linux/drivers/net/ethernet/davicom/dm9000.c
<<
>>
Prefs
   1/*
   2 *      Davicom DM9000 Fast Ethernet driver for Linux.
   3 *      Copyright (C) 1997  Sten Wang
   4 *
   5 *      This program is free software; you can redistribute it and/or
   6 *      modify it under the terms of the GNU General Public License
   7 *      as published by the Free Software Foundation; either version 2
   8 *      of the License, or (at your option) any later version.
   9 *
  10 *      This program is distributed in the hope that it will be useful,
  11 *      but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 *      GNU General Public License for more details.
  14 *
  15 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
  16 *
  17 * Additional updates, Copyright:
  18 *      Ben Dooks <ben@simtec.co.uk>
  19 *      Sascha Hauer <s.hauer@pengutronix.de>
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/ioport.h>
  24#include <linux/netdevice.h>
  25#include <linux/etherdevice.h>
  26#include <linux/interrupt.h>
  27#include <linux/skbuff.h>
  28#include <linux/spinlock.h>
  29#include <linux/crc32.h>
  30#include <linux/mii.h>
  31#include <linux/of.h>
  32#include <linux/of_net.h>
  33#include <linux/ethtool.h>
  34#include <linux/dm9000.h>
  35#include <linux/delay.h>
  36#include <linux/platform_device.h>
  37#include <linux/irq.h>
  38#include <linux/slab.h>
  39#include <linux/regulator/consumer.h>
  40#include <linux/gpio.h>
  41#include <linux/of_gpio.h>
  42
  43#include <asm/delay.h>
  44#include <asm/irq.h>
  45#include <asm/io.h>
  46
  47#include "dm9000.h"
  48
  49/* Board/System/Debug information/definition ---------------- */
  50
  51#define DM9000_PHY              0x40    /* PHY address 0x01 */
  52
  53#define CARDNAME        "dm9000"
  54#define DRV_VERSION     "1.31"
  55
  56/*
  57 * Transmit timeout, default 5 seconds.
  58 */
  59static int watchdog = 5000;
  60module_param(watchdog, int, 0400);
  61MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
  62
  63/*
  64 * Debug messages level
  65 */
  66static int debug;
  67module_param(debug, int, 0644);
  68MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
  69
  70/* DM9000 register address locking.
  71 *
  72 * The DM9000 uses an address register to control where data written
  73 * to the data register goes. This means that the address register
  74 * must be preserved over interrupts or similar calls.
  75 *
  76 * During interrupt and other critical calls, a spinlock is used to
  77 * protect the system, but the calls themselves save the address
  78 * in the address register in case they are interrupting another
  79 * access to the device.
  80 *
  81 * For general accesses a lock is provided so that calls which are
  82 * allowed to sleep are serialised so that the address register does
  83 * not need to be saved. This lock also serves to serialise access
  84 * to the EEPROM and PHY access registers which are shared between
  85 * these two devices.
  86 */
  87
  88/* The driver supports the original DM9000E, and now the two newer
  89 * devices, DM9000A and DM9000B.
  90 */
  91
  92enum dm9000_type {
  93        TYPE_DM9000E,   /* original DM9000 */
  94        TYPE_DM9000A,
  95        TYPE_DM9000B
  96};
  97
  98/* Structure/enum declaration ------------------------------- */
  99struct board_info {
 100
 101        void __iomem    *io_addr;       /* Register I/O base address */
 102        void __iomem    *io_data;       /* Data I/O address */
 103        u16              irq;           /* IRQ */
 104
 105        u16             tx_pkt_cnt;
 106        u16             queue_pkt_len;
 107        u16             queue_start_addr;
 108        u16             queue_ip_summed;
 109        u16             dbug_cnt;
 110        u8              io_mode;                /* 0:word, 2:byte */
 111        u8              phy_addr;
 112        u8              imr_all;
 113
 114        unsigned int    flags;
 115        unsigned int    in_timeout:1;
 116        unsigned int    in_suspend:1;
 117        unsigned int    wake_supported:1;
 118
 119        enum dm9000_type type;
 120
 121        void (*inblk)(void __iomem *port, void *data, int length);
 122        void (*outblk)(void __iomem *port, void *data, int length);
 123        void (*dumpblk)(void __iomem *port, int length);
 124
 125        struct device   *dev;        /* parent device */
 126
 127        struct resource *addr_res;   /* resources found */
 128        struct resource *data_res;
 129        struct resource *addr_req;   /* resources requested */
 130        struct resource *data_req;
 131
 132        int              irq_wake;
 133
 134        struct mutex     addr_lock;     /* phy and eeprom access lock */
 135
 136        struct delayed_work phy_poll;
 137        struct net_device  *ndev;
 138
 139        spinlock_t      lock;
 140
 141        struct mii_if_info mii;
 142        u32             msg_enable;
 143        u32             wake_state;
 144
 145        int             ip_summed;
 146};
 147
 148/* debug code */
 149
 150#define dm9000_dbg(db, lev, msg...) do {                \
 151        if ((lev) < debug) {                            \
 152                dev_dbg(db->dev, msg);                  \
 153        }                                               \
 154} while (0)
 155
 156static inline struct board_info *to_dm9000_board(struct net_device *dev)
 157{
 158        return netdev_priv(dev);
 159}
 160
 161/* DM9000 network board routine ---------------------------- */
 162
 163/*
 164 *   Read a byte from I/O port
 165 */
 166static u8
 167ior(struct board_info *db, int reg)
 168{
 169        writeb(reg, db->io_addr);
 170        return readb(db->io_data);
 171}
 172
 173/*
 174 *   Write a byte to I/O port
 175 */
 176
 177static void
 178iow(struct board_info *db, int reg, int value)
 179{
 180        writeb(reg, db->io_addr);
 181        writeb(value, db->io_data);
 182}
 183
 184static void
 185dm9000_reset(struct board_info *db)
 186{
 187        dev_dbg(db->dev, "resetting device\n");
 188
 189        /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
 190         * The essential point is that we have to do a double reset, and the
 191         * instruction is to set LBK into MAC internal loopback mode.
 192         */
 193        iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
 194        udelay(100); /* Application note says at least 20 us */
 195        if (ior(db, DM9000_NCR) & 1)
 196                dev_err(db->dev, "dm9000 did not respond to first reset\n");
 197
 198        iow(db, DM9000_NCR, 0);
 199        iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
 200        udelay(100);
 201        if (ior(db, DM9000_NCR) & 1)
 202                dev_err(db->dev, "dm9000 did not respond to second reset\n");
 203}
 204
 205/* routines for sending block to chip */
 206
 207static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
 208{
 209        iowrite8_rep(reg, data, count);
 210}
 211
 212static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
 213{
 214        iowrite16_rep(reg, data, (count+1) >> 1);
 215}
 216
 217static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
 218{
 219        iowrite32_rep(reg, data, (count+3) >> 2);
 220}
 221
 222/* input block from chip to memory */
 223
 224static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
 225{
 226        ioread8_rep(reg, data, count);
 227}
 228
 229
 230static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
 231{
 232        ioread16_rep(reg, data, (count+1) >> 1);
 233}
 234
 235static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
 236{
 237        ioread32_rep(reg, data, (count+3) >> 2);
 238}
 239
 240/* dump block from chip to null */
 241
 242static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
 243{
 244        int i;
 245        int tmp;
 246
 247        for (i = 0; i < count; i++)
 248                tmp = readb(reg);
 249}
 250
 251static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
 252{
 253        int i;
 254        int tmp;
 255
 256        count = (count + 1) >> 1;
 257
 258        for (i = 0; i < count; i++)
 259                tmp = readw(reg);
 260}
 261
 262static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
 263{
 264        int i;
 265        int tmp;
 266
 267        count = (count + 3) >> 2;
 268
 269        for (i = 0; i < count; i++)
 270                tmp = readl(reg);
 271}
 272
 273/*
 274 * Sleep, either by using msleep() or if we are suspending, then
 275 * use mdelay() to sleep.
 276 */
 277static void dm9000_msleep(struct board_info *db, unsigned int ms)
 278{
 279        if (db->in_suspend || db->in_timeout)
 280                mdelay(ms);
 281        else
 282                msleep(ms);
 283}
 284
 285/* Read a word from phyxcer */
 286static int
 287dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
 288{
 289        struct board_info *db = netdev_priv(dev);
 290        unsigned long flags;
 291        unsigned int reg_save;
 292        int ret;
 293
 294        mutex_lock(&db->addr_lock);
 295
 296        spin_lock_irqsave(&db->lock, flags);
 297
 298        /* Save previous register address */
 299        reg_save = readb(db->io_addr);
 300
 301        /* Fill the phyxcer register into REG_0C */
 302        iow(db, DM9000_EPAR, DM9000_PHY | reg);
 303
 304        /* Issue phyxcer read command */
 305        iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
 306
 307        writeb(reg_save, db->io_addr);
 308        spin_unlock_irqrestore(&db->lock, flags);
 309
 310        dm9000_msleep(db, 1);           /* Wait read complete */
 311
 312        spin_lock_irqsave(&db->lock, flags);
 313        reg_save = readb(db->io_addr);
 314
 315        iow(db, DM9000_EPCR, 0x0);      /* Clear phyxcer read command */
 316
 317        /* The read data keeps on REG_0D & REG_0E */
 318        ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
 319
 320        /* restore the previous address */
 321        writeb(reg_save, db->io_addr);
 322        spin_unlock_irqrestore(&db->lock, flags);
 323
 324        mutex_unlock(&db->addr_lock);
 325
 326        dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
 327        return ret;
 328}
 329
 330/* Write a word to phyxcer */
 331static void
 332dm9000_phy_write(struct net_device *dev,
 333                 int phyaddr_unused, int reg, int value)
 334{
 335        struct board_info *db = netdev_priv(dev);
 336        unsigned long flags;
 337        unsigned long reg_save;
 338
 339        dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
 340        if (!db->in_timeout)
 341                mutex_lock(&db->addr_lock);
 342
 343        spin_lock_irqsave(&db->lock, flags);
 344
 345        /* Save previous register address */
 346        reg_save = readb(db->io_addr);
 347
 348        /* Fill the phyxcer register into REG_0C */
 349        iow(db, DM9000_EPAR, DM9000_PHY | reg);
 350
 351        /* Fill the written data into REG_0D & REG_0E */
 352        iow(db, DM9000_EPDRL, value);
 353        iow(db, DM9000_EPDRH, value >> 8);
 354
 355        /* Issue phyxcer write command */
 356        iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
 357
 358        writeb(reg_save, db->io_addr);
 359        spin_unlock_irqrestore(&db->lock, flags);
 360
 361        dm9000_msleep(db, 1);           /* Wait write complete */
 362
 363        spin_lock_irqsave(&db->lock, flags);
 364        reg_save = readb(db->io_addr);
 365
 366        iow(db, DM9000_EPCR, 0x0);      /* Clear phyxcer write command */
 367
 368        /* restore the previous address */
 369        writeb(reg_save, db->io_addr);
 370
 371        spin_unlock_irqrestore(&db->lock, flags);
 372        if (!db->in_timeout)
 373                mutex_unlock(&db->addr_lock);
 374}
 375
 376/* dm9000_set_io
 377 *
 378 * select the specified set of io routines to use with the
 379 * device
 380 */
 381
 382static void dm9000_set_io(struct board_info *db, int byte_width)
 383{
 384        /* use the size of the data resource to work out what IO
 385         * routines we want to use
 386         */
 387
 388        switch (byte_width) {
 389        case 1:
 390                db->dumpblk = dm9000_dumpblk_8bit;
 391                db->outblk  = dm9000_outblk_8bit;
 392                db->inblk   = dm9000_inblk_8bit;
 393                break;
 394
 395
 396        case 3:
 397                dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
 398        case 2:
 399                db->dumpblk = dm9000_dumpblk_16bit;
 400                db->outblk  = dm9000_outblk_16bit;
 401                db->inblk   = dm9000_inblk_16bit;
 402                break;
 403
 404        case 4:
 405        default:
 406                db->dumpblk = dm9000_dumpblk_32bit;
 407                db->outblk  = dm9000_outblk_32bit;
 408                db->inblk   = dm9000_inblk_32bit;
 409                break;
 410        }
 411}
 412
 413static void dm9000_schedule_poll(struct board_info *db)
 414{
 415        if (db->type == TYPE_DM9000E)
 416                schedule_delayed_work(&db->phy_poll, HZ * 2);
 417}
 418
 419static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
 420{
 421        struct board_info *dm = to_dm9000_board(dev);
 422
 423        if (!netif_running(dev))
 424                return -EINVAL;
 425
 426        return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
 427}
 428
 429static unsigned int
 430dm9000_read_locked(struct board_info *db, int reg)
 431{
 432        unsigned long flags;
 433        unsigned int ret;
 434
 435        spin_lock_irqsave(&db->lock, flags);
 436        ret = ior(db, reg);
 437        spin_unlock_irqrestore(&db->lock, flags);
 438
 439        return ret;
 440}
 441
 442static int dm9000_wait_eeprom(struct board_info *db)
 443{
 444        unsigned int status;
 445        int timeout = 8;        /* wait max 8msec */
 446
 447        /* The DM9000 data sheets say we should be able to
 448         * poll the ERRE bit in EPCR to wait for the EEPROM
 449         * operation. From testing several chips, this bit
 450         * does not seem to work.
 451         *
 452         * We attempt to use the bit, but fall back to the
 453         * timeout (which is why we do not return an error
 454         * on expiry) to say that the EEPROM operation has
 455         * completed.
 456         */
 457
 458        while (1) {
 459                status = dm9000_read_locked(db, DM9000_EPCR);
 460
 461                if ((status & EPCR_ERRE) == 0)
 462                        break;
 463
 464                msleep(1);
 465
 466                if (timeout-- < 0) {
 467                        dev_dbg(db->dev, "timeout waiting EEPROM\n");
 468                        break;
 469                }
 470        }
 471
 472        return 0;
 473}
 474
 475/*
 476 *  Read a word data from EEPROM
 477 */
 478static void
 479dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
 480{
 481        unsigned long flags;
 482
 483        if (db->flags & DM9000_PLATF_NO_EEPROM) {
 484                to[0] = 0xff;
 485                to[1] = 0xff;
 486                return;
 487        }
 488
 489        mutex_lock(&db->addr_lock);
 490
 491        spin_lock_irqsave(&db->lock, flags);
 492
 493        iow(db, DM9000_EPAR, offset);
 494        iow(db, DM9000_EPCR, EPCR_ERPRR);
 495
 496        spin_unlock_irqrestore(&db->lock, flags);
 497
 498        dm9000_wait_eeprom(db);
 499
 500        /* delay for at-least 150uS */
 501        msleep(1);
 502
 503        spin_lock_irqsave(&db->lock, flags);
 504
 505        iow(db, DM9000_EPCR, 0x0);
 506
 507        to[0] = ior(db, DM9000_EPDRL);
 508        to[1] = ior(db, DM9000_EPDRH);
 509
 510        spin_unlock_irqrestore(&db->lock, flags);
 511
 512        mutex_unlock(&db->addr_lock);
 513}
 514
 515/*
 516 * Write a word data to SROM
 517 */
 518static void
 519dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
 520{
 521        unsigned long flags;
 522
 523        if (db->flags & DM9000_PLATF_NO_EEPROM)
 524                return;
 525
 526        mutex_lock(&db->addr_lock);
 527
 528        spin_lock_irqsave(&db->lock, flags);
 529        iow(db, DM9000_EPAR, offset);
 530        iow(db, DM9000_EPDRH, data[1]);
 531        iow(db, DM9000_EPDRL, data[0]);
 532        iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
 533        spin_unlock_irqrestore(&db->lock, flags);
 534
 535        dm9000_wait_eeprom(db);
 536
 537        mdelay(1);      /* wait at least 150uS to clear */
 538
 539        spin_lock_irqsave(&db->lock, flags);
 540        iow(db, DM9000_EPCR, 0);
 541        spin_unlock_irqrestore(&db->lock, flags);
 542
 543        mutex_unlock(&db->addr_lock);
 544}
 545
 546/* ethtool ops */
 547
 548static void dm9000_get_drvinfo(struct net_device *dev,
 549                               struct ethtool_drvinfo *info)
 550{
 551        struct board_info *dm = to_dm9000_board(dev);
 552
 553        strlcpy(info->driver, CARDNAME, sizeof(info->driver));
 554        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
 555        strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
 556                sizeof(info->bus_info));
 557}
 558
 559static u32 dm9000_get_msglevel(struct net_device *dev)
 560{
 561        struct board_info *dm = to_dm9000_board(dev);
 562
 563        return dm->msg_enable;
 564}
 565
 566static void dm9000_set_msglevel(struct net_device *dev, u32 value)
 567{
 568        struct board_info *dm = to_dm9000_board(dev);
 569
 570        dm->msg_enable = value;
 571}
 572
 573static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 574{
 575        struct board_info *dm = to_dm9000_board(dev);
 576
 577        mii_ethtool_gset(&dm->mii, cmd);
 578        return 0;
 579}
 580
 581static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 582{
 583        struct board_info *dm = to_dm9000_board(dev);
 584
 585        return mii_ethtool_sset(&dm->mii, cmd);
 586}
 587
 588static int dm9000_nway_reset(struct net_device *dev)
 589{
 590        struct board_info *dm = to_dm9000_board(dev);
 591        return mii_nway_restart(&dm->mii);
 592}
 593
 594static int dm9000_set_features(struct net_device *dev,
 595        netdev_features_t features)
 596{
 597        struct board_info *dm = to_dm9000_board(dev);
 598        netdev_features_t changed = dev->features ^ features;
 599        unsigned long flags;
 600
 601        if (!(changed & NETIF_F_RXCSUM))
 602                return 0;
 603
 604        spin_lock_irqsave(&dm->lock, flags);
 605        iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
 606        spin_unlock_irqrestore(&dm->lock, flags);
 607
 608        return 0;
 609}
 610
 611static u32 dm9000_get_link(struct net_device *dev)
 612{
 613        struct board_info *dm = to_dm9000_board(dev);
 614        u32 ret;
 615
 616        if (dm->flags & DM9000_PLATF_EXT_PHY)
 617                ret = mii_link_ok(&dm->mii);
 618        else
 619                ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
 620
 621        return ret;
 622}
 623
 624#define DM_EEPROM_MAGIC         (0x444D394B)
 625
 626static int dm9000_get_eeprom_len(struct net_device *dev)
 627{
 628        return 128;
 629}
 630
 631static int dm9000_get_eeprom(struct net_device *dev,
 632                             struct ethtool_eeprom *ee, u8 *data)
 633{
 634        struct board_info *dm = to_dm9000_board(dev);
 635        int offset = ee->offset;
 636        int len = ee->len;
 637        int i;
 638
 639        /* EEPROM access is aligned to two bytes */
 640
 641        if ((len & 1) != 0 || (offset & 1) != 0)
 642                return -EINVAL;
 643
 644        if (dm->flags & DM9000_PLATF_NO_EEPROM)
 645                return -ENOENT;
 646
 647        ee->magic = DM_EEPROM_MAGIC;
 648
 649        for (i = 0; i < len; i += 2)
 650                dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
 651
 652        return 0;
 653}
 654
 655static int dm9000_set_eeprom(struct net_device *dev,
 656                             struct ethtool_eeprom *ee, u8 *data)
 657{
 658        struct board_info *dm = to_dm9000_board(dev);
 659        int offset = ee->offset;
 660        int len = ee->len;
 661        int done;
 662
 663        /* EEPROM access is aligned to two bytes */
 664
 665        if (dm->flags & DM9000_PLATF_NO_EEPROM)
 666                return -ENOENT;
 667
 668        if (ee->magic != DM_EEPROM_MAGIC)
 669                return -EINVAL;
 670
 671        while (len > 0) {
 672                if (len & 1 || offset & 1) {
 673                        int which = offset & 1;
 674                        u8 tmp[2];
 675
 676                        dm9000_read_eeprom(dm, offset / 2, tmp);
 677                        tmp[which] = *data;
 678                        dm9000_write_eeprom(dm, offset / 2, tmp);
 679
 680                        done = 1;
 681                } else {
 682                        dm9000_write_eeprom(dm, offset / 2, data);
 683                        done = 2;
 684                }
 685
 686                data += done;
 687                offset += done;
 688                len -= done;
 689        }
 690
 691        return 0;
 692}
 693
 694static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
 695{
 696        struct board_info *dm = to_dm9000_board(dev);
 697
 698        memset(w, 0, sizeof(struct ethtool_wolinfo));
 699
 700        /* note, we could probably support wake-phy too */
 701        w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
 702        w->wolopts = dm->wake_state;
 703}
 704
 705static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
 706{
 707        struct board_info *dm = to_dm9000_board(dev);
 708        unsigned long flags;
 709        u32 opts = w->wolopts;
 710        u32 wcr = 0;
 711
 712        if (!dm->wake_supported)
 713                return -EOPNOTSUPP;
 714
 715        if (opts & ~WAKE_MAGIC)
 716                return -EINVAL;
 717
 718        if (opts & WAKE_MAGIC)
 719                wcr |= WCR_MAGICEN;
 720
 721        mutex_lock(&dm->addr_lock);
 722
 723        spin_lock_irqsave(&dm->lock, flags);
 724        iow(dm, DM9000_WCR, wcr);
 725        spin_unlock_irqrestore(&dm->lock, flags);
 726
 727        mutex_unlock(&dm->addr_lock);
 728
 729        if (dm->wake_state != opts) {
 730                /* change in wol state, update IRQ state */
 731
 732                if (!dm->wake_state)
 733                        irq_set_irq_wake(dm->irq_wake, 1);
 734                else if (dm->wake_state && !opts)
 735                        irq_set_irq_wake(dm->irq_wake, 0);
 736        }
 737
 738        dm->wake_state = opts;
 739        return 0;
 740}
 741
 742static const struct ethtool_ops dm9000_ethtool_ops = {
 743        .get_drvinfo            = dm9000_get_drvinfo,
 744        .get_settings           = dm9000_get_settings,
 745        .set_settings           = dm9000_set_settings,
 746        .get_msglevel           = dm9000_get_msglevel,
 747        .set_msglevel           = dm9000_set_msglevel,
 748        .nway_reset             = dm9000_nway_reset,
 749        .get_link               = dm9000_get_link,
 750        .get_wol                = dm9000_get_wol,
 751        .set_wol                = dm9000_set_wol,
 752        .get_eeprom_len         = dm9000_get_eeprom_len,
 753        .get_eeprom             = dm9000_get_eeprom,
 754        .set_eeprom             = dm9000_set_eeprom,
 755};
 756
 757static void dm9000_show_carrier(struct board_info *db,
 758                                unsigned carrier, unsigned nsr)
 759{
 760        int lpa;
 761        struct net_device *ndev = db->ndev;
 762        struct mii_if_info *mii = &db->mii;
 763        unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
 764
 765        if (carrier) {
 766                lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
 767                dev_info(db->dev,
 768                         "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
 769                         ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
 770                         (ncr & NCR_FDX) ? "full" : "half", lpa);
 771        } else {
 772                dev_info(db->dev, "%s: link down\n", ndev->name);
 773        }
 774}
 775
 776static void
 777dm9000_poll_work(struct work_struct *w)
 778{
 779        struct delayed_work *dw = to_delayed_work(w);
 780        struct board_info *db = container_of(dw, struct board_info, phy_poll);
 781        struct net_device *ndev = db->ndev;
 782
 783        if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
 784            !(db->flags & DM9000_PLATF_EXT_PHY)) {
 785                unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
 786                unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
 787                unsigned new_carrier;
 788
 789                new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
 790
 791                if (old_carrier != new_carrier) {
 792                        if (netif_msg_link(db))
 793                                dm9000_show_carrier(db, new_carrier, nsr);
 794
 795                        if (!new_carrier)
 796                                netif_carrier_off(ndev);
 797                        else
 798                                netif_carrier_on(ndev);
 799                }
 800        } else
 801                mii_check_media(&db->mii, netif_msg_link(db), 0);
 802
 803        if (netif_running(ndev))
 804                dm9000_schedule_poll(db);
 805}
 806
 807/* dm9000_release_board
 808 *
 809 * release a board, and any mapped resources
 810 */
 811
 812static void
 813dm9000_release_board(struct platform_device *pdev, struct board_info *db)
 814{
 815        /* unmap our resources */
 816
 817        iounmap(db->io_addr);
 818        iounmap(db->io_data);
 819
 820        /* release the resources */
 821
 822        if (db->data_req)
 823                release_resource(db->data_req);
 824        kfree(db->data_req);
 825
 826        if (db->addr_req)
 827                release_resource(db->addr_req);
 828        kfree(db->addr_req);
 829}
 830
 831static unsigned char dm9000_type_to_char(enum dm9000_type type)
 832{
 833        switch (type) {
 834        case TYPE_DM9000E: return 'e';
 835        case TYPE_DM9000A: return 'a';
 836        case TYPE_DM9000B: return 'b';
 837        }
 838
 839        return '?';
 840}
 841
 842/*
 843 *  Set DM9000 multicast address
 844 */
 845static void
 846dm9000_hash_table_unlocked(struct net_device *dev)
 847{
 848        struct board_info *db = netdev_priv(dev);
 849        struct netdev_hw_addr *ha;
 850        int i, oft;
 851        u32 hash_val;
 852        u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
 853        u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
 854
 855        dm9000_dbg(db, 1, "entering %s\n", __func__);
 856
 857        for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
 858                iow(db, oft, dev->dev_addr[i]);
 859
 860        if (dev->flags & IFF_PROMISC)
 861                rcr |= RCR_PRMSC;
 862
 863        if (dev->flags & IFF_ALLMULTI)
 864                rcr |= RCR_ALL;
 865
 866        /* the multicast address in Hash Table : 64 bits */
 867        netdev_for_each_mc_addr(ha, dev) {
 868                hash_val = ether_crc_le(6, ha->addr) & 0x3f;
 869                hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
 870        }
 871
 872        /* Write the hash table to MAC MD table */
 873        for (i = 0, oft = DM9000_MAR; i < 4; i++) {
 874                iow(db, oft++, hash_table[i]);
 875                iow(db, oft++, hash_table[i] >> 8);
 876        }
 877
 878        iow(db, DM9000_RCR, rcr);
 879}
 880
 881static void
 882dm9000_hash_table(struct net_device *dev)
 883{
 884        struct board_info *db = netdev_priv(dev);
 885        unsigned long flags;
 886
 887        spin_lock_irqsave(&db->lock, flags);
 888        dm9000_hash_table_unlocked(dev);
 889        spin_unlock_irqrestore(&db->lock, flags);
 890}
 891
 892static void
 893dm9000_mask_interrupts(struct board_info *db)
 894{
 895        iow(db, DM9000_IMR, IMR_PAR);
 896}
 897
 898static void
 899dm9000_unmask_interrupts(struct board_info *db)
 900{
 901        iow(db, DM9000_IMR, db->imr_all);
 902}
 903
 904/*
 905 * Initialize dm9000 board
 906 */
 907static void
 908dm9000_init_dm9000(struct net_device *dev)
 909{
 910        struct board_info *db = netdev_priv(dev);
 911        unsigned int imr;
 912        unsigned int ncr;
 913
 914        dm9000_dbg(db, 1, "entering %s\n", __func__);
 915
 916        dm9000_reset(db);
 917        dm9000_mask_interrupts(db);
 918
 919        /* I/O mode */
 920        db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
 921
 922        /* Checksum mode */
 923        if (dev->hw_features & NETIF_F_RXCSUM)
 924                iow(db, DM9000_RCSR,
 925                        (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
 926
 927        iow(db, DM9000_GPCR, GPCR_GEP_CNTL);    /* Let GPIO0 output */
 928        iow(db, DM9000_GPR, 0);
 929
 930        /* If we are dealing with DM9000B, some extra steps are required: a
 931         * manual phy reset, and setting init params.
 932         */
 933        if (db->type == TYPE_DM9000B) {
 934                dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
 935                dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
 936        }
 937
 938        ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
 939
 940        /* if wol is needed, then always set NCR_WAKEEN otherwise we end
 941         * up dumping the wake events if we disable this. There is already
 942         * a wake-mask in DM9000_WCR */
 943        if (db->wake_supported)
 944                ncr |= NCR_WAKEEN;
 945
 946        iow(db, DM9000_NCR, ncr);
 947
 948        /* Program operating register */
 949        iow(db, DM9000_TCR, 0);         /* TX Polling clear */
 950        iow(db, DM9000_BPTR, 0x3f);     /* Less 3Kb, 200us */
 951        iow(db, DM9000_FCR, 0xff);      /* Flow Control */
 952        iow(db, DM9000_SMCR, 0);        /* Special Mode */
 953        /* clear TX status */
 954        iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
 955        iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
 956
 957        /* Set address filter table */
 958        dm9000_hash_table_unlocked(dev);
 959
 960        imr = IMR_PAR | IMR_PTM | IMR_PRM;
 961        if (db->type != TYPE_DM9000E)
 962                imr |= IMR_LNKCHNG;
 963
 964        db->imr_all = imr;
 965
 966        /* Init Driver variable */
 967        db->tx_pkt_cnt = 0;
 968        db->queue_pkt_len = 0;
 969        netif_trans_update(dev);
 970}
 971
 972/* Our watchdog timed out. Called by the networking layer */
 973static void dm9000_timeout(struct net_device *dev)
 974{
 975        struct board_info *db = netdev_priv(dev);
 976        u8 reg_save;
 977        unsigned long flags;
 978
 979        /* Save previous register address */
 980        spin_lock_irqsave(&db->lock, flags);
 981        db->in_timeout = 1;
 982        reg_save = readb(db->io_addr);
 983
 984        netif_stop_queue(dev);
 985        dm9000_init_dm9000(dev);
 986        dm9000_unmask_interrupts(db);
 987        /* We can accept TX packets again */
 988        netif_trans_update(dev); /* prevent tx timeout */
 989        netif_wake_queue(dev);
 990
 991        /* Restore previous register address */
 992        writeb(reg_save, db->io_addr);
 993        db->in_timeout = 0;
 994        spin_unlock_irqrestore(&db->lock, flags);
 995}
 996
 997static void dm9000_send_packet(struct net_device *dev,
 998                               int ip_summed,
 999                               u16 pkt_len)
1000{
1001        struct board_info *dm = to_dm9000_board(dev);
1002
1003        /* The DM9000 is not smart enough to leave fragmented packets alone. */
1004        if (dm->ip_summed != ip_summed) {
1005                if (ip_summed == CHECKSUM_NONE)
1006                        iow(dm, DM9000_TCCR, 0);
1007                else
1008                        iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
1009                dm->ip_summed = ip_summed;
1010        }
1011
1012        /* Set TX length to DM9000 */
1013        iow(dm, DM9000_TXPLL, pkt_len);
1014        iow(dm, DM9000_TXPLH, pkt_len >> 8);
1015
1016        /* Issue TX polling command */
1017        iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
1018}
1019
1020/*
1021 *  Hardware start transmission.
1022 *  Send a packet to media from the upper layer.
1023 */
1024static int
1025dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1026{
1027        unsigned long flags;
1028        struct board_info *db = netdev_priv(dev);
1029
1030        dm9000_dbg(db, 3, "%s:\n", __func__);
1031
1032        if (db->tx_pkt_cnt > 1)
1033                return NETDEV_TX_BUSY;
1034
1035        spin_lock_irqsave(&db->lock, flags);
1036
1037        /* Move data to DM9000 TX RAM */
1038        writeb(DM9000_MWCMD, db->io_addr);
1039
1040        (db->outblk)(db->io_data, skb->data, skb->len);
1041        dev->stats.tx_bytes += skb->len;
1042
1043        db->tx_pkt_cnt++;
1044        /* TX control: First packet immediately send, second packet queue */
1045        if (db->tx_pkt_cnt == 1) {
1046                dm9000_send_packet(dev, skb->ip_summed, skb->len);
1047        } else {
1048                /* Second packet */
1049                db->queue_pkt_len = skb->len;
1050                db->queue_ip_summed = skb->ip_summed;
1051                netif_stop_queue(dev);
1052        }
1053
1054        spin_unlock_irqrestore(&db->lock, flags);
1055
1056        /* free this SKB */
1057        dev_consume_skb_any(skb);
1058
1059        return NETDEV_TX_OK;
1060}
1061
1062/*
1063 * DM9000 interrupt handler
1064 * receive the packet to upper layer, free the transmitted packet
1065 */
1066
1067static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1068{
1069        int tx_status = ior(db, DM9000_NSR);    /* Got TX status */
1070
1071        if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1072                /* One packet sent complete */
1073                db->tx_pkt_cnt--;
1074                dev->stats.tx_packets++;
1075
1076                if (netif_msg_tx_done(db))
1077                        dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1078
1079                /* Queue packet check & send */
1080                if (db->tx_pkt_cnt > 0)
1081                        dm9000_send_packet(dev, db->queue_ip_summed,
1082                                           db->queue_pkt_len);
1083                netif_wake_queue(dev);
1084        }
1085}
1086
1087struct dm9000_rxhdr {
1088        u8      RxPktReady;
1089        u8      RxStatus;
1090        __le16  RxLen;
1091} __packed;
1092
1093/*
1094 *  Received a packet and pass to upper layer
1095 */
1096static void
1097dm9000_rx(struct net_device *dev)
1098{
1099        struct board_info *db = netdev_priv(dev);
1100        struct dm9000_rxhdr rxhdr;
1101        struct sk_buff *skb;
1102        u8 rxbyte, *rdptr;
1103        bool GoodPacket;
1104        int RxLen;
1105
1106        /* Check packet ready or not */
1107        do {
1108                ior(db, DM9000_MRCMDX); /* Dummy read */
1109
1110                /* Get most updated data */
1111                rxbyte = readb(db->io_data);
1112
1113                /* Status check: this byte must be 0 or 1 */
1114                if (rxbyte & DM9000_PKT_ERR) {
1115                        dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1116                        iow(db, DM9000_RCR, 0x00);      /* Stop Device */
1117                        return;
1118                }
1119
1120                if (!(rxbyte & DM9000_PKT_RDY))
1121                        return;
1122
1123                /* A packet ready now  & Get status/length */
1124                GoodPacket = true;
1125                writeb(DM9000_MRCMD, db->io_addr);
1126
1127                (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1128
1129                RxLen = le16_to_cpu(rxhdr.RxLen);
1130
1131                if (netif_msg_rx_status(db))
1132                        dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1133                                rxhdr.RxStatus, RxLen);
1134
1135                /* Packet Status check */
1136                if (RxLen < 0x40) {
1137                        GoodPacket = false;
1138                        if (netif_msg_rx_err(db))
1139                                dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1140                }
1141
1142                if (RxLen > DM9000_PKT_MAX) {
1143                        dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1144                }
1145
1146                /* rxhdr.RxStatus is identical to RSR register. */
1147                if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1148                                      RSR_PLE | RSR_RWTO |
1149                                      RSR_LCS | RSR_RF)) {
1150                        GoodPacket = false;
1151                        if (rxhdr.RxStatus & RSR_FOE) {
1152                                if (netif_msg_rx_err(db))
1153                                        dev_dbg(db->dev, "fifo error\n");
1154                                dev->stats.rx_fifo_errors++;
1155                        }
1156                        if (rxhdr.RxStatus & RSR_CE) {
1157                                if (netif_msg_rx_err(db))
1158                                        dev_dbg(db->dev, "crc error\n");
1159                                dev->stats.rx_crc_errors++;
1160                        }
1161                        if (rxhdr.RxStatus & RSR_RF) {
1162                                if (netif_msg_rx_err(db))
1163                                        dev_dbg(db->dev, "length error\n");
1164                                dev->stats.rx_length_errors++;
1165                        }
1166                }
1167
1168                /* Move data from DM9000 */
1169                if (GoodPacket &&
1170                    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1171                        skb_reserve(skb, 2);
1172                        rdptr = (u8 *) skb_put(skb, RxLen - 4);
1173
1174                        /* Read received packet from RX SRAM */
1175
1176                        (db->inblk)(db->io_data, rdptr, RxLen);
1177                        dev->stats.rx_bytes += RxLen;
1178
1179                        /* Pass to upper layer */
1180                        skb->protocol = eth_type_trans(skb, dev);
1181                        if (dev->features & NETIF_F_RXCSUM) {
1182                                if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1183                                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1184                                else
1185                                        skb_checksum_none_assert(skb);
1186                        }
1187                        netif_rx(skb);
1188                        dev->stats.rx_packets++;
1189
1190                } else {
1191                        /* need to dump the packet's data */
1192
1193                        (db->dumpblk)(db->io_data, RxLen);
1194                }
1195        } while (rxbyte & DM9000_PKT_RDY);
1196}
1197
1198static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1199{
1200        struct net_device *dev = dev_id;
1201        struct board_info *db = netdev_priv(dev);
1202        int int_status;
1203        unsigned long flags;
1204        u8 reg_save;
1205
1206        dm9000_dbg(db, 3, "entering %s\n", __func__);
1207
1208        /* A real interrupt coming */
1209
1210        /* holders of db->lock must always block IRQs */
1211        spin_lock_irqsave(&db->lock, flags);
1212
1213        /* Save previous register address */
1214        reg_save = readb(db->io_addr);
1215
1216        dm9000_mask_interrupts(db);
1217        /* Got DM9000 interrupt status */
1218        int_status = ior(db, DM9000_ISR);       /* Got ISR */
1219        iow(db, DM9000_ISR, int_status);        /* Clear ISR status */
1220
1221        if (netif_msg_intr(db))
1222                dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1223
1224        /* Received the coming packet */
1225        if (int_status & ISR_PRS)
1226                dm9000_rx(dev);
1227
1228        /* Transmit Interrupt check */
1229        if (int_status & ISR_PTS)
1230                dm9000_tx_done(dev, db);
1231
1232        if (db->type != TYPE_DM9000E) {
1233                if (int_status & ISR_LNKCHNG) {
1234                        /* fire a link-change request */
1235                        schedule_delayed_work(&db->phy_poll, 1);
1236                }
1237        }
1238
1239        dm9000_unmask_interrupts(db);
1240        /* Restore previous register address */
1241        writeb(reg_save, db->io_addr);
1242
1243        spin_unlock_irqrestore(&db->lock, flags);
1244
1245        return IRQ_HANDLED;
1246}
1247
1248static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1249{
1250        struct net_device *dev = dev_id;
1251        struct board_info *db = netdev_priv(dev);
1252        unsigned long flags;
1253        unsigned nsr, wcr;
1254
1255        spin_lock_irqsave(&db->lock, flags);
1256
1257        nsr = ior(db, DM9000_NSR);
1258        wcr = ior(db, DM9000_WCR);
1259
1260        dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1261
1262        if (nsr & NSR_WAKEST) {
1263                /* clear, so we can avoid */
1264                iow(db, DM9000_NSR, NSR_WAKEST);
1265
1266                if (wcr & WCR_LINKST)
1267                        dev_info(db->dev, "wake by link status change\n");
1268                if (wcr & WCR_SAMPLEST)
1269                        dev_info(db->dev, "wake by sample packet\n");
1270                if (wcr & WCR_MAGICST)
1271                        dev_info(db->dev, "wake by magic packet\n");
1272                if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1273                        dev_err(db->dev, "wake signalled with no reason? "
1274                                "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1275        }
1276
1277        spin_unlock_irqrestore(&db->lock, flags);
1278
1279        return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1280}
1281
1282#ifdef CONFIG_NET_POLL_CONTROLLER
1283/*
1284 *Used by netconsole
1285 */
1286static void dm9000_poll_controller(struct net_device *dev)
1287{
1288        disable_irq(dev->irq);
1289        dm9000_interrupt(dev->irq, dev);
1290        enable_irq(dev->irq);
1291}
1292#endif
1293
1294/*
1295 *  Open the interface.
1296 *  The interface is opened whenever "ifconfig" actives it.
1297 */
1298static int
1299dm9000_open(struct net_device *dev)
1300{
1301        struct board_info *db = netdev_priv(dev);
1302        unsigned int irq_flags = irq_get_trigger_type(dev->irq);
1303
1304        if (netif_msg_ifup(db))
1305                dev_dbg(db->dev, "enabling %s\n", dev->name);
1306
1307        /* If there is no IRQ type specified, tell the user that this is a
1308         * problem
1309         */
1310        if (irq_flags == IRQF_TRIGGER_NONE)
1311                dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1312
1313        irq_flags |= IRQF_SHARED;
1314
1315        /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1316        iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
1317        mdelay(1); /* delay needs by DM9000B */
1318
1319        /* Initialize DM9000 board */
1320        dm9000_init_dm9000(dev);
1321
1322        if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev))
1323                return -EAGAIN;
1324        /* Now that we have an interrupt handler hooked up we can unmask
1325         * our interrupts
1326         */
1327        dm9000_unmask_interrupts(db);
1328
1329        /* Init driver variable */
1330        db->dbug_cnt = 0;
1331
1332        mii_check_media(&db->mii, netif_msg_link(db), 1);
1333        netif_start_queue(dev);
1334
1335        /* Poll initial link status */
1336        schedule_delayed_work(&db->phy_poll, 1);
1337
1338        return 0;
1339}
1340
1341static void
1342dm9000_shutdown(struct net_device *dev)
1343{
1344        struct board_info *db = netdev_priv(dev);
1345
1346        /* RESET device */
1347        dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
1348        iow(db, DM9000_GPR, 0x01);      /* Power-Down PHY */
1349        dm9000_mask_interrupts(db);
1350        iow(db, DM9000_RCR, 0x00);      /* Disable RX */
1351}
1352
1353/*
1354 * Stop the interface.
1355 * The interface is stopped when it is brought.
1356 */
1357static int
1358dm9000_stop(struct net_device *ndev)
1359{
1360        struct board_info *db = netdev_priv(ndev);
1361
1362        if (netif_msg_ifdown(db))
1363                dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1364
1365        cancel_delayed_work_sync(&db->phy_poll);
1366
1367        netif_stop_queue(ndev);
1368        netif_carrier_off(ndev);
1369
1370        /* free interrupt */
1371        free_irq(ndev->irq, ndev);
1372
1373        dm9000_shutdown(ndev);
1374
1375        return 0;
1376}
1377
1378static const struct net_device_ops dm9000_netdev_ops = {
1379        .ndo_open               = dm9000_open,
1380        .ndo_stop               = dm9000_stop,
1381        .ndo_start_xmit         = dm9000_start_xmit,
1382        .ndo_tx_timeout         = dm9000_timeout,
1383        .ndo_set_rx_mode        = dm9000_hash_table,
1384        .ndo_do_ioctl           = dm9000_ioctl,
1385        .ndo_change_mtu         = eth_change_mtu,
1386        .ndo_set_features       = dm9000_set_features,
1387        .ndo_validate_addr      = eth_validate_addr,
1388        .ndo_set_mac_address    = eth_mac_addr,
1389#ifdef CONFIG_NET_POLL_CONTROLLER
1390        .ndo_poll_controller    = dm9000_poll_controller,
1391#endif
1392};
1393
1394static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1395{
1396        struct dm9000_plat_data *pdata;
1397        struct device_node *np = dev->of_node;
1398        const void *mac_addr;
1399
1400        if (!IS_ENABLED(CONFIG_OF) || !np)
1401                return ERR_PTR(-ENXIO);
1402
1403        pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1404        if (!pdata)
1405                return ERR_PTR(-ENOMEM);
1406
1407        if (of_find_property(np, "davicom,ext-phy", NULL))
1408                pdata->flags |= DM9000_PLATF_EXT_PHY;
1409        if (of_find_property(np, "davicom,no-eeprom", NULL))
1410                pdata->flags |= DM9000_PLATF_NO_EEPROM;
1411
1412        mac_addr = of_get_mac_address(np);
1413        if (mac_addr)
1414                memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
1415
1416        return pdata;
1417}
1418
1419/*
1420 * Search DM9000 board, allocate space and register it
1421 */
1422static int
1423dm9000_probe(struct platform_device *pdev)
1424{
1425        struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1426        struct board_info *db;  /* Point a board information structure */
1427        struct net_device *ndev;
1428        struct device *dev = &pdev->dev;
1429        const unsigned char *mac_src;
1430        int ret = 0;
1431        int iosize;
1432        int i;
1433        u32 id_val;
1434        int reset_gpios;
1435        enum of_gpio_flags flags;
1436        struct regulator *power;
1437        bool inv_mac_addr = false;
1438
1439        power = devm_regulator_get(dev, "vcc");
1440        if (IS_ERR(power)) {
1441                if (PTR_ERR(power) == -EPROBE_DEFER)
1442                        return -EPROBE_DEFER;
1443                dev_dbg(dev, "no regulator provided\n");
1444        } else {
1445                ret = regulator_enable(power);
1446                if (ret != 0) {
1447                        dev_err(dev,
1448                                "Failed to enable power regulator: %d\n", ret);
1449                        return ret;
1450                }
1451                dev_dbg(dev, "regulator enabled\n");
1452        }
1453
1454        reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
1455                                              &flags);
1456        if (gpio_is_valid(reset_gpios)) {
1457                ret = devm_gpio_request_one(dev, reset_gpios, flags,
1458                                            "dm9000_reset");
1459                if (ret) {
1460                        dev_err(dev, "failed to request reset gpio %d: %d\n",
1461                                reset_gpios, ret);
1462                        return -ENODEV;
1463                }
1464
1465                /* According to manual PWRST# Low Period Min 1ms */
1466                msleep(2);
1467                gpio_set_value(reset_gpios, 1);
1468                /* Needs 3ms to read eeprom when PWRST is deasserted */
1469                msleep(4);
1470        }
1471
1472        if (!pdata) {
1473                pdata = dm9000_parse_dt(&pdev->dev);
1474                if (IS_ERR(pdata))
1475                        return PTR_ERR(pdata);
1476        }
1477
1478        /* Init network device */
1479        ndev = alloc_etherdev(sizeof(struct board_info));
1480        if (!ndev)
1481                return -ENOMEM;
1482
1483        SET_NETDEV_DEV(ndev, &pdev->dev);
1484
1485        dev_dbg(&pdev->dev, "dm9000_probe()\n");
1486
1487        /* setup board info structure */
1488        db = netdev_priv(ndev);
1489
1490        db->dev = &pdev->dev;
1491        db->ndev = ndev;
1492
1493        spin_lock_init(&db->lock);
1494        mutex_init(&db->addr_lock);
1495
1496        INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1497
1498        db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1499        db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1500
1501        if (!db->addr_res || !db->data_res) {
1502                dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
1503                        db->addr_res, db->data_res);
1504                ret = -ENOENT;
1505                goto out;
1506        }
1507
1508        ndev->irq = platform_get_irq(pdev, 0);
1509        if (ndev->irq < 0) {
1510                dev_err(db->dev, "interrupt resource unavailable: %d\n",
1511                        ndev->irq);
1512                ret = ndev->irq;
1513                goto out;
1514        }
1515
1516        db->irq_wake = platform_get_irq(pdev, 1);
1517        if (db->irq_wake >= 0) {
1518                dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1519
1520                ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1521                                  IRQF_SHARED, dev_name(db->dev), ndev);
1522                if (ret) {
1523                        dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1524                } else {
1525
1526                        /* test to see if irq is really wakeup capable */
1527                        ret = irq_set_irq_wake(db->irq_wake, 1);
1528                        if (ret) {
1529                                dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1530                                        db->irq_wake, ret);
1531                                ret = 0;
1532                        } else {
1533                                irq_set_irq_wake(db->irq_wake, 0);
1534                                db->wake_supported = 1;
1535                        }
1536                }
1537        }
1538
1539        iosize = resource_size(db->addr_res);
1540        db->addr_req = request_mem_region(db->addr_res->start, iosize,
1541                                          pdev->name);
1542
1543        if (db->addr_req == NULL) {
1544                dev_err(db->dev, "cannot claim address reg area\n");
1545                ret = -EIO;
1546                goto out;
1547        }
1548
1549        db->io_addr = ioremap(db->addr_res->start, iosize);
1550
1551        if (db->io_addr == NULL) {
1552                dev_err(db->dev, "failed to ioremap address reg\n");
1553                ret = -EINVAL;
1554                goto out;
1555        }
1556
1557        iosize = resource_size(db->data_res);
1558        db->data_req = request_mem_region(db->data_res->start, iosize,
1559                                          pdev->name);
1560
1561        if (db->data_req == NULL) {
1562                dev_err(db->dev, "cannot claim data reg area\n");
1563                ret = -EIO;
1564                goto out;
1565        }
1566
1567        db->io_data = ioremap(db->data_res->start, iosize);
1568
1569        if (db->io_data == NULL) {
1570                dev_err(db->dev, "failed to ioremap data reg\n");
1571                ret = -EINVAL;
1572                goto out;
1573        }
1574
1575        /* fill in parameters for net-dev structure */
1576        ndev->base_addr = (unsigned long)db->io_addr;
1577
1578        /* ensure at least we have a default set of IO routines */
1579        dm9000_set_io(db, iosize);
1580
1581        /* check to see if anything is being over-ridden */
1582        if (pdata != NULL) {
1583                /* check to see if the driver wants to over-ride the
1584                 * default IO width */
1585
1586                if (pdata->flags & DM9000_PLATF_8BITONLY)
1587                        dm9000_set_io(db, 1);
1588
1589                if (pdata->flags & DM9000_PLATF_16BITONLY)
1590                        dm9000_set_io(db, 2);
1591
1592                if (pdata->flags & DM9000_PLATF_32BITONLY)
1593                        dm9000_set_io(db, 4);
1594
1595                /* check to see if there are any IO routine
1596                 * over-rides */
1597
1598                if (pdata->inblk != NULL)
1599                        db->inblk = pdata->inblk;
1600
1601                if (pdata->outblk != NULL)
1602                        db->outblk = pdata->outblk;
1603
1604                if (pdata->dumpblk != NULL)
1605                        db->dumpblk = pdata->dumpblk;
1606
1607                db->flags = pdata->flags;
1608        }
1609
1610#ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1611        db->flags |= DM9000_PLATF_SIMPLE_PHY;
1612#endif
1613
1614        dm9000_reset(db);
1615
1616        /* try multiple times, DM9000 sometimes gets the read wrong */
1617        for (i = 0; i < 8; i++) {
1618                id_val  = ior(db, DM9000_VIDL);
1619                id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1620                id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1621                id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1622
1623                if (id_val == DM9000_ID)
1624                        break;
1625                dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1626        }
1627
1628        if (id_val != DM9000_ID) {
1629                dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1630                ret = -ENODEV;
1631                goto out;
1632        }
1633
1634        /* Identify what type of DM9000 we are working on */
1635
1636        id_val = ior(db, DM9000_CHIPR);
1637        dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1638
1639        switch (id_val) {
1640        case CHIPR_DM9000A:
1641                db->type = TYPE_DM9000A;
1642                break;
1643        case CHIPR_DM9000B:
1644                db->type = TYPE_DM9000B;
1645                break;
1646        default:
1647                dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1648                db->type = TYPE_DM9000E;
1649        }
1650
1651        /* dm9000a/b are capable of hardware checksum offload */
1652        if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1653                ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1654                ndev->features |= ndev->hw_features;
1655        }
1656
1657        /* from this point we assume that we have found a DM9000 */
1658
1659        ndev->netdev_ops        = &dm9000_netdev_ops;
1660        ndev->watchdog_timeo    = msecs_to_jiffies(watchdog);
1661        ndev->ethtool_ops       = &dm9000_ethtool_ops;
1662
1663        db->msg_enable       = NETIF_MSG_LINK;
1664        db->mii.phy_id_mask  = 0x1f;
1665        db->mii.reg_num_mask = 0x1f;
1666        db->mii.force_media  = 0;
1667        db->mii.full_duplex  = 0;
1668        db->mii.dev          = ndev;
1669        db->mii.mdio_read    = dm9000_phy_read;
1670        db->mii.mdio_write   = dm9000_phy_write;
1671
1672        mac_src = "eeprom";
1673
1674        /* try reading the node address from the attached EEPROM */
1675        for (i = 0; i < 6; i += 2)
1676                dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1677
1678        if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1679                mac_src = "platform data";
1680                memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1681        }
1682
1683        if (!is_valid_ether_addr(ndev->dev_addr)) {
1684                /* try reading from mac */
1685
1686                mac_src = "chip";
1687                for (i = 0; i < 6; i++)
1688                        ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1689        }
1690
1691        if (!is_valid_ether_addr(ndev->dev_addr)) {
1692                inv_mac_addr = true;
1693                eth_hw_addr_random(ndev);
1694                mac_src = "random";
1695        }
1696
1697
1698        platform_set_drvdata(pdev, ndev);
1699        ret = register_netdev(ndev);
1700
1701        if (ret == 0) {
1702                if (inv_mac_addr)
1703                        dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
1704                                 ndev->name);
1705                printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1706                       ndev->name, dm9000_type_to_char(db->type),
1707                       db->io_addr, db->io_data, ndev->irq,
1708                       ndev->dev_addr, mac_src);
1709        }
1710        return 0;
1711
1712out:
1713        dev_err(db->dev, "not found (%d).\n", ret);
1714
1715        dm9000_release_board(pdev, db);
1716        free_netdev(ndev);
1717
1718        return ret;
1719}
1720
1721static int
1722dm9000_drv_suspend(struct device *dev)
1723{
1724        struct platform_device *pdev = to_platform_device(dev);
1725        struct net_device *ndev = platform_get_drvdata(pdev);
1726        struct board_info *db;
1727
1728        if (ndev) {
1729                db = netdev_priv(ndev);
1730                db->in_suspend = 1;
1731
1732                if (!netif_running(ndev))
1733                        return 0;
1734
1735                netif_device_detach(ndev);
1736
1737                /* only shutdown if not using WoL */
1738                if (!db->wake_state)
1739                        dm9000_shutdown(ndev);
1740        }
1741        return 0;
1742}
1743
1744static int
1745dm9000_drv_resume(struct device *dev)
1746{
1747        struct platform_device *pdev = to_platform_device(dev);
1748        struct net_device *ndev = platform_get_drvdata(pdev);
1749        struct board_info *db = netdev_priv(ndev);
1750
1751        if (ndev) {
1752                if (netif_running(ndev)) {
1753                        /* reset if we were not in wake mode to ensure if
1754                         * the device was powered off it is in a known state */
1755                        if (!db->wake_state) {
1756                                dm9000_init_dm9000(ndev);
1757                                dm9000_unmask_interrupts(db);
1758                        }
1759
1760                        netif_device_attach(ndev);
1761                }
1762
1763                db->in_suspend = 0;
1764        }
1765        return 0;
1766}
1767
1768static const struct dev_pm_ops dm9000_drv_pm_ops = {
1769        .suspend        = dm9000_drv_suspend,
1770        .resume         = dm9000_drv_resume,
1771};
1772
1773static int
1774dm9000_drv_remove(struct platform_device *pdev)
1775{
1776        struct net_device *ndev = platform_get_drvdata(pdev);
1777
1778        unregister_netdev(ndev);
1779        dm9000_release_board(pdev, netdev_priv(ndev));
1780        free_netdev(ndev);              /* free device structure */
1781
1782        dev_dbg(&pdev->dev, "released and freed device\n");
1783        return 0;
1784}
1785
1786#ifdef CONFIG_OF
1787static const struct of_device_id dm9000_of_matches[] = {
1788        { .compatible = "davicom,dm9000", },
1789        { /* sentinel */ }
1790};
1791MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1792#endif
1793
1794static struct platform_driver dm9000_driver = {
1795        .driver = {
1796                .name    = "dm9000",
1797                .pm      = &dm9000_drv_pm_ops,
1798                .of_match_table = of_match_ptr(dm9000_of_matches),
1799        },
1800        .probe   = dm9000_probe,
1801        .remove  = dm9000_drv_remove,
1802};
1803
1804module_platform_driver(dm9000_driver);
1805
1806MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1807MODULE_DESCRIPTION("Davicom DM9000 network driver");
1808MODULE_LICENSE("GPL");
1809MODULE_ALIAS("platform:dm9000");
1810