hnd)
2203{
2204        struct sge *s = &adapter->sge;
2205        struct port_info *pi = netdev_priv(dev);
2206        struct fw_iq_cmd cmd, rpl;
2207        int ret, iqandst, flsz = 0;
2208
2209        /*
2210         * If we're using MSI interrupts and we're not initializing the
2211         * Forwarded Interrupt Queue itself, then set up this queue for
2212         * indirect interrupts to the Forwarded Interrupt Queue.  Obviously
2213         * the Forwarded Interrupt Queue must be set up before any other
2214         * ingress queue ...
2215         */
2216        if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) {
2217                iqandst = SGE_INTRDST_IQ;
2218                intr_dest = adapter->sge.intrq.abs_id;
2219        } else
2220                iqandst = SGE_INTRDST_PCI;
2221
2222        /*
2223         * Allocate the hardware ring for the Response Queue.  The size needs
2224         * to be a multiple of 16 which includes the mandatory status entry
2225         * (regardless of whether the Status Page capabilities are enabled or
2226         * not).
2227         */
2228        rspq->size = roundup(rspq->size, 16);
2229        rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2230                                0, &rspq->phys_addr, NULL, 0);
2231        if (!rspq->desc)
2232                return -ENOMEM;
2233
2234        /*
2235         * Fill in the Ingress Queue Command.  Note: Ideally this code would
2236         * be in t4vf_hw.c but there are so many parameters and dependencies
2237         * on our Linux SGE state that we would end up having to pass tons of
2238         * parameters.  We'll have to think about how this might be migrated
2239         * into OS-independent common code ...
2240         */
2241        memset(&cmd, 0, sizeof(cmd));
2242        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
2243                                    FW_CMD_REQUEST_F |
2244                                    FW_CMD_WRITE_F |
2245                                    FW_CMD_EXEC_F);
2246        cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC_F |
2247                                         FW_IQ_CMD_IQSTART_F |
2248                                         FW_LEN16(cmd));
2249        cmd.type_to_iqandstindex =
2250                cpu_to_be32(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2251                            FW_IQ_CMD_IQASYNCH_V(iqasynch) |
2252                            FW_IQ_CMD_VIID_V(pi->viid) |
2253                            FW_IQ_CMD_IQANDST_V(iqandst) |
2254                            FW_IQ_CMD_IQANUS_V(1) |
2255                            FW_IQ_CMD_IQANUD_V(SGE_UPDATEDEL_INTR) |
2256                            FW_IQ_CMD_IQANDSTINDEX_V(intr_dest));
2257        cmd.iqdroprss_to_iqesize =
2258                cpu_to_be16(FW_IQ_CMD_IQPCIECH_V(pi->port_id) |
2259                            FW_IQ_CMD_IQGTSMODE_F |
2260                            FW_IQ_CMD_IQINTCNTTHRESH_V(rspq->pktcnt_idx) |
2261                            FW_IQ_CMD_IQESIZE_V(ilog2(rspq->iqe_len) - 4));
2262        cmd.iqsize = cpu_to_be16(rspq->size);
2263        cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2264
2265        if (fl) {
2266                enum chip_type chip =
2267                        CHELSIO_CHIP_VERSION(adapter->params.chip);
2268                /*
2269                 * Allocate the ring for the hardware free list (with space
2270                 * for its status page) along with the associated software
2271                 * descriptor ring.  The free list size needs to be a multiple
2272                 * of the Egress Queue Unit and at least 2 Egress Units larger
2273                 * than the SGE's Egress Congrestion Threshold
2274                 * (fl_starve_thres - 1).
2275                 */
2276                if (fl->size < s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT)
2277                        fl->size = s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT;
2278                fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2279                fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2280                                      sizeof(__be64), sizeof(struct rx_sw_desc),
2281                                      &fl->addr, &fl->sdesc, s->stat_len);
2282                if (!fl->desc) {
2283                        ret = -ENOMEM;
2284                        goto err;
2285                }
2286
2287                /*
2288                 * Calculate the size of the hardware free list ring plus
2289                 * Status Page (which the SGE will place after the end of the
2290                 * free list ring) in Egress Queue Units.
2291                 */
2292                flsz = (fl->size / FL_PER_EQ_UNIT +
2293                        s->stat_len / EQ_UNIT);
2294
2295                /*
2296                 * Fill in all the relevant firmware Ingress Queue Command
2297                 * fields for the free list.
2298                 */
2299                cmd.iqns_to_fl0congen =
2300                        cpu_to_be32(
2301                                FW_IQ_CMD_FL0HOSTFCMODE_V(SGE_HOSTFCMODE_NONE) |
2302                                FW_IQ_CMD_FL0PACKEN_F |
2303                                FW_IQ_CMD_FL0PADEN_F);
2304
2305                /* In T6, for egress queue type FL there is internal overhead
2306                 * of 16B for header going into FLM module.  Hence the maximum
2307                 * allowed burst size is 448 bytes.  For T4/T5, the hardware
2308                 * doesn't coalesce fetch requests if more than 64 bytes of
2309                 * Free List pointers are provided, so we use a 128-byte Fetch
2310                 * Burst Minimum there (T6 implements coalescing so we can use
2311                 * the smaller 64-byte value there).
2312                 */
2313                cmd.fl0dcaen_to_fl0cidxfthresh =
2314                        cpu_to_be16(
2315                                FW_IQ_CMD_FL0FBMIN_V(chip <= CHELSIO_T5 ?
2316                                                     FETCHBURSTMIN_128B_X :
2317                                                     FETCHBURSTMIN_64B_X) |
2318                                FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ?
2319                                                     FETCHBURSTMAX_512B_X :
2320                                                     FETCHBURSTMAX_256B_X));
2321                cmd.fl0size = cpu_to_be16(flsz);
2322                cmd.fl0addr = cpu_to_be64(fl->addr);
2323        }
2324
2325        /*
2326         * Issue the firmware Ingress Queue Command and extract the results if
2327         * it completes successfully.
2328         */
2329        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2330        if (ret)
2331                goto err;
2332
2333        netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
2334        rspq->cur_desc = rspq->desc;
2335        rspq->cidx = 0;
2336        rspq->gen = 1;
2337        rspq->next_intr_params = rspq->intr_params;
2338        rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2339        rspq->bar2_addr = bar2_address(adapter,
2340                                       rspq->cntxt_id,
2341                                       T4_BAR2_QTYPE_INGRESS,
2342                                       &rspq->bar2_qid);
2343        rspq->abs_id = be16_to_cpu(rpl.physiqid);
2344        rspq->size--;                   /* subtract status entry */
2345        rspq->adapter = adapter;
2346        rspq->netdev = dev;
2347        rspq->handler = hnd;
2348
2349        /* set offset to -1 to distinguish ingress queues without FL */
2350        rspq->offset = fl ? 0 : -1;
2351
2352        if (fl) {
2353                fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2354                fl->avail = 0;
2355                fl->pend_cred = 0;
2356                fl->pidx = 0;
2357                fl->cidx = 0;
2358                fl->alloc_failed = 0;
2359                fl->large_alloc_failed = 0;
2360                fl->starving = 0;
2361
2362                /* Note, we must initialize the BAR2 Free List User Doorbell
2363                 * information before refilling the Free List!
2364                 */
2365                fl->bar2_addr = bar2_address(adapter,
2366                                             fl->cntxt_id,
2367                                             T4_BAR2_QTYPE_EGRESS,
2368                                             &fl->bar2_qid);
2369
2370                refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2371        }
2372
2373        return 0;
2374
2375err:
2376        /*
2377         * An error occurred.  Clean up our partial allocation state and
2378         * return the error.
2379         */
2380        if (rspq->desc) {
2381                dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2382                                  rspq->desc, rspq->phys_addr);
2383                rspq->desc = NULL;
2384        }
2385        if (fl && fl->desc) {
2386                kfree(fl->sdesc);
2387                fl->sdesc = NULL;
2388                dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2389                                  fl->desc, fl->addr);
2390                fl->desc = NULL;
2391        }
2392        return ret;
2393}
2394
2395/**
2396 *      t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2397 *      @adapter: the adapter
2398 *      @txq: pointer to the new txq to be filled in
2399 *      @devq: the network TX queue associated with the new txq
2400 *      @iqid: the relative ingress queue ID to which events relating to
2401 *              the new txq should be directed
2402 */
2403int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2404                           struct net_device *dev, struct netdev_queue *devq,
2405                           unsigned int iqid)
2406{
2407        struct sge *s = &adapter->sge;
2408        int ret, nentries;
2409        struct fw_eq_eth_cmd cmd, rpl;
2410        struct port_info *pi = netdev_priv(dev);
2411
2412        /*
2413         * Calculate the size of the hardware TX Queue (including the Status
2414         * Page on the end of the TX Queue) in units of TX Descriptors.
2415         */
2416        nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2417
2418        /*
2419         * Allocate the hardware ring for the TX ring (with space for its
2420         * status page) along with the associated software descriptor ring.
2421         */
2422        txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2423                                 sizeof(struct tx_desc),
2424                                 sizeof(struct tx_sw_desc),
2425                                 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len);
2426        if (!txq->q.desc)
2427                return -ENOMEM;
2428
2429        /*
2430         * Fill in the Egress Queue Command.  Note: As with the direct use of
2431         * the firmware Ingress Queue COmmand above in our RXQ allocation
2432         * routine, ideally, this code would be in t4vf_hw.c.  Again, we'll
2433         * have to see if there's some reasonable way to parameterize it
2434         * into the common code ...
2435         */
2436        memset(&cmd, 0, sizeof(cmd));
2437        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
2438                                    FW_CMD_REQUEST_F |
2439                                    FW_CMD_WRITE_F |
2440                                    FW_CMD_EXEC_F);
2441        cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC_F |
2442                                         FW_EQ_ETH_CMD_EQSTART_F |
2443                                         FW_LEN16(cmd));
2444        cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2445                                   FW_EQ_ETH_CMD_VIID_V(pi->viid));
2446        cmd.fetchszm_to_iqid =
2447                cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE_V(SGE_HOSTFCMODE_STPG) |
2448                            FW_EQ_ETH_CMD_PCIECHN_V(pi->port_id) |
2449                            FW_EQ_ETH_CMD_IQID_V(iqid));
2450        cmd.dcaen_to_eqsize =
2451                cpu_to_be32(FW_EQ_ETH_CMD_FBMIN_V(SGE_FETCHBURSTMIN_64B) |
2452                            FW_EQ_ETH_CMD_FBMAX_V(SGE_FETCHBURSTMAX_512B) |
2453                            FW_EQ_ETH_CMD_CIDXFTHRESH_V(
2454                                                SGE_CIDXFLUSHTHRESH_32) |
2455                            FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2456        cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2457
2458        /*
2459         * Issue the firmware Egress Queue Command and extract the results if
2460         * it completes successfully.
2461         */
2462        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2463        if (ret) {
2464                /*
2465                 * The girmware Ingress Queue Command failed for some reason.
2466                 * Free up our partial allocation state and return the error.
2467                 */
2468                kfree(txq->q.sdesc);
2469                txq->q.sdesc = NULL;
2470                dma_free_coherent(adapter->pdev_dev,
2471                                  nentries * sizeof(struct tx_desc),
2472                                  txq->q.desc, txq->q.phys_addr);
2473                txq->q.desc = NULL;
2474                return ret;
2475        }
2476
2477        txq->q.in_use = 0;
2478        txq->q.cidx = 0;
2479        txq->q.pidx = 0;
2480        txq->q.stat = (void *)&txq->q.desc[txq->q.size];
2481        txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_G(be32_to_cpu(rpl.eqid_pkd));
2482        txq->q.bar2_addr = bar2_address(adapter,
2483                                        txq->q.cntxt_id,
2484                                        T4_BAR2_QTYPE_EGRESS,
2485                                        &txq->q.bar2_qid);
2486        txq->q.abs_id =
2487                FW_EQ_ETH_CMD_PHYSEQID_G(be32_to_cpu(rpl.physeqid_pkd));
2488        txq->txq = devq;
2489        txq->tso = 0;
2490        txq->tx_cso = 0;
2491        txq->vlan_ins = 0;
2492        txq->q.stops = 0;
2493        txq->q.restarts = 0;
2494        txq->mapping_err = 0;
2495        return 0;
2496}
2497
2498/*
2499 * Free the DMA map resources associated with a TX queue.
2500 */
2501static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2502{
2503        struct sge *s = &adapter->sge;
2504
2505        dma_free_coherent(adapter->pdev_dev,
2506                          tq->size * sizeof(*tq->desc) + s->stat_len,
2507                          tq->desc, tq->phys_addr);
2508        tq->cntxt_id = 0;
2509        tq->sdesc = NULL;
2510        tq->desc = NULL;
2511}
2512
2513/*
2514 * Free the resources associated with a response queue (possibly including a
2515 * free list).
2516 */
2517static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2518                         struct sge_fl *fl)
2519{
2520        struct sge *s = &adapter->sge;
2521        unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2522
2523        t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2524                     rspq->cntxt_id, flid, 0xffff);
2525        dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2526                          rspq->desc, rspq->phys_addr);
2527        netif_napi_del(&rspq->napi);
2528        rspq->netdev = NULL;
2529        rspq->cntxt_id = 0;
2530        rspq->abs_id = 0;
2531        rspq->desc = NULL;
2532
2533        if (fl) {
2534                free_rx_bufs(adapter, fl, fl->avail);
2535                dma_free_coherent(adapter->pdev_dev,
2536                                  fl->size * sizeof(*fl->desc) + s->stat_len,
2537                                  fl->desc, fl->addr);
2538                kfree(fl->sdesc);
2539                fl->sdesc = NULL;
2540                fl->cntxt_id = 0;
2541                fl->desc = NULL;
2542        }
2543}
2544
2545/**
2546 *      t4vf_free_sge_resources - free SGE resources
2547 *      @adapter: the adapter
2548 *
2549 *      Frees resources used by the SGE queue sets.
2550 */
2551void t4vf_free_sge_resources(struct adapter *adapter)
2552{
2553        struct sge *s = &adapter->sge;
2554        struct sge_eth_rxq *rxq = s->ethrxq;
2555        struct sge_eth_txq *txq = s->ethtxq;
2556        struct sge_rspq *evtq = &s->fw_evtq;
2557        struct sge_rspq *intrq = &s->intrq;
2558        int qs;
2559
2560        for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
2561                if (rxq->rspq.desc)
2562                        free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2563                if (txq->q.desc) {
2564                        t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2565                        free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2566                        kfree(txq->q.sdesc);
2567                        free_txq(adapter, &txq->q);
2568                }
2569        }
2570        if (evtq->desc)
2571                free_rspq_fl(adapter, evtq, NULL);
2572        if (intrq->desc)
2573                free_rspq_fl(adapter, intrq, NULL);
2574}
2575
2576/**
2577 *      t4vf_sge_start - enable SGE operation
2578 *      @adapter: the adapter
2579 *
2580 *      Start tasklets and timers associated with the DMA engine.
2581 */
2582void t4vf_sge_start(struct adapter *adapter)
2583{
2584        adapter->sge.ethtxq_rover = 0;
2585        mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2586        mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2587}
2588
2589/**
2590 *      t4vf_sge_stop - disable SGE operation
2591 *      @adapter: the adapter
2592 *
2593 *      Stop tasklets and timers associated with the DMA engine.  Note that
2594 *      this is effective only if measures have been taken to disable any HW
2595 *      events that may restart them.
2596 */
2597void t4vf_sge_stop(struct adapter *adapter)
2598{
2599        struct sge *s = &adapter->sge;
2600
2601        if (s->rx_timer.function)
2602                del_timer_sync(&s->rx_timer);
2603        if (s->tx_timer.function)
2604                del_timer_sync(&s->tx_timer);
2605}
2606
2607/**
2608 *      t4vf_sge_init - initialize SGE
2609 *      @adapter: the adapter
2610 *
2611 *      Performs SGE initialization needed every time after a chip reset.
2612 *      We do not initialize any of the queue sets here, instead the driver
2613 *      top-level must request those individually.  We also do not enable DMA
2614 *      here, that should be done after the queues have been set up.
2615 */
2616int t4vf_sge_init(struct adapter *adapter)
2617{
2618        struct sge_params *sge_params = &adapter->params.sge;
2619        u32 fl0 = sge_params->sge_fl_buffer_size[0];
2620        u32 fl1 = sge_params->sge_fl_buffer_size[1];
2621        struct sge *s = &adapter->sge;
2622
2623        /*
2624         * Start by vetting the basic SGE parameters which have been set up by
2625         * the Physical Function Driver.  Ideally we should be able to deal
2626         * with _any_ configuration.  Practice is different ...
2627         */
2628        if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) {
2629                dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2630                        fl0, fl1);
2631                return -EINVAL;
2632        }
2633        if ((sge_params->sge_control & RXPKTCPLMODE_F) !=
2634            RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
2635                dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2636                return -EINVAL;
2637        }
2638
2639        /*
2640         * Now translate the adapter parameters into our internal forms.
2641         */
2642        if (fl1)
2643                s->fl_pg_order = ilog2(fl1) - PAGE_SHIFT;
2644        s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_F)
2645                        ? 128 : 64);
2646        s->pktshift = PKTSHIFT_G(sge_params->sge_control);
2647        s->fl_align = t4vf_fl_pkt_align(adapter);
2648
2649        /* A FL with <= fl_starve_thres buffers is starving and a periodic
2650         * timer will attempt to refill it.  This needs to be larger than the
2651         * SGE's Egress Congestion Threshold.  If it isn't, then we can get
2652         * stuck waiting for new packets while the SGE is waiting for us to
2653         * give it more Free List entries.  (Note that the SGE's Egress
2654         * Congestion Threshold is in units of 2 Free List pointers.)
2655         */
2656        switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
2657        case CHELSIO_T4:
2658                s->fl_starve_thres =
2659                   EGRTHRESHOLD_G(sge_params->sge_congestion_control);
2660                break;
2661        case CHELSIO_T5:
2662                s->fl_starve_thres =
2663                   EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control);
2664                break;
2665        case CHELSIO_T6:
2666        default:
2667                s->fl_starve_thres =
2668                   T6_EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control);
2669                break;
2670        }
2671        s->fl_starve_thres = s->fl_starve_thres * 2 + 1;
2672
2673        /*
2674         * Set up tasklet timers.
2675         */
2676        setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter);
2677        setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter);
2678
2679        /*
2680         * Initialize Forwarded Interrupt Queue lock.
2681         */
2682        spin_lock_init(&s->intrq_lock);
2683
2684        return 0;
2685}
2686