linux/drivers/net/ethernet/qlogic/qede/qede_main.c
<<
>>
Prefs
   1/* QLogic qede NIC Driver
   2* Copyright (c) 2015 QLogic Corporation
   3*
   4* This software is available under the terms of the GNU General Public License
   5* (GPL) Version 2, available from the file COPYING in the main directory of
   6* this source tree.
   7*/
   8
   9#include <linux/module.h>
  10#include <linux/pci.h>
  11#include <linux/version.h>
  12#include <linux/device.h>
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/skbuff.h>
  16#include <linux/errno.h>
  17#include <linux/list.h>
  18#include <linux/string.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/interrupt.h>
  21#include <asm/byteorder.h>
  22#include <asm/param.h>
  23#include <linux/io.h>
  24#include <linux/netdev_features.h>
  25#include <linux/udp.h>
  26#include <linux/tcp.h>
  27#include <net/udp_tunnel.h>
  28#include <linux/ip.h>
  29#include <net/ipv6.h>
  30#include <net/tcp.h>
  31#include <linux/if_ether.h>
  32#include <linux/if_vlan.h>
  33#include <linux/pkt_sched.h>
  34#include <linux/ethtool.h>
  35#include <linux/in.h>
  36#include <linux/random.h>
  37#include <net/ip6_checksum.h>
  38#include <linux/bitops.h>
  39#include <linux/qed/qede_roce.h>
  40#include "qede.h"
  41
  42static char version[] =
  43        "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
  44
  45MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
  46MODULE_LICENSE("GPL");
  47MODULE_VERSION(DRV_MODULE_VERSION);
  48
  49static uint debug;
  50module_param(debug, uint, 0);
  51MODULE_PARM_DESC(debug, " Default debug msglevel");
  52
  53static const struct qed_eth_ops *qed_ops;
  54
  55#define CHIP_NUM_57980S_40              0x1634
  56#define CHIP_NUM_57980S_10              0x1666
  57#define CHIP_NUM_57980S_MF              0x1636
  58#define CHIP_NUM_57980S_100             0x1644
  59#define CHIP_NUM_57980S_50              0x1654
  60#define CHIP_NUM_57980S_25              0x1656
  61#define CHIP_NUM_57980S_IOV             0x1664
  62
  63#ifndef PCI_DEVICE_ID_NX2_57980E
  64#define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
  65#define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
  66#define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
  67#define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
  68#define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
  69#define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
  70#define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
  71#endif
  72
  73enum qede_pci_private {
  74        QEDE_PRIVATE_PF,
  75        QEDE_PRIVATE_VF
  76};
  77
  78static const struct pci_device_id qede_pci_tbl[] = {
  79        {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
  80        {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
  81        {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
  82        {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
  83        {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
  84        {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
  85#ifdef CONFIG_QED_SRIOV
  86        {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
  87#endif
  88        { 0 }
  89};
  90
  91MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
  92
  93static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  94
  95#define TX_TIMEOUT              (5 * HZ)
  96
  97static void qede_remove(struct pci_dev *pdev);
  98static int qede_alloc_rx_buffer(struct qede_dev *edev,
  99                                struct qede_rx_queue *rxq);
 100static void qede_link_update(void *dev, struct qed_link_output *link);
 101
 102#ifdef CONFIG_QED_SRIOV
 103static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
 104                            __be16 vlan_proto)
 105{
 106        struct qede_dev *edev = netdev_priv(ndev);
 107
 108        if (vlan > 4095) {
 109                DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
 110                return -EINVAL;
 111        }
 112
 113        if (vlan_proto != htons(ETH_P_8021Q))
 114                return -EPROTONOSUPPORT;
 115
 116        DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
 117                   vlan, vf);
 118
 119        return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
 120}
 121
 122static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
 123{
 124        struct qede_dev *edev = netdev_priv(ndev);
 125
 126        DP_VERBOSE(edev, QED_MSG_IOV,
 127                   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
 128                   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
 129
 130        if (!is_valid_ether_addr(mac)) {
 131                DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
 132                return -EINVAL;
 133        }
 134
 135        return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
 136}
 137
 138static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
 139{
 140        struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
 141        struct qed_dev_info *qed_info = &edev->dev_info.common;
 142        int rc;
 143
 144        DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
 145
 146        rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
 147
 148        /* Enable/Disable Tx switching for PF */
 149        if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
 150            qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
 151                struct qed_update_vport_params params;
 152
 153                memset(&params, 0, sizeof(params));
 154                params.vport_id = 0;
 155                params.update_tx_switching_flg = 1;
 156                params.tx_switching_flg = num_vfs_param ? 1 : 0;
 157                edev->ops->vport_update(edev->cdev, &params);
 158        }
 159
 160        return rc;
 161}
 162#endif
 163
 164static struct pci_driver qede_pci_driver = {
 165        .name = "qede",
 166        .id_table = qede_pci_tbl,
 167        .probe = qede_probe,
 168        .remove = qede_remove,
 169#ifdef CONFIG_QED_SRIOV
 170        .sriov_configure = qede_sriov_configure,
 171#endif
 172};
 173
 174static void qede_force_mac(void *dev, u8 *mac)
 175{
 176        struct qede_dev *edev = dev;
 177
 178        ether_addr_copy(edev->ndev->dev_addr, mac);
 179        ether_addr_copy(edev->primary_mac, mac);
 180}
 181
 182static struct qed_eth_cb_ops qede_ll_ops = {
 183        {
 184                .link_update = qede_link_update,
 185        },
 186        .force_mac = qede_force_mac,
 187};
 188
 189static int qede_netdev_event(struct notifier_block *this, unsigned long event,
 190                             void *ptr)
 191{
 192        struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
 193        struct ethtool_drvinfo drvinfo;
 194        struct qede_dev *edev;
 195
 196        if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
 197                goto done;
 198
 199        /* Check whether this is a qede device */
 200        if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
 201                goto done;
 202
 203        memset(&drvinfo, 0, sizeof(drvinfo));
 204        ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
 205        if (strcmp(drvinfo.driver, "qede"))
 206                goto done;
 207        edev = netdev_priv(ndev);
 208
 209        switch (event) {
 210        case NETDEV_CHANGENAME:
 211                /* Notify qed of the name change */
 212                if (!edev->ops || !edev->ops->common)
 213                        goto done;
 214                edev->ops->common->set_id(edev->cdev, edev->ndev->name, "qede");
 215                break;
 216        case NETDEV_CHANGEADDR:
 217                edev = netdev_priv(ndev);
 218                qede_roce_event_changeaddr(edev);
 219                break;
 220        }
 221
 222done:
 223        return NOTIFY_DONE;
 224}
 225
 226static struct notifier_block qede_netdev_notifier = {
 227        .notifier_call = qede_netdev_event,
 228};
 229
 230static
 231int __init qede_init(void)
 232{
 233        int ret;
 234
 235        pr_info("qede_init: %s\n", version);
 236
 237        qed_ops = qed_get_eth_ops();
 238        if (!qed_ops) {
 239                pr_notice("Failed to get qed ethtool operations\n");
 240                return -EINVAL;
 241        }
 242
 243        /* Must register notifier before pci ops, since we might miss
 244         * interface rename after pci probe and netdev registeration.
 245         */
 246        ret = register_netdevice_notifier(&qede_netdev_notifier);
 247        if (ret) {
 248                pr_notice("Failed to register netdevice_notifier\n");
 249                qed_put_eth_ops();
 250                return -EINVAL;
 251        }
 252
 253        ret = pci_register_driver(&qede_pci_driver);
 254        if (ret) {
 255                pr_notice("Failed to register driver\n");
 256                unregister_netdevice_notifier(&qede_netdev_notifier);
 257                qed_put_eth_ops();
 258                return -EINVAL;
 259        }
 260
 261        return 0;
 262}
 263
 264static void __exit qede_cleanup(void)
 265{
 266        if (debug & QED_LOG_INFO_MASK)
 267                pr_info("qede_cleanup called\n");
 268
 269        unregister_netdevice_notifier(&qede_netdev_notifier);
 270        pci_unregister_driver(&qede_pci_driver);
 271        qed_put_eth_ops();
 272}
 273
 274module_init(qede_init);
 275module_exit(qede_cleanup);
 276
 277/* -------------------------------------------------------------------------
 278 * START OF FAST-PATH
 279 * -------------------------------------------------------------------------
 280 */
 281
 282/* Unmap the data and free skb */
 283static int qede_free_tx_pkt(struct qede_dev *edev,
 284                            struct qede_tx_queue *txq, int *len)
 285{
 286        u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
 287        struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
 288        struct eth_tx_1st_bd *first_bd;
 289        struct eth_tx_bd *tx_data_bd;
 290        int bds_consumed = 0;
 291        int nbds;
 292        bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
 293        int i, split_bd_len = 0;
 294
 295        if (unlikely(!skb)) {
 296                DP_ERR(edev,
 297                       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
 298                       idx, txq->sw_tx_cons, txq->sw_tx_prod);
 299                return -1;
 300        }
 301
 302        *len = skb->len;
 303
 304        first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
 305
 306        bds_consumed++;
 307
 308        nbds = first_bd->data.nbds;
 309
 310        if (data_split) {
 311                struct eth_tx_bd *split = (struct eth_tx_bd *)
 312                        qed_chain_consume(&txq->tx_pbl);
 313                split_bd_len = BD_UNMAP_LEN(split);
 314                bds_consumed++;
 315        }
 316        dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
 317                         BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
 318
 319        /* Unmap the data of the skb frags */
 320        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
 321                tx_data_bd = (struct eth_tx_bd *)
 322                        qed_chain_consume(&txq->tx_pbl);
 323                dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
 324                               BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
 325        }
 326
 327        while (bds_consumed++ < nbds)
 328                qed_chain_consume(&txq->tx_pbl);
 329
 330        /* Free skb */
 331        dev_kfree_skb_any(skb);
 332        txq->sw_tx_ring[idx].skb = NULL;
 333        txq->sw_tx_ring[idx].flags = 0;
 334
 335        return 0;
 336}
 337
 338/* Unmap the data and free skb when mapping failed during start_xmit */
 339static void qede_free_failed_tx_pkt(struct qede_dev *edev,
 340                                    struct qede_tx_queue *txq,
 341                                    struct eth_tx_1st_bd *first_bd,
 342                                    int nbd, bool data_split)
 343{
 344        u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
 345        struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
 346        struct eth_tx_bd *tx_data_bd;
 347        int i, split_bd_len = 0;
 348
 349        /* Return prod to its position before this skb was handled */
 350        qed_chain_set_prod(&txq->tx_pbl,
 351                           le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
 352
 353        first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
 354
 355        if (data_split) {
 356                struct eth_tx_bd *split = (struct eth_tx_bd *)
 357                                          qed_chain_produce(&txq->tx_pbl);
 358                split_bd_len = BD_UNMAP_LEN(split);
 359                nbd--;
 360        }
 361
 362        dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
 363                         BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
 364
 365        /* Unmap the data of the skb frags */
 366        for (i = 0; i < nbd; i++) {
 367                tx_data_bd = (struct eth_tx_bd *)
 368                        qed_chain_produce(&txq->tx_pbl);
 369                if (tx_data_bd->nbytes)
 370                        dma_unmap_page(&edev->pdev->dev,
 371                                       BD_UNMAP_ADDR(tx_data_bd),
 372                                       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
 373        }
 374
 375        /* Return again prod to its position before this skb was handled */
 376        qed_chain_set_prod(&txq->tx_pbl,
 377                           le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
 378
 379        /* Free skb */
 380        dev_kfree_skb_any(skb);
 381        txq->sw_tx_ring[idx].skb = NULL;
 382        txq->sw_tx_ring[idx].flags = 0;
 383}
 384
 385static u32 qede_xmit_type(struct qede_dev *edev,
 386                          struct sk_buff *skb, int *ipv6_ext)
 387{
 388        u32 rc = XMIT_L4_CSUM;
 389        __be16 l3_proto;
 390
 391        if (skb->ip_summed != CHECKSUM_PARTIAL)
 392                return XMIT_PLAIN;
 393
 394        l3_proto = vlan_get_protocol(skb);
 395        if (l3_proto == htons(ETH_P_IPV6) &&
 396            (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
 397                *ipv6_ext = 1;
 398
 399        if (skb->encapsulation)
 400                rc |= XMIT_ENC;
 401
 402        if (skb_is_gso(skb))
 403                rc |= XMIT_LSO;
 404
 405        return rc;
 406}
 407
 408static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
 409                                         struct eth_tx_2nd_bd *second_bd,
 410                                         struct eth_tx_3rd_bd *third_bd)
 411{
 412        u8 l4_proto;
 413        u16 bd2_bits1 = 0, bd2_bits2 = 0;
 414
 415        bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
 416
 417        bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
 418                     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
 419                    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
 420
 421        bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
 422                      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
 423
 424        if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
 425                l4_proto = ipv6_hdr(skb)->nexthdr;
 426        else
 427                l4_proto = ip_hdr(skb)->protocol;
 428
 429        if (l4_proto == IPPROTO_UDP)
 430                bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
 431
 432        if (third_bd)
 433                third_bd->data.bitfields |=
 434                        cpu_to_le16(((tcp_hdrlen(skb) / 4) &
 435                                ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
 436                                ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
 437
 438        second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
 439        second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
 440}
 441
 442static int map_frag_to_bd(struct qede_dev *edev,
 443                          skb_frag_t *frag, struct eth_tx_bd *bd)
 444{
 445        dma_addr_t mapping;
 446
 447        /* Map skb non-linear frag data for DMA */
 448        mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
 449                                   skb_frag_size(frag), DMA_TO_DEVICE);
 450        if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
 451                DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
 452                return -ENOMEM;
 453        }
 454
 455        /* Setup the data pointer of the frag data */
 456        BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
 457
 458        return 0;
 459}
 460
 461static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
 462{
 463        if (is_encap_pkt)
 464                return (skb_inner_transport_header(skb) +
 465                        inner_tcp_hdrlen(skb) - skb->data);
 466        else
 467                return (skb_transport_header(skb) +
 468                        tcp_hdrlen(skb) - skb->data);
 469}
 470
 471/* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
 472#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
 473static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
 474                             u8 xmit_type)
 475{
 476        int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
 477
 478        if (xmit_type & XMIT_LSO) {
 479                int hlen;
 480
 481                hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
 482
 483                /* linear payload would require its own BD */
 484                if (skb_headlen(skb) > hlen)
 485                        allowed_frags--;
 486        }
 487
 488        return (skb_shinfo(skb)->nr_frags > allowed_frags);
 489}
 490#endif
 491
 492static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
 493{
 494        /* wmb makes sure that the BDs data is updated before updating the
 495         * producer, otherwise FW may read old data from the BDs.
 496         */
 497        wmb();
 498        barrier();
 499        writel(txq->tx_db.raw, txq->doorbell_addr);
 500
 501        /* mmiowb is needed to synchronize doorbell writes from more than one
 502         * processor. It guarantees that the write arrives to the device before
 503         * the queue lock is released and another start_xmit is called (possibly
 504         * on another CPU). Without this barrier, the next doorbell can bypass
 505         * this doorbell. This is applicable to IA64/Altix systems.
 506         */
 507        mmiowb();
 508}
 509
 510/* Main transmit function */
 511static netdev_tx_t qede_start_xmit(struct sk_buff *skb,
 512                                   struct net_device *ndev)
 513{
 514        struct qede_dev *edev = netdev_priv(ndev);
 515        struct netdev_queue *netdev_txq;
 516        struct qede_tx_queue *txq;
 517        struct eth_tx_1st_bd *first_bd;
 518        struct eth_tx_2nd_bd *second_bd = NULL;
 519        struct eth_tx_3rd_bd *third_bd = NULL;
 520        struct eth_tx_bd *tx_data_bd = NULL;
 521        u16 txq_index;
 522        u8 nbd = 0;
 523        dma_addr_t mapping;
 524        int rc, frag_idx = 0, ipv6_ext = 0;
 525        u8 xmit_type;
 526        u16 idx;
 527        u16 hlen;
 528        bool data_split = false;
 529
 530        /* Get tx-queue context and netdev index */
 531        txq_index = skb_get_queue_mapping(skb);
 532        WARN_ON(txq_index >= QEDE_TSS_COUNT(edev));
 533        txq = QEDE_TX_QUEUE(edev, txq_index);
 534        netdev_txq = netdev_get_tx_queue(ndev, txq_index);
 535
 536        WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
 537
 538        xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
 539
 540#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
 541        if (qede_pkt_req_lin(edev, skb, xmit_type)) {
 542                if (skb_linearize(skb)) {
 543                        DP_NOTICE(edev,
 544                                  "SKB linearization failed - silently dropping this SKB\n");
 545                        dev_kfree_skb_any(skb);
 546                        return NETDEV_TX_OK;
 547                }
 548        }
 549#endif
 550
 551        /* Fill the entry in the SW ring and the BDs in the FW ring */
 552        idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
 553        txq->sw_tx_ring[idx].skb = skb;
 554        first_bd = (struct eth_tx_1st_bd *)
 555                   qed_chain_produce(&txq->tx_pbl);
 556        memset(first_bd, 0, sizeof(*first_bd));
 557        first_bd->data.bd_flags.bitfields =
 558                1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
 559
 560        /* Map skb linear data for DMA and set in the first BD */
 561        mapping = dma_map_single(&edev->pdev->dev, skb->data,
 562                                 skb_headlen(skb), DMA_TO_DEVICE);
 563        if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
 564                DP_NOTICE(edev, "SKB mapping failed\n");
 565                qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
 566                qede_update_tx_producer(txq);
 567                return NETDEV_TX_OK;
 568        }
 569        nbd++;
 570        BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
 571
 572        /* In case there is IPv6 with extension headers or LSO we need 2nd and
 573         * 3rd BDs.
 574         */
 575        if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
 576                second_bd = (struct eth_tx_2nd_bd *)
 577                        qed_chain_produce(&txq->tx_pbl);
 578                memset(second_bd, 0, sizeof(*second_bd));
 579
 580                nbd++;
 581                third_bd = (struct eth_tx_3rd_bd *)
 582                        qed_chain_produce(&txq->tx_pbl);
 583                memset(third_bd, 0, sizeof(*third_bd));
 584
 585                nbd++;
 586                /* We need to fill in additional data in second_bd... */
 587                tx_data_bd = (struct eth_tx_bd *)second_bd;
 588        }
 589
 590        if (skb_vlan_tag_present(skb)) {
 591                first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 592                first_bd->data.bd_flags.bitfields |=
 593                        1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
 594        }
 595
 596        /* Fill the parsing flags & params according to the requested offload */
 597        if (xmit_type & XMIT_L4_CSUM) {
 598                /* We don't re-calculate IP checksum as it is already done by
 599                 * the upper stack
 600                 */
 601                first_bd->data.bd_flags.bitfields |=
 602                        1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
 603
 604                if (xmit_type & XMIT_ENC) {
 605                        first_bd->data.bd_flags.bitfields |=
 606                                1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
 607                        first_bd->data.bitfields |=
 608                            1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
 609                }
 610
 611                /* Legacy FW had flipped behavior in regard to this bit -
 612                 * I.e., needed to set to prevent FW from touching encapsulated
 613                 * packets when it didn't need to.
 614                 */
 615                if (unlikely(txq->is_legacy))
 616                        first_bd->data.bitfields ^=
 617                            1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
 618
 619                /* If the packet is IPv6 with extension header, indicate that
 620                 * to FW and pass few params, since the device cracker doesn't
 621                 * support parsing IPv6 with extension header/s.
 622                 */
 623                if (unlikely(ipv6_ext))
 624                        qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
 625        }
 626
 627        if (xmit_type & XMIT_LSO) {
 628                first_bd->data.bd_flags.bitfields |=
 629                        (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
 630                third_bd->data.lso_mss =
 631                        cpu_to_le16(skb_shinfo(skb)->gso_size);
 632
 633                if (unlikely(xmit_type & XMIT_ENC)) {
 634                        first_bd->data.bd_flags.bitfields |=
 635                                1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
 636                        hlen = qede_get_skb_hlen(skb, true);
 637                } else {
 638                        first_bd->data.bd_flags.bitfields |=
 639                                1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
 640                        hlen = qede_get_skb_hlen(skb, false);
 641                }
 642
 643                /* @@@TBD - if will not be removed need to check */
 644                third_bd->data.bitfields |=
 645                        cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
 646
 647                /* Make life easier for FW guys who can't deal with header and
 648                 * data on same BD. If we need to split, use the second bd...
 649                 */
 650                if (unlikely(skb_headlen(skb) > hlen)) {
 651                        DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
 652                                   "TSO split header size is %d (%x:%x)\n",
 653                                   first_bd->nbytes, first_bd->addr.hi,
 654                                   first_bd->addr.lo);
 655
 656                        mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
 657                                           le32_to_cpu(first_bd->addr.lo)) +
 658                                           hlen;
 659
 660                        BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
 661                                              le16_to_cpu(first_bd->nbytes) -
 662                                              hlen);
 663
 664                        /* this marks the BD as one that has no
 665                         * individual mapping
 666                         */
 667                        txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
 668
 669                        first_bd->nbytes = cpu_to_le16(hlen);
 670
 671                        tx_data_bd = (struct eth_tx_bd *)third_bd;
 672                        data_split = true;
 673                }
 674        } else {
 675                first_bd->data.bitfields |=
 676                    (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
 677                    ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
 678        }
 679
 680        /* Handle fragmented skb */
 681        /* special handle for frags inside 2nd and 3rd bds.. */
 682        while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
 683                rc = map_frag_to_bd(edev,
 684                                    &skb_shinfo(skb)->frags[frag_idx],
 685                                    tx_data_bd);
 686                if (rc) {
 687                        qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
 688                                                data_split);
 689                        qede_update_tx_producer(txq);
 690                        return NETDEV_TX_OK;
 691                }
 692
 693                if (tx_data_bd == (struct eth_tx_bd *)second_bd)
 694                        tx_data_bd = (struct eth_tx_bd *)third_bd;
 695                else
 696                        tx_data_bd = NULL;
 697
 698                frag_idx++;
 699        }
 700
 701        /* map last frags into 4th, 5th .... */
 702        for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
 703                tx_data_bd = (struct eth_tx_bd *)
 704                             qed_chain_produce(&txq->tx_pbl);
 705
 706                memset(tx_data_bd, 0, sizeof(*tx_data_bd));
 707
 708                rc = map_frag_to_bd(edev,
 709                                    &skb_shinfo(skb)->frags[frag_idx],
 710                                    tx_data_bd);
 711                if (rc) {
 712                        qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
 713                                                data_split);
 714                        qede_update_tx_producer(txq);
 715                        return NETDEV_TX_OK;
 716                }
 717        }
 718
 719        /* update the first BD with the actual num BDs */
 720        first_bd->data.nbds = nbd;
 721
 722        netdev_tx_sent_queue(netdev_txq, skb->len);
 723
 724        skb_tx_timestamp(skb);
 725
 726        /* Advance packet producer only before sending the packet since mapping
 727         * of pages may fail.
 728         */
 729        txq->sw_tx_prod++;
 730
 731        /* 'next page' entries are counted in the producer value */
 732        txq->tx_db.data.bd_prod =
 733                cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
 734
 735        if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
 736                qede_update_tx_producer(txq);
 737
 738        if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
 739                      < (MAX_SKB_FRAGS + 1))) {
 740                if (skb->xmit_more)
 741                        qede_update_tx_producer(txq);
 742
 743                netif_tx_stop_queue(netdev_txq);
 744                txq->stopped_cnt++;
 745                DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
 746                           "Stop queue was called\n");
 747                /* paired memory barrier is in qede_tx_int(), we have to keep
 748                 * ordering of set_bit() in netif_tx_stop_queue() and read of
 749                 * fp->bd_tx_cons
 750                 */
 751                smp_mb();
 752
 753                if (qed_chain_get_elem_left(&txq->tx_pbl)
 754                     >= (MAX_SKB_FRAGS + 1) &&
 755                    (edev->state == QEDE_STATE_OPEN)) {
 756                        netif_tx_wake_queue(netdev_txq);
 757                        DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
 758                                   "Wake queue was called\n");
 759                }
 760        }
 761
 762        return NETDEV_TX_OK;
 763}
 764
 765int qede_txq_has_work(struct qede_tx_queue *txq)
 766{
 767        u16 hw_bd_cons;
 768
 769        /* Tell compiler that consumer and producer can change */
 770        barrier();
 771        hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 772        if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
 773                return 0;
 774
 775        return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
 776}
 777
 778static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
 779{
 780        struct netdev_queue *netdev_txq;
 781        u16 hw_bd_cons;
 782        unsigned int pkts_compl = 0, bytes_compl = 0;
 783        int rc;
 784
 785        netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
 786
 787        hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 788        barrier();
 789
 790        while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
 791                int len = 0;
 792
 793                rc = qede_free_tx_pkt(edev, txq, &len);
 794                if (rc) {
 795                        DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
 796                                  hw_bd_cons,
 797                                  qed_chain_get_cons_idx(&txq->tx_pbl));
 798                        break;
 799                }
 800
 801                bytes_compl += len;
 802                pkts_compl++;
 803                txq->sw_tx_cons++;
 804                txq->xmit_pkts++;
 805        }
 806
 807        netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
 808
 809        /* Need to make the tx_bd_cons update visible to start_xmit()
 810         * before checking for netif_tx_queue_stopped().  Without the
 811         * memory barrier, there is a small possibility that
 812         * start_xmit() will miss it and cause the queue to be stopped
 813         * forever.
 814         * On the other hand we need an rmb() here to ensure the proper
 815         * ordering of bit testing in the following
 816         * netif_tx_queue_stopped(txq) call.
 817         */
 818        smp_mb();
 819
 820        if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
 821                /* Taking tx_lock is needed to prevent reenabling the queue
 822                 * while it's empty. This could have happen if rx_action() gets
 823                 * suspended in qede_tx_int() after the condition before
 824                 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
 825                 *
 826                 * stops the queue->sees fresh tx_bd_cons->releases the queue->
 827                 * sends some packets consuming the whole queue again->
 828                 * stops the queue
 829                 */
 830
 831                __netif_tx_lock(netdev_txq, smp_processor_id());
 832
 833                if ((netif_tx_queue_stopped(netdev_txq)) &&
 834                    (edev->state == QEDE_STATE_OPEN) &&
 835                    (qed_chain_get_elem_left(&txq->tx_pbl)
 836                      >= (MAX_SKB_FRAGS + 1))) {
 837                        netif_tx_wake_queue(netdev_txq);
 838                        DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
 839                                   "Wake queue was called\n");
 840                }
 841
 842                __netif_tx_unlock(netdev_txq);
 843        }
 844
 845        return 0;
 846}
 847
 848bool qede_has_rx_work(struct qede_rx_queue *rxq)
 849{
 850        u16 hw_comp_cons, sw_comp_cons;
 851
 852        /* Tell compiler that status block fields can change */
 853        barrier();
 854
 855        hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
 856        sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
 857
 858        return hw_comp_cons != sw_comp_cons;
 859}
 860
 861static bool qede_has_tx_work(struct qede_fastpath *fp)
 862{
 863        u8 tc;
 864
 865        for (tc = 0; tc < fp->edev->num_tc; tc++)
 866                if (qede_txq_has_work(&fp->txqs[tc]))
 867                        return true;
 868        return false;
 869}
 870
 871static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
 872{
 873        qed_chain_consume(&rxq->rx_bd_ring);
 874        rxq->sw_rx_cons++;
 875}
 876
 877/* This function reuses the buffer(from an offset) from
 878 * consumer index to producer index in the bd ring
 879 */
 880static inline void qede_reuse_page(struct qede_dev *edev,
 881                                   struct qede_rx_queue *rxq,
 882                                   struct sw_rx_data *curr_cons)
 883{
 884        struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
 885        struct sw_rx_data *curr_prod;
 886        dma_addr_t new_mapping;
 887
 888        curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
 889        *curr_prod = *curr_cons;
 890
 891        new_mapping = curr_prod->mapping + curr_prod->page_offset;
 892
 893        rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
 894        rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
 895
 896        rxq->sw_rx_prod++;
 897        curr_cons->data = NULL;
 898}
 899
 900/* In case of allocation failures reuse buffers
 901 * from consumer index to produce buffers for firmware
 902 */
 903void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
 904                             struct qede_dev *edev, u8 count)
 905{
 906        struct sw_rx_data *curr_cons;
 907
 908        for (; count > 0; count--) {
 909                curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
 910                qede_reuse_page(edev, rxq, curr_cons);
 911                qede_rx_bd_ring_consume(rxq);
 912        }
 913}
 914
 915static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
 916                                         struct qede_rx_queue *rxq,
 917                                         struct sw_rx_data *curr_cons)
 918{
 919        /* Move to the next segment in the page */
 920        curr_cons->page_offset += rxq->rx_buf_seg_size;
 921
 922        if (curr_cons->page_offset == PAGE_SIZE) {
 923                if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
 924                        /* Since we failed to allocate new buffer
 925                         * current buffer can be used again.
 926                         */
 927                        curr_cons->page_offset -= rxq->rx_buf_seg_size;
 928
 929                        return -ENOMEM;
 930                }
 931
 932                dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
 933                               PAGE_SIZE, DMA_FROM_DEVICE);
 934        } else {
 935                /* Increment refcount of the page as we don't want
 936                 * network stack to take the ownership of the page
 937                 * which can be recycled multiple times by the driver.
 938                 */
 939                page_ref_inc(curr_cons->data);
 940                qede_reuse_page(edev, rxq, curr_cons);
 941        }
 942
 943        return 0;
 944}
 945
 946void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
 947{
 948        u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
 949        u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
 950        struct eth_rx_prod_data rx_prods = {0};
 951
 952        /* Update producers */
 953        rx_prods.bd_prod = cpu_to_le16(bd_prod);
 954        rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
 955
 956        /* Make sure that the BD and SGE data is updated before updating the
 957         * producers since FW might read the BD/SGE right after the producer
 958         * is updated.
 959         */
 960        wmb();
 961
 962        internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
 963                        (u32 *)&rx_prods);
 964
 965        /* mmiowb is needed to synchronize doorbell writes from more than one
 966         * processor. It guarantees that the write arrives to the device before
 967         * the napi lock is released and another qede_poll is called (possibly
 968         * on another CPU). Without this barrier, the next doorbell can bypass
 969         * this doorbell. This is applicable to IA64/Altix systems.
 970         */
 971        mmiowb();
 972}
 973
 974static u32 qede_get_rxhash(struct qede_dev *edev,
 975                           u8 bitfields,
 976                           __le32 rss_hash, enum pkt_hash_types *rxhash_type)
 977{
 978        enum rss_hash_type htype;
 979
 980        htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
 981
 982        if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
 983                *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
 984                                (htype == RSS_HASH_TYPE_IPV6)) ?
 985                                PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
 986                return le32_to_cpu(rss_hash);
 987        }
 988        *rxhash_type = PKT_HASH_TYPE_NONE;
 989        return 0;
 990}
 991
 992static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
 993{
 994        skb_checksum_none_assert(skb);
 995
 996        if (csum_flag & QEDE_CSUM_UNNECESSARY)
 997                skb->ip_summed = CHECKSUM_UNNECESSARY;
 998
 999        if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
1000                skb->csum_level = 1;
1001}
1002
1003static inline void qede_skb_receive(struct qede_dev *edev,
1004                                    struct qede_fastpath *fp,
1005                                    struct sk_buff *skb, u16 vlan_tag)
1006{
1007        if (vlan_tag)
1008                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1009
1010        napi_gro_receive(&fp->napi, skb);
1011}
1012
1013static void qede_set_gro_params(struct qede_dev *edev,
1014                                struct sk_buff *skb,
1015                                struct eth_fast_path_rx_tpa_start_cqe *cqe)
1016{
1017        u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
1018
1019        if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
1020            PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
1021                skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1022        else
1023                skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1024
1025        skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
1026                                        cqe->header_len;
1027}
1028
1029static int qede_fill_frag_skb(struct qede_dev *edev,
1030                              struct qede_rx_queue *rxq,
1031                              u8 tpa_agg_index, u16 len_on_bd)
1032{
1033        struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
1034                                                         NUM_RX_BDS_MAX];
1035        struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
1036        struct sk_buff *skb = tpa_info->skb;
1037
1038        if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1039                goto out;
1040
1041        /* Add one frag and update the appropriate fields in the skb */
1042        skb_fill_page_desc(skb, tpa_info->frag_id++,
1043                           current_bd->data, current_bd->page_offset,
1044                           len_on_bd);
1045
1046        if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
1047                /* Incr page ref count to reuse on allocation failure
1048                 * so that it doesn't get freed while freeing SKB.
1049                 */
1050                page_ref_inc(current_bd->data);
1051                goto out;
1052        }
1053
1054        qed_chain_consume(&rxq->rx_bd_ring);
1055        rxq->sw_rx_cons++;
1056
1057        skb->data_len += len_on_bd;
1058        skb->truesize += rxq->rx_buf_seg_size;
1059        skb->len += len_on_bd;
1060
1061        return 0;
1062
1063out:
1064        tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1065        qede_recycle_rx_bd_ring(rxq, edev, 1);
1066        return -ENOMEM;
1067}
1068
1069static void qede_tpa_start(struct qede_dev *edev,
1070                           struct qede_rx_queue *rxq,
1071                           struct eth_fast_path_rx_tpa_start_cqe *cqe)
1072{
1073        struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1074        struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1075        struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1076        struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
1077        dma_addr_t mapping = tpa_info->replace_buf_mapping;
1078        struct sw_rx_data *sw_rx_data_cons;
1079        struct sw_rx_data *sw_rx_data_prod;
1080        enum pkt_hash_types rxhash_type;
1081        u32 rxhash;
1082
1083        sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1084        sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1085
1086        /* Use pre-allocated replacement buffer - we can't release the agg.
1087         * start until its over and we don't want to risk allocation failing
1088         * here, so re-allocate when aggregation will be over.
1089         */
1090        sw_rx_data_prod->mapping = replace_buf->mapping;
1091
1092        sw_rx_data_prod->data = replace_buf->data;
1093        rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1094        rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1095        sw_rx_data_prod->page_offset = replace_buf->page_offset;
1096
1097        rxq->sw_rx_prod++;
1098
1099        /* move partial skb from cons to pool (don't unmap yet)
1100         * save mapping, incase we drop the packet later on.
1101         */
1102        tpa_info->start_buf = *sw_rx_data_cons;
1103        mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1104                           le32_to_cpu(rx_bd_cons->addr.lo));
1105
1106        tpa_info->start_buf_mapping = mapping;
1107        rxq->sw_rx_cons++;
1108
1109        /* set tpa state to start only if we are able to allocate skb
1110         * for this aggregation, otherwise mark as error and aggregation will
1111         * be dropped
1112         */
1113        tpa_info->skb = netdev_alloc_skb(edev->ndev,
1114                                         le16_to_cpu(cqe->len_on_first_bd));
1115        if (unlikely(!tpa_info->skb)) {
1116                DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1117                tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1118                goto cons_buf;
1119        }
1120
1121        skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1122        memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1123
1124        /* Start filling in the aggregation info */
1125        tpa_info->frag_id = 0;
1126        tpa_info->agg_state = QEDE_AGG_STATE_START;
1127
1128        rxhash = qede_get_rxhash(edev, cqe->bitfields,
1129                                 cqe->rss_hash, &rxhash_type);
1130        skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1131        if ((le16_to_cpu(cqe->pars_flags.flags) >>
1132             PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1133                    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1134                tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1135        else
1136                tpa_info->vlan_tag = 0;
1137
1138        /* This is needed in order to enable forwarding support */
1139        qede_set_gro_params(edev, tpa_info->skb, cqe);
1140
1141cons_buf: /* We still need to handle bd_len_list to consume buffers */
1142        if (likely(cqe->ext_bd_len_list[0]))
1143                qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1144                                   le16_to_cpu(cqe->ext_bd_len_list[0]));
1145
1146        if (unlikely(cqe->ext_bd_len_list[1])) {
1147                DP_ERR(edev,
1148                       "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1149                tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1150        }
1151}
1152
1153#ifdef CONFIG_INET
1154static void qede_gro_ip_csum(struct sk_buff *skb)
1155{
1156        const struct iphdr *iph = ip_hdr(skb);
1157        struct tcphdr *th;
1158
1159        skb_set_transport_header(skb, sizeof(struct iphdr));
1160        th = tcp_hdr(skb);
1161
1162        th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1163                                  iph->saddr, iph->daddr, 0);
1164
1165        tcp_gro_complete(skb);
1166}
1167
1168static void qede_gro_ipv6_csum(struct sk_buff *skb)
1169{
1170        struct ipv6hdr *iph = ipv6_hdr(skb);
1171        struct tcphdr *th;
1172
1173        skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1174        th = tcp_hdr(skb);
1175
1176        th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1177                                  &iph->saddr, &iph->daddr, 0);
1178        tcp_gro_complete(skb);
1179}
1180#endif
1181
1182static void qede_gro_receive(struct qede_dev *edev,
1183                             struct qede_fastpath *fp,
1184                             struct sk_buff *skb,
1185                             u16 vlan_tag)
1186{
1187        /* FW can send a single MTU sized packet from gro flow
1188         * due to aggregation timeout/last segment etc. which
1189         * is not expected to be a gro packet. If a skb has zero
1190         * frags then simply push it in the stack as non gso skb.
1191         */
1192        if (unlikely(!skb->data_len)) {
1193                skb_shinfo(skb)->gso_type = 0;
1194                skb_shinfo(skb)->gso_size = 0;
1195                goto send_skb;
1196        }
1197
1198#ifdef CONFIG_INET
1199        if (skb_shinfo(skb)->gso_size) {
1200                skb_set_network_header(skb, 0);
1201
1202                switch (skb->protocol) {
1203                case htons(ETH_P_IP):
1204                        qede_gro_ip_csum(skb);
1205                        break;
1206                case htons(ETH_P_IPV6):
1207                        qede_gro_ipv6_csum(skb);
1208                        break;
1209                default:
1210                        DP_ERR(edev,
1211                               "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1212                               ntohs(skb->protocol));
1213                }
1214        }
1215#endif
1216
1217send_skb:
1218        skb_record_rx_queue(skb, fp->rxq->rxq_id);
1219        qede_skb_receive(edev, fp, skb, vlan_tag);
1220}
1221
1222static inline void qede_tpa_cont(struct qede_dev *edev,
1223                                 struct qede_rx_queue *rxq,
1224                                 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1225{
1226        int i;
1227
1228        for (i = 0; cqe->len_list[i]; i++)
1229                qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1230                                   le16_to_cpu(cqe->len_list[i]));
1231
1232        if (unlikely(i > 1))
1233                DP_ERR(edev,
1234                       "Strange - TPA cont with more than a single len_list entry\n");
1235}
1236
1237static void qede_tpa_end(struct qede_dev *edev,
1238                         struct qede_fastpath *fp,
1239                         struct eth_fast_path_rx_tpa_end_cqe *cqe)
1240{
1241        struct qede_rx_queue *rxq = fp->rxq;
1242        struct qede_agg_info *tpa_info;
1243        struct sk_buff *skb;
1244        int i;
1245
1246        tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1247        skb = tpa_info->skb;
1248
1249        for (i = 0; cqe->len_list[i]; i++)
1250                qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1251                                   le16_to_cpu(cqe->len_list[i]));
1252        if (unlikely(i > 1))
1253                DP_ERR(edev,
1254                       "Strange - TPA emd with more than a single len_list entry\n");
1255
1256        if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1257                goto err;
1258
1259        /* Sanity */
1260        if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1261                DP_ERR(edev,
1262                       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1263                       cqe->num_of_bds, tpa_info->frag_id);
1264        if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1265                DP_ERR(edev,
1266                       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1267                       le16_to_cpu(cqe->total_packet_len), skb->len);
1268
1269        memcpy(skb->data,
1270               page_address(tpa_info->start_buf.data) +
1271                tpa_info->start_cqe.placement_offset +
1272                tpa_info->start_buf.page_offset,
1273               le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1274
1275        /* Recycle [mapped] start buffer for the next replacement */
1276        tpa_info->replace_buf = tpa_info->start_buf;
1277        tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1278
1279        /* Finalize the SKB */
1280        skb->protocol = eth_type_trans(skb, edev->ndev);
1281        skb->ip_summed = CHECKSUM_UNNECESSARY;
1282
1283        /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1284         * to skb_shinfo(skb)->gso_segs
1285         */
1286        NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1287
1288        qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1289
1290        tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1291
1292        return;
1293err:
1294        /* The BD starting the aggregation is still mapped; Re-use it for
1295         * future aggregations [as replacement buffer]
1296         */
1297        memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1298               sizeof(struct sw_rx_data));
1299        tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1300        tpa_info->start_buf.data = NULL;
1301        tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1302        dev_kfree_skb_any(tpa_info->skb);
1303        tpa_info->skb = NULL;
1304}
1305
1306static bool qede_tunn_exist(u16 flag)
1307{
1308        return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1309                          PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1310}
1311
1312static u8 qede_check_tunn_csum(u16 flag)
1313{
1314        u16 csum_flag = 0;
1315        u8 tcsum = 0;
1316
1317        if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1318                    PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1319                csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1320                             PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1321
1322        if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1323                    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1324                csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1325                             PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1326                tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1327        }
1328
1329        csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1330                     PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1331                     PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1332                     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1333
1334        if (csum_flag & flag)
1335                return QEDE_CSUM_ERROR;
1336
1337        return QEDE_CSUM_UNNECESSARY | tcsum;
1338}
1339
1340static u8 qede_check_notunn_csum(u16 flag)
1341{
1342        u16 csum_flag = 0;
1343        u8 csum = 0;
1344
1345        if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1346                    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1347                csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1348                             PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1349                csum = QEDE_CSUM_UNNECESSARY;
1350        }
1351
1352        csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1353                     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1354
1355        if (csum_flag & flag)
1356                return QEDE_CSUM_ERROR;
1357
1358        return csum;
1359}
1360
1361static u8 qede_check_csum(u16 flag)
1362{
1363        if (!qede_tunn_exist(flag))
1364                return qede_check_notunn_csum(flag);
1365        else
1366                return qede_check_tunn_csum(flag);
1367}
1368
1369static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1370                                      u16 flag)
1371{
1372        u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1373
1374        if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1375                             ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1376            (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1377                     PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1378                return true;
1379
1380        return false;
1381}
1382
1383static int qede_rx_int(struct qede_fastpath *fp, int budget)
1384{
1385        struct qede_dev *edev = fp->edev;
1386        struct qede_rx_queue *rxq = fp->rxq;
1387
1388        u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1389        int rx_pkt = 0;
1390        u8 csum_flag;
1391
1392        hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1393        sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1394
1395        /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1396         * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1397         * read before it is written by FW, then FW writes CQE and SB, and then
1398         * the CPU reads the hw_comp_cons, it will use an old CQE.
1399         */
1400        rmb();
1401
1402        /* Loop to complete all indicated BDs */
1403        while (sw_comp_cons != hw_comp_cons) {
1404                struct eth_fast_path_rx_reg_cqe *fp_cqe;
1405                enum pkt_hash_types rxhash_type;
1406                enum eth_rx_cqe_type cqe_type;
1407                struct sw_rx_data *sw_rx_data;
1408                union eth_rx_cqe *cqe;
1409                struct sk_buff *skb;
1410                struct page *data;
1411                __le16 flags;
1412                u16 len, pad;
1413                u32 rx_hash;
1414
1415                /* Get the CQE from the completion ring */
1416                cqe = (union eth_rx_cqe *)
1417                        qed_chain_consume(&rxq->rx_comp_ring);
1418                cqe_type = cqe->fast_path_regular.type;
1419
1420                if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1421                        edev->ops->eth_cqe_completion(
1422                                        edev->cdev, fp->id,
1423                                        (struct eth_slow_path_rx_cqe *)cqe);
1424                        goto next_cqe;
1425                }
1426
1427                if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1428                        switch (cqe_type) {
1429                        case ETH_RX_CQE_TYPE_TPA_START:
1430                                qede_tpa_start(edev, rxq,
1431                                               &cqe->fast_path_tpa_start);
1432                                goto next_cqe;
1433                        case ETH_RX_CQE_TYPE_TPA_CONT:
1434                                qede_tpa_cont(edev, rxq,
1435                                              &cqe->fast_path_tpa_cont);
1436                                goto next_cqe;
1437                        case ETH_RX_CQE_TYPE_TPA_END:
1438                                qede_tpa_end(edev, fp,
1439                                             &cqe->fast_path_tpa_end);
1440                                goto next_rx_only;
1441                        default:
1442                                break;
1443                        }
1444                }
1445
1446                /* Get the data from the SW ring */
1447                sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1448                sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1449                data = sw_rx_data->data;
1450
1451                fp_cqe = &cqe->fast_path_regular;
1452                len =  le16_to_cpu(fp_cqe->len_on_first_bd);
1453                pad = fp_cqe->placement_offset;
1454                flags = cqe->fast_path_regular.pars_flags.flags;
1455
1456                /* If this is an error packet then drop it */
1457                parse_flag = le16_to_cpu(flags);
1458
1459                csum_flag = qede_check_csum(parse_flag);
1460                if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1461                        if (qede_pkt_is_ip_fragmented(&cqe->fast_path_regular,
1462                                                      parse_flag)) {
1463                                rxq->rx_ip_frags++;
1464                                goto alloc_skb;
1465                        }
1466
1467                        DP_NOTICE(edev,
1468                                  "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1469                                  sw_comp_cons, parse_flag);
1470                        rxq->rx_hw_errors++;
1471                        qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1472                        goto next_cqe;
1473                }
1474
1475alloc_skb:
1476                skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1477                if (unlikely(!skb)) {
1478                        DP_NOTICE(edev,
1479                                  "skb allocation failed, dropping incoming packet\n");
1480                        qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1481                        rxq->rx_alloc_errors++;
1482                        goto next_cqe;
1483                }
1484
1485                /* Copy data into SKB */
1486                if (len + pad <= edev->rx_copybreak) {
1487                        memcpy(skb_put(skb, len),
1488                               page_address(data) + pad +
1489                                sw_rx_data->page_offset, len);
1490                        qede_reuse_page(edev, rxq, sw_rx_data);
1491                } else {
1492                        struct skb_frag_struct *frag;
1493                        unsigned int pull_len;
1494                        unsigned char *va;
1495
1496                        frag = &skb_shinfo(skb)->frags[0];
1497
1498                        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1499                                        pad + sw_rx_data->page_offset,
1500                                        len, rxq->rx_buf_seg_size);
1501
1502                        va = skb_frag_address(frag);
1503                        pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1504
1505                        /* Align the pull_len to optimize memcpy */
1506                        memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1507
1508                        skb_frag_size_sub(frag, pull_len);
1509                        frag->page_offset += pull_len;
1510                        skb->data_len -= pull_len;
1511                        skb->tail += pull_len;
1512
1513                        if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1514                                                            sw_rx_data))) {
1515                                DP_ERR(edev, "Failed to allocate rx buffer\n");
1516                                /* Incr page ref count to reuse on allocation
1517                                 * failure so that it doesn't get freed while
1518                                 * freeing SKB.
1519                                 */
1520
1521                                page_ref_inc(sw_rx_data->data);
1522                                rxq->rx_alloc_errors++;
1523                                qede_recycle_rx_bd_ring(rxq, edev,
1524                                                        fp_cqe->bd_num);
1525                                dev_kfree_skb_any(skb);
1526                                goto next_cqe;
1527                        }
1528                }
1529
1530                qede_rx_bd_ring_consume(rxq);
1531
1532                if (fp_cqe->bd_num != 1) {
1533                        u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1534                        u8 num_frags;
1535
1536                        pkt_len -= len;
1537
1538                        for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1539                             num_frags--) {
1540                                u16 cur_size = pkt_len > rxq->rx_buf_size ?
1541                                                rxq->rx_buf_size : pkt_len;
1542                                if (unlikely(!cur_size)) {
1543                                        DP_ERR(edev,
1544                                               "Still got %d BDs for mapping jumbo, but length became 0\n",
1545                                               num_frags);
1546                                        qede_recycle_rx_bd_ring(rxq, edev,
1547                                                                num_frags);
1548                                        dev_kfree_skb_any(skb);
1549                                        goto next_cqe;
1550                                }
1551
1552                                if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1553                                        qede_recycle_rx_bd_ring(rxq, edev,
1554                                                                num_frags);
1555                                        dev_kfree_skb_any(skb);
1556                                        goto next_cqe;
1557                                }
1558
1559                                sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1560                                sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1561                                qede_rx_bd_ring_consume(rxq);
1562
1563                                dma_unmap_page(&edev->pdev->dev,
1564                                               sw_rx_data->mapping,
1565                                               PAGE_SIZE, DMA_FROM_DEVICE);
1566
1567                                skb_fill_page_desc(skb,
1568                                                   skb_shinfo(skb)->nr_frags++,
1569                                                   sw_rx_data->data, 0,
1570                                                   cur_size);
1571
1572                                skb->truesize += PAGE_SIZE;
1573                                skb->data_len += cur_size;
1574                                skb->len += cur_size;
1575                                pkt_len -= cur_size;
1576                        }
1577
1578                        if (unlikely(pkt_len))
1579                                DP_ERR(edev,
1580                                       "Mapped all BDs of jumbo, but still have %d bytes\n",
1581                                       pkt_len);
1582                }
1583
1584                skb->protocol = eth_type_trans(skb, edev->ndev);
1585
1586                rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1587                                          fp_cqe->rss_hash, &rxhash_type);
1588
1589                skb_set_hash(skb, rx_hash, rxhash_type);
1590
1591                qede_set_skb_csum(skb, csum_flag);
1592
1593                skb_record_rx_queue(skb, fp->rxq->rxq_id);
1594
1595                qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1596next_rx_only:
1597                rx_pkt++;
1598
1599next_cqe: /* don't consume bd rx buffer */
1600                qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1601                sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1602                /* CR TPA - revisit how to handle budget in TPA perhaps
1603                 * increase on "end"
1604                 */
1605                if (rx_pkt == budget)
1606                        break;
1607        } /* repeat while sw_comp_cons != hw_comp_cons... */
1608
1609        /* Update producers */
1610        qede_update_rx_prod(edev, rxq);
1611
1612        rxq->rcv_pkts += rx_pkt;
1613
1614        return rx_pkt;
1615}
1616
1617static int qede_poll(struct napi_struct *napi, int budget)
1618{
1619        struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1620                                                napi);
1621        struct qede_dev *edev = fp->edev;
1622        int rx_work_done = 0;
1623        u8 tc;
1624
1625        for (tc = 0; tc < edev->num_tc; tc++)
1626                if (likely(fp->type & QEDE_FASTPATH_TX) &&
1627                    qede_txq_has_work(&fp->txqs[tc]))
1628                        qede_tx_int(edev, &fp->txqs[tc]);
1629
1630        rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1631                        qede_has_rx_work(fp->rxq)) ?
1632                        qede_rx_int(fp, budget) : 0;
1633        if (rx_work_done < budget) {
1634                qed_sb_update_sb_idx(fp->sb_info);
1635                /* *_has_*_work() reads the status block,
1636                 * thus we need to ensure that status block indices
1637                 * have been actually read (qed_sb_update_sb_idx)
1638                 * prior to this check (*_has_*_work) so that
1639                 * we won't write the "newer" value of the status block
1640                 * to HW (if there was a DMA right after
1641                 * qede_has_rx_work and if there is no rmb, the memory
1642                 * reading (qed_sb_update_sb_idx) may be postponed
1643                 * to right before *_ack_sb). In this case there
1644                 * will never be another interrupt until there is
1645                 * another update of the status block, while there
1646                 * is still unhandled work.
1647                 */
1648                rmb();
1649
1650                /* Fall out from the NAPI loop if needed */
1651                if (!((likely(fp->type & QEDE_FASTPATH_RX) &&
1652                       qede_has_rx_work(fp->rxq)) ||
1653                      (likely(fp->type & QEDE_FASTPATH_TX) &&
1654                       qede_has_tx_work(fp)))) {
1655                        napi_complete(napi);
1656
1657                        /* Update and reenable interrupts */
1658                        qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1659                                   1 /*update*/);
1660                } else {
1661                        rx_work_done = budget;
1662                }
1663        }
1664
1665        return rx_work_done;
1666}
1667
1668static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1669{
1670        struct qede_fastpath *fp = fp_cookie;
1671
1672        qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1673
1674        napi_schedule_irqoff(&fp->napi);
1675        return IRQ_HANDLED;
1676}
1677
1678/* -------------------------------------------------------------------------
1679 * END OF FAST-PATH
1680 * -------------------------------------------------------------------------
1681 */
1682
1683static int qede_open(struct net_device *ndev);
1684static int qede_close(struct net_device *ndev);
1685static int qede_set_mac_addr(struct net_device *ndev, void *p);
1686static void qede_set_rx_mode(struct net_device *ndev);
1687static void qede_config_rx_mode(struct net_device *ndev);
1688
1689static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1690                                 enum qed_filter_xcast_params_type opcode,
1691                                 unsigned char mac[ETH_ALEN])
1692{
1693        struct qed_filter_params filter_cmd;
1694
1695        memset(&filter_cmd, 0, sizeof(filter_cmd));
1696        filter_cmd.type = QED_FILTER_TYPE_UCAST;
1697        filter_cmd.filter.ucast.type = opcode;
1698        filter_cmd.filter.ucast.mac_valid = 1;
1699        ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1700
1701        return edev->ops->filter_config(edev->cdev, &filter_cmd);
1702}
1703
1704static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1705                                  enum qed_filter_xcast_params_type opcode,
1706                                  u16 vid)
1707{
1708        struct qed_filter_params filter_cmd;
1709
1710        memset(&filter_cmd, 0, sizeof(filter_cmd));
1711        filter_cmd.type = QED_FILTER_TYPE_UCAST;
1712        filter_cmd.filter.ucast.type = opcode;
1713        filter_cmd.filter.ucast.vlan_valid = 1;
1714        filter_cmd.filter.ucast.vlan = vid;
1715
1716        return edev->ops->filter_config(edev->cdev, &filter_cmd);
1717}
1718
1719void qede_fill_by_demand_stats(struct qede_dev *edev)
1720{
1721        struct qed_eth_stats stats;
1722
1723        edev->ops->get_vport_stats(edev->cdev, &stats);
1724        edev->stats.no_buff_discards = stats.no_buff_discards;
1725        edev->stats.packet_too_big_discard = stats.packet_too_big_discard;
1726        edev->stats.ttl0_discard = stats.ttl0_discard;
1727        edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1728        edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1729        edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1730        edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1731        edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1732        edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1733        edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1734        edev->stats.mac_filter_discards = stats.mac_filter_discards;
1735
1736        edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1737        edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1738        edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1739        edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1740        edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1741        edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1742        edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1743        edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1744        edev->stats.coalesced_events = stats.tpa_coalesced_events;
1745        edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1746        edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1747        edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1748
1749        edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1750        edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1751        edev->stats.rx_128_to_255_byte_packets =
1752                                stats.rx_128_to_255_byte_packets;
1753        edev->stats.rx_256_to_511_byte_packets =
1754                                stats.rx_256_to_511_byte_packets;
1755        edev->stats.rx_512_to_1023_byte_packets =
1756                                stats.rx_512_to_1023_byte_packets;
1757        edev->stats.rx_1024_to_1518_byte_packets =
1758                                stats.rx_1024_to_1518_byte_packets;
1759        edev->stats.rx_1519_to_1522_byte_packets =
1760                                stats.rx_1519_to_1522_byte_packets;
1761        edev->stats.rx_1519_to_2047_byte_packets =
1762                                stats.rx_1519_to_2047_byte_packets;
1763        edev->stats.rx_2048_to_4095_byte_packets =
1764                                stats.rx_2048_to_4095_byte_packets;
1765        edev->stats.rx_4096_to_9216_byte_packets =
1766                                stats.rx_4096_to_9216_byte_packets;
1767        edev->stats.rx_9217_to_16383_byte_packets =
1768                                stats.rx_9217_to_16383_byte_packets;
1769        edev->stats.rx_crc_errors = stats.rx_crc_errors;
1770        edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1771        edev->stats.rx_pause_frames = stats.rx_pause_frames;
1772        edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1773        edev->stats.rx_align_errors = stats.rx_align_errors;
1774        edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1775        edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1776        edev->stats.rx_jabbers = stats.rx_jabbers;
1777        edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1778        edev->stats.rx_fragments = stats.rx_fragments;
1779        edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1780        edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1781        edev->stats.tx_128_to_255_byte_packets =
1782                                stats.tx_128_to_255_byte_packets;
1783        edev->stats.tx_256_to_511_byte_packets =
1784                                stats.tx_256_to_511_byte_packets;
1785        edev->stats.tx_512_to_1023_byte_packets =
1786                                stats.tx_512_to_1023_byte_packets;
1787        edev->stats.tx_1024_to_1518_byte_packets =
1788                                stats.tx_1024_to_1518_byte_packets;
1789        edev->stats.tx_1519_to_2047_byte_packets =
1790                                stats.tx_1519_to_2047_byte_packets;
1791        edev->stats.tx_2048_to_4095_byte_packets =
1792                                stats.tx_2048_to_4095_byte_packets;
1793        edev->stats.tx_4096_to_9216_byte_packets =
1794                                stats.tx_4096_to_9216_byte_packets;
1795        edev->stats.tx_9217_to_16383_byte_packets =
1796                                stats.tx_9217_to_16383_byte_packets;
1797        edev->stats.tx_pause_frames = stats.tx_pause_frames;
1798        edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1799        edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1800        edev->stats.tx_total_collisions = stats.tx_total_collisions;
1801        edev->stats.brb_truncates = stats.brb_truncates;
1802        edev->stats.brb_discards = stats.brb_discards;
1803        edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1804}
1805
1806static
1807struct rtnl_link_stats64 *qede_get_stats64(struct net_device *dev,
1808                                           struct rtnl_link_stats64 *stats)
1809{
1810        struct qede_dev *edev = netdev_priv(dev);
1811
1812        qede_fill_by_demand_stats(edev);
1813
1814        stats->rx_packets = edev->stats.rx_ucast_pkts +
1815                            edev->stats.rx_mcast_pkts +
1816                            edev->stats.rx_bcast_pkts;
1817        stats->tx_packets = edev->stats.tx_ucast_pkts +
1818                            edev->stats.tx_mcast_pkts +
1819                            edev->stats.tx_bcast_pkts;
1820
1821        stats->rx_bytes = edev->stats.rx_ucast_bytes +
1822                          edev->stats.rx_mcast_bytes +
1823                          edev->stats.rx_bcast_bytes;
1824
1825        stats->tx_bytes = edev->stats.tx_ucast_bytes +
1826                          edev->stats.tx_mcast_bytes +
1827                          edev->stats.tx_bcast_bytes;
1828
1829        stats->tx_errors = edev->stats.tx_err_drop_pkts;
1830        stats->multicast = edev->stats.rx_mcast_pkts +
1831                           edev->stats.rx_bcast_pkts;
1832
1833        stats->rx_fifo_errors = edev->stats.no_buff_discards;
1834
1835        stats->collisions = edev->stats.tx_total_collisions;
1836        stats->rx_crc_errors = edev->stats.rx_crc_errors;
1837        stats->rx_frame_errors = edev->stats.rx_align_errors;
1838
1839        return stats;
1840}
1841
1842#ifdef CONFIG_QED_SRIOV
1843static int qede_get_vf_config(struct net_device *dev, int vfidx,
1844                              struct ifla_vf_info *ivi)
1845{
1846        struct qede_dev *edev = netdev_priv(dev);
1847
1848        if (!edev->ops)
1849                return -EINVAL;
1850
1851        return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
1852}
1853
1854static int qede_set_vf_rate(struct net_device *dev, int vfidx,
1855                            int min_tx_rate, int max_tx_rate)
1856{
1857        struct qede_dev *edev = netdev_priv(dev);
1858
1859        return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
1860                                        max_tx_rate);
1861}
1862
1863static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
1864{
1865        struct qede_dev *edev = netdev_priv(dev);
1866
1867        if (!edev->ops)
1868                return -EINVAL;
1869
1870        return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
1871}
1872
1873static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
1874                                  int link_state)
1875{
1876        struct qede_dev *edev = netdev_priv(dev);
1877
1878        if (!edev->ops)
1879                return -EINVAL;
1880
1881        return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
1882}
1883#endif
1884
1885static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1886{
1887        struct qed_update_vport_params params;
1888        int rc;
1889
1890        /* Proceed only if action actually needs to be performed */
1891        if (edev->accept_any_vlan == action)
1892                return;
1893
1894        memset(&params, 0, sizeof(params));
1895
1896        params.vport_id = 0;
1897        params.accept_any_vlan = action;
1898        params.update_accept_any_vlan_flg = 1;
1899
1900        rc = edev->ops->vport_update(edev->cdev, &params);
1901        if (rc) {
1902                DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1903                       action ? "enable" : "disable");
1904        } else {
1905                DP_INFO(edev, "%s accept-any-vlan\n",
1906                        action ? "enabled" : "disabled");
1907                edev->accept_any_vlan = action;
1908        }
1909}
1910
1911static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1912{
1913        struct qede_dev *edev = netdev_priv(dev);
1914        struct qede_vlan *vlan, *tmp;
1915        int rc;
1916
1917        DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1918
1919        vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1920        if (!vlan) {
1921                DP_INFO(edev, "Failed to allocate struct for vlan\n");
1922                return -ENOMEM;
1923        }
1924        INIT_LIST_HEAD(&vlan->list);
1925        vlan->vid = vid;
1926        vlan->configured = false;
1927
1928        /* Verify vlan isn't already configured */
1929        list_for_each_entry(tmp, &edev->vlan_list, list) {
1930                if (tmp->vid == vlan->vid) {
1931                        DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1932                                   "vlan already configured\n");
1933                        kfree(vlan);
1934                        return -EEXIST;
1935                }
1936        }
1937
1938        /* If interface is down, cache this VLAN ID and return */
1939        if (edev->state != QEDE_STATE_OPEN) {
1940                DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1941                           "Interface is down, VLAN %d will be configured when interface is up\n",
1942                           vid);
1943                if (vid != 0)
1944                        edev->non_configured_vlans++;
1945                list_add(&vlan->list, &edev->vlan_list);
1946
1947                return 0;
1948        }
1949
1950        /* Check for the filter limit.
1951         * Note - vlan0 has a reserved filter and can be added without
1952         * worrying about quota
1953         */
1954        if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1955            (vlan->vid == 0)) {
1956                rc = qede_set_ucast_rx_vlan(edev,
1957                                            QED_FILTER_XCAST_TYPE_ADD,
1958                                            vlan->vid);
1959                if (rc) {
1960                        DP_ERR(edev, "Failed to configure VLAN %d\n",
1961                               vlan->vid);
1962                        kfree(vlan);
1963                        return -EINVAL;
1964                }
1965                vlan->configured = true;
1966
1967                /* vlan0 filter isn't consuming out of our quota */
1968                if (vlan->vid != 0)
1969                        edev->configured_vlans++;
1970        } else {
1971                /* Out of quota; Activate accept-any-VLAN mode */
1972                if (!edev->non_configured_vlans)
1973                        qede_config_accept_any_vlan(edev, true);
1974
1975                edev->non_configured_vlans++;
1976        }
1977
1978        list_add(&vlan->list, &edev->vlan_list);
1979
1980        return 0;
1981}
1982
1983static void qede_del_vlan_from_list(struct qede_dev *edev,
1984                                    struct qede_vlan *vlan)
1985{
1986        /* vlan0 filter isn't consuming out of our quota */
1987        if (vlan->vid != 0) {
1988                if (vlan->configured)
1989                        edev->configured_vlans--;
1990                else
1991                        edev->non_configured_vlans--;
1992        }
1993
1994        list_del(&vlan->list);
1995        kfree(vlan);
1996}
1997
1998static int qede_configure_vlan_filters(struct qede_dev *edev)
1999{
2000        int rc = 0, real_rc = 0, accept_any_vlan = 0;
2001        struct qed_dev_eth_info *dev_info;
2002        struct qede_vlan *vlan = NULL;
2003
2004        if (list_empty(&edev->vlan_list))
2005                return 0;
2006
2007        dev_info = &edev->dev_info;
2008
2009        /* Configure non-configured vlans */
2010        list_for_each_entry(vlan, &edev->vlan_list, list) {
2011                if (vlan->configured)
2012                        continue;
2013
2014                /* We have used all our credits, now enable accept_any_vlan */
2015                if ((vlan->vid != 0) &&
2016                    (edev->configured_vlans == dev_info->num_vlan_filters)) {
2017                        accept_any_vlan = 1;
2018                        continue;
2019                }
2020
2021                DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
2022
2023                rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
2024                                            vlan->vid);
2025                if (rc) {
2026                        DP_ERR(edev, "Failed to configure VLAN %u\n",
2027                               vlan->vid);
2028                        real_rc = rc;
2029                        continue;
2030                }
2031
2032                vlan->configured = true;
2033                /* vlan0 filter doesn't consume our VLAN filter's quota */
2034                if (vlan->vid != 0) {
2035                        edev->non_configured_vlans--;
2036                        edev->configured_vlans++;
2037                }
2038        }
2039
2040        /* enable accept_any_vlan mode if we have more VLANs than credits,
2041         * or remove accept_any_vlan mode if we've actually removed
2042         * a non-configured vlan, and all remaining vlans are truly configured.
2043         */
2044
2045        if (accept_any_vlan)
2046                qede_config_accept_any_vlan(edev, true);
2047        else if (!edev->non_configured_vlans)
2048                qede_config_accept_any_vlan(edev, false);
2049
2050        return real_rc;
2051}
2052
2053static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
2054{
2055        struct qede_dev *edev = netdev_priv(dev);
2056        struct qede_vlan *vlan = NULL;
2057        int rc;
2058
2059        DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
2060
2061        /* Find whether entry exists */
2062        list_for_each_entry(vlan, &edev->vlan_list, list)
2063                if (vlan->vid == vid)
2064                        break;
2065
2066        if (!vlan || (vlan->vid != vid)) {
2067                DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2068                           "Vlan isn't configured\n");
2069                return 0;
2070        }
2071
2072        if (edev->state != QEDE_STATE_OPEN) {
2073                /* As interface is already down, we don't have a VPORT
2074                 * instance to remove vlan filter. So just update vlan list
2075                 */
2076                DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2077                           "Interface is down, removing VLAN from list only\n");
2078                qede_del_vlan_from_list(edev, vlan);
2079                return 0;
2080        }
2081
2082        /* Remove vlan */
2083        if (vlan->configured) {
2084                rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL,
2085                                            vid);
2086                if (rc) {
2087                        DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
2088                        return -EINVAL;
2089                }
2090        }
2091
2092        qede_del_vlan_from_list(edev, vlan);
2093
2094        /* We have removed a VLAN - try to see if we can
2095         * configure non-configured VLAN from the list.
2096         */
2097        rc = qede_configure_vlan_filters(edev);
2098
2099        return rc;
2100}
2101
2102static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
2103{
2104        struct qede_vlan *vlan = NULL;
2105
2106        if (list_empty(&edev->vlan_list))
2107                return;
2108
2109        list_for_each_entry(vlan, &edev->vlan_list, list) {
2110                if (!vlan->configured)
2111                        continue;
2112
2113                vlan->configured = false;
2114
2115                /* vlan0 filter isn't consuming out of our quota */
2116                if (vlan->vid != 0) {
2117                        edev->non_configured_vlans++;
2118                        edev->configured_vlans--;
2119                }
2120
2121                DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2122                           "marked vlan %d as non-configured\n", vlan->vid);
2123        }
2124
2125        edev->accept_any_vlan = false;
2126}
2127
2128static int qede_set_features(struct net_device *dev, netdev_features_t features)
2129{
2130        struct qede_dev *edev = netdev_priv(dev);
2131        netdev_features_t changes = features ^ dev->features;
2132        bool need_reload = false;
2133
2134        /* No action needed if hardware GRO is disabled during driver load */
2135        if (changes & NETIF_F_GRO) {
2136                if (dev->features & NETIF_F_GRO)
2137                        need_reload = !edev->gro_disable;
2138                else
2139                        need_reload = edev->gro_disable;
2140        }
2141
2142        if (need_reload && netif_running(edev->ndev)) {
2143                dev->features = features;
2144                qede_reload(edev, NULL, NULL);
2145                return 1;
2146        }
2147
2148        return 0;
2149}
2150
2151static void qede_udp_tunnel_add(struct net_device *dev,
2152                                struct udp_tunnel_info *ti)
2153{
2154        struct qede_dev *edev = netdev_priv(dev);
2155        u16 t_port = ntohs(ti->port);
2156
2157        switch (ti->type) {
2158        case UDP_TUNNEL_TYPE_VXLAN:
2159                if (edev->vxlan_dst_port)
2160                        return;
2161
2162                edev->vxlan_dst_port = t_port;
2163
2164                DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d\n",
2165                           t_port);
2166
2167                set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2168                break;
2169        case UDP_TUNNEL_TYPE_GENEVE:
2170                if (edev->geneve_dst_port)
2171                        return;
2172
2173                edev->geneve_dst_port = t_port;
2174
2175                DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d\n",
2176                           t_port);
2177                set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2178                break;
2179        default:
2180                return;
2181        }
2182
2183        schedule_delayed_work(&edev->sp_task, 0);
2184}
2185
2186static void qede_udp_tunnel_del(struct net_device *dev,
2187                                struct udp_tunnel_info *ti)
2188{
2189        struct qede_dev *edev = netdev_priv(dev);
2190        u16 t_port = ntohs(ti->port);
2191
2192        switch (ti->type) {
2193        case UDP_TUNNEL_TYPE_VXLAN:
2194                if (t_port != edev->vxlan_dst_port)
2195                        return;
2196
2197                edev->vxlan_dst_port = 0;
2198
2199                DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d\n",
2200                           t_port);
2201
2202                set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2203                break;
2204        case UDP_TUNNEL_TYPE_GENEVE:
2205                if (t_port != edev->geneve_dst_port)
2206                        return;
2207
2208                edev->geneve_dst_port = 0;
2209
2210                DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d\n",
2211                           t_port);
2212                set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2213                break;
2214        default:
2215                return;
2216        }
2217
2218        schedule_delayed_work(&edev->sp_task, 0);
2219}
2220
2221static const struct net_device_ops qede_netdev_ops = {
2222        .ndo_open = qede_open,
2223        .ndo_stop = qede_close,
2224        .ndo_start_xmit = qede_start_xmit,
2225        .ndo_set_rx_mode = qede_set_rx_mode,
2226        .ndo_set_mac_address = qede_set_mac_addr,
2227        .ndo_validate_addr = eth_validate_addr,
2228        .ndo_change_mtu = qede_change_mtu,
2229#ifdef CONFIG_QED_SRIOV
2230        .ndo_set_vf_mac = qede_set_vf_mac,
2231        .ndo_set_vf_vlan = qede_set_vf_vlan,
2232#endif
2233        .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2234        .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2235        .ndo_set_features = qede_set_features,
2236        .ndo_get_stats64 = qede_get_stats64,
2237#ifdef CONFIG_QED_SRIOV
2238        .ndo_set_vf_link_state = qede_set_vf_link_state,
2239        .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
2240        .ndo_get_vf_config = qede_get_vf_config,
2241        .ndo_set_vf_rate = qede_set_vf_rate,
2242#endif
2243        .ndo_udp_tunnel_add = qede_udp_tunnel_add,
2244        .ndo_udp_tunnel_del = qede_udp_tunnel_del,
2245};
2246
2247/* -------------------------------------------------------------------------
2248 * START OF PROBE / REMOVE
2249 * -------------------------------------------------------------------------
2250 */
2251
2252static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2253                                            struct pci_dev *pdev,
2254                                            struct qed_dev_eth_info *info,
2255                                            u32 dp_module, u8 dp_level)
2256{
2257        struct net_device *ndev;
2258        struct qede_dev *edev;
2259
2260        ndev = alloc_etherdev_mqs(sizeof(*edev),
2261                                  info->num_queues, info->num_queues);
2262        if (!ndev) {
2263                pr_err("etherdev allocation failed\n");
2264                return NULL;
2265        }
2266
2267        edev = netdev_priv(ndev);
2268        edev->ndev = ndev;
2269        edev->cdev = cdev;
2270        edev->pdev = pdev;
2271        edev->dp_module = dp_module;
2272        edev->dp_level = dp_level;
2273        edev->ops = qed_ops;
2274        edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2275        edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
2276
2277        DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
2278                info->num_queues, info->num_queues);
2279
2280        SET_NETDEV_DEV(ndev, &pdev->dev);
2281
2282        memset(&edev->stats, 0, sizeof(edev->stats));
2283        memcpy(&edev->dev_info, info, sizeof(*info));
2284
2285        edev->num_tc = edev->dev_info.num_tc;
2286
2287        INIT_LIST_HEAD(&edev->vlan_list);
2288
2289        return edev;
2290}
2291
2292static void qede_init_ndev(struct qede_dev *edev)
2293{
2294        struct net_device *ndev = edev->ndev;
2295        struct pci_dev *pdev = edev->pdev;
2296        u32 hw_features;
2297
2298        pci_set_drvdata(pdev, ndev);
2299
2300        ndev->mem_start = edev->dev_info.common.pci_mem_start;
2301        ndev->base_addr = ndev->mem_start;
2302        ndev->mem_end = edev->dev_info.common.pci_mem_end;
2303        ndev->irq = edev->dev_info.common.pci_irq;
2304
2305        ndev->watchdog_timeo = TX_TIMEOUT;
2306
2307        ndev->netdev_ops = &qede_netdev_ops;
2308
2309        qede_set_ethtool_ops(ndev);
2310
2311        /* user-changeble features */
2312        hw_features = NETIF_F_GRO | NETIF_F_SG |
2313                      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2314                      NETIF_F_TSO | NETIF_F_TSO6;
2315
2316        /* Encap features*/
2317        hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2318                       NETIF_F_TSO_ECN;
2319        ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2320                                NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2321                                NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2322                                NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM;
2323
2324        ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2325                              NETIF_F_HIGHDMA;
2326        ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2327                         NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2328                         NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2329
2330        ndev->hw_features = hw_features;
2331
2332        /* Set network device HW mac */
2333        ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2334}
2335
2336/* This function converts from 32b param to two params of level and module
2337 * Input 32b decoding:
2338 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2339 * 'happy' flow, e.g. memory allocation failed.
2340 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2341 * and provide important parameters.
2342 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2343 * module. VERBOSE prints are for tracking the specific flow in low level.
2344 *
2345 * Notice that the level should be that of the lowest required logs.
2346 */
2347void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2348{
2349        *p_dp_level = QED_LEVEL_NOTICE;
2350        *p_dp_module = 0;
2351
2352        if (debug & QED_LOG_VERBOSE_MASK) {
2353                *p_dp_level = QED_LEVEL_VERBOSE;
2354                *p_dp_module = (debug & 0x3FFFFFFF);
2355        } else if (debug & QED_LOG_INFO_MASK) {
2356                *p_dp_level = QED_LEVEL_INFO;
2357        } else if (debug & QED_LOG_NOTICE_MASK) {
2358                *p_dp_level = QED_LEVEL_NOTICE;
2359        }
2360}
2361
2362static void qede_free_fp_array(struct qede_dev *edev)
2363{
2364        if (edev->fp_array) {
2365                struct qede_fastpath *fp;
2366                int i;
2367
2368                for_each_queue(i) {
2369                        fp = &edev->fp_array[i];
2370
2371                        kfree(fp->sb_info);
2372                        kfree(fp->rxq);
2373                        kfree(fp->txqs);
2374                }
2375                kfree(edev->fp_array);
2376        }
2377
2378        edev->num_queues = 0;
2379        edev->fp_num_tx = 0;
2380        edev->fp_num_rx = 0;
2381}
2382
2383static int qede_alloc_fp_array(struct qede_dev *edev)
2384{
2385        u8 fp_combined, fp_rx = edev->fp_num_rx;
2386        struct qede_fastpath *fp;
2387        int i;
2388
2389        edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
2390                                 sizeof(*edev->fp_array), GFP_KERNEL);
2391        if (!edev->fp_array) {
2392                DP_NOTICE(edev, "fp array allocation failed\n");
2393                goto err;
2394        }
2395
2396        fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
2397
2398        /* Allocate the FP elements for Rx queues followed by combined and then
2399         * the Tx. This ordering should be maintained so that the respective
2400         * queues (Rx or Tx) will be together in the fastpath array and the
2401         * associated ids will be sequential.
2402         */
2403        for_each_queue(i) {
2404                fp = &edev->fp_array[i];
2405
2406                fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2407                if (!fp->sb_info) {
2408                        DP_NOTICE(edev, "sb info struct allocation failed\n");
2409                        goto err;
2410                }
2411
2412                if (fp_rx) {
2413                        fp->type = QEDE_FASTPATH_RX;
2414                        fp_rx--;
2415                } else if (fp_combined) {
2416                        fp->type = QEDE_FASTPATH_COMBINED;
2417                        fp_combined--;
2418                } else {
2419                        fp->type = QEDE_FASTPATH_TX;
2420                }
2421
2422                if (fp->type & QEDE_FASTPATH_TX) {
2423                        fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs),
2424                                           GFP_KERNEL);
2425                        if (!fp->txqs) {
2426                                DP_NOTICE(edev,
2427                                          "TXQ array allocation failed\n");
2428                                goto err;
2429                        }
2430                }
2431
2432                if (fp->type & QEDE_FASTPATH_RX) {
2433                        fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2434                        if (!fp->rxq) {
2435                                DP_NOTICE(edev,
2436                                          "RXQ struct allocation failed\n");
2437                                goto err;
2438                        }
2439                }
2440        }
2441
2442        return 0;
2443err:
2444        qede_free_fp_array(edev);
2445        return -ENOMEM;
2446}
2447
2448static void qede_sp_task(struct work_struct *work)
2449{
2450        struct qede_dev *edev = container_of(work, struct qede_dev,
2451                                             sp_task.work);
2452        struct qed_dev *cdev = edev->cdev;
2453
2454        mutex_lock(&edev->qede_lock);
2455
2456        if (edev->state == QEDE_STATE_OPEN) {
2457                if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2458                        qede_config_rx_mode(edev->ndev);
2459        }
2460
2461        if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2462                struct qed_tunn_params tunn_params;
2463
2464                memset(&tunn_params, 0, sizeof(tunn_params));
2465                tunn_params.update_vxlan_port = 1;
2466                tunn_params.vxlan_port = edev->vxlan_dst_port;
2467                qed_ops->tunn_config(cdev, &tunn_params);
2468        }
2469
2470        if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2471                struct qed_tunn_params tunn_params;
2472
2473                memset(&tunn_params, 0, sizeof(tunn_params));
2474                tunn_params.update_geneve_port = 1;
2475                tunn_params.geneve_port = edev->geneve_dst_port;
2476                qed_ops->tunn_config(cdev, &tunn_params);
2477        }
2478
2479        mutex_unlock(&edev->qede_lock);
2480}
2481
2482static void qede_update_pf_params(struct qed_dev *cdev)
2483{
2484        struct qed_pf_params pf_params;
2485
2486        /* 64 rx + 64 tx */
2487        memset(&pf_params, 0, sizeof(struct qed_pf_params));
2488        pf_params.eth_pf_params.num_cons = 128;
2489        qed_ops->common->update_pf_params(cdev, &pf_params);
2490}
2491
2492enum qede_probe_mode {
2493        QEDE_PROBE_NORMAL,
2494};
2495
2496static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2497                        bool is_vf, enum qede_probe_mode mode)
2498{
2499        struct qed_probe_params probe_params;
2500        struct qed_slowpath_params sp_params;
2501        struct qed_dev_eth_info dev_info;
2502        struct qede_dev *edev;
2503        struct qed_dev *cdev;
2504        int rc;
2505
2506        if (unlikely(dp_level & QED_LEVEL_INFO))
2507                pr_notice("Starting qede probe\n");
2508
2509        memset(&probe_params, 0, sizeof(probe_params));
2510        probe_params.protocol = QED_PROTOCOL_ETH;
2511        probe_params.dp_module = dp_module;
2512        probe_params.dp_level = dp_level;
2513        probe_params.is_vf = is_vf;
2514        cdev = qed_ops->common->probe(pdev, &probe_params);
2515        if (!cdev) {
2516                rc = -ENODEV;
2517                goto err0;
2518        }
2519
2520        qede_update_pf_params(cdev);
2521
2522        /* Start the Slowpath-process */
2523        memset(&sp_params, 0, sizeof(sp_params));
2524        sp_params.int_mode = QED_INT_MODE_MSIX;
2525        sp_params.drv_major = QEDE_MAJOR_VERSION;
2526        sp_params.drv_minor = QEDE_MINOR_VERSION;
2527        sp_params.drv_rev = QEDE_REVISION_VERSION;
2528        sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
2529        strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2530        rc = qed_ops->common->slowpath_start(cdev, &sp_params);
2531        if (rc) {
2532                pr_notice("Cannot start slowpath\n");
2533                goto err1;
2534        }
2535
2536        /* Learn information crucial for qede to progress */
2537        rc = qed_ops->fill_dev_info(cdev, &dev_info);
2538        if (rc)
2539                goto err2;
2540
2541        edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2542                                   dp_level);
2543        if (!edev) {
2544                rc = -ENOMEM;
2545                goto err2;
2546        }
2547
2548        if (is_vf)
2549                edev->flags |= QEDE_FLAG_IS_VF;
2550
2551        qede_init_ndev(edev);
2552
2553        rc = qede_roce_dev_add(edev);
2554        if (rc)
2555                goto err3;
2556
2557        rc = register_netdev(edev->ndev);
2558        if (rc) {
2559                DP_NOTICE(edev, "Cannot register net-device\n");
2560                goto err4;
2561        }
2562
2563        edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2564
2565        edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2566
2567#ifdef CONFIG_DCB
2568        if (!IS_VF(edev))
2569                qede_set_dcbnl_ops(edev->ndev);
2570#endif
2571
2572        INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2573        mutex_init(&edev->qede_lock);
2574        edev->rx_copybreak = QEDE_RX_HDR_SIZE;
2575
2576        DP_INFO(edev, "Ending successfully qede probe\n");
2577
2578        return 0;
2579
2580err4:
2581        qede_roce_dev_remove(edev);
2582err3:
2583        free_netdev(edev->ndev);
2584err2:
2585        qed_ops->common->slowpath_stop(cdev);
2586err1:
2587        qed_ops->common->remove(cdev);
2588err0:
2589        return rc;
2590}
2591
2592static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2593{
2594        bool is_vf = false;
2595        u32 dp_module = 0;
2596        u8 dp_level = 0;
2597
2598        switch ((enum qede_pci_private)id->driver_data) {
2599        case QEDE_PRIVATE_VF:
2600                if (debug & QED_LOG_VERBOSE_MASK)
2601                        dev_err(&pdev->dev, "Probing a VF\n");
2602                is_vf = true;
2603                break;
2604        default:
2605                if (debug & QED_LOG_VERBOSE_MASK)
2606                        dev_err(&pdev->dev, "Probing a PF\n");
2607        }
2608
2609        qede_config_debug(debug, &dp_module, &dp_level);
2610
2611        return __qede_probe(pdev, dp_module, dp_level, is_vf,
2612                            QEDE_PROBE_NORMAL);
2613}
2614
2615enum qede_remove_mode {
2616        QEDE_REMOVE_NORMAL,
2617};
2618
2619static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2620{
2621        struct net_device *ndev = pci_get_drvdata(pdev);
2622        struct qede_dev *edev = netdev_priv(ndev);
2623        struct qed_dev *cdev = edev->cdev;
2624
2625        DP_INFO(edev, "Starting qede_remove\n");
2626
2627        cancel_delayed_work_sync(&edev->sp_task);
2628
2629        unregister_netdev(ndev);
2630
2631        qede_roce_dev_remove(edev);
2632
2633        edev->ops->common->set_power_state(cdev, PCI_D0);
2634
2635        pci_set_drvdata(pdev, NULL);
2636
2637        free_netdev(ndev);
2638
2639        /* Use global ops since we've freed edev */
2640        qed_ops->common->slowpath_stop(cdev);
2641        qed_ops->common->remove(cdev);
2642
2643        dev_info(&pdev->dev, "Ending qede_remove successfully\n");
2644}
2645
2646static void qede_remove(struct pci_dev *pdev)
2647{
2648        __qede_remove(pdev, QEDE_REMOVE_NORMAL);
2649}
2650
2651/* -------------------------------------------------------------------------
2652 * START OF LOAD / UNLOAD
2653 * -------------------------------------------------------------------------
2654 */
2655
2656static int qede_set_num_queues(struct qede_dev *edev)
2657{
2658        int rc;
2659        u16 rss_num;
2660
2661        /* Setup queues according to possible resources*/
2662        if (edev->req_queues)
2663                rss_num = edev->req_queues;
2664        else
2665                rss_num = netif_get_num_default_rss_queues() *
2666                          edev->dev_info.common.num_hwfns;
2667
2668        rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2669
2670        rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2671        if (rc > 0) {
2672                /* Managed to request interrupts for our queues */
2673                edev->num_queues = rc;
2674                DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2675                        QEDE_QUEUE_CNT(edev), rss_num);
2676                rc = 0;
2677        }
2678
2679        edev->fp_num_tx = edev->req_num_tx;
2680        edev->fp_num_rx = edev->req_num_rx;
2681
2682        return rc;
2683}
2684
2685static void qede_free_mem_sb(struct qede_dev *edev,
2686                             struct qed_sb_info *sb_info)
2687{
2688        if (sb_info->sb_virt)
2689                dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2690                                  (void *)sb_info->sb_virt, sb_info->sb_phys);
2691}
2692
2693/* This function allocates fast-path status block memory */
2694static int qede_alloc_mem_sb(struct qede_dev *edev,
2695                             struct qed_sb_info *sb_info, u16 sb_id)
2696{
2697        struct status_block *sb_virt;
2698        dma_addr_t sb_phys;
2699        int rc;
2700
2701        sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2702                                     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
2703        if (!sb_virt) {
2704                DP_ERR(edev, "Status block allocation failed\n");
2705                return -ENOMEM;
2706        }
2707
2708        rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2709                                        sb_virt, sb_phys, sb_id,
2710                                        QED_SB_TYPE_L2_QUEUE);
2711        if (rc) {
2712                DP_ERR(edev, "Status block initialization failed\n");
2713                dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2714                                  sb_virt, sb_phys);
2715                return rc;
2716        }
2717
2718        return 0;
2719}
2720
2721static void qede_free_rx_buffers(struct qede_dev *edev,
2722                                 struct qede_rx_queue *rxq)
2723{
2724        u16 i;
2725
2726        for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2727                struct sw_rx_data *rx_buf;
2728                struct page *data;
2729
2730                rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2731                data = rx_buf->data;
2732
2733                dma_unmap_page(&edev->pdev->dev,
2734                               rx_buf->mapping, PAGE_SIZE, DMA_FROM_DEVICE);
2735
2736                rx_buf->data = NULL;
2737                __free_page(data);
2738        }
2739}
2740
2741static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
2742{
2743        int i;
2744
2745        if (edev->gro_disable)
2746                return;
2747
2748        for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2749                struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2750                struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2751
2752                if (replace_buf->data) {
2753                        dma_unmap_page(&edev->pdev->dev,
2754                                       replace_buf->mapping,
2755                                       PAGE_SIZE, DMA_FROM_DEVICE);
2756                        __free_page(replace_buf->data);
2757                }
2758        }
2759}
2760
2761static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
2762{
2763        qede_free_sge_mem(edev, rxq);
2764
2765        /* Free rx buffers */
2766        qede_free_rx_buffers(edev, rxq);
2767
2768        /* Free the parallel SW ring */
2769        kfree(rxq->sw_rx_ring);
2770
2771        /* Free the real RQ ring used by FW */
2772        edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2773        edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2774}
2775
2776static int qede_alloc_rx_buffer(struct qede_dev *edev,
2777                                struct qede_rx_queue *rxq)
2778{
2779        struct sw_rx_data *sw_rx_data;
2780        struct eth_rx_bd *rx_bd;
2781        dma_addr_t mapping;
2782        struct page *data;
2783
2784        data = alloc_pages(GFP_ATOMIC, 0);
2785        if (unlikely(!data)) {
2786                DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2787                return -ENOMEM;
2788        }
2789
2790        /* Map the entire page as it would be used
2791         * for multiple RX buffer segment size mapping.
2792         */
2793        mapping = dma_map_page(&edev->pdev->dev, data, 0,
2794                               PAGE_SIZE, DMA_FROM_DEVICE);
2795        if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2796                __free_page(data);
2797                DP_NOTICE(edev, "Failed to map Rx buffer\n");
2798                return -ENOMEM;
2799        }
2800
2801        sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2802        sw_rx_data->page_offset = 0;
2803        sw_rx_data->data = data;
2804        sw_rx_data->mapping = mapping;
2805
2806        /* Advance PROD and get BD pointer */
2807        rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2808        WARN_ON(!rx_bd);
2809        rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2810        rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2811
2812        rxq->sw_rx_prod++;
2813
2814        return 0;
2815}
2816
2817static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
2818{
2819        dma_addr_t mapping;
2820        int i;
2821
2822        if (edev->gro_disable)
2823                return 0;
2824
2825        if (edev->ndev->mtu > PAGE_SIZE) {
2826                edev->gro_disable = 1;
2827                return 0;
2828        }
2829
2830        for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2831                struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2832                struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2833
2834                replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2835                if (unlikely(!replace_buf->data)) {
2836                        DP_NOTICE(edev,
2837                                  "Failed to allocate TPA skb pool [replacement buffer]\n");
2838                        goto err;
2839                }
2840
2841                mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2842                                       PAGE_SIZE, DMA_FROM_DEVICE);
2843                if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2844                        DP_NOTICE(edev,
2845                                  "Failed to map TPA replacement buffer\n");
2846                        goto err;
2847                }
2848
2849                replace_buf->mapping = mapping;
2850                tpa_info->replace_buf.page_offset = 0;
2851
2852                tpa_info->replace_buf_mapping = mapping;
2853                tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2854        }
2855
2856        return 0;
2857err:
2858        qede_free_sge_mem(edev, rxq);
2859        edev->gro_disable = 1;
2860        return -ENOMEM;
2861}
2862
2863/* This function allocates all memory needed per Rx queue */
2864static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
2865{
2866        int i, rc, size;
2867
2868        rxq->num_rx_buffers = edev->q_num_rx_buffers;
2869
2870        rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
2871
2872        if (rxq->rx_buf_size > PAGE_SIZE)
2873                rxq->rx_buf_size = PAGE_SIZE;
2874
2875        /* Segment size to spilt a page in multiple equal parts */
2876        rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2877
2878        /* Allocate the parallel driver ring for Rx buffers */
2879        size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2880        rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2881        if (!rxq->sw_rx_ring) {
2882                DP_ERR(edev, "Rx buffers ring allocation failed\n");
2883                rc = -ENOMEM;
2884                goto err;
2885        }
2886
2887        /* Allocate FW Rx ring  */
2888        rc = edev->ops->common->chain_alloc(edev->cdev,
2889                                            QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2890                                            QED_CHAIN_MODE_NEXT_PTR,
2891                                            QED_CHAIN_CNT_TYPE_U16,
2892                                            RX_RING_SIZE,
2893                                            sizeof(struct eth_rx_bd),
2894                                            &rxq->rx_bd_ring);
2895
2896        if (rc)
2897                goto err;
2898
2899        /* Allocate FW completion ring */
2900        rc = edev->ops->common->chain_alloc(edev->cdev,
2901                                            QED_CHAIN_USE_TO_CONSUME,
2902                                            QED_CHAIN_MODE_PBL,
2903                                            QED_CHAIN_CNT_TYPE_U16,
2904                                            RX_RING_SIZE,
2905                                            sizeof(union eth_rx_cqe),
2906                                            &rxq->rx_comp_ring);
2907        if (rc)
2908                goto err;
2909
2910        /* Allocate buffers for the Rx ring */
2911        for (i = 0; i < rxq->num_rx_buffers; i++) {
2912                rc = qede_alloc_rx_buffer(edev, rxq);
2913                if (rc) {
2914                        DP_ERR(edev,
2915                               "Rx buffers allocation failed at index %d\n", i);
2916                        goto err;
2917                }
2918        }
2919
2920        rc = qede_alloc_sge_mem(edev, rxq);
2921err:
2922        return rc;
2923}
2924
2925static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
2926{
2927        /* Free the parallel SW ring */
2928        kfree(txq->sw_tx_ring);
2929
2930        /* Free the real RQ ring used by FW */
2931        edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2932}
2933
2934/* This function allocates all memory needed per Tx queue */
2935static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
2936{
2937        int size, rc;
2938        union eth_tx_bd_types *p_virt;
2939
2940        txq->num_tx_buffers = edev->q_num_tx_buffers;
2941
2942        /* Allocate the parallel driver ring for Tx buffers */
2943        size = sizeof(*txq->sw_tx_ring) * TX_RING_SIZE;
2944        txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2945        if (!txq->sw_tx_ring) {
2946                DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2947                goto err;
2948        }
2949
2950        rc = edev->ops->common->chain_alloc(edev->cdev,
2951                                            QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2952                                            QED_CHAIN_MODE_PBL,
2953                                            QED_CHAIN_CNT_TYPE_U16,
2954                                            TX_RING_SIZE,
2955                                            sizeof(*p_virt), &txq->tx_pbl);
2956        if (rc)
2957                goto err;
2958
2959        return 0;
2960
2961err:
2962        qede_free_mem_txq(edev, txq);
2963        return -ENOMEM;
2964}
2965
2966/* This function frees all memory of a single fp */
2967static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
2968{
2969        int tc;
2970
2971        qede_free_mem_sb(edev, fp->sb_info);
2972
2973        if (fp->type & QEDE_FASTPATH_RX)
2974                qede_free_mem_rxq(edev, fp->rxq);
2975
2976        if (fp->type & QEDE_FASTPATH_TX)
2977                for (tc = 0; tc < edev->num_tc; tc++)
2978                        qede_free_mem_txq(edev, &fp->txqs[tc]);
2979}
2980
2981/* This function allocates all memory needed for a single fp (i.e. an entity
2982 * which contains status block, one rx queue and/or multiple per-TC tx queues.
2983 */
2984static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
2985{
2986        int rc, tc;
2987
2988        rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
2989        if (rc)
2990                goto err;
2991
2992        if (fp->type & QEDE_FASTPATH_RX) {
2993                rc = qede_alloc_mem_rxq(edev, fp->rxq);
2994                if (rc)
2995                        goto err;
2996        }
2997
2998        if (fp->type & QEDE_FASTPATH_TX) {
2999                for (tc = 0; tc < edev->num_tc; tc++) {
3000                        rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
3001                        if (rc)
3002                                goto err;
3003                }
3004        }
3005
3006        return 0;
3007err:
3008        return rc;
3009}
3010
3011static void qede_free_mem_load(struct qede_dev *edev)
3012{
3013        int i;
3014
3015        for_each_queue(i) {
3016                struct qede_fastpath *fp = &edev->fp_array[i];
3017
3018                qede_free_mem_fp(edev, fp);
3019        }
3020}
3021
3022/* This function allocates all qede memory at NIC load. */
3023static int qede_alloc_mem_load(struct qede_dev *edev)
3024{
3025        int rc = 0, queue_id;
3026
3027        for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
3028                struct qede_fastpath *fp = &edev->fp_array[queue_id];
3029
3030                rc = qede_alloc_mem_fp(edev, fp);
3031                if (rc) {
3032                        DP_ERR(edev,
3033                               "Failed to allocate memory for fastpath - rss id = %d\n",
3034                               queue_id);
3035                        qede_free_mem_load(edev);
3036                        return rc;
3037                }
3038        }
3039
3040        return 0;
3041}
3042
3043/* This function inits fp content and resets the SB, RXQ and TXQ structures */
3044static void qede_init_fp(struct qede_dev *edev)
3045{
3046        int queue_id, rxq_index = 0, txq_index = 0, tc;
3047        struct qede_fastpath *fp;
3048
3049        for_each_queue(queue_id) {
3050                fp = &edev->fp_array[queue_id];
3051
3052                fp->edev = edev;
3053                fp->id = queue_id;
3054
3055                memset((void *)&fp->napi, 0, sizeof(fp->napi));
3056
3057                memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
3058
3059                if (fp->type & QEDE_FASTPATH_RX) {
3060                        memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
3061                        fp->rxq->rxq_id = rxq_index++;
3062                }
3063
3064                if (fp->type & QEDE_FASTPATH_TX) {
3065                        memset((void *)fp->txqs, 0,
3066                               (edev->num_tc * sizeof(*fp->txqs)));
3067                        for (tc = 0; tc < edev->num_tc; tc++) {
3068                                fp->txqs[tc].index = txq_index +
3069                                    tc * QEDE_TSS_COUNT(edev);
3070                                if (edev->dev_info.is_legacy)
3071                                        fp->txqs[tc].is_legacy = true;
3072                        }
3073                        txq_index++;
3074                }
3075
3076                snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
3077                         edev->ndev->name, queue_id);
3078        }
3079
3080        edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
3081}
3082
3083static int qede_set_real_num_queues(struct qede_dev *edev)
3084{
3085        int rc = 0;
3086
3087        rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
3088        if (rc) {
3089                DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
3090                return rc;
3091        }
3092
3093        rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
3094        if (rc) {
3095                DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
3096                return rc;
3097        }
3098
3099        return 0;
3100}
3101
3102static void qede_napi_disable_remove(struct qede_dev *edev)
3103{
3104        int i;
3105
3106        for_each_queue(i) {
3107                napi_disable(&edev->fp_array[i].napi);
3108
3109                netif_napi_del(&edev->fp_array[i].napi);
3110        }
3111}
3112
3113static void qede_napi_add_enable(struct qede_dev *edev)
3114{
3115        int i;
3116
3117        /* Add NAPI objects */
3118        for_each_queue(i) {
3119                netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
3120                               qede_poll, NAPI_POLL_WEIGHT);
3121                napi_enable(&edev->fp_array[i].napi);
3122        }
3123}
3124
3125static void qede_sync_free_irqs(struct qede_dev *edev)
3126{
3127        int i;
3128
3129        for (i = 0; i < edev->int_info.used_cnt; i++) {
3130                if (edev->int_info.msix_cnt) {
3131                        synchronize_irq(edev->int_info.msix[i].vector);
3132                        free_irq(edev->int_info.msix[i].vector,
3133                                 &edev->fp_array[i]);
3134                } else {
3135                        edev->ops->common->simd_handler_clean(edev->cdev, i);
3136                }
3137        }
3138
3139        edev->int_info.used_cnt = 0;
3140}
3141
3142static int qede_req_msix_irqs(struct qede_dev *edev)
3143{
3144        int i, rc;
3145
3146        /* Sanitize number of interrupts == number of prepared RSS queues */
3147        if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
3148                DP_ERR(edev,
3149                       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
3150                       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
3151                return -EINVAL;
3152        }
3153
3154        for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
3155                rc = request_irq(edev->int_info.msix[i].vector,
3156                                 qede_msix_fp_int, 0, edev->fp_array[i].name,
3157                                 &edev->fp_array[i]);
3158                if (rc) {
3159                        DP_ERR(edev, "Request fp %d irq failed\n", i);
3160                        qede_sync_free_irqs(edev);
3161                        return rc;
3162                }
3163                DP_VERBOSE(edev, NETIF_MSG_INTR,
3164                           "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
3165                           edev->fp_array[i].name, i,
3166                           &edev->fp_array[i]);
3167                edev->int_info.used_cnt++;
3168        }
3169
3170        return 0;
3171}
3172
3173static void qede_simd_fp_handler(void *cookie)
3174{
3175        struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
3176
3177        napi_schedule_irqoff(&fp->napi);
3178}
3179
3180static int qede_setup_irqs(struct qede_dev *edev)
3181{
3182        int i, rc = 0;
3183
3184        /* Learn Interrupt configuration */
3185        rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
3186        if (rc)
3187                return rc;
3188
3189        if (edev->int_info.msix_cnt) {
3190                rc = qede_req_msix_irqs(edev);
3191                if (rc)
3192                        return rc;
3193                edev->ndev->irq = edev->int_info.msix[0].vector;
3194        } else {
3195                const struct qed_common_ops *ops;
3196
3197                /* qed should learn receive the RSS ids and callbacks */
3198                ops = edev->ops->common;
3199                for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
3200                        ops->simd_handler_config(edev->cdev,
3201                                                 &edev->fp_array[i], i,
3202                                                 qede_simd_fp_handler);
3203                edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
3204        }
3205        return 0;
3206}
3207
3208static int qede_drain_txq(struct qede_dev *edev,
3209                          struct qede_tx_queue *txq, bool allow_drain)
3210{
3211        int rc, cnt = 1000;
3212
3213        while (txq->sw_tx_cons != txq->sw_tx_prod) {
3214                if (!cnt) {
3215                        if (allow_drain) {
3216                                DP_NOTICE(edev,
3217                                          "Tx queue[%d] is stuck, requesting MCP to drain\n",
3218                                          txq->index);
3219                                rc = edev->ops->common->drain(edev->cdev);
3220                                if (rc)
3221                                        return rc;
3222                                return qede_drain_txq(edev, txq, false);
3223                        }
3224                        DP_NOTICE(edev,
3225                                  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3226                                  txq->index, txq->sw_tx_prod,
3227                                  txq->sw_tx_cons);
3228                        return -ENODEV;
3229                }
3230                cnt--;
3231                usleep_range(1000, 2000);
3232                barrier();
3233        }
3234
3235        /* FW finished processing, wait for HW to transmit all tx packets */
3236        usleep_range(1000, 2000);
3237
3238        return 0;
3239}
3240
3241static int qede_stop_queues(struct qede_dev *edev)
3242{
3243        struct qed_update_vport_params vport_update_params;
3244        struct qed_dev *cdev = edev->cdev;
3245        int rc, tc, i;
3246
3247        /* Disable the vport */
3248        memset(&vport_update_params, 0, sizeof(vport_update_params));
3249        vport_update_params.vport_id = 0;
3250        vport_update_params.update_vport_active_flg = 1;
3251        vport_update_params.vport_active_flg = 0;
3252        vport_update_params.update_rss_flg = 0;
3253
3254        rc = edev->ops->vport_update(cdev, &vport_update_params);
3255        if (rc) {
3256                DP_ERR(edev, "Failed to update vport\n");
3257                return rc;
3258        }
3259
3260        /* Flush Tx queues. If needed, request drain from MCP */
3261        for_each_queue(i) {
3262                struct qede_fastpath *fp = &edev->fp_array[i];
3263
3264                if (fp->type & QEDE_FASTPATH_TX) {
3265                        for (tc = 0; tc < edev->num_tc; tc++) {
3266                                struct qede_tx_queue *txq = &fp->txqs[tc];
3267
3268                                rc = qede_drain_txq(edev, txq, true);
3269                                if (rc)
3270                                        return rc;
3271                        }
3272                }
3273        }
3274
3275        /* Stop all Queues in reverse order */
3276        for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
3277                struct qed_stop_rxq_params rx_params;
3278
3279                /* Stop the Tx Queue(s) */
3280                if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
3281                        for (tc = 0; tc < edev->num_tc; tc++) {
3282                                struct qed_stop_txq_params tx_params;
3283                                u8 val;
3284
3285                                tx_params.rss_id = i;
3286                                val = edev->fp_array[i].txqs[tc].index;
3287                                tx_params.tx_queue_id = val;
3288                                rc = edev->ops->q_tx_stop(cdev, &tx_params);
3289                                if (rc) {
3290                                        DP_ERR(edev, "Failed to stop TXQ #%d\n",
3291                                               tx_params.tx_queue_id);
3292                                        return rc;
3293                                }
3294                        }
3295                }
3296
3297                /* Stop the Rx Queue */
3298                if (edev->fp_array[i].type & QEDE_FASTPATH_RX) {
3299                        memset(&rx_params, 0, sizeof(rx_params));
3300                        rx_params.rss_id = i;
3301                        rx_params.rx_queue_id = edev->fp_array[i].rxq->rxq_id;
3302
3303                        rc = edev->ops->q_rx_stop(cdev, &rx_params);
3304                        if (rc) {
3305                                DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3306                                return rc;
3307                        }
3308                }
3309        }
3310
3311        /* Stop the vport */
3312        rc = edev->ops->vport_stop(cdev, 0);
3313        if (rc)
3314                DP_ERR(edev, "Failed to stop VPORT\n");
3315
3316        return rc;
3317}
3318
3319static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
3320{
3321        int rc, tc, i;
3322        int vlan_removal_en = 1;
3323        struct qed_dev *cdev = edev->cdev;
3324        struct qed_update_vport_params vport_update_params;
3325        struct qed_queue_start_common_params q_params;
3326        struct qed_dev_info *qed_info = &edev->dev_info.common;
3327        struct qed_start_vport_params start = {0};
3328        bool reset_rss_indir = false;
3329
3330        if (!edev->num_queues) {
3331                DP_ERR(edev,
3332                       "Cannot update V-VPORT as active as there are no Rx queues\n");
3333                return -EINVAL;
3334        }
3335
3336        start.gro_enable = !edev->gro_disable;
3337        start.mtu = edev->ndev->mtu;
3338        start.vport_id = 0;
3339        start.drop_ttl0 = true;
3340        start.remove_inner_vlan = vlan_removal_en;
3341        start.clear_stats = clear_stats;
3342
3343        rc = edev->ops->vport_start(cdev, &start);
3344
3345        if (rc) {
3346                DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3347                return rc;
3348        }
3349
3350        DP_VERBOSE(edev, NETIF_MSG_IFUP,
3351                   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3352                   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3353
3354        for_each_queue(i) {
3355                struct qede_fastpath *fp = &edev->fp_array[i];
3356                dma_addr_t p_phys_table;
3357                u32 page_cnt;
3358
3359                if (fp->type & QEDE_FASTPATH_RX) {
3360                        struct qede_rx_queue *rxq = fp->rxq;
3361                        __le16 *val;
3362
3363                        memset(&q_params, 0, sizeof(q_params));
3364                        q_params.rss_id = i;
3365                        q_params.queue_id = rxq->rxq_id;
3366                        q_params.vport_id = 0;
3367                        q_params.sb = fp->sb_info->igu_sb_id;
3368                        q_params.sb_idx = RX_PI;
3369
3370                        p_phys_table =
3371                            qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
3372                        page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
3373
3374                        rc = edev->ops->q_rx_start(cdev, &q_params,
3375                                                   rxq->rx_buf_size,
3376                                                   rxq->rx_bd_ring.p_phys_addr,
3377                                                   p_phys_table,
3378                                                   page_cnt,
3379                                                   &rxq->hw_rxq_prod_addr);
3380                        if (rc) {
3381                                DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
3382                                       rc);
3383                                return rc;
3384                        }
3385
3386                        val = &fp->sb_info->sb_virt->pi_array[RX_PI];
3387                        rxq->hw_cons_ptr = val;
3388
3389                        qede_update_rx_prod(edev, rxq);
3390                }
3391
3392                if (!(fp->type & QEDE_FASTPATH_TX))
3393                        continue;
3394
3395                for (tc = 0; tc < edev->num_tc; tc++) {
3396                        struct qede_tx_queue *txq = &fp->txqs[tc];
3397
3398                        p_phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
3399                        page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
3400
3401                        memset(&q_params, 0, sizeof(q_params));
3402                        q_params.rss_id = i;
3403                        q_params.queue_id = txq->index;
3404                        q_params.vport_id = 0;
3405                        q_params.sb = fp->sb_info->igu_sb_id;
3406                        q_params.sb_idx = TX_PI(tc);
3407
3408                        rc = edev->ops->q_tx_start(cdev, &q_params,
3409                                                   p_phys_table, page_cnt,
3410                                                   &txq->doorbell_addr);
3411                        if (rc) {
3412                                DP_ERR(edev, "Start TXQ #%d failed %d\n",
3413                                       txq->index, rc);
3414                                return rc;
3415                        }
3416
3417                        txq->hw_cons_ptr =
3418                                &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
3419                        SET_FIELD(txq->tx_db.data.params,
3420                                  ETH_DB_DATA_DEST, DB_DEST_XCM);
3421                        SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
3422                                  DB_AGG_CMD_SET);
3423                        SET_FIELD(txq->tx_db.data.params,
3424                                  ETH_DB_DATA_AGG_VAL_SEL,
3425                                  DQ_XCM_ETH_TX_BD_PROD_CMD);
3426
3427                        txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3428                }
3429        }
3430
3431        /* Prepare and send the vport enable */
3432        memset(&vport_update_params, 0, sizeof(vport_update_params));
3433        vport_update_params.vport_id = start.vport_id;
3434        vport_update_params.update_vport_active_flg = 1;
3435        vport_update_params.vport_active_flg = 1;
3436
3437        if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
3438            qed_info->tx_switching) {
3439                vport_update_params.update_tx_switching_flg = 1;
3440                vport_update_params.tx_switching_flg = 1;
3441        }
3442
3443        /* Fill struct with RSS params */
3444        if (QEDE_RSS_COUNT(edev) > 1) {
3445                vport_update_params.update_rss_flg = 1;
3446
3447                /* Need to validate current RSS config uses valid entries */
3448                for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3449                        if (edev->rss_params.rss_ind_table[i] >=
3450                            QEDE_RSS_COUNT(edev)) {
3451                                reset_rss_indir = true;
3452                                break;
3453                        }
3454                }
3455
3456                if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3457                    reset_rss_indir) {
3458                        u16 val;
3459
3460                        for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3461                                u16 indir_val;
3462
3463                                val = QEDE_RSS_COUNT(edev);
3464                                indir_val = ethtool_rxfh_indir_default(i, val);
3465                                edev->rss_params.rss_ind_table[i] = indir_val;
3466                        }
3467                        edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3468                }
3469
3470                if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3471                        netdev_rss_key_fill(edev->rss_params.rss_key,
3472                                            sizeof(edev->rss_params.rss_key));
3473                        edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3474                }
3475
3476                if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3477                        edev->rss_params.rss_caps = QED_RSS_IPV4 |
3478                                                    QED_RSS_IPV6 |
3479                                                    QED_RSS_IPV4_TCP |
3480                                                    QED_RSS_IPV6_TCP;
3481                        edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3482                }
3483
3484                memcpy(&vport_update_params.rss_params, &edev->rss_params,
3485                       sizeof(vport_update_params.rss_params));
3486        } else {
3487                memset(&vport_update_params.rss_params, 0,
3488                       sizeof(vport_update_params.rss_params));
3489        }
3490
3491        rc = edev->ops->vport_update(cdev, &vport_update_params);
3492        if (rc) {
3493                DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3494                return rc;
3495        }
3496
3497        return 0;
3498}
3499
3500static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3501                                 enum qed_filter_xcast_params_type opcode,
3502                                 unsigned char *mac, int num_macs)
3503{
3504        struct qed_filter_params filter_cmd;
3505        int i;
3506
3507        memset(&filter_cmd, 0, sizeof(filter_cmd));
3508        filter_cmd.type = QED_FILTER_TYPE_MCAST;
3509        filter_cmd.filter.mcast.type = opcode;
3510        filter_cmd.filter.mcast.num = num_macs;
3511
3512        for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3513                ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3514
3515        return edev->ops->filter_config(edev->cdev, &filter_cmd);
3516}
3517
3518enum qede_unload_mode {
3519        QEDE_UNLOAD_NORMAL,
3520};
3521
3522static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
3523{
3524        struct qed_link_params link_params;
3525        int rc;
3526
3527        DP_INFO(edev, "Starting qede unload\n");
3528
3529        qede_roce_dev_event_close(edev);
3530        mutex_lock(&edev->qede_lock);
3531        edev->state = QEDE_STATE_CLOSED;
3532
3533        /* Close OS Tx */
3534        netif_tx_disable(edev->ndev);
3535        netif_carrier_off(edev->ndev);
3536
3537        /* Reset the link */
3538        memset(&link_params, 0, sizeof(link_params));
3539        link_params.link_up = false;
3540        edev->ops->common->set_link(edev->cdev, &link_params);
3541        rc = qede_stop_queues(edev);
3542        if (rc) {
3543                qede_sync_free_irqs(edev);
3544                goto out;
3545        }
3546
3547        DP_INFO(edev, "Stopped Queues\n");
3548
3549        qede_vlan_mark_nonconfigured(edev);
3550        edev->ops->fastpath_stop(edev->cdev);
3551
3552        /* Release the interrupts */
3553        qede_sync_free_irqs(edev);
3554        edev->ops->common->set_fp_int(edev->cdev, 0);
3555
3556        qede_napi_disable_remove(edev);
3557
3558        qede_free_mem_load(edev);
3559        qede_free_fp_array(edev);
3560
3561out:
3562        mutex_unlock(&edev->qede_lock);
3563        DP_INFO(edev, "Ending qede unload\n");
3564}
3565
3566enum qede_load_mode {
3567        QEDE_LOAD_NORMAL,
3568        QEDE_LOAD_RELOAD,
3569};
3570
3571static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3572{
3573        struct qed_link_params link_params;
3574        struct qed_link_output link_output;
3575        int rc;
3576
3577        DP_INFO(edev, "Starting qede load\n");
3578
3579        rc = qede_set_num_queues(edev);
3580        if (rc)
3581                goto err0;
3582
3583        rc = qede_alloc_fp_array(edev);
3584        if (rc)
3585                goto err0;
3586
3587        qede_init_fp(edev);
3588
3589        rc = qede_alloc_mem_load(edev);
3590        if (rc)
3591                goto err1;
3592        DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3593                QEDE_QUEUE_CNT(edev), edev->num_tc);
3594
3595        rc = qede_set_real_num_queues(edev);
3596        if (rc)
3597                goto err2;
3598
3599        qede_napi_add_enable(edev);
3600        DP_INFO(edev, "Napi added and enabled\n");
3601
3602        rc = qede_setup_irqs(edev);
3603        if (rc)
3604                goto err3;
3605        DP_INFO(edev, "Setup IRQs succeeded\n");
3606
3607        rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
3608        if (rc)
3609                goto err4;
3610        DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3611
3612        /* Add primary mac and set Rx filters */
3613        ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3614
3615        mutex_lock(&edev->qede_lock);
3616        edev->state = QEDE_STATE_OPEN;
3617        mutex_unlock(&edev->qede_lock);
3618
3619        /* Program un-configured VLANs */
3620        qede_configure_vlan_filters(edev);
3621
3622        /* Ask for link-up using current configuration */
3623        memset(&link_params, 0, sizeof(link_params));
3624        link_params.link_up = true;
3625        edev->ops->common->set_link(edev->cdev, &link_params);
3626
3627        /* Query whether link is already-up */
3628        memset(&link_output, 0, sizeof(link_output));
3629        edev->ops->common->get_link(edev->cdev, &link_output);
3630        qede_roce_dev_event_open(edev);
3631        qede_link_update(edev, &link_output);
3632
3633        DP_INFO(edev, "Ending successfully qede load\n");
3634
3635        return 0;
3636
3637err4:
3638        qede_sync_free_irqs(edev);
3639        memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3640err3:
3641        qede_napi_disable_remove(edev);
3642err2:
3643        qede_free_mem_load(edev);
3644err1:
3645        edev->ops->common->set_fp_int(edev->cdev, 0);
3646        qede_free_fp_array(edev);
3647        edev->num_queues = 0;
3648        edev->fp_num_tx = 0;
3649        edev->fp_num_rx = 0;
3650err0:
3651        return rc;
3652}
3653
3654void qede_reload(struct qede_dev *edev,
3655                 void (*func)(struct qede_dev *, union qede_reload_args *),
3656                 union qede_reload_args *args)
3657{
3658        qede_unload(edev, QEDE_UNLOAD_NORMAL);
3659        /* Call function handler to update parameters
3660         * needed for function load.
3661         */
3662        if (func)
3663                func(edev, args);
3664
3665        qede_load(edev, QEDE_LOAD_RELOAD);
3666
3667        mutex_lock(&edev->qede_lock);
3668        qede_config_rx_mode(edev->ndev);
3669        mutex_unlock(&edev->qede_lock);
3670}
3671
3672/* called with rtnl_lock */
3673static int qede_open(struct net_device *ndev)
3674{
3675        struct qede_dev *edev = netdev_priv(ndev);
3676        int rc;
3677
3678        netif_carrier_off(ndev);
3679
3680        edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3681
3682        rc = qede_load(edev, QEDE_LOAD_NORMAL);
3683
3684        if (rc)
3685                return rc;
3686
3687        udp_tunnel_get_rx_info(ndev);
3688
3689        return 0;
3690}
3691
3692static int qede_close(struct net_device *ndev)
3693{
3694        struct qede_dev *edev = netdev_priv(ndev);
3695
3696        qede_unload(edev, QEDE_UNLOAD_NORMAL);
3697
3698        return 0;
3699}
3700
3701static void qede_link_update(void *dev, struct qed_link_output *link)
3702{
3703        struct qede_dev *edev = dev;
3704
3705        if (!netif_running(edev->ndev)) {
3706                DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3707                return;
3708        }
3709
3710        if (link->link_up) {
3711                if (!netif_carrier_ok(edev->ndev)) {
3712                        DP_NOTICE(edev, "Link is up\n");
3713                        netif_tx_start_all_queues(edev->ndev);
3714                        netif_carrier_on(edev->ndev);
3715                }
3716        } else {
3717                if (netif_carrier_ok(edev->ndev)) {
3718                        DP_NOTICE(edev, "Link is down\n");
3719                        netif_tx_disable(edev->ndev);
3720                        netif_carrier_off(edev->ndev);
3721                }
3722        }
3723}
3724
3725static int qede_set_mac_addr(struct net_device *ndev, void *p)
3726{
3727        struct qede_dev *edev = netdev_priv(ndev);
3728        struct sockaddr *addr = p;
3729        int rc;
3730
3731        ASSERT_RTNL(); /* @@@TBD To be removed */
3732
3733        DP_INFO(edev, "Set_mac_addr called\n");
3734
3735        if (!is_valid_ether_addr(addr->sa_data)) {
3736                DP_NOTICE(edev, "The MAC address is not valid\n");
3737                return -EFAULT;
3738        }
3739
3740        if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
3741                DP_NOTICE(edev, "qed prevents setting MAC\n");
3742                return -EINVAL;
3743        }
3744
3745        ether_addr_copy(ndev->dev_addr, addr->sa_data);
3746
3747        if (!netif_running(ndev))  {
3748                DP_NOTICE(edev, "The device is currently down\n");
3749                return 0;
3750        }
3751
3752        /* Remove the previous primary mac */
3753        rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3754                                   edev->primary_mac);
3755        if (rc)
3756                return rc;
3757
3758        /* Add MAC filter according to the new unicast HW MAC address */
3759        ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3760        return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3761                                      edev->primary_mac);
3762}
3763
3764static int
3765qede_configure_mcast_filtering(struct net_device *ndev,
3766                               enum qed_filter_rx_mode_type *accept_flags)
3767{
3768        struct qede_dev *edev = netdev_priv(ndev);
3769        unsigned char *mc_macs, *temp;
3770        struct netdev_hw_addr *ha;
3771        int rc = 0, mc_count;
3772        size_t size;
3773
3774        size = 64 * ETH_ALEN;
3775
3776        mc_macs = kzalloc(size, GFP_KERNEL);
3777        if (!mc_macs) {
3778                DP_NOTICE(edev,
3779                          "Failed to allocate memory for multicast MACs\n");
3780                rc = -ENOMEM;
3781                goto exit;
3782        }
3783
3784        temp = mc_macs;
3785
3786        /* Remove all previously configured MAC filters */
3787        rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3788                                   mc_macs, 1);
3789        if (rc)
3790                goto exit;
3791
3792        netif_addr_lock_bh(ndev);
3793
3794        mc_count = netdev_mc_count(ndev);
3795        if (mc_count < 64) {
3796                netdev_for_each_mc_addr(ha, ndev) {
3797                        ether_addr_copy(temp, ha->addr);
3798                        temp += ETH_ALEN;
3799                }
3800        }
3801
3802        netif_addr_unlock_bh(ndev);
3803
3804        /* Check for all multicast @@@TBD resource allocation */
3805        if ((ndev->flags & IFF_ALLMULTI) ||
3806            (mc_count > 64)) {
3807                if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3808                        *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3809        } else {
3810                /* Add all multicast MAC filters */
3811                rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3812                                           mc_macs, mc_count);
3813        }
3814
3815exit:
3816        kfree(mc_macs);
3817        return rc;
3818}
3819
3820static void qede_set_rx_mode(struct net_device *ndev)
3821{
3822        struct qede_dev *edev = netdev_priv(ndev);
3823
3824        DP_INFO(edev, "qede_set_rx_mode called\n");
3825
3826        if (edev->state != QEDE_STATE_OPEN) {
3827                DP_INFO(edev,
3828                        "qede_set_rx_mode called while interface is down\n");
3829        } else {
3830                set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3831                schedule_delayed_work(&edev->sp_task, 0);
3832        }
3833}
3834
3835/* Must be called with qede_lock held */
3836static void qede_config_rx_mode(struct net_device *ndev)
3837{
3838        enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3839        struct qede_dev *edev = netdev_priv(ndev);
3840        struct qed_filter_params rx_mode;
3841        unsigned char *uc_macs, *temp;
3842        struct netdev_hw_addr *ha;
3843        int rc, uc_count;
3844        size_t size;
3845
3846        netif_addr_lock_bh(ndev);
3847
3848        uc_count = netdev_uc_count(ndev);
3849        size = uc_count * ETH_ALEN;
3850
3851        uc_macs = kzalloc(size, GFP_ATOMIC);
3852        if (!uc_macs) {
3853                DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3854                netif_addr_unlock_bh(ndev);
3855                return;
3856        }
3857
3858        temp = uc_macs;
3859        netdev_for_each_uc_addr(ha, ndev) {
3860                ether_addr_copy(temp, ha->addr);
3861                temp += ETH_ALEN;
3862        }
3863
3864        netif_addr_unlock_bh(ndev);
3865
3866        /* Configure the struct for the Rx mode */
3867        memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3868        rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3869
3870        /* Remove all previous unicast secondary macs and multicast macs
3871         * (configrue / leave the primary mac)
3872         */
3873        rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3874                                   edev->primary_mac);
3875        if (rc)
3876                goto out;
3877
3878        /* Check for promiscuous */
3879        if ((ndev->flags & IFF_PROMISC) ||
3880            (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3881                accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3882        } else {
3883                /* Add MAC filters according to the unicast secondary macs */
3884                int i;
3885
3886                temp = uc_macs;
3887                for (i = 0; i < uc_count; i++) {
3888                        rc = qede_set_ucast_rx_mac(edev,
3889                                                   QED_FILTER_XCAST_TYPE_ADD,
3890                                                   temp);
3891                        if (rc)
3892                                goto out;
3893
3894                        temp += ETH_ALEN;
3895                }
3896
3897                rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3898                if (rc)
3899                        goto out;
3900        }
3901
3902        /* take care of VLAN mode */
3903        if (ndev->flags & IFF_PROMISC) {
3904                qede_config_accept_any_vlan(edev, true);
3905        } else if (!edev->non_configured_vlans) {
3906                /* It's possible that accept_any_vlan mode is set due to a
3907                 * previous setting of IFF_PROMISC. If vlan credits are
3908                 * sufficient, disable accept_any_vlan.
3909                 */
3910                qede_config_accept_any_vlan(edev, false);
3911        }
3912
3913        rx_mode.filter.accept_flags = accept_flags;
3914        edev->ops->filter_config(edev->cdev, &rx_mode);
3915out:
3916        kfree(uc_macs);
3917}
3918