linux/drivers/net/ethernet/chelsio/cxgb4vf/t4vf_hw.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
   3 * driver for Linux.
   4 *
   5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
   6 *
   7 * This software is available to you under a choice of one of two
   8 * licenses.  You may choose to be licensed under the terms of the GNU
   9 * General Public License (GPL) Version 2, available from the file
  10 * COPYING in the main directory of this source tree, or the
  11 * OpenIB.org BSD license below:
  12 *
  13 *     Redistribution and use in source and binary forms, with or
  14 *     without modification, are permitted provided that the following
  15 *     conditions are met:
  16 *
  17 *      - Redistributions of source code must retain the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer.
  20 *
  21 *      - Redistributions in binary form must reproduce the above
  22 *        copyright notice, this list of conditions and the following
  23 *        disclaimer in the documentation and/or other materials
  24 *        provided with the distribution.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33 * SOFTWARE.
  34 */
  35
  36#include <linux/pci.h>
  37
  38#include "t4vf_common.h"
  39#include "t4vf_defs.h"
  40
  41#include "../cxgb4/t4_regs.h"
  42#include "../cxgb4/t4_values.h"
  43#include "../cxgb4/t4fw_api.h"
  44
  45/*
  46 * Wait for the device to become ready (signified by our "who am I" register
  47 * returning a value other than all 1's).  Return an error if it doesn't
  48 * become ready ...
  49 */
  50int t4vf_wait_dev_ready(struct adapter *adapter)
  51{
  52        const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
  53        const u32 notready1 = 0xffffffff;
  54        const u32 notready2 = 0xeeeeeeee;
  55        u32 val;
  56
  57        val = t4_read_reg(adapter, whoami);
  58        if (val != notready1 && val != notready2)
  59                return 0;
  60        msleep(500);
  61        val = t4_read_reg(adapter, whoami);
  62        if (val != notready1 && val != notready2)
  63                return 0;
  64        else
  65                return -EIO;
  66}
  67
  68/*
  69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
  70 * (since the firmware data structures are specified in a big-endian layout).
  71 */
  72static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
  73                         u32 mbox_data)
  74{
  75        for ( ; size; size -= 8, mbox_data += 8)
  76                *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
  77}
  78
  79/**
  80 *      t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
  81 *      @adapter: the adapter
  82 *      @cmd: the Firmware Mailbox Command or Reply
  83 *      @size: command length in bytes
  84 *      @access: the time (ms) needed to access the Firmware Mailbox
  85 *      @execute: the time (ms) the command spent being executed
  86 */
  87static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
  88                             int size, int access, int execute)
  89{
  90        struct mbox_cmd_log *log = adapter->mbox_log;
  91        struct mbox_cmd *entry;
  92        int i;
  93
  94        entry = mbox_cmd_log_entry(log, log->cursor++);
  95        if (log->cursor == log->size)
  96                log->cursor = 0;
  97
  98        for (i = 0; i < size / 8; i++)
  99                entry->cmd[i] = be64_to_cpu(cmd[i]);
 100        while (i < MBOX_LEN / 8)
 101                entry->cmd[i++] = 0;
 102        entry->timestamp = jiffies;
 103        entry->seqno = log->seqno++;
 104        entry->access = access;
 105        entry->execute = execute;
 106}
 107
 108/**
 109 *      t4vf_wr_mbox_core - send a command to FW through the mailbox
 110 *      @adapter: the adapter
 111 *      @cmd: the command to write
 112 *      @size: command length in bytes
 113 *      @rpl: where to optionally store the reply
 114 *      @sleep_ok: if true we may sleep while awaiting command completion
 115 *
 116 *      Sends the given command to FW through the mailbox and waits for the
 117 *      FW to execute the command.  If @rpl is not %NULL it is used to store
 118 *      the FW's reply to the command.  The command and its optional reply
 119 *      are of the same length.  FW can take up to 500 ms to respond.
 120 *      @sleep_ok determines whether we may sleep while awaiting the response.
 121 *      If sleeping is allowed we use progressive backoff otherwise we spin.
 122 *
 123 *      The return value is 0 on success or a negative errno on failure.  A
 124 *      failure can happen either because we are not able to execute the
 125 *      command or FW executes it but signals an error.  In the latter case
 126 *      the return value is the error code indicated by FW (negated).
 127 */
 128int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
 129                      void *rpl, bool sleep_ok)
 130{
 131        static const int delay[] = {
 132                1, 1, 3, 5, 10, 10, 20, 50, 100
 133        };
 134
 135        u16 access = 0, execute = 0;
 136        u32 v, mbox_data;
 137        int i, ms, delay_idx, ret;
 138        const __be64 *p;
 139        u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
 140        u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
 141        __be64 cmd_rpl[MBOX_LEN / 8];
 142        struct mbox_list entry;
 143
 144        /* In T6, mailbox size is changed to 128 bytes to avoid
 145         * invalidating the entire prefetch buffer.
 146         */
 147        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
 148                mbox_data = T4VF_MBDATA_BASE_ADDR;
 149        else
 150                mbox_data = T6VF_MBDATA_BASE_ADDR;
 151
 152        /*
 153         * Commands must be multiples of 16 bytes in length and may not be
 154         * larger than the size of the Mailbox Data register array.
 155         */
 156        if ((size % 16) != 0 ||
 157            size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
 158                return -EINVAL;
 159
 160        /* Queue ourselves onto the mailbox access list.  When our entry is at
 161         * the front of the list, we have rights to access the mailbox.  So we
 162         * wait [for a while] till we're at the front [or bail out with an
 163         * EBUSY] ...
 164         */
 165        spin_lock(&adapter->mbox_lock);
 166        list_add_tail(&entry.list, &adapter->mlist.list);
 167        spin_unlock(&adapter->mbox_lock);
 168
 169        delay_idx = 0;
 170        ms = delay[0];
 171
 172        for (i = 0; ; i += ms) {
 173                /* If we've waited too long, return a busy indication.  This
 174                 * really ought to be based on our initial position in the
 175                 * mailbox access list but this is a start.  We very rearely
 176                 * contend on access to the mailbox ...
 177                 */
 178                if (i > FW_CMD_MAX_TIMEOUT) {
 179                        spin_lock(&adapter->mbox_lock);
 180                        list_del(&entry.list);
 181                        spin_unlock(&adapter->mbox_lock);
 182                        ret = -EBUSY;
 183                        t4vf_record_mbox(adapter, cmd, size, access, ret);
 184                        return ret;
 185                }
 186
 187                /* If we're at the head, break out and start the mailbox
 188                 * protocol.
 189                 */
 190                if (list_first_entry(&adapter->mlist.list, struct mbox_list,
 191                                     list) == &entry)
 192                        break;
 193
 194                /* Delay for a bit before checking again ... */
 195                if (sleep_ok) {
 196                        ms = delay[delay_idx];  /* last element may repeat */
 197                        if (delay_idx < ARRAY_SIZE(delay) - 1)
 198                                delay_idx++;
 199                        msleep(ms);
 200                } else {
 201                        mdelay(ms);
 202                }
 203        }
 204
 205        /*
 206         * Loop trying to get ownership of the mailbox.  Return an error
 207         * if we can't gain ownership.
 208         */
 209        v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
 210        for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
 211                v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
 212        if (v != MBOX_OWNER_DRV) {
 213                spin_lock(&adapter->mbox_lock);
 214                list_del(&entry.list);
 215                spin_unlock(&adapter->mbox_lock);
 216                ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
 217                t4vf_record_mbox(adapter, cmd, size, access, ret);
 218                return ret;
 219        }
 220
 221        /*
 222         * Write the command array into the Mailbox Data register array and
 223         * transfer ownership of the mailbox to the firmware.
 224         *
 225         * For the VFs, the Mailbox Data "registers" are actually backed by
 226         * T4's "MA" interface rather than PL Registers (as is the case for
 227         * the PFs).  Because these are in different coherency domains, the
 228         * write to the VF's PL-register-backed Mailbox Control can race in
 229         * front of the writes to the MA-backed VF Mailbox Data "registers".
 230         * So we need to do a read-back on at least one byte of the VF Mailbox
 231         * Data registers before doing the write to the VF Mailbox Control
 232         * register.
 233         */
 234        if (cmd_op != FW_VI_STATS_CMD)
 235                t4vf_record_mbox(adapter, cmd, size, access, 0);
 236        for (i = 0, p = cmd; i < size; i += 8)
 237                t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
 238        t4_read_reg(adapter, mbox_data);         /* flush write */
 239
 240        t4_write_reg(adapter, mbox_ctl,
 241                     MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
 242        t4_read_reg(adapter, mbox_ctl);          /* flush write */
 243
 244        /*
 245         * Spin waiting for firmware to acknowledge processing our command.
 246         */
 247        delay_idx = 0;
 248        ms = delay[0];
 249
 250        for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
 251                if (sleep_ok) {
 252                        ms = delay[delay_idx];
 253                        if (delay_idx < ARRAY_SIZE(delay) - 1)
 254                                delay_idx++;
 255                        msleep(ms);
 256                } else
 257                        mdelay(ms);
 258
 259                /*
 260                 * If we're the owner, see if this is the reply we wanted.
 261                 */
 262                v = t4_read_reg(adapter, mbox_ctl);
 263                if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
 264                        /*
 265                         * If the Message Valid bit isn't on, revoke ownership
 266                         * of the mailbox and continue waiting for our reply.
 267                         */
 268                        if ((v & MBMSGVALID_F) == 0) {
 269                                t4_write_reg(adapter, mbox_ctl,
 270                                             MBOWNER_V(MBOX_OWNER_NONE));
 271                                continue;
 272                        }
 273
 274                        /*
 275                         * We now have our reply.  Extract the command return
 276                         * value, copy the reply back to our caller's buffer
 277                         * (if specified) and revoke ownership of the mailbox.
 278                         * We return the (negated) firmware command return
 279                         * code (this depends on FW_SUCCESS == 0).
 280                         */
 281                        get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
 282
 283                        /* return value in low-order little-endian word */
 284                        v = be64_to_cpu(cmd_rpl[0]);
 285
 286                        if (rpl) {
 287                                /* request bit in high-order BE word */
 288                                WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
 289                                         & FW_CMD_REQUEST_F) == 0);
 290                                memcpy(rpl, cmd_rpl, size);
 291                                WARN_ON((be32_to_cpu(*(__be32 *)rpl)
 292                                         & FW_CMD_REQUEST_F) != 0);
 293                        }
 294                        t4_write_reg(adapter, mbox_ctl,
 295                                     MBOWNER_V(MBOX_OWNER_NONE));
 296                        execute = i + ms;
 297                        if (cmd_op != FW_VI_STATS_CMD)
 298                                t4vf_record_mbox(adapter, cmd_rpl, size, access,
 299                                                 execute);
 300                        spin_lock(&adapter->mbox_lock);
 301                        list_del(&entry.list);
 302                        spin_unlock(&adapter->mbox_lock);
 303                        return -FW_CMD_RETVAL_G(v);
 304                }
 305        }
 306
 307        /* We timed out.  Return the error ... */
 308        ret = -ETIMEDOUT;
 309        t4vf_record_mbox(adapter, cmd, size, access, ret);
 310        spin_lock(&adapter->mbox_lock);
 311        list_del(&entry.list);
 312        spin_unlock(&adapter->mbox_lock);
 313        return ret;
 314}
 315
 316#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
 317                     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_25G | \
 318                     FW_PORT_CAP_SPEED_40G | FW_PORT_CAP_SPEED_100G | \
 319                     FW_PORT_CAP_ANEG)
 320
 321/**
 322 *      init_link_config - initialize a link's SW state
 323 *      @lc: structure holding the link state
 324 *      @caps: link capabilities
 325 *
 326 *      Initializes the SW state maintained for each link, including the link's
 327 *      capabilities and default speed/flow-control/autonegotiation settings.
 328 */
 329static void init_link_config(struct link_config *lc, unsigned int caps)
 330{
 331        lc->supported = caps;
 332        lc->lp_advertising = 0;
 333        lc->requested_speed = 0;
 334        lc->speed = 0;
 335        lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
 336        if (lc->supported & FW_PORT_CAP_ANEG) {
 337                lc->advertising = lc->supported & ADVERT_MASK;
 338                lc->autoneg = AUTONEG_ENABLE;
 339                lc->requested_fc |= PAUSE_AUTONEG;
 340        } else {
 341                lc->advertising = 0;
 342                lc->autoneg = AUTONEG_DISABLE;
 343        }
 344}
 345
 346/**
 347 *      t4vf_port_init - initialize port hardware/software state
 348 *      @adapter: the adapter
 349 *      @pidx: the adapter port index
 350 */
 351int t4vf_port_init(struct adapter *adapter, int pidx)
 352{
 353        struct port_info *pi = adap2pinfo(adapter, pidx);
 354        struct fw_vi_cmd vi_cmd, vi_rpl;
 355        struct fw_port_cmd port_cmd, port_rpl;
 356        int v;
 357
 358        /*
 359         * Execute a VI Read command to get our Virtual Interface information
 360         * like MAC address, etc.
 361         */
 362        memset(&vi_cmd, 0, sizeof(vi_cmd));
 363        vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
 364                                       FW_CMD_REQUEST_F |
 365                                       FW_CMD_READ_F);
 366        vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
 367        vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
 368        v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
 369        if (v)
 370                return v;
 371
 372        BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
 373        pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
 374        t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
 375
 376        /*
 377         * If we don't have read access to our port information, we're done
 378         * now.  Otherwise, execute a PORT Read command to get it ...
 379         */
 380        if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
 381                return 0;
 382
 383        memset(&port_cmd, 0, sizeof(port_cmd));
 384        port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
 385                                            FW_CMD_REQUEST_F |
 386                                            FW_CMD_READ_F |
 387                                            FW_PORT_CMD_PORTID_V(pi->port_id));
 388        port_cmd.action_to_len16 =
 389                cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
 390                            FW_LEN16(port_cmd));
 391        v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
 392        if (v)
 393                return v;
 394
 395        v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
 396        pi->mdio_addr = (v & FW_PORT_CMD_MDIOCAP_F) ?
 397                        FW_PORT_CMD_MDIOADDR_G(v) : -1;
 398        pi->port_type = FW_PORT_CMD_PTYPE_G(v);
 399        pi->mod_type = FW_PORT_MOD_TYPE_NA;
 400
 401        init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap));
 402
 403        return 0;
 404}
 405
 406/**
 407 *      t4vf_fw_reset - issue a reset to FW
 408 *      @adapter: the adapter
 409 *
 410 *      Issues a reset command to FW.  For a Physical Function this would
 411 *      result in the Firmware resetting all of its state.  For a Virtual
 412 *      Function this just resets the state associated with the VF.
 413 */
 414int t4vf_fw_reset(struct adapter *adapter)
 415{
 416        struct fw_reset_cmd cmd;
 417
 418        memset(&cmd, 0, sizeof(cmd));
 419        cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
 420                                      FW_CMD_WRITE_F);
 421        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 422        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 423}
 424
 425/**
 426 *      t4vf_query_params - query FW or device parameters
 427 *      @adapter: the adapter
 428 *      @nparams: the number of parameters
 429 *      @params: the parameter names
 430 *      @vals: the parameter values
 431 *
 432 *      Reads the values of firmware or device parameters.  Up to 7 parameters
 433 *      can be queried at once.
 434 */
 435static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
 436                             const u32 *params, u32 *vals)
 437{
 438        int i, ret;
 439        struct fw_params_cmd cmd, rpl;
 440        struct fw_params_param *p;
 441        size_t len16;
 442
 443        if (nparams > 7)
 444                return -EINVAL;
 445
 446        memset(&cmd, 0, sizeof(cmd));
 447        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
 448                                    FW_CMD_REQUEST_F |
 449                                    FW_CMD_READ_F);
 450        len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
 451                                      param[nparams].mnem), 16);
 452        cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
 453        for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
 454                p->mnem = htonl(*params++);
 455
 456        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 457        if (ret == 0)
 458                for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
 459                        *vals++ = be32_to_cpu(p->val);
 460        return ret;
 461}
 462
 463/**
 464 *      t4vf_set_params - sets FW or device parameters
 465 *      @adapter: the adapter
 466 *      @nparams: the number of parameters
 467 *      @params: the parameter names
 468 *      @vals: the parameter values
 469 *
 470 *      Sets the values of firmware or device parameters.  Up to 7 parameters
 471 *      can be specified at once.
 472 */
 473int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
 474                    const u32 *params, const u32 *vals)
 475{
 476        int i;
 477        struct fw_params_cmd cmd;
 478        struct fw_params_param *p;
 479        size_t len16;
 480
 481        if (nparams > 7)
 482                return -EINVAL;
 483
 484        memset(&cmd, 0, sizeof(cmd));
 485        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
 486                                    FW_CMD_REQUEST_F |
 487                                    FW_CMD_WRITE_F);
 488        len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
 489                                      param[nparams]), 16);
 490        cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
 491        for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
 492                p->mnem = cpu_to_be32(*params++);
 493                p->val = cpu_to_be32(*vals++);
 494        }
 495
 496        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 497}
 498
 499/**
 500 *      t4vf_fl_pkt_align - return the fl packet alignment
 501 *      @adapter: the adapter
 502 *
 503 *      T4 has a single field to specify the packing and padding boundary.
 504 *      T5 onwards has separate fields for this and hence the alignment for
 505 *      next packet offset is maximum of these two.  And T6 changes the
 506 *      Ingress Padding Boundary Shift, so it's all a mess and it's best
 507 *      if we put this in low-level Common Code ...
 508 *
 509 */
 510int t4vf_fl_pkt_align(struct adapter *adapter)
 511{
 512        u32 sge_control, sge_control2;
 513        unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
 514
 515        sge_control = adapter->params.sge.sge_control;
 516
 517        /* T4 uses a single control field to specify both the PCIe Padding and
 518         * Packing Boundary.  T5 introduced the ability to specify these
 519         * separately.  The actual Ingress Packet Data alignment boundary
 520         * within Packed Buffer Mode is the maximum of these two
 521         * specifications.  (Note that it makes no real practical sense to
 522         * have the Pading Boudary be larger than the Packing Boundary but you
 523         * could set the chip up that way and, in fact, legacy T4 code would
 524         * end doing this because it would initialize the Padding Boundary and
 525         * leave the Packing Boundary initialized to 0 (16 bytes).)
 526         * Padding Boundary values in T6 starts from 8B,
 527         * where as it is 32B for T4 and T5.
 528         */
 529        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
 530                ingpad_shift = INGPADBOUNDARY_SHIFT_X;
 531        else
 532                ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
 533
 534        ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
 535
 536        fl_align = ingpadboundary;
 537        if (!is_t4(adapter->params.chip)) {
 538                /* T5 has a different interpretation of one of the PCIe Packing
 539                 * Boundary values.
 540                 */
 541                sge_control2 = adapter->params.sge.sge_control2;
 542                ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
 543                if (ingpackboundary == INGPACKBOUNDARY_16B_X)
 544                        ingpackboundary = 16;
 545                else
 546                        ingpackboundary = 1 << (ingpackboundary +
 547                                                INGPACKBOUNDARY_SHIFT_X);
 548
 549                fl_align = max(ingpadboundary, ingpackboundary);
 550        }
 551        return fl_align;
 552}
 553
 554/**
 555 *      t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
 556 *      @adapter: the adapter
 557 *      @qid: the Queue ID
 558 *      @qtype: the Ingress or Egress type for @qid
 559 *      @pbar2_qoffset: BAR2 Queue Offset
 560 *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
 561 *
 562 *      Returns the BAR2 SGE Queue Registers information associated with the
 563 *      indicated Absolute Queue ID.  These are passed back in return value
 564 *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
 565 *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
 566 *
 567 *      This may return an error which indicates that BAR2 SGE Queue
 568 *      registers aren't available.  If an error is not returned, then the
 569 *      following values are returned:
 570 *
 571 *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
 572 *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
 573 *
 574 *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
 575 *      require the "Inferred Queue ID" ability may be used.  E.g. the
 576 *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
 577 *      then these "Inferred Queue ID" register may not be used.
 578 */
 579int t4vf_bar2_sge_qregs(struct adapter *adapter,
 580                        unsigned int qid,
 581                        enum t4_bar2_qtype qtype,
 582                        u64 *pbar2_qoffset,
 583                        unsigned int *pbar2_qid)
 584{
 585        unsigned int page_shift, page_size, qpp_shift, qpp_mask;
 586        u64 bar2_page_offset, bar2_qoffset;
 587        unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
 588
 589        /* T4 doesn't support BAR2 SGE Queue registers.
 590         */
 591        if (is_t4(adapter->params.chip))
 592                return -EINVAL;
 593
 594        /* Get our SGE Page Size parameters.
 595         */
 596        page_shift = adapter->params.sge.sge_vf_hps + 10;
 597        page_size = 1 << page_shift;
 598
 599        /* Get the right Queues per Page parameters for our Queue.
 600         */
 601        qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
 602                     ? adapter->params.sge.sge_vf_eq_qpp
 603                     : adapter->params.sge.sge_vf_iq_qpp);
 604        qpp_mask = (1 << qpp_shift) - 1;
 605
 606        /* Calculate the basics of the BAR2 SGE Queue register area:
 607         *  o The BAR2 page the Queue registers will be in.
 608         *  o The BAR2 Queue ID.
 609         *  o The BAR2 Queue ID Offset into the BAR2 page.
 610         */
 611        bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
 612        bar2_qid = qid & qpp_mask;
 613        bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
 614
 615        /* If the BAR2 Queue ID Offset is less than the Page Size, then the
 616         * hardware will infer the Absolute Queue ID simply from the writes to
 617         * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
 618         * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
 619         * write to the first BAR2 SGE Queue Area within the BAR2 Page with
 620         * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
 621         * from the BAR2 Page and BAR2 Queue ID.
 622         *
 623         * One important censequence of this is that some BAR2 SGE registers
 624         * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
 625         * there.  But other registers synthesize the SGE Queue ID purely
 626         * from the writes to the registers -- the Write Combined Doorbell
 627         * Buffer is a good example.  These BAR2 SGE Registers are only
 628         * available for those BAR2 SGE Register areas where the SGE Absolute
 629         * Queue ID can be inferred from simple writes.
 630         */
 631        bar2_qoffset = bar2_page_offset;
 632        bar2_qinferred = (bar2_qid_offset < page_size);
 633        if (bar2_qinferred) {
 634                bar2_qoffset += bar2_qid_offset;
 635                bar2_qid = 0;
 636        }
 637
 638        *pbar2_qoffset = bar2_qoffset;
 639        *pbar2_qid = bar2_qid;
 640        return 0;
 641}
 642
 643unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
 644{
 645        u32 whoami;
 646
 647        whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
 648        return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
 649                        SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
 650}
 651
 652/**
 653 *      t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
 654 *      @adapter: the adapter
 655 *
 656 *      Retrieves various core SGE parameters in the form of hardware SGE
 657 *      register values.  The caller is responsible for decoding these as
 658 *      needed.  The SGE parameters are stored in @adapter->params.sge.
 659 */
 660int t4vf_get_sge_params(struct adapter *adapter)
 661{
 662        struct sge_params *sge_params = &adapter->params.sge;
 663        u32 params[7], vals[7];
 664        int v;
 665
 666        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 667                     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
 668        params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 669                     FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
 670        params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 671                     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
 672        params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 673                     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
 674        params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 675                     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
 676        params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 677                     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
 678        params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 679                     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
 680        v = t4vf_query_params(adapter, 7, params, vals);
 681        if (v)
 682                return v;
 683        sge_params->sge_control = vals[0];
 684        sge_params->sge_host_page_size = vals[1];
 685        sge_params->sge_fl_buffer_size[0] = vals[2];
 686        sge_params->sge_fl_buffer_size[1] = vals[3];
 687        sge_params->sge_timer_value_0_and_1 = vals[4];
 688        sge_params->sge_timer_value_2_and_3 = vals[5];
 689        sge_params->sge_timer_value_4_and_5 = vals[6];
 690
 691        /* T4 uses a single control field to specify both the PCIe Padding and
 692         * Packing Boundary.  T5 introduced the ability to specify these
 693         * separately with the Padding Boundary in SGE_CONTROL and and Packing
 694         * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
 695         * SGE_CONTROL in order to determine how ingress packet data will be
 696         * laid out in Packed Buffer Mode.  Unfortunately, older versions of
 697         * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
 698         * failure grabbing it we throw an error since we can't figure out the
 699         * right value.
 700         */
 701        if (!is_t4(adapter->params.chip)) {
 702                params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 703                             FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
 704                v = t4vf_query_params(adapter, 1, params, vals);
 705                if (v != FW_SUCCESS) {
 706                        dev_err(adapter->pdev_dev,
 707                                "Unable to get SGE Control2; "
 708                                "probably old firmware.\n");
 709                        return v;
 710                }
 711                sge_params->sge_control2 = vals[0];
 712        }
 713
 714        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 715                     FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
 716        params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 717                     FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
 718        v = t4vf_query_params(adapter, 2, params, vals);
 719        if (v)
 720                return v;
 721        sge_params->sge_ingress_rx_threshold = vals[0];
 722        sge_params->sge_congestion_control = vals[1];
 723
 724        /* For T5 and later we want to use the new BAR2 Doorbells.
 725         * Unfortunately, older firmware didn't allow the this register to be
 726         * read.
 727         */
 728        if (!is_t4(adapter->params.chip)) {
 729                unsigned int pf, s_hps, s_qpp;
 730
 731                params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 732                             FW_PARAMS_PARAM_XYZ_V(
 733                                     SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
 734                params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 735                             FW_PARAMS_PARAM_XYZ_V(
 736                                     SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
 737                v = t4vf_query_params(adapter, 2, params, vals);
 738                if (v != FW_SUCCESS) {
 739                        dev_warn(adapter->pdev_dev,
 740                                 "Unable to get VF SGE Queues/Page; "
 741                                 "probably old firmware.\n");
 742                        return v;
 743                }
 744                sge_params->sge_egress_queues_per_page = vals[0];
 745                sge_params->sge_ingress_queues_per_page = vals[1];
 746
 747                /* We need the Queues/Page for our VF.  This is based on the
 748                 * PF from which we're instantiated and is indexed in the
 749                 * register we just read. Do it once here so other code in
 750                 * the driver can just use it.
 751                 */
 752                pf = t4vf_get_pf_from_vf(adapter);
 753                s_hps = (HOSTPAGESIZEPF0_S +
 754                         (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
 755                sge_params->sge_vf_hps =
 756                        ((sge_params->sge_host_page_size >> s_hps)
 757                         & HOSTPAGESIZEPF0_M);
 758
 759                s_qpp = (QUEUESPERPAGEPF0_S +
 760                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
 761                sge_params->sge_vf_eq_qpp =
 762                        ((sge_params->sge_egress_queues_per_page >> s_qpp)
 763                         & QUEUESPERPAGEPF0_M);
 764                sge_params->sge_vf_iq_qpp =
 765                        ((sge_params->sge_ingress_queues_per_page >> s_qpp)
 766                         & QUEUESPERPAGEPF0_M);
 767        }
 768
 769        return 0;
 770}
 771
 772/**
 773 *      t4vf_get_vpd_params - retrieve device VPD paremeters
 774 *      @adapter: the adapter
 775 *
 776 *      Retrives various device Vital Product Data parameters.  The parameters
 777 *      are stored in @adapter->params.vpd.
 778 */
 779int t4vf_get_vpd_params(struct adapter *adapter)
 780{
 781        struct vpd_params *vpd_params = &adapter->params.vpd;
 782        u32 params[7], vals[7];
 783        int v;
 784
 785        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
 786                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
 787        v = t4vf_query_params(adapter, 1, params, vals);
 788        if (v)
 789                return v;
 790        vpd_params->cclk = vals[0];
 791
 792        return 0;
 793}
 794
 795/**
 796 *      t4vf_get_dev_params - retrieve device paremeters
 797 *      @adapter: the adapter
 798 *
 799 *      Retrives various device parameters.  The parameters are stored in
 800 *      @adapter->params.dev.
 801 */
 802int t4vf_get_dev_params(struct adapter *adapter)
 803{
 804        struct dev_params *dev_params = &adapter->params.dev;
 805        u32 params[7], vals[7];
 806        int v;
 807
 808        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
 809                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
 810        params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
 811                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
 812        v = t4vf_query_params(adapter, 2, params, vals);
 813        if (v)
 814                return v;
 815        dev_params->fwrev = vals[0];
 816        dev_params->tprev = vals[1];
 817
 818        return 0;
 819}
 820
 821/**
 822 *      t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
 823 *      @adapter: the adapter
 824 *
 825 *      Retrieves global RSS mode and parameters with which we have to live
 826 *      and stores them in the @adapter's RSS parameters.
 827 */
 828int t4vf_get_rss_glb_config(struct adapter *adapter)
 829{
 830        struct rss_params *rss = &adapter->params.rss;
 831        struct fw_rss_glb_config_cmd cmd, rpl;
 832        int v;
 833
 834        /*
 835         * Execute an RSS Global Configuration read command to retrieve
 836         * our RSS configuration.
 837         */
 838        memset(&cmd, 0, sizeof(cmd));
 839        cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
 840                                      FW_CMD_REQUEST_F |
 841                                      FW_CMD_READ_F);
 842        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 843        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 844        if (v)
 845                return v;
 846
 847        /*
 848         * Transate the big-endian RSS Global Configuration into our
 849         * cpu-endian format based on the RSS mode.  We also do first level
 850         * filtering at this point to weed out modes which don't support
 851         * VF Drivers ...
 852         */
 853        rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
 854                        be32_to_cpu(rpl.u.manual.mode_pkd));
 855        switch (rss->mode) {
 856        case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
 857                u32 word = be32_to_cpu(
 858                                rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
 859
 860                rss->u.basicvirtual.synmapen =
 861                        ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
 862                rss->u.basicvirtual.syn4tupenipv6 =
 863                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
 864                rss->u.basicvirtual.syn2tupenipv6 =
 865                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
 866                rss->u.basicvirtual.syn4tupenipv4 =
 867                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
 868                rss->u.basicvirtual.syn2tupenipv4 =
 869                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
 870
 871                rss->u.basicvirtual.ofdmapen =
 872                        ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
 873
 874                rss->u.basicvirtual.tnlmapen =
 875                        ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
 876                rss->u.basicvirtual.tnlalllookup =
 877                        ((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
 878
 879                rss->u.basicvirtual.hashtoeplitz =
 880                        ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
 881
 882                /* we need at least Tunnel Map Enable to be set */
 883                if (!rss->u.basicvirtual.tnlmapen)
 884                        return -EINVAL;
 885                break;
 886        }
 887
 888        default:
 889                /* all unknown/unsupported RSS modes result in an error */
 890                return -EINVAL;
 891        }
 892
 893        return 0;
 894}
 895
 896/**
 897 *      t4vf_get_vfres - retrieve VF resource limits
 898 *      @adapter: the adapter
 899 *
 900 *      Retrieves configured resource limits and capabilities for a virtual
 901 *      function.  The results are stored in @adapter->vfres.
 902 */
 903int t4vf_get_vfres(struct adapter *adapter)
 904{
 905        struct vf_resources *vfres = &adapter->params.vfres;
 906        struct fw_pfvf_cmd cmd, rpl;
 907        int v;
 908        u32 word;
 909
 910        /*
 911         * Execute PFVF Read command to get VF resource limits; bail out early
 912         * with error on command failure.
 913         */
 914        memset(&cmd, 0, sizeof(cmd));
 915        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
 916                                    FW_CMD_REQUEST_F |
 917                                    FW_CMD_READ_F);
 918        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 919        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 920        if (v)
 921                return v;
 922
 923        /*
 924         * Extract VF resource limits and return success.
 925         */
 926        word = be32_to_cpu(rpl.niqflint_niq);
 927        vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
 928        vfres->niq = FW_PFVF_CMD_NIQ_G(word);
 929
 930        word = be32_to_cpu(rpl.type_to_neq);
 931        vfres->neq = FW_PFVF_CMD_NEQ_G(word);
 932        vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
 933
 934        word = be32_to_cpu(rpl.tc_to_nexactf);
 935        vfres->tc = FW_PFVF_CMD_TC_G(word);
 936        vfres->nvi = FW_PFVF_CMD_NVI_G(word);
 937        vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
 938
 939        word = be32_to_cpu(rpl.r_caps_to_nethctrl);
 940        vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
 941        vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
 942        vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
 943
 944        return 0;
 945}
 946
 947/**
 948 *      t4vf_read_rss_vi_config - read a VI's RSS configuration
 949 *      @adapter: the adapter
 950 *      @viid: Virtual Interface ID
 951 *      @config: pointer to host-native VI RSS Configuration buffer
 952 *
 953 *      Reads the Virtual Interface's RSS configuration information and
 954 *      translates it into CPU-native format.
 955 */
 956int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
 957                            union rss_vi_config *config)
 958{
 959        struct fw_rss_vi_config_cmd cmd, rpl;
 960        int v;
 961
 962        memset(&cmd, 0, sizeof(cmd));
 963        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
 964                                     FW_CMD_REQUEST_F |
 965                                     FW_CMD_READ_F |
 966                                     FW_RSS_VI_CONFIG_CMD_VIID(viid));
 967        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 968        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 969        if (v)
 970                return v;
 971
 972        switch (adapter->params.rss.mode) {
 973        case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
 974                u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
 975
 976                config->basicvirtual.ip6fourtupen =
 977                        ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
 978                config->basicvirtual.ip6twotupen =
 979                        ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
 980                config->basicvirtual.ip4fourtupen =
 981                        ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
 982                config->basicvirtual.ip4twotupen =
 983                        ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
 984                config->basicvirtual.udpen =
 985                        ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
 986                config->basicvirtual.defaultq =
 987                        FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
 988                break;
 989        }
 990
 991        default:
 992                return -EINVAL;
 993        }
 994
 995        return 0;
 996}
 997
 998/**
 999 *      t4vf_write_rss_vi_config - write a VI's RSS configuration
1000 *      @adapter: the adapter
1001 *      @viid: Virtual Interface ID
1002 *      @config: pointer to host-native VI RSS Configuration buffer
1003 *
1004 *      Write the Virtual Interface's RSS configuration information
1005 *      (translating it into firmware-native format before writing).
1006 */
1007int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1008                             union rss_vi_config *config)
1009{
1010        struct fw_rss_vi_config_cmd cmd, rpl;
1011
1012        memset(&cmd, 0, sizeof(cmd));
1013        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1014                                     FW_CMD_REQUEST_F |
1015                                     FW_CMD_WRITE_F |
1016                                     FW_RSS_VI_CONFIG_CMD_VIID(viid));
1017        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1018        switch (adapter->params.rss.mode) {
1019        case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1020                u32 word = 0;
1021
1022                if (config->basicvirtual.ip6fourtupen)
1023                        word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1024                if (config->basicvirtual.ip6twotupen)
1025                        word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1026                if (config->basicvirtual.ip4fourtupen)
1027                        word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1028                if (config->basicvirtual.ip4twotupen)
1029                        word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1030                if (config->basicvirtual.udpen)
1031                        word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1032                word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1033                                config->basicvirtual.defaultq);
1034                cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1035                break;
1036        }
1037
1038        default:
1039                return -EINVAL;
1040        }
1041
1042        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1043}
1044
1045/**
1046 *      t4vf_config_rss_range - configure a portion of the RSS mapping table
1047 *      @adapter: the adapter
1048 *      @viid: Virtual Interface of RSS Table Slice
1049 *      @start: starting entry in the table to write
1050 *      @n: how many table entries to write
1051 *      @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1052 *      @nrspq: number of values in @rspq
1053 *
1054 *      Programs the selected part of the VI's RSS mapping table with the
1055 *      provided values.  If @nrspq < @n the supplied values are used repeatedly
1056 *      until the full table range is populated.
1057 *
1058 *      The caller must ensure the values in @rspq are in the range 0..1023.
1059 */
1060int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1061                          int start, int n, const u16 *rspq, int nrspq)
1062{
1063        const u16 *rsp = rspq;
1064        const u16 *rsp_end = rspq+nrspq;
1065        struct fw_rss_ind_tbl_cmd cmd;
1066
1067        /*
1068         * Initialize firmware command template to write the RSS table.
1069         */
1070        memset(&cmd, 0, sizeof(cmd));
1071        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1072                                     FW_CMD_REQUEST_F |
1073                                     FW_CMD_WRITE_F |
1074                                     FW_RSS_IND_TBL_CMD_VIID_V(viid));
1075        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1076
1077        /*
1078         * Each firmware RSS command can accommodate up to 32 RSS Ingress
1079         * Queue Identifiers.  These Ingress Queue IDs are packed three to
1080         * a 32-bit word as 10-bit values with the upper remaining 2 bits
1081         * reserved.
1082         */
1083        while (n > 0) {
1084                __be32 *qp = &cmd.iq0_to_iq2;
1085                int nq = min(n, 32);
1086                int ret;
1087
1088                /*
1089                 * Set up the firmware RSS command header to send the next
1090                 * "nq" Ingress Queue IDs to the firmware.
1091                 */
1092                cmd.niqid = cpu_to_be16(nq);
1093                cmd.startidx = cpu_to_be16(start);
1094
1095                /*
1096                 * "nq" more done for the start of the next loop.
1097                 */
1098                start += nq;
1099                n -= nq;
1100
1101                /*
1102                 * While there are still Ingress Queue IDs to stuff into the
1103                 * current firmware RSS command, retrieve them from the
1104                 * Ingress Queue ID array and insert them into the command.
1105                 */
1106                while (nq > 0) {
1107                        /*
1108                         * Grab up to the next 3 Ingress Queue IDs (wrapping
1109                         * around the Ingress Queue ID array if necessary) and
1110                         * insert them into the firmware RSS command at the
1111                         * current 3-tuple position within the commad.
1112                         */
1113                        u16 qbuf[3];
1114                        u16 *qbp = qbuf;
1115                        int nqbuf = min(3, nq);
1116
1117                        nq -= nqbuf;
1118                        qbuf[0] = qbuf[1] = qbuf[2] = 0;
1119                        while (nqbuf) {
1120                                nqbuf--;
1121                                *qbp++ = *rsp++;
1122                                if (rsp >= rsp_end)
1123                                        rsp = rspq;
1124                        }
1125                        *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1126                                            FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1127                                            FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1128                }
1129
1130                /*
1131                 * Send this portion of the RRS table update to the firmware;
1132                 * bail out on any errors.
1133                 */
1134                ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1135                if (ret)
1136                        return ret;
1137        }
1138        return 0;
1139}
1140
1141/**
1142 *      t4vf_alloc_vi - allocate a virtual interface on a port
1143 *      @adapter: the adapter
1144 *      @port_id: physical port associated with the VI
1145 *
1146 *      Allocate a new Virtual Interface and bind it to the indicated
1147 *      physical port.  Return the new Virtual Interface Identifier on
1148 *      success, or a [negative] error number on failure.
1149 */
1150int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1151{
1152        struct fw_vi_cmd cmd, rpl;
1153        int v;
1154
1155        /*
1156         * Execute a VI command to allocate Virtual Interface and return its
1157         * VIID.
1158         */
1159        memset(&cmd, 0, sizeof(cmd));
1160        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1161                                    FW_CMD_REQUEST_F |
1162                                    FW_CMD_WRITE_F |
1163                                    FW_CMD_EXEC_F);
1164        cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1165                                         FW_VI_CMD_ALLOC_F);
1166        cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1167        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1168        if (v)
1169                return v;
1170
1171        return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1172}
1173
1174/**
1175 *      t4vf_free_vi -- free a virtual interface
1176 *      @adapter: the adapter
1177 *      @viid: the virtual interface identifier
1178 *
1179 *      Free a previously allocated Virtual Interface.  Return an error on
1180 *      failure.
1181 */
1182int t4vf_free_vi(struct adapter *adapter, int viid)
1183{
1184        struct fw_vi_cmd cmd;
1185
1186        /*
1187         * Execute a VI command to free the Virtual Interface.
1188         */
1189        memset(&cmd, 0, sizeof(cmd));
1190        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1191                                    FW_CMD_REQUEST_F |
1192                                    FW_CMD_EXEC_F);
1193        cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1194                                         FW_VI_CMD_FREE_F);
1195        cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1196        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1197}
1198
1199/**
1200 *      t4vf_enable_vi - enable/disable a virtual interface
1201 *      @adapter: the adapter
1202 *      @viid: the Virtual Interface ID
1203 *      @rx_en: 1=enable Rx, 0=disable Rx
1204 *      @tx_en: 1=enable Tx, 0=disable Tx
1205 *
1206 *      Enables/disables a virtual interface.
1207 */
1208int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1209                   bool rx_en, bool tx_en)
1210{
1211        struct fw_vi_enable_cmd cmd;
1212
1213        memset(&cmd, 0, sizeof(cmd));
1214        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1215                                     FW_CMD_REQUEST_F |
1216                                     FW_CMD_EXEC_F |
1217                                     FW_VI_ENABLE_CMD_VIID_V(viid));
1218        cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1219                                       FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1220                                       FW_LEN16(cmd));
1221        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1222}
1223
1224/**
1225 *      t4vf_identify_port - identify a VI's port by blinking its LED
1226 *      @adapter: the adapter
1227 *      @viid: the Virtual Interface ID
1228 *      @nblinks: how many times to blink LED at 2.5 Hz
1229 *
1230 *      Identifies a VI's port by blinking its LED.
1231 */
1232int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1233                       unsigned int nblinks)
1234{
1235        struct fw_vi_enable_cmd cmd;
1236
1237        memset(&cmd, 0, sizeof(cmd));
1238        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1239                                     FW_CMD_REQUEST_F |
1240                                     FW_CMD_EXEC_F |
1241                                     FW_VI_ENABLE_CMD_VIID_V(viid));
1242        cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1243                                       FW_LEN16(cmd));
1244        cmd.blinkdur = cpu_to_be16(nblinks);
1245        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1246}
1247
1248/**
1249 *      t4vf_set_rxmode - set Rx properties of a virtual interface
1250 *      @adapter: the adapter
1251 *      @viid: the VI id
1252 *      @mtu: the new MTU or -1 for no change
1253 *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1254 *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1255 *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1256 *      @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1257 *              -1 no change
1258 *
1259 *      Sets Rx properties of a virtual interface.
1260 */
1261int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1262                    int mtu, int promisc, int all_multi, int bcast, int vlanex,
1263                    bool sleep_ok)
1264{
1265        struct fw_vi_rxmode_cmd cmd;
1266
1267        /* convert to FW values */
1268        if (mtu < 0)
1269                mtu = FW_VI_RXMODE_CMD_MTU_M;
1270        if (promisc < 0)
1271                promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1272        if (all_multi < 0)
1273                all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1274        if (bcast < 0)
1275                bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1276        if (vlanex < 0)
1277                vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1278
1279        memset(&cmd, 0, sizeof(cmd));
1280        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1281                                     FW_CMD_REQUEST_F |
1282                                     FW_CMD_WRITE_F |
1283                                     FW_VI_RXMODE_CMD_VIID_V(viid));
1284        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1285        cmd.mtu_to_vlanexen =
1286                cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1287                            FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1288                            FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1289                            FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1290                            FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1291        return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1292}
1293
1294/**
1295 *      t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1296 *      @adapter: the adapter
1297 *      @viid: the Virtual Interface Identifier
1298 *      @free: if true any existing filters for this VI id are first removed
1299 *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1300 *      @addr: the MAC address(es)
1301 *      @idx: where to store the index of each allocated filter
1302 *      @hash: pointer to hash address filter bitmap
1303 *      @sleep_ok: call is allowed to sleep
1304 *
1305 *      Allocates an exact-match filter for each of the supplied addresses and
1306 *      sets it to the corresponding address.  If @idx is not %NULL it should
1307 *      have at least @naddr entries, each of which will be set to the index of
1308 *      the filter allocated for the corresponding MAC address.  If a filter
1309 *      could not be allocated for an address its index is set to 0xffff.
1310 *      If @hash is not %NULL addresses that fail to allocate an exact filter
1311 *      are hashed and update the hash filter bitmap pointed at by @hash.
1312 *
1313 *      Returns a negative error number or the number of filters allocated.
1314 */
1315int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1316                        unsigned int naddr, const u8 **addr, u16 *idx,
1317                        u64 *hash, bool sleep_ok)
1318{
1319        int offset, ret = 0;
1320        unsigned nfilters = 0;
1321        unsigned int rem = naddr;
1322        struct fw_vi_mac_cmd cmd, rpl;
1323        unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1324
1325        if (naddr > max_naddr)
1326                return -EINVAL;
1327
1328        for (offset = 0; offset < naddr; /**/) {
1329                unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1330                                         ? rem
1331                                         : ARRAY_SIZE(cmd.u.exact));
1332                size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1333                                                     u.exact[fw_naddr]), 16);
1334                struct fw_vi_mac_exact *p;
1335                int i;
1336
1337                memset(&cmd, 0, sizeof(cmd));
1338                cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1339                                             FW_CMD_REQUEST_F |
1340                                             FW_CMD_WRITE_F |
1341                                             (free ? FW_CMD_EXEC_F : 0) |
1342                                             FW_VI_MAC_CMD_VIID_V(viid));
1343                cmd.freemacs_to_len16 =
1344                        cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1345                                    FW_CMD_LEN16_V(len16));
1346
1347                for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1348                        p->valid_to_idx = cpu_to_be16(
1349                                FW_VI_MAC_CMD_VALID_F |
1350                                FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1351                        memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1352                }
1353
1354
1355                ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1356                                        sleep_ok);
1357                if (ret && ret != -ENOMEM)
1358                        break;
1359
1360                for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1361                        u16 index = FW_VI_MAC_CMD_IDX_G(
1362                                be16_to_cpu(p->valid_to_idx));
1363
1364                        if (idx)
1365                                idx[offset+i] =
1366                                        (index >= max_naddr
1367                                         ? 0xffff
1368                                         : index);
1369                        if (index < max_naddr)
1370                                nfilters++;
1371                        else if (hash)
1372                                *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1373                }
1374
1375                free = false;
1376                offset += fw_naddr;
1377                rem -= fw_naddr;
1378        }
1379
1380        /*
1381         * If there were no errors or we merely ran out of room in our MAC
1382         * address arena, return the number of filters actually written.
1383         */
1384        if (ret == 0 || ret == -ENOMEM)
1385                ret = nfilters;
1386        return ret;
1387}
1388
1389/**
1390 *      t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1391 *      @adapter: the adapter
1392 *      @viid: the VI id
1393 *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1394 *      @addr: the MAC address(es)
1395 *      @sleep_ok: call is allowed to sleep
1396 *
1397 *      Frees the exact-match filter for each of the supplied addresses
1398 *
1399 *      Returns a negative error number or the number of filters freed.
1400 */
1401int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1402                       unsigned int naddr, const u8 **addr, bool sleep_ok)
1403{
1404        int offset, ret = 0;
1405        struct fw_vi_mac_cmd cmd;
1406        unsigned int nfilters = 0;
1407        unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1408        unsigned int rem = naddr;
1409
1410        if (naddr > max_naddr)
1411                return -EINVAL;
1412
1413        for (offset = 0; offset < (int)naddr ; /**/) {
1414                unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1415                                         rem : ARRAY_SIZE(cmd.u.exact));
1416                size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1417                                                     u.exact[fw_naddr]), 16);
1418                struct fw_vi_mac_exact *p;
1419                int i;
1420
1421                memset(&cmd, 0, sizeof(cmd));
1422                cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1423                                     FW_CMD_REQUEST_F |
1424                                     FW_CMD_WRITE_F |
1425                                     FW_CMD_EXEC_V(0) |
1426                                     FW_VI_MAC_CMD_VIID_V(viid));
1427                cmd.freemacs_to_len16 =
1428                                cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1429                                            FW_CMD_LEN16_V(len16));
1430
1431                for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1432                        p->valid_to_idx = cpu_to_be16(
1433                                FW_VI_MAC_CMD_VALID_F |
1434                                FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1435                        memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1436                }
1437
1438                ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1439                                        sleep_ok);
1440                if (ret)
1441                        break;
1442
1443                for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1444                        u16 index = FW_VI_MAC_CMD_IDX_G(
1445                                                be16_to_cpu(p->valid_to_idx));
1446
1447                        if (index < max_naddr)
1448                                nfilters++;
1449                }
1450
1451                offset += fw_naddr;
1452                rem -= fw_naddr;
1453        }
1454
1455        if (ret == 0)
1456                ret = nfilters;
1457        return ret;
1458}
1459
1460/**
1461 *      t4vf_change_mac - modifies the exact-match filter for a MAC address
1462 *      @adapter: the adapter
1463 *      @viid: the Virtual Interface ID
1464 *      @idx: index of existing filter for old value of MAC address, or -1
1465 *      @addr: the new MAC address value
1466 *      @persist: if idx < 0, the new MAC allocation should be persistent
1467 *
1468 *      Modifies an exact-match filter and sets it to the new MAC address.
1469 *      Note that in general it is not possible to modify the value of a given
1470 *      filter so the generic way to modify an address filter is to free the
1471 *      one being used by the old address value and allocate a new filter for
1472 *      the new address value.  @idx can be -1 if the address is a new
1473 *      addition.
1474 *
1475 *      Returns a negative error number or the index of the filter with the new
1476 *      MAC value.
1477 */
1478int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1479                    int idx, const u8 *addr, bool persist)
1480{
1481        int ret;
1482        struct fw_vi_mac_cmd cmd, rpl;
1483        struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1484        size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1485                                             u.exact[1]), 16);
1486        unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1487
1488        /*
1489         * If this is a new allocation, determine whether it should be
1490         * persistent (across a "freemacs" operation) or not.
1491         */
1492        if (idx < 0)
1493                idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1494
1495        memset(&cmd, 0, sizeof(cmd));
1496        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1497                                     FW_CMD_REQUEST_F |
1498                                     FW_CMD_WRITE_F |
1499                                     FW_VI_MAC_CMD_VIID_V(viid));
1500        cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1501        p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1502                                      FW_VI_MAC_CMD_IDX_V(idx));
1503        memcpy(p->macaddr, addr, sizeof(p->macaddr));
1504
1505        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1506        if (ret == 0) {
1507                p = &rpl.u.exact[0];
1508                ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1509                if (ret >= max_mac_addr)
1510                        ret = -ENOMEM;
1511        }
1512        return ret;
1513}
1514
1515/**
1516 *      t4vf_set_addr_hash - program the MAC inexact-match hash filter
1517 *      @adapter: the adapter
1518 *      @viid: the Virtual Interface Identifier
1519 *      @ucast: whether the hash filter should also match unicast addresses
1520 *      @vec: the value to be written to the hash filter
1521 *      @sleep_ok: call is allowed to sleep
1522 *
1523 *      Sets the 64-bit inexact-match hash filter for a virtual interface.
1524 */
1525int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1526                       bool ucast, u64 vec, bool sleep_ok)
1527{
1528        struct fw_vi_mac_cmd cmd;
1529        size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1530                                             u.exact[0]), 16);
1531
1532        memset(&cmd, 0, sizeof(cmd));
1533        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1534                                     FW_CMD_REQUEST_F |
1535                                     FW_CMD_WRITE_F |
1536                                     FW_VI_ENABLE_CMD_VIID_V(viid));
1537        cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1538                                            FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1539                                            FW_CMD_LEN16_V(len16));
1540        cmd.u.hash.hashvec = cpu_to_be64(vec);
1541        return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1542}
1543
1544/**
1545 *      t4vf_get_port_stats - collect "port" statistics
1546 *      @adapter: the adapter
1547 *      @pidx: the port index
1548 *      @s: the stats structure to fill
1549 *
1550 *      Collect statistics for the "port"'s Virtual Interface.
1551 */
1552int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1553                        struct t4vf_port_stats *s)
1554{
1555        struct port_info *pi = adap2pinfo(adapter, pidx);
1556        struct fw_vi_stats_vf fwstats;
1557        unsigned int rem = VI_VF_NUM_STATS;
1558        __be64 *fwsp = (__be64 *)&fwstats;
1559
1560        /*
1561         * Grab the Virtual Interface statistics a chunk at a time via mailbox
1562         * commands.  We could use a Work Request and get all of them at once
1563         * but that's an asynchronous interface which is awkward to use.
1564         */
1565        while (rem) {
1566                unsigned int ix = VI_VF_NUM_STATS - rem;
1567                unsigned int nstats = min(6U, rem);
1568                struct fw_vi_stats_cmd cmd, rpl;
1569                size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1570                              sizeof(struct fw_vi_stats_ctl));
1571                size_t len16 = DIV_ROUND_UP(len, 16);
1572                int ret;
1573
1574                memset(&cmd, 0, sizeof(cmd));
1575                cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1576                                             FW_VI_STATS_CMD_VIID_V(pi->viid) |
1577                                             FW_CMD_REQUEST_F |
1578                                             FW_CMD_READ_F);
1579                cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1580                cmd.u.ctl.nstats_ix =
1581                        cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1582                                    FW_VI_STATS_CMD_NSTATS_V(nstats));
1583                ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1584                if (ret)
1585                        return ret;
1586
1587                memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1588
1589                rem -= nstats;
1590                fwsp += nstats;
1591        }
1592
1593        /*
1594         * Translate firmware statistics into host native statistics.
1595         */
1596        s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1597        s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1598        s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1599        s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1600        s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1601        s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1602        s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1603        s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1604        s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1605
1606        s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1607        s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1608        s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1609        s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1610        s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1611        s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1612
1613        s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1614
1615        return 0;
1616}
1617
1618/**
1619 *      t4vf_iq_free - free an ingress queue and its free lists
1620 *      @adapter: the adapter
1621 *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1622 *      @iqid: ingress queue ID
1623 *      @fl0id: FL0 queue ID or 0xffff if no attached FL0
1624 *      @fl1id: FL1 queue ID or 0xffff if no attached FL1
1625 *
1626 *      Frees an ingress queue and its associated free lists, if any.
1627 */
1628int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1629                 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1630{
1631        struct fw_iq_cmd cmd;
1632
1633        memset(&cmd, 0, sizeof(cmd));
1634        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1635                                    FW_CMD_REQUEST_F |
1636                                    FW_CMD_EXEC_F);
1637        cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1638                                         FW_LEN16(cmd));
1639        cmd.type_to_iqandstindex =
1640                cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1641
1642        cmd.iqid = cpu_to_be16(iqid);
1643        cmd.fl0id = cpu_to_be16(fl0id);
1644        cmd.fl1id = cpu_to_be16(fl1id);
1645        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1646}
1647
1648/**
1649 *      t4vf_eth_eq_free - free an Ethernet egress queue
1650 *      @adapter: the adapter
1651 *      @eqid: egress queue ID
1652 *
1653 *      Frees an Ethernet egress queue.
1654 */
1655int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1656{
1657        struct fw_eq_eth_cmd cmd;
1658
1659        memset(&cmd, 0, sizeof(cmd));
1660        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1661                                    FW_CMD_REQUEST_F |
1662                                    FW_CMD_EXEC_F);
1663        cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1664                                         FW_LEN16(cmd));
1665        cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1666        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1667}
1668
1669/**
1670 *      t4vf_handle_fw_rpl - process a firmware reply message
1671 *      @adapter: the adapter
1672 *      @rpl: start of the firmware message
1673 *
1674 *      Processes a firmware message, such as link state change messages.
1675 */
1676int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1677{
1678        const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1679        u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
1680
1681        switch (opcode) {
1682        case FW_PORT_CMD: {
1683                /*
1684                 * Link/module state change message.
1685                 */
1686                const struct fw_port_cmd *port_cmd =
1687                        (const struct fw_port_cmd *)rpl;
1688                u32 stat, mod;
1689                int action, port_id, link_ok, speed, fc, pidx;
1690
1691                /*
1692                 * Extract various fields from port status change message.
1693                 */
1694                action = FW_PORT_CMD_ACTION_G(
1695                        be32_to_cpu(port_cmd->action_to_len16));
1696                if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1697                        dev_err(adapter->pdev_dev,
1698                                "Unknown firmware PORT reply action %x\n",
1699                                action);
1700                        break;
1701                }
1702
1703                port_id = FW_PORT_CMD_PORTID_G(
1704                        be32_to_cpu(port_cmd->op_to_portid));
1705
1706                stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1707                link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
1708                speed = 0;
1709                fc = 0;
1710                if (stat & FW_PORT_CMD_RXPAUSE_F)
1711                        fc |= PAUSE_RX;
1712                if (stat & FW_PORT_CMD_TXPAUSE_F)
1713                        fc |= PAUSE_TX;
1714                if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1715                        speed = 100;
1716                else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1717                        speed = 1000;
1718                else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1719                        speed = 10000;
1720                else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1721                        speed = 25000;
1722                else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1723                        speed = 40000;
1724                else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1725                        speed = 100000;
1726
1727                /*
1728                 * Scan all of our "ports" (Virtual Interfaces) looking for
1729                 * those bound to the physical port which has changed.  If
1730                 * our recorded state doesn't match the current state,
1731                 * signal that change to the OS code.
1732                 */
1733                for_each_port(adapter, pidx) {
1734                        struct port_info *pi = adap2pinfo(adapter, pidx);
1735                        struct link_config *lc;
1736
1737                        if (pi->port_id != port_id)
1738                                continue;
1739
1740                        lc = &pi->link_cfg;
1741
1742                        mod = FW_PORT_CMD_MODTYPE_G(stat);
1743                        if (mod != pi->mod_type) {
1744                                pi->mod_type = mod;
1745                                t4vf_os_portmod_changed(adapter, pidx);
1746                        }
1747
1748                        if (link_ok != lc->link_ok || speed != lc->speed ||
1749                            fc != lc->fc) {
1750                                /* something changed */
1751                                lc->link_ok = link_ok;
1752                                lc->speed = speed;
1753                                lc->fc = fc;
1754                                lc->supported =
1755                                        be16_to_cpu(port_cmd->u.info.pcap);
1756                                lc->lp_advertising =
1757                                        be16_to_cpu(port_cmd->u.info.lpacap);
1758                                t4vf_os_link_changed(adapter, pidx, link_ok);
1759                        }
1760                }
1761                break;
1762        }
1763
1764        default:
1765                dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1766                        opcode);
1767        }
1768        return 0;
1769}
1770
1771/**
1772 */
1773int t4vf_prep_adapter(struct adapter *adapter)
1774{
1775        int err;
1776        unsigned int chipid;
1777
1778        /* Wait for the device to become ready before proceeding ...
1779         */
1780        err = t4vf_wait_dev_ready(adapter);
1781        if (err)
1782                return err;
1783
1784        /* Default port and clock for debugging in case we can't reach
1785         * firmware.
1786         */
1787        adapter->params.nports = 1;
1788        adapter->params.vfres.pmask = 1;
1789        adapter->params.vpd.cclk = 50000;
1790
1791        adapter->params.chip = 0;
1792        switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
1793        case CHELSIO_T4:
1794                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
1795                adapter->params.arch.sge_fl_db = DBPRIO_F;
1796                adapter->params.arch.mps_tcam_size =
1797                                NUM_MPS_CLS_SRAM_L_INSTANCES;
1798                break;
1799
1800        case CHELSIO_T5:
1801                chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1802                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
1803                adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
1804                adapter->params.arch.mps_tcam_size =
1805                                NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1806                break;
1807
1808        case CHELSIO_T6:
1809                chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1810                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
1811                adapter->params.arch.sge_fl_db = 0;
1812                adapter->params.arch.mps_tcam_size =
1813                                NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1814                break;
1815        }
1816
1817        return 0;
1818}
1819
1820/**
1821 *      t4vf_get_vf_mac_acl - Get the MAC address to be set to
1822 *                            the VI of this VF.
1823 *      @adapter: The adapter
1824 *      @pf: The pf associated with vf
1825 *      @naddr: the number of ACL MAC addresses returned in addr
1826 *      @addr: Placeholder for MAC addresses
1827 *
1828 *      Find the MAC address to be set to the VF's VI. The requested MAC address
1829 *      is from the host OS via callback in the PF driver.
1830 */
1831int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int pf,
1832                        unsigned int *naddr, u8 *addr)
1833{
1834        struct fw_acl_mac_cmd cmd;
1835        int ret;
1836
1837        memset(&cmd, 0, sizeof(cmd));
1838        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
1839                                    FW_CMD_REQUEST_F |
1840                                    FW_CMD_READ_F);
1841        cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
1842        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
1843        if (ret)
1844                return ret;
1845
1846        if (cmd.nmac < *naddr)
1847                *naddr = cmd.nmac;
1848
1849        switch (pf) {
1850        case 3:
1851                memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
1852                break;
1853        case 2:
1854                memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
1855                break;
1856        case 1:
1857                memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
1858                break;
1859        case 0:
1860                memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
1861                break;
1862        }
1863
1864        return ret;
1865}
1866