linux/drivers/net/ethernet/sfc/falcon.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/delay.h>
  13#include <linux/pci.h>
  14#include <linux/module.h>
  15#include <linux/seq_file.h>
  16#include <linux/i2c.h>
  17#include <linux/mii.h>
  18#include <linux/slab.h>
  19#include "net_driver.h"
  20#include "bitfield.h"
  21#include "efx.h"
  22#include "nic.h"
  23#include "farch_regs.h"
  24#include "io.h"
  25#include "phy.h"
  26#include "workarounds.h"
  27#include "selftest.h"
  28#include "mdio_10g.h"
  29
  30/* Hardware control for SFC4000 (aka Falcon). */
  31
  32/**************************************************************************
  33 *
  34 * NIC stats
  35 *
  36 **************************************************************************
  37 */
  38
  39#define FALCON_MAC_STATS_SIZE 0x100
  40
  41#define XgRxOctets_offset 0x0
  42#define XgRxOctets_WIDTH 48
  43#define XgRxOctetsOK_offset 0x8
  44#define XgRxOctetsOK_WIDTH 48
  45#define XgRxPkts_offset 0x10
  46#define XgRxPkts_WIDTH 32
  47#define XgRxPktsOK_offset 0x14
  48#define XgRxPktsOK_WIDTH 32
  49#define XgRxBroadcastPkts_offset 0x18
  50#define XgRxBroadcastPkts_WIDTH 32
  51#define XgRxMulticastPkts_offset 0x1C
  52#define XgRxMulticastPkts_WIDTH 32
  53#define XgRxUnicastPkts_offset 0x20
  54#define XgRxUnicastPkts_WIDTH 32
  55#define XgRxUndersizePkts_offset 0x24
  56#define XgRxUndersizePkts_WIDTH 32
  57#define XgRxOversizePkts_offset 0x28
  58#define XgRxOversizePkts_WIDTH 32
  59#define XgRxJabberPkts_offset 0x2C
  60#define XgRxJabberPkts_WIDTH 32
  61#define XgRxUndersizeFCSerrorPkts_offset 0x30
  62#define XgRxUndersizeFCSerrorPkts_WIDTH 32
  63#define XgRxDropEvents_offset 0x34
  64#define XgRxDropEvents_WIDTH 32
  65#define XgRxFCSerrorPkts_offset 0x38
  66#define XgRxFCSerrorPkts_WIDTH 32
  67#define XgRxAlignError_offset 0x3C
  68#define XgRxAlignError_WIDTH 32
  69#define XgRxSymbolError_offset 0x40
  70#define XgRxSymbolError_WIDTH 32
  71#define XgRxInternalMACError_offset 0x44
  72#define XgRxInternalMACError_WIDTH 32
  73#define XgRxControlPkts_offset 0x48
  74#define XgRxControlPkts_WIDTH 32
  75#define XgRxPausePkts_offset 0x4C
  76#define XgRxPausePkts_WIDTH 32
  77#define XgRxPkts64Octets_offset 0x50
  78#define XgRxPkts64Octets_WIDTH 32
  79#define XgRxPkts65to127Octets_offset 0x54
  80#define XgRxPkts65to127Octets_WIDTH 32
  81#define XgRxPkts128to255Octets_offset 0x58
  82#define XgRxPkts128to255Octets_WIDTH 32
  83#define XgRxPkts256to511Octets_offset 0x5C
  84#define XgRxPkts256to511Octets_WIDTH 32
  85#define XgRxPkts512to1023Octets_offset 0x60
  86#define XgRxPkts512to1023Octets_WIDTH 32
  87#define XgRxPkts1024to15xxOctets_offset 0x64
  88#define XgRxPkts1024to15xxOctets_WIDTH 32
  89#define XgRxPkts15xxtoMaxOctets_offset 0x68
  90#define XgRxPkts15xxtoMaxOctets_WIDTH 32
  91#define XgRxLengthError_offset 0x6C
  92#define XgRxLengthError_WIDTH 32
  93#define XgTxPkts_offset 0x80
  94#define XgTxPkts_WIDTH 32
  95#define XgTxOctets_offset 0x88
  96#define XgTxOctets_WIDTH 48
  97#define XgTxMulticastPkts_offset 0x90
  98#define XgTxMulticastPkts_WIDTH 32
  99#define XgTxBroadcastPkts_offset 0x94
 100#define XgTxBroadcastPkts_WIDTH 32
 101#define XgTxUnicastPkts_offset 0x98
 102#define XgTxUnicastPkts_WIDTH 32
 103#define XgTxControlPkts_offset 0x9C
 104#define XgTxControlPkts_WIDTH 32
 105#define XgTxPausePkts_offset 0xA0
 106#define XgTxPausePkts_WIDTH 32
 107#define XgTxPkts64Octets_offset 0xA4
 108#define XgTxPkts64Octets_WIDTH 32
 109#define XgTxPkts65to127Octets_offset 0xA8
 110#define XgTxPkts65to127Octets_WIDTH 32
 111#define XgTxPkts128to255Octets_offset 0xAC
 112#define XgTxPkts128to255Octets_WIDTH 32
 113#define XgTxPkts256to511Octets_offset 0xB0
 114#define XgTxPkts256to511Octets_WIDTH 32
 115#define XgTxPkts512to1023Octets_offset 0xB4
 116#define XgTxPkts512to1023Octets_WIDTH 32
 117#define XgTxPkts1024to15xxOctets_offset 0xB8
 118#define XgTxPkts1024to15xxOctets_WIDTH 32
 119#define XgTxPkts1519toMaxOctets_offset 0xBC
 120#define XgTxPkts1519toMaxOctets_WIDTH 32
 121#define XgTxUndersizePkts_offset 0xC0
 122#define XgTxUndersizePkts_WIDTH 32
 123#define XgTxOversizePkts_offset 0xC4
 124#define XgTxOversizePkts_WIDTH 32
 125#define XgTxNonTcpUdpPkt_offset 0xC8
 126#define XgTxNonTcpUdpPkt_WIDTH 16
 127#define XgTxMacSrcErrPkt_offset 0xCC
 128#define XgTxMacSrcErrPkt_WIDTH 16
 129#define XgTxIpSrcErrPkt_offset 0xD0
 130#define XgTxIpSrcErrPkt_WIDTH 16
 131#define XgDmaDone_offset 0xD4
 132#define XgDmaDone_WIDTH 32
 133
 134#define FALCON_XMAC_STATS_DMA_FLAG(efx)                         \
 135        (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
 136
 137#define FALCON_DMA_STAT(ext_name, hw_name)                              \
 138        [FALCON_STAT_ ## ext_name] =                                    \
 139        { #ext_name,                                                    \
 140          /* 48-bit stats are zero-padded to 64 on DMA */               \
 141          hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,     \
 142          hw_name ## _ ## offset }
 143#define FALCON_OTHER_STAT(ext_name)                                     \
 144        [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
 145#define GENERIC_SW_STAT(ext_name)                               \
 146        [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
 147
 148static const struct efx_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
 149        FALCON_DMA_STAT(tx_bytes, XgTxOctets),
 150        FALCON_DMA_STAT(tx_packets, XgTxPkts),
 151        FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
 152        FALCON_DMA_STAT(tx_control, XgTxControlPkts),
 153        FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
 154        FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
 155        FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
 156        FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
 157        FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
 158        FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
 159        FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
 160        FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
 161        FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
 162        FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
 163        FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
 164        FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
 165        FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
 166        FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
 167        FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
 168        FALCON_DMA_STAT(rx_bytes, XgRxOctets),
 169        FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
 170        FALCON_OTHER_STAT(rx_bad_bytes),
 171        FALCON_DMA_STAT(rx_packets, XgRxPkts),
 172        FALCON_DMA_STAT(rx_good, XgRxPktsOK),
 173        FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
 174        FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
 175        FALCON_DMA_STAT(rx_control, XgRxControlPkts),
 176        FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
 177        FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
 178        FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
 179        FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
 180        FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
 181        FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
 182        FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
 183        FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
 184        FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
 185        FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
 186        FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
 187        FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
 188        FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
 189        FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
 190        FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
 191        FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
 192        FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
 193        FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
 194        FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
 195        FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
 196        GENERIC_SW_STAT(rx_nodesc_trunc),
 197        GENERIC_SW_STAT(rx_noskb_drops),
 198};
 199static const unsigned long falcon_stat_mask[] = {
 200        [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
 201};
 202
 203/**************************************************************************
 204 *
 205 * Basic SPI command set and bit definitions
 206 *
 207 *************************************************************************/
 208
 209#define SPI_WRSR 0x01           /* Write status register */
 210#define SPI_WRITE 0x02          /* Write data to memory array */
 211#define SPI_READ 0x03           /* Read data from memory array */
 212#define SPI_WRDI 0x04           /* Reset write enable latch */
 213#define SPI_RDSR 0x05           /* Read status register */
 214#define SPI_WREN 0x06           /* Set write enable latch */
 215#define SPI_SST_EWSR 0x50       /* SST: Enable write to status register */
 216
 217#define SPI_STATUS_WPEN 0x80    /* Write-protect pin enabled */
 218#define SPI_STATUS_BP2 0x10     /* Block protection bit 2 */
 219#define SPI_STATUS_BP1 0x08     /* Block protection bit 1 */
 220#define SPI_STATUS_BP0 0x04     /* Block protection bit 0 */
 221#define SPI_STATUS_WEN 0x02     /* State of the write enable latch */
 222#define SPI_STATUS_NRDY 0x01    /* Device busy flag */
 223
 224/**************************************************************************
 225 *
 226 * Non-volatile memory layout
 227 *
 228 **************************************************************************
 229 */
 230
 231/* SFC4000 flash is partitioned into:
 232 *     0-0x400       chip and board config (see struct falcon_nvconfig)
 233 *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
 234 *     0x8000-end    boot code (mapped to PCI expansion ROM)
 235 * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
 236 * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
 237 *     0-0x400       chip and board config
 238 *     configurable  VPD
 239 *     0x800-0x1800  boot config
 240 * Aside from the chip and board config, all of these are optional and may
 241 * be absent or truncated depending on the devices used.
 242 */
 243#define FALCON_NVCONFIG_END 0x400U
 244#define FALCON_FLASH_BOOTCODE_START 0x8000U
 245#define FALCON_EEPROM_BOOTCONFIG_START 0x800U
 246#define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
 247
 248/* Board configuration v2 (v1 is obsolete; later versions are compatible) */
 249struct falcon_nvconfig_board_v2 {
 250        __le16 nports;
 251        u8 port0_phy_addr;
 252        u8 port0_phy_type;
 253        u8 port1_phy_addr;
 254        u8 port1_phy_type;
 255        __le16 asic_sub_revision;
 256        __le16 board_revision;
 257} __packed;
 258
 259/* Board configuration v3 extra information */
 260struct falcon_nvconfig_board_v3 {
 261        __le32 spi_device_type[2];
 262} __packed;
 263
 264/* Bit numbers for spi_device_type */
 265#define SPI_DEV_TYPE_SIZE_LBN 0
 266#define SPI_DEV_TYPE_SIZE_WIDTH 5
 267#define SPI_DEV_TYPE_ADDR_LEN_LBN 6
 268#define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
 269#define SPI_DEV_TYPE_ERASE_CMD_LBN 8
 270#define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
 271#define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
 272#define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
 273#define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
 274#define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
 275#define SPI_DEV_TYPE_FIELD(type, field)                                 \
 276        (((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
 277
 278#define FALCON_NVCONFIG_OFFSET 0x300
 279
 280#define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
 281struct falcon_nvconfig {
 282        efx_oword_t ee_vpd_cfg_reg;                     /* 0x300 */
 283        u8 mac_address[2][8];                   /* 0x310 */
 284        efx_oword_t pcie_sd_ctl0123_reg;                /* 0x320 */
 285        efx_oword_t pcie_sd_ctl45_reg;                  /* 0x330 */
 286        efx_oword_t pcie_pcs_ctl_stat_reg;              /* 0x340 */
 287        efx_oword_t hw_init_reg;                        /* 0x350 */
 288        efx_oword_t nic_stat_reg;                       /* 0x360 */
 289        efx_oword_t glb_ctl_reg;                        /* 0x370 */
 290        efx_oword_t srm_cfg_reg;                        /* 0x380 */
 291        efx_oword_t spare_reg;                          /* 0x390 */
 292        __le16 board_magic_num;                 /* 0x3A0 */
 293        __le16 board_struct_ver;
 294        __le16 board_checksum;
 295        struct falcon_nvconfig_board_v2 board_v2;
 296        efx_oword_t ee_base_page_reg;                   /* 0x3B0 */
 297        struct falcon_nvconfig_board_v3 board_v3;       /* 0x3C0 */
 298} __packed;
 299
 300/*************************************************************************/
 301
 302static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
 303static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
 304
 305static const unsigned int
 306/* "Large" EEPROM device: Atmel AT25640 or similar
 307 * 8 KB, 16-bit address, 32 B write block */
 308large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
 309                     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
 310                     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
 311/* Default flash device: Atmel AT25F1024
 312 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
 313default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
 314                      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
 315                      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
 316                      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
 317                      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
 318
 319/**************************************************************************
 320 *
 321 * I2C bus - this is a bit-bashing interface using GPIO pins
 322 * Note that it uses the output enables to tristate the outputs
 323 * SDA is the data pin and SCL is the clock
 324 *
 325 **************************************************************************
 326 */
 327static void falcon_setsda(void *data, int state)
 328{
 329        struct efx_nic *efx = (struct efx_nic *)data;
 330        efx_oword_t reg;
 331
 332        efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 333        EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
 334        efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
 335}
 336
 337static void falcon_setscl(void *data, int state)
 338{
 339        struct efx_nic *efx = (struct efx_nic *)data;
 340        efx_oword_t reg;
 341
 342        efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 343        EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
 344        efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
 345}
 346
 347static int falcon_getsda(void *data)
 348{
 349        struct efx_nic *efx = (struct efx_nic *)data;
 350        efx_oword_t reg;
 351
 352        efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 353        return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
 354}
 355
 356static int falcon_getscl(void *data)
 357{
 358        struct efx_nic *efx = (struct efx_nic *)data;
 359        efx_oword_t reg;
 360
 361        efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 362        return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
 363}
 364
 365static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
 366        .setsda         = falcon_setsda,
 367        .setscl         = falcon_setscl,
 368        .getsda         = falcon_getsda,
 369        .getscl         = falcon_getscl,
 370        .udelay         = 5,
 371        /* Wait up to 50 ms for slave to let us pull SCL high */
 372        .timeout        = DIV_ROUND_UP(HZ, 20),
 373};
 374
 375static void falcon_push_irq_moderation(struct efx_channel *channel)
 376{
 377        efx_dword_t timer_cmd;
 378        struct efx_nic *efx = channel->efx;
 379
 380        /* Set timer register */
 381        if (channel->irq_moderation_us) {
 382                unsigned int ticks;
 383
 384                ticks = efx_usecs_to_ticks(efx, channel->irq_moderation_us);
 385                EFX_POPULATE_DWORD_2(timer_cmd,
 386                                     FRF_AB_TC_TIMER_MODE,
 387                                     FFE_BB_TIMER_MODE_INT_HLDOFF,
 388                                     FRF_AB_TC_TIMER_VAL,
 389                                     ticks - 1);
 390        } else {
 391                EFX_POPULATE_DWORD_2(timer_cmd,
 392                                     FRF_AB_TC_TIMER_MODE,
 393                                     FFE_BB_TIMER_MODE_DIS,
 394                                     FRF_AB_TC_TIMER_VAL, 0);
 395        }
 396        BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
 397        efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
 398                               channel->channel);
 399}
 400
 401static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
 402
 403static void falcon_prepare_flush(struct efx_nic *efx)
 404{
 405        falcon_deconfigure_mac_wrapper(efx);
 406
 407        /* Wait for the tx and rx fifo's to get to the next packet boundary
 408         * (~1ms without back-pressure), then to drain the remainder of the
 409         * fifo's at data path speeds (negligible), with a healthy margin. */
 410        msleep(10);
 411}
 412
 413/* Acknowledge a legacy interrupt from Falcon
 414 *
 415 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
 416 *
 417 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
 418 * BIU. Interrupt acknowledge is read sensitive so must write instead
 419 * (then read to ensure the BIU collector is flushed)
 420 *
 421 * NB most hardware supports MSI interrupts
 422 */
 423static inline void falcon_irq_ack_a1(struct efx_nic *efx)
 424{
 425        efx_dword_t reg;
 426
 427        EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
 428        efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
 429        efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
 430}
 431
 432static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
 433{
 434        struct efx_nic *efx = dev_id;
 435        efx_oword_t *int_ker = efx->irq_status.addr;
 436        int syserr;
 437        int queues;
 438
 439        /* Check to see if this is our interrupt.  If it isn't, we
 440         * exit without having touched the hardware.
 441         */
 442        if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
 443                netif_vdbg(efx, intr, efx->net_dev,
 444                           "IRQ %d on CPU %d not for me\n", irq,
 445                           raw_smp_processor_id());
 446                return IRQ_NONE;
 447        }
 448        efx->last_irq_cpu = raw_smp_processor_id();
 449        netif_vdbg(efx, intr, efx->net_dev,
 450                   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
 451                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
 452
 453        if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
 454                return IRQ_HANDLED;
 455
 456        /* Check to see if we have a serious error condition */
 457        syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
 458        if (unlikely(syserr))
 459                return efx_farch_fatal_interrupt(efx);
 460
 461        /* Determine interrupting queues, clear interrupt status
 462         * register and acknowledge the device interrupt.
 463         */
 464        BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
 465        queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
 466        EFX_ZERO_OWORD(*int_ker);
 467        wmb(); /* Ensure the vector is cleared before interrupt ack */
 468        falcon_irq_ack_a1(efx);
 469
 470        if (queues & 1)
 471                efx_schedule_channel_irq(efx_get_channel(efx, 0));
 472        if (queues & 2)
 473                efx_schedule_channel_irq(efx_get_channel(efx, 1));
 474        return IRQ_HANDLED;
 475}
 476
 477/**************************************************************************
 478 *
 479 * RSS
 480 *
 481 **************************************************************************
 482 */
 483static int dummy_rx_push_rss_config(struct efx_nic *efx, bool user,
 484                                    const u32 *rx_indir_table)
 485{
 486        (void) efx;
 487        (void) user;
 488        (void) rx_indir_table;
 489        return -ENOSYS;
 490}
 491
 492static int falcon_b0_rx_push_rss_config(struct efx_nic *efx, bool user,
 493                                        const u32 *rx_indir_table)
 494{
 495        efx_oword_t temp;
 496
 497        (void) user;
 498        /* Set hash key for IPv4 */
 499        memcpy(&temp, efx->rx_hash_key, sizeof(temp));
 500        efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
 501
 502        memcpy(efx->rx_indir_table, rx_indir_table,
 503               sizeof(efx->rx_indir_table));
 504        efx_farch_rx_push_indir_table(efx);
 505        return 0;
 506}
 507
 508/**************************************************************************
 509 *
 510 * EEPROM/flash
 511 *
 512 **************************************************************************
 513 */
 514
 515#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
 516
 517static int falcon_spi_poll(struct efx_nic *efx)
 518{
 519        efx_oword_t reg;
 520        efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
 521        return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
 522}
 523
 524/* Wait for SPI command completion */
 525static int falcon_spi_wait(struct efx_nic *efx)
 526{
 527        /* Most commands will finish quickly, so we start polling at
 528         * very short intervals.  Sometimes the command may have to
 529         * wait for VPD or expansion ROM access outside of our
 530         * control, so we allow up to 100 ms. */
 531        unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
 532        int i;
 533
 534        for (i = 0; i < 10; i++) {
 535                if (!falcon_spi_poll(efx))
 536                        return 0;
 537                udelay(10);
 538        }
 539
 540        for (;;) {
 541                if (!falcon_spi_poll(efx))
 542                        return 0;
 543                if (time_after_eq(jiffies, timeout)) {
 544                        netif_err(efx, hw, efx->net_dev,
 545                                  "timed out waiting for SPI\n");
 546                        return -ETIMEDOUT;
 547                }
 548                schedule_timeout_uninterruptible(1);
 549        }
 550}
 551
 552static int
 553falcon_spi_cmd(struct efx_nic *efx, const struct falcon_spi_device *spi,
 554               unsigned int command, int address,
 555               const void *in, void *out, size_t len)
 556{
 557        bool addressed = (address >= 0);
 558        bool reading = (out != NULL);
 559        efx_oword_t reg;
 560        int rc;
 561
 562        /* Input validation */
 563        if (len > FALCON_SPI_MAX_LEN)
 564                return -EINVAL;
 565
 566        /* Check that previous command is not still running */
 567        rc = falcon_spi_poll(efx);
 568        if (rc)
 569                return rc;
 570
 571        /* Program address register, if we have an address */
 572        if (addressed) {
 573                EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
 574                efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
 575        }
 576
 577        /* Program data register, if we have data */
 578        if (in != NULL) {
 579                memcpy(&reg, in, len);
 580                efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
 581        }
 582
 583        /* Issue read/write command */
 584        EFX_POPULATE_OWORD_7(reg,
 585                             FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
 586                             FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
 587                             FRF_AB_EE_SPI_HCMD_DABCNT, len,
 588                             FRF_AB_EE_SPI_HCMD_READ, reading,
 589                             FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
 590                             FRF_AB_EE_SPI_HCMD_ADBCNT,
 591                             (addressed ? spi->addr_len : 0),
 592                             FRF_AB_EE_SPI_HCMD_ENC, command);
 593        efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
 594
 595        /* Wait for read/write to complete */
 596        rc = falcon_spi_wait(efx);
 597        if (rc)
 598                return rc;
 599
 600        /* Read data */
 601        if (out != NULL) {
 602                efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
 603                memcpy(out, &reg, len);
 604        }
 605
 606        return 0;
 607}
 608
 609static inline u8
 610falcon_spi_munge_command(const struct falcon_spi_device *spi,
 611                         const u8 command, const unsigned int address)
 612{
 613        return command | (((address >> 8) & spi->munge_address) << 3);
 614}
 615
 616static int
 617falcon_spi_read(struct efx_nic *efx, const struct falcon_spi_device *spi,
 618                loff_t start, size_t len, size_t *retlen, u8 *buffer)
 619{
 620        size_t block_len, pos = 0;
 621        unsigned int command;
 622        int rc = 0;
 623
 624        while (pos < len) {
 625                block_len = min(len - pos, FALCON_SPI_MAX_LEN);
 626
 627                command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
 628                rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
 629                                    buffer + pos, block_len);
 630                if (rc)
 631                        break;
 632                pos += block_len;
 633
 634                /* Avoid locking up the system */
 635                cond_resched();
 636                if (signal_pending(current)) {
 637                        rc = -EINTR;
 638                        break;
 639                }
 640        }
 641
 642        if (retlen)
 643                *retlen = pos;
 644        return rc;
 645}
 646
 647#ifdef CONFIG_SFC_MTD
 648
 649struct falcon_mtd_partition {
 650        struct efx_mtd_partition common;
 651        const struct falcon_spi_device *spi;
 652        size_t offset;
 653};
 654
 655#define to_falcon_mtd_partition(mtd)                            \
 656        container_of(mtd, struct falcon_mtd_partition, common.mtd)
 657
 658static size_t
 659falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
 660{
 661        return min(FALCON_SPI_MAX_LEN,
 662                   (spi->block_size - (start & (spi->block_size - 1))));
 663}
 664
 665/* Wait up to 10 ms for buffered write completion */
 666static int
 667falcon_spi_wait_write(struct efx_nic *efx, const struct falcon_spi_device *spi)
 668{
 669        unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
 670        u8 status;
 671        int rc;
 672
 673        for (;;) {
 674                rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 675                                    &status, sizeof(status));
 676                if (rc)
 677                        return rc;
 678                if (!(status & SPI_STATUS_NRDY))
 679                        return 0;
 680                if (time_after_eq(jiffies, timeout)) {
 681                        netif_err(efx, hw, efx->net_dev,
 682                                  "SPI write timeout on device %d"
 683                                  " last status=0x%02x\n",
 684                                  spi->device_id, status);
 685                        return -ETIMEDOUT;
 686                }
 687                schedule_timeout_uninterruptible(1);
 688        }
 689}
 690
 691static int
 692falcon_spi_write(struct efx_nic *efx, const struct falcon_spi_device *spi,
 693                 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
 694{
 695        u8 verify_buffer[FALCON_SPI_MAX_LEN];
 696        size_t block_len, pos = 0;
 697        unsigned int command;
 698        int rc = 0;
 699
 700        while (pos < len) {
 701                rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 702                if (rc)
 703                        break;
 704
 705                block_len = min(len - pos,
 706                                falcon_spi_write_limit(spi, start + pos));
 707                command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
 708                rc = falcon_spi_cmd(efx, spi, command, start + pos,
 709                                    buffer + pos, NULL, block_len);
 710                if (rc)
 711                        break;
 712
 713                rc = falcon_spi_wait_write(efx, spi);
 714                if (rc)
 715                        break;
 716
 717                command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
 718                rc = falcon_spi_cmd(efx, spi, command, start + pos,
 719                                    NULL, verify_buffer, block_len);
 720                if (memcmp(verify_buffer, buffer + pos, block_len)) {
 721                        rc = -EIO;
 722                        break;
 723                }
 724
 725                pos += block_len;
 726
 727                /* Avoid locking up the system */
 728                cond_resched();
 729                if (signal_pending(current)) {
 730                        rc = -EINTR;
 731                        break;
 732                }
 733        }
 734
 735        if (retlen)
 736                *retlen = pos;
 737        return rc;
 738}
 739
 740static int
 741falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
 742{
 743        const struct falcon_spi_device *spi = part->spi;
 744        struct efx_nic *efx = part->common.mtd.priv;
 745        u8 status;
 746        int rc, i;
 747
 748        /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
 749        for (i = 0; i < 40; i++) {
 750                __set_current_state(uninterruptible ?
 751                                    TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
 752                schedule_timeout(HZ / 10);
 753                rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 754                                    &status, sizeof(status));
 755                if (rc)
 756                        return rc;
 757                if (!(status & SPI_STATUS_NRDY))
 758                        return 0;
 759                if (signal_pending(current))
 760                        return -EINTR;
 761        }
 762        pr_err("%s: timed out waiting for %s\n",
 763               part->common.name, part->common.dev_type_name);
 764        return -ETIMEDOUT;
 765}
 766
 767static int
 768falcon_spi_unlock(struct efx_nic *efx, const struct falcon_spi_device *spi)
 769{
 770        const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
 771                                SPI_STATUS_BP0);
 772        u8 status;
 773        int rc;
 774
 775        rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 776                            &status, sizeof(status));
 777        if (rc)
 778                return rc;
 779
 780        if (!(status & unlock_mask))
 781                return 0; /* already unlocked */
 782
 783        rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 784        if (rc)
 785                return rc;
 786        rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
 787        if (rc)
 788                return rc;
 789
 790        status &= ~unlock_mask;
 791        rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
 792                            NULL, sizeof(status));
 793        if (rc)
 794                return rc;
 795        rc = falcon_spi_wait_write(efx, spi);
 796        if (rc)
 797                return rc;
 798
 799        return 0;
 800}
 801
 802#define FALCON_SPI_VERIFY_BUF_LEN 16
 803
 804static int
 805falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
 806{
 807        const struct falcon_spi_device *spi = part->spi;
 808        struct efx_nic *efx = part->common.mtd.priv;
 809        unsigned pos, block_len;
 810        u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
 811        u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
 812        int rc;
 813
 814        if (len != spi->erase_size)
 815                return -EINVAL;
 816
 817        if (spi->erase_command == 0)
 818                return -EOPNOTSUPP;
 819
 820        rc = falcon_spi_unlock(efx, spi);
 821        if (rc)
 822                return rc;
 823        rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 824        if (rc)
 825                return rc;
 826        rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
 827                            NULL, 0);
 828        if (rc)
 829                return rc;
 830        rc = falcon_spi_slow_wait(part, false);
 831
 832        /* Verify the entire region has been wiped */
 833        memset(empty, 0xff, sizeof(empty));
 834        for (pos = 0; pos < len; pos += block_len) {
 835                block_len = min(len - pos, sizeof(buffer));
 836                rc = falcon_spi_read(efx, spi, start + pos, block_len,
 837                                     NULL, buffer);
 838                if (rc)
 839                        return rc;
 840                if (memcmp(empty, buffer, block_len))
 841                        return -EIO;
 842
 843                /* Avoid locking up the system */
 844                cond_resched();
 845                if (signal_pending(current))
 846                        return -EINTR;
 847        }
 848
 849        return rc;
 850}
 851
 852static void falcon_mtd_rename(struct efx_mtd_partition *part)
 853{
 854        struct efx_nic *efx = part->mtd.priv;
 855
 856        snprintf(part->name, sizeof(part->name), "%s %s",
 857                 efx->name, part->type_name);
 858}
 859
 860static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
 861                           size_t len, size_t *retlen, u8 *buffer)
 862{
 863        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 864        struct efx_nic *efx = mtd->priv;
 865        struct falcon_nic_data *nic_data = efx->nic_data;
 866        int rc;
 867
 868        rc = mutex_lock_interruptible(&nic_data->spi_lock);
 869        if (rc)
 870                return rc;
 871        rc = falcon_spi_read(efx, part->spi, part->offset + start,
 872                             len, retlen, buffer);
 873        mutex_unlock(&nic_data->spi_lock);
 874        return rc;
 875}
 876
 877static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
 878{
 879        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 880        struct efx_nic *efx = mtd->priv;
 881        struct falcon_nic_data *nic_data = efx->nic_data;
 882        int rc;
 883
 884        rc = mutex_lock_interruptible(&nic_data->spi_lock);
 885        if (rc)
 886                return rc;
 887        rc = falcon_spi_erase(part, part->offset + start, len);
 888        mutex_unlock(&nic_data->spi_lock);
 889        return rc;
 890}
 891
 892static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
 893                            size_t len, size_t *retlen, const u8 *buffer)
 894{
 895        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 896        struct efx_nic *efx = mtd->priv;
 897        struct falcon_nic_data *nic_data = efx->nic_data;
 898        int rc;
 899
 900        rc = mutex_lock_interruptible(&nic_data->spi_lock);
 901        if (rc)
 902                return rc;
 903        rc = falcon_spi_write(efx, part->spi, part->offset + start,
 904                              len, retlen, buffer);
 905        mutex_unlock(&nic_data->spi_lock);
 906        return rc;
 907}
 908
 909static int falcon_mtd_sync(struct mtd_info *mtd)
 910{
 911        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 912        struct efx_nic *efx = mtd->priv;
 913        struct falcon_nic_data *nic_data = efx->nic_data;
 914        int rc;
 915
 916        mutex_lock(&nic_data->spi_lock);
 917        rc = falcon_spi_slow_wait(part, true);
 918        mutex_unlock(&nic_data->spi_lock);
 919        return rc;
 920}
 921
 922static int falcon_mtd_probe(struct efx_nic *efx)
 923{
 924        struct falcon_nic_data *nic_data = efx->nic_data;
 925        struct falcon_mtd_partition *parts;
 926        struct falcon_spi_device *spi;
 927        size_t n_parts;
 928        int rc = -ENODEV;
 929
 930        ASSERT_RTNL();
 931
 932        /* Allocate space for maximum number of partitions */
 933        parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
 934        if (!parts)
 935                return -ENOMEM;
 936        n_parts = 0;
 937
 938        spi = &nic_data->spi_flash;
 939        if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
 940                parts[n_parts].spi = spi;
 941                parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
 942                parts[n_parts].common.dev_type_name = "flash";
 943                parts[n_parts].common.type_name = "sfc_flash_bootrom";
 944                parts[n_parts].common.mtd.type = MTD_NORFLASH;
 945                parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
 946                parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
 947                parts[n_parts].common.mtd.erasesize = spi->erase_size;
 948                n_parts++;
 949        }
 950
 951        spi = &nic_data->spi_eeprom;
 952        if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
 953                parts[n_parts].spi = spi;
 954                parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
 955                parts[n_parts].common.dev_type_name = "EEPROM";
 956                parts[n_parts].common.type_name = "sfc_bootconfig";
 957                parts[n_parts].common.mtd.type = MTD_RAM;
 958                parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
 959                parts[n_parts].common.mtd.size =
 960                        min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
 961                        FALCON_EEPROM_BOOTCONFIG_START;
 962                parts[n_parts].common.mtd.erasesize = spi->erase_size;
 963                n_parts++;
 964        }
 965
 966        rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
 967        if (rc)
 968                kfree(parts);
 969        return rc;
 970}
 971
 972#endif /* CONFIG_SFC_MTD */
 973
 974/**************************************************************************
 975 *
 976 * XMAC operations
 977 *
 978 **************************************************************************
 979 */
 980
 981/* Configure the XAUI driver that is an output from Falcon */
 982static void falcon_setup_xaui(struct efx_nic *efx)
 983{
 984        efx_oword_t sdctl, txdrv;
 985
 986        /* Move the XAUI into low power, unless there is no PHY, in
 987         * which case the XAUI will have to drive a cable. */
 988        if (efx->phy_type == PHY_TYPE_NONE)
 989                return;
 990
 991        efx_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
 992        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
 993        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
 994        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
 995        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
 996        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
 997        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
 998        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
 999        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
1000        efx_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
1001
1002        EFX_POPULATE_OWORD_8(txdrv,
1003                             FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
1004                             FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
1005                             FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
1006                             FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
1007                             FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
1008                             FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
1009                             FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
1010                             FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
1011        efx_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
1012}
1013
1014int falcon_reset_xaui(struct efx_nic *efx)
1015{
1016        struct falcon_nic_data *nic_data = efx->nic_data;
1017        efx_oword_t reg;
1018        int count;
1019
1020        /* Don't fetch MAC statistics over an XMAC reset */
1021        WARN_ON(nic_data->stats_disable_count == 0);
1022
1023        /* Start reset sequence */
1024        EFX_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1025        efx_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1026
1027        /* Wait up to 10 ms for completion, then reinitialise */
1028        for (count = 0; count < 1000; count++) {
1029                efx_reado(efx, &reg, FR_AB_XX_PWR_RST);
1030                if (EFX_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1031                    EFX_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1032                        falcon_setup_xaui(efx);
1033                        return 0;
1034                }
1035                udelay(10);
1036        }
1037        netif_err(efx, hw, efx->net_dev,
1038                  "timed out waiting for XAUI/XGXS reset\n");
1039        return -ETIMEDOUT;
1040}
1041
1042static void falcon_ack_status_intr(struct efx_nic *efx)
1043{
1044        struct falcon_nic_data *nic_data = efx->nic_data;
1045        efx_oword_t reg;
1046
1047        if ((efx_nic_rev(efx) != EFX_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1048                return;
1049
1050        /* We expect xgmii faults if the wireside link is down */
1051        if (!efx->link_state.up)
1052                return;
1053
1054        /* We can only use this interrupt to signal the negative edge of
1055         * xaui_align [we have to poll the positive edge]. */
1056        if (nic_data->xmac_poll_required)
1057                return;
1058
1059        efx_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1060}
1061
1062static bool falcon_xgxs_link_ok(struct efx_nic *efx)
1063{
1064        efx_oword_t reg;
1065        bool align_done, link_ok = false;
1066        int sync_status;
1067
1068        /* Read link status */
1069        efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1070
1071        align_done = EFX_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1072        sync_status = EFX_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1073        if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1074                link_ok = true;
1075
1076        /* Clear link status ready for next read */
1077        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1078        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1079        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1080        efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1081
1082        return link_ok;
1083}
1084
1085static bool falcon_xmac_link_ok(struct efx_nic *efx)
1086{
1087        /*
1088         * Check MAC's XGXS link status except when using XGMII loopback
1089         * which bypasses the XGXS block.
1090         * If possible, check PHY's XGXS link status except when using
1091         * MAC loopback.
1092         */
1093        return (efx->loopback_mode == LOOPBACK_XGMII ||
1094                falcon_xgxs_link_ok(efx)) &&
1095                (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1096                 LOOPBACK_INTERNAL(efx) ||
1097                 efx_mdio_phyxgxs_lane_sync(efx));
1098}
1099
1100static void falcon_reconfigure_xmac_core(struct efx_nic *efx)
1101{
1102        unsigned int max_frame_len;
1103        efx_oword_t reg;
1104        bool rx_fc = !!(efx->link_state.fc & EFX_FC_RX);
1105        bool tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1106
1107        /* Configure MAC  - cut-thru mode is hard wired on */
1108        EFX_POPULATE_OWORD_3(reg,
1109                             FRF_AB_XM_RX_JUMBO_MODE, 1,
1110                             FRF_AB_XM_TX_STAT_EN, 1,
1111                             FRF_AB_XM_RX_STAT_EN, 1);
1112        efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1113
1114        /* Configure TX */
1115        EFX_POPULATE_OWORD_6(reg,
1116                             FRF_AB_XM_TXEN, 1,
1117                             FRF_AB_XM_TX_PRMBL, 1,
1118                             FRF_AB_XM_AUTO_PAD, 1,
1119                             FRF_AB_XM_TXCRC, 1,
1120                             FRF_AB_XM_FCNTL, tx_fc,
1121                             FRF_AB_XM_IPG, 0x3);
1122        efx_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1123
1124        /* Configure RX */
1125        EFX_POPULATE_OWORD_5(reg,
1126                             FRF_AB_XM_RXEN, 1,
1127                             FRF_AB_XM_AUTO_DEPAD, 0,
1128                             FRF_AB_XM_ACPT_ALL_MCAST, 1,
1129                             FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1130                             FRF_AB_XM_PASS_CRC_ERR, 1);
1131        efx_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1132
1133        /* Set frame length */
1134        max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu);
1135        EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1136        efx_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1137        EFX_POPULATE_OWORD_2(reg,
1138                             FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1139                             FRF_AB_XM_TX_JUMBO_MODE, 1);
1140        efx_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1141
1142        EFX_POPULATE_OWORD_2(reg,
1143                             FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1144                             FRF_AB_XM_DIS_FCNTL, !rx_fc);
1145        efx_writeo(efx, &reg, FR_AB_XM_FC);
1146
1147        /* Set MAC address */
1148        memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1149        efx_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1150        memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1151        efx_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1152}
1153
1154static void falcon_reconfigure_xgxs_core(struct efx_nic *efx)
1155{
1156        efx_oword_t reg;
1157        bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1158        bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1159        bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1160        bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1161
1162        /* XGXS block is flaky and will need to be reset if moving
1163         * into our out of XGMII, XGXS or XAUI loopbacks. */
1164        efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1165        old_xgxs_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1166        old_xgmii_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1167
1168        efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1169        old_xaui_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1170
1171        /* The PHY driver may have turned XAUI off */
1172        if ((xgxs_loopback != old_xgxs_loopback) ||
1173            (xaui_loopback != old_xaui_loopback) ||
1174            (xgmii_loopback != old_xgmii_loopback))
1175                falcon_reset_xaui(efx);
1176
1177        efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1178        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1179                            (xgxs_loopback || xaui_loopback) ?
1180                            FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1181        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1182        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1183        efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1184
1185        efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1186        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1187        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1188        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1189        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1190        efx_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1191}
1192
1193
1194/* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1195static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries)
1196{
1197        bool mac_up = falcon_xmac_link_ok(efx);
1198
1199        if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1200            efx_phy_mode_disabled(efx->phy_mode))
1201                /* XAUI link is expected to be down */
1202                return mac_up;
1203
1204        falcon_stop_nic_stats(efx);
1205
1206        while (!mac_up && tries) {
1207                netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1208                falcon_reset_xaui(efx);
1209                udelay(200);
1210
1211                mac_up = falcon_xmac_link_ok(efx);
1212                --tries;
1213        }
1214
1215        falcon_start_nic_stats(efx);
1216
1217        return mac_up;
1218}
1219
1220static bool falcon_xmac_check_fault(struct efx_nic *efx)
1221{
1222        return !falcon_xmac_link_ok_retry(efx, 5);
1223}
1224
1225static int falcon_reconfigure_xmac(struct efx_nic *efx)
1226{
1227        struct falcon_nic_data *nic_data = efx->nic_data;
1228
1229        efx_farch_filter_sync_rx_mode(efx);
1230
1231        falcon_reconfigure_xgxs_core(efx);
1232        falcon_reconfigure_xmac_core(efx);
1233
1234        falcon_reconfigure_mac_wrapper(efx);
1235
1236        nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1237        falcon_ack_status_intr(efx);
1238
1239        return 0;
1240}
1241
1242static void falcon_poll_xmac(struct efx_nic *efx)
1243{
1244        struct falcon_nic_data *nic_data = efx->nic_data;
1245
1246        /* We expect xgmii faults if the wireside link is down */
1247        if (!efx->link_state.up || !nic_data->xmac_poll_required)
1248                return;
1249
1250        nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1251        falcon_ack_status_intr(efx);
1252}
1253
1254/**************************************************************************
1255 *
1256 * MAC wrapper
1257 *
1258 **************************************************************************
1259 */
1260
1261static void falcon_push_multicast_hash(struct efx_nic *efx)
1262{
1263        union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1264
1265        WARN_ON(!mutex_is_locked(&efx->mac_lock));
1266
1267        efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1268        efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1269}
1270
1271static void falcon_reset_macs(struct efx_nic *efx)
1272{
1273        struct falcon_nic_data *nic_data = efx->nic_data;
1274        efx_oword_t reg, mac_ctrl;
1275        int count;
1276
1277        if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1278                /* It's not safe to use GLB_CTL_REG to reset the
1279                 * macs, so instead use the internal MAC resets
1280                 */
1281                EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1282                efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1283
1284                for (count = 0; count < 10000; count++) {
1285                        efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1286                        if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1287                            0)
1288                                return;
1289                        udelay(10);
1290                }
1291
1292                netif_err(efx, hw, efx->net_dev,
1293                          "timed out waiting for XMAC core reset\n");
1294        }
1295
1296        /* Mac stats will fail whist the TX fifo is draining */
1297        WARN_ON(nic_data->stats_disable_count == 0);
1298
1299        efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1300        EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1301        efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1302
1303        efx_reado(efx, &reg, FR_AB_GLB_CTL);
1304        EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1305        EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1306        EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1307        efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1308
1309        count = 0;
1310        while (1) {
1311                efx_reado(efx, &reg, FR_AB_GLB_CTL);
1312                if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1313                    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1314                    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1315                        netif_dbg(efx, hw, efx->net_dev,
1316                                  "Completed MAC reset after %d loops\n",
1317                                  count);
1318                        break;
1319                }
1320                if (count > 20) {
1321                        netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1322                        break;
1323                }
1324                count++;
1325                udelay(10);
1326        }
1327
1328        /* Ensure the correct MAC is selected before statistics
1329         * are re-enabled by the caller */
1330        efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1331
1332        falcon_setup_xaui(efx);
1333}
1334
1335static void falcon_drain_tx_fifo(struct efx_nic *efx)
1336{
1337        efx_oword_t reg;
1338
1339        if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1340            (efx->loopback_mode != LOOPBACK_NONE))
1341                return;
1342
1343        efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1344        /* There is no point in draining more than once */
1345        if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1346                return;
1347
1348        falcon_reset_macs(efx);
1349}
1350
1351static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1352{
1353        efx_oword_t reg;
1354
1355        if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1356                return;
1357
1358        /* Isolate the MAC -> RX */
1359        efx_reado(efx, &reg, FR_AZ_RX_CFG);
1360        EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1361        efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1362
1363        /* Isolate TX -> MAC */
1364        falcon_drain_tx_fifo(efx);
1365}
1366
1367static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1368{
1369        struct efx_link_state *link_state = &efx->link_state;
1370        efx_oword_t reg;
1371        int link_speed, isolate;
1372
1373        isolate = !!ACCESS_ONCE(efx->reset_pending);
1374
1375        switch (link_state->speed) {
1376        case 10000: link_speed = 3; break;
1377        case 1000:  link_speed = 2; break;
1378        case 100:   link_speed = 1; break;
1379        default:    link_speed = 0; break;
1380        }
1381
1382        /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1383         * as advertised.  Disable to ensure packets are not
1384         * indefinitely held and TX queue can be flushed at any point
1385         * while the link is down. */
1386        EFX_POPULATE_OWORD_5(reg,
1387                             FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1388                             FRF_AB_MAC_BCAD_ACPT, 1,
1389                             FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1390                             FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1391                             FRF_AB_MAC_SPEED, link_speed);
1392        /* On B0, MAC backpressure can be disabled and packets get
1393         * discarded. */
1394        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1395                EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1396                                    !link_state->up || isolate);
1397        }
1398
1399        efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1400
1401        /* Restore the multicast hash registers. */
1402        falcon_push_multicast_hash(efx);
1403
1404        efx_reado(efx, &reg, FR_AZ_RX_CFG);
1405        /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1406         * initialisation but it may read back as 0) */
1407        EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1408        /* Unisolate the MAC -> RX */
1409        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1410                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1411        efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1412}
1413
1414static void falcon_stats_request(struct efx_nic *efx)
1415{
1416        struct falcon_nic_data *nic_data = efx->nic_data;
1417        efx_oword_t reg;
1418
1419        WARN_ON(nic_data->stats_pending);
1420        WARN_ON(nic_data->stats_disable_count);
1421
1422        FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1423        nic_data->stats_pending = true;
1424        wmb(); /* ensure done flag is clear */
1425
1426        /* Initiate DMA transfer of stats */
1427        EFX_POPULATE_OWORD_2(reg,
1428                             FRF_AB_MAC_STAT_DMA_CMD, 1,
1429                             FRF_AB_MAC_STAT_DMA_ADR,
1430                             efx->stats_buffer.dma_addr);
1431        efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1432
1433        mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1434}
1435
1436static void falcon_stats_complete(struct efx_nic *efx)
1437{
1438        struct falcon_nic_data *nic_data = efx->nic_data;
1439
1440        if (!nic_data->stats_pending)
1441                return;
1442
1443        nic_data->stats_pending = false;
1444        if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1445                rmb(); /* read the done flag before the stats */
1446                efx_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1447                                     falcon_stat_mask, nic_data->stats,
1448                                     efx->stats_buffer.addr, true);
1449        } else {
1450                netif_err(efx, hw, efx->net_dev,
1451                          "timed out waiting for statistics\n");
1452        }
1453}
1454
1455static void falcon_stats_timer_func(unsigned long context)
1456{
1457        struct efx_nic *efx = (struct efx_nic *)context;
1458        struct falcon_nic_data *nic_data = efx->nic_data;
1459
1460        spin_lock(&efx->stats_lock);
1461
1462        falcon_stats_complete(efx);
1463        if (nic_data->stats_disable_count == 0)
1464                falcon_stats_request(efx);
1465
1466        spin_unlock(&efx->stats_lock);
1467}
1468
1469static bool falcon_loopback_link_poll(struct efx_nic *efx)
1470{
1471        struct efx_link_state old_state = efx->link_state;
1472
1473        WARN_ON(!mutex_is_locked(&efx->mac_lock));
1474        WARN_ON(!LOOPBACK_INTERNAL(efx));
1475
1476        efx->link_state.fd = true;
1477        efx->link_state.fc = efx->wanted_fc;
1478        efx->link_state.up = true;
1479        efx->link_state.speed = 10000;
1480
1481        return !efx_link_state_equal(&efx->link_state, &old_state);
1482}
1483
1484static int falcon_reconfigure_port(struct efx_nic *efx)
1485{
1486        int rc;
1487
1488        WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
1489
1490        /* Poll the PHY link state *before* reconfiguring it. This means we
1491         * will pick up the correct speed (in loopback) to select the correct
1492         * MAC.
1493         */
1494        if (LOOPBACK_INTERNAL(efx))
1495                falcon_loopback_link_poll(efx);
1496        else
1497                efx->phy_op->poll(efx);
1498
1499        falcon_stop_nic_stats(efx);
1500        falcon_deconfigure_mac_wrapper(efx);
1501
1502        falcon_reset_macs(efx);
1503
1504        efx->phy_op->reconfigure(efx);
1505        rc = falcon_reconfigure_xmac(efx);
1506        BUG_ON(rc);
1507
1508        falcon_start_nic_stats(efx);
1509
1510        /* Synchronise efx->link_state with the kernel */
1511        efx_link_status_changed(efx);
1512
1513        return 0;
1514}
1515
1516/* TX flow control may automatically turn itself off if the link
1517 * partner (intermittently) stops responding to pause frames. There
1518 * isn't any indication that this has happened, so the best we do is
1519 * leave it up to the user to spot this and fix it by cycling transmit
1520 * flow control on this end.
1521 */
1522
1523static void falcon_a1_prepare_enable_fc_tx(struct efx_nic *efx)
1524{
1525        /* Schedule a reset to recover */
1526        efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1527}
1528
1529static void falcon_b0_prepare_enable_fc_tx(struct efx_nic *efx)
1530{
1531        /* Recover by resetting the EM block */
1532        falcon_stop_nic_stats(efx);
1533        falcon_drain_tx_fifo(efx);
1534        falcon_reconfigure_xmac(efx);
1535        falcon_start_nic_stats(efx);
1536}
1537
1538/**************************************************************************
1539 *
1540 * PHY access via GMII
1541 *
1542 **************************************************************************
1543 */
1544
1545/* Wait for GMII access to complete */
1546static int falcon_gmii_wait(struct efx_nic *efx)
1547{
1548        efx_oword_t md_stat;
1549        int count;
1550
1551        /* wait up to 50ms - taken max from datasheet */
1552        for (count = 0; count < 5000; count++) {
1553                efx_reado(efx, &md_stat, FR_AB_MD_STAT);
1554                if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1555                        if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1556                            EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1557                                netif_err(efx, hw, efx->net_dev,
1558                                          "error from GMII access "
1559                                          EFX_OWORD_FMT"\n",
1560                                          EFX_OWORD_VAL(md_stat));
1561                                return -EIO;
1562                        }
1563                        return 0;
1564                }
1565                udelay(10);
1566        }
1567        netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1568        return -ETIMEDOUT;
1569}
1570
1571/* Write an MDIO register of a PHY connected to Falcon. */
1572static int falcon_mdio_write(struct net_device *net_dev,
1573                             int prtad, int devad, u16 addr, u16 value)
1574{
1575        struct efx_nic *efx = netdev_priv(net_dev);
1576        struct falcon_nic_data *nic_data = efx->nic_data;
1577        efx_oword_t reg;
1578        int rc;
1579
1580        netif_vdbg(efx, hw, efx->net_dev,
1581                   "writing MDIO %d register %d.%d with 0x%04x\n",
1582                    prtad, devad, addr, value);
1583
1584        mutex_lock(&nic_data->mdio_lock);
1585
1586        /* Check MDIO not currently being accessed */
1587        rc = falcon_gmii_wait(efx);
1588        if (rc)
1589                goto out;
1590
1591        /* Write the address/ID register */
1592        EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1593        efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1594
1595        EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1596                             FRF_AB_MD_DEV_ADR, devad);
1597        efx_writeo(efx, &reg, FR_AB_MD_ID);
1598
1599        /* Write data */
1600        EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1601        efx_writeo(efx, &reg, FR_AB_MD_TXD);
1602
1603        EFX_POPULATE_OWORD_2(reg,
1604                             FRF_AB_MD_WRC, 1,
1605                             FRF_AB_MD_GC, 0);
1606        efx_writeo(efx, &reg, FR_AB_MD_CS);
1607
1608        /* Wait for data to be written */
1609        rc = falcon_gmii_wait(efx);
1610        if (rc) {
1611                /* Abort the write operation */
1612                EFX_POPULATE_OWORD_2(reg,
1613                                     FRF_AB_MD_WRC, 0,
1614                                     FRF_AB_MD_GC, 1);
1615                efx_writeo(efx, &reg, FR_AB_MD_CS);
1616                udelay(10);
1617        }
1618
1619out:
1620        mutex_unlock(&nic_data->mdio_lock);
1621        return rc;
1622}
1623
1624/* Read an MDIO register of a PHY connected to Falcon. */
1625static int falcon_mdio_read(struct net_device *net_dev,
1626                            int prtad, int devad, u16 addr)
1627{
1628        struct efx_nic *efx = netdev_priv(net_dev);
1629        struct falcon_nic_data *nic_data = efx->nic_data;
1630        efx_oword_t reg;
1631        int rc;
1632
1633        mutex_lock(&nic_data->mdio_lock);
1634
1635        /* Check MDIO not currently being accessed */
1636        rc = falcon_gmii_wait(efx);
1637        if (rc)
1638                goto out;
1639
1640        EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1641        efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1642
1643        EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1644                             FRF_AB_MD_DEV_ADR, devad);
1645        efx_writeo(efx, &reg, FR_AB_MD_ID);
1646
1647        /* Request data to be read */
1648        EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1649        efx_writeo(efx, &reg, FR_AB_MD_CS);
1650
1651        /* Wait for data to become available */
1652        rc = falcon_gmii_wait(efx);
1653        if (rc == 0) {
1654                efx_reado(efx, &reg, FR_AB_MD_RXD);
1655                rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1656                netif_vdbg(efx, hw, efx->net_dev,
1657                           "read from MDIO %d register %d.%d, got %04x\n",
1658                           prtad, devad, addr, rc);
1659        } else {
1660                /* Abort the read operation */
1661                EFX_POPULATE_OWORD_2(reg,
1662                                     FRF_AB_MD_RIC, 0,
1663                                     FRF_AB_MD_GC, 1);
1664                efx_writeo(efx, &reg, FR_AB_MD_CS);
1665
1666                netif_dbg(efx, hw, efx->net_dev,
1667                          "read from MDIO %d register %d.%d, got error %d\n",
1668                          prtad, devad, addr, rc);
1669        }
1670
1671out:
1672        mutex_unlock(&nic_data->mdio_lock);
1673        return rc;
1674}
1675
1676/* This call is responsible for hooking in the MAC and PHY operations */
1677static int falcon_probe_port(struct efx_nic *efx)
1678{
1679        struct falcon_nic_data *nic_data = efx->nic_data;
1680        int rc;
1681
1682        switch (efx->phy_type) {
1683        case PHY_TYPE_SFX7101:
1684                efx->phy_op = &falcon_sfx7101_phy_ops;
1685                break;
1686        case PHY_TYPE_QT2022C2:
1687        case PHY_TYPE_QT2025C:
1688                efx->phy_op = &falcon_qt202x_phy_ops;
1689                break;
1690        case PHY_TYPE_TXC43128:
1691                efx->phy_op = &falcon_txc_phy_ops;
1692                break;
1693        default:
1694                netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1695                          efx->phy_type);
1696                return -ENODEV;
1697        }
1698
1699        /* Fill out MDIO structure and loopback modes */
1700        mutex_init(&nic_data->mdio_lock);
1701        efx->mdio.mdio_read = falcon_mdio_read;
1702        efx->mdio.mdio_write = falcon_mdio_write;
1703        rc = efx->phy_op->probe(efx);
1704        if (rc != 0)
1705                return rc;
1706
1707        /* Initial assumption */
1708        efx->link_state.speed = 10000;
1709        efx->link_state.fd = true;
1710
1711        /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1712        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1713                efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
1714        else
1715                efx->wanted_fc = EFX_FC_RX;
1716        if (efx->mdio.mmds & MDIO_DEVS_AN)
1717                efx->wanted_fc |= EFX_FC_AUTO;
1718
1719        /* Allocate buffer for stats */
1720        rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
1721                                  FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1722        if (rc)
1723                return rc;
1724        netif_dbg(efx, probe, efx->net_dev,
1725                  "stats buffer at %llx (virt %p phys %llx)\n",
1726                  (u64)efx->stats_buffer.dma_addr,
1727                  efx->stats_buffer.addr,
1728                  (u64)virt_to_phys(efx->stats_buffer.addr));
1729
1730        return 0;
1731}
1732
1733static void falcon_remove_port(struct efx_nic *efx)
1734{
1735        efx->phy_op->remove(efx);
1736        efx_nic_free_buffer(efx, &efx->stats_buffer);
1737}
1738
1739/* Global events are basically PHY events */
1740static bool
1741falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
1742{
1743        struct efx_nic *efx = channel->efx;
1744        struct falcon_nic_data *nic_data = efx->nic_data;
1745
1746        if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1747            EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1748            EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1749                /* Ignored */
1750                return true;
1751
1752        if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
1753            EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1754                nic_data->xmac_poll_required = true;
1755                return true;
1756        }
1757
1758        if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
1759            EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1760            EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1761                netif_err(efx, rx_err, efx->net_dev,
1762                          "channel %d seen global RX_RESET event. Resetting.\n",
1763                          channel->channel);
1764
1765                atomic_inc(&efx->rx_reset);
1766                efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1767                                   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1768                return true;
1769        }
1770
1771        return false;
1772}
1773
1774/**************************************************************************
1775 *
1776 * Falcon test code
1777 *
1778 **************************************************************************/
1779
1780static int
1781falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
1782{
1783        struct falcon_nic_data *nic_data = efx->nic_data;
1784        struct falcon_nvconfig *nvconfig;
1785        struct falcon_spi_device *spi;
1786        void *region;
1787        int rc, magic_num, struct_ver;
1788        __le16 *word, *limit;
1789        u32 csum;
1790
1791        if (falcon_spi_present(&nic_data->spi_flash))
1792                spi = &nic_data->spi_flash;
1793        else if (falcon_spi_present(&nic_data->spi_eeprom))
1794                spi = &nic_data->spi_eeprom;
1795        else
1796                return -EINVAL;
1797
1798        region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1799        if (!region)
1800                return -ENOMEM;
1801        nvconfig = region + FALCON_NVCONFIG_OFFSET;
1802
1803        mutex_lock(&nic_data->spi_lock);
1804        rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1805        mutex_unlock(&nic_data->spi_lock);
1806        if (rc) {
1807                netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1808                          falcon_spi_present(&nic_data->spi_flash) ?
1809                          "flash" : "EEPROM");
1810                rc = -EIO;
1811                goto out;
1812        }
1813
1814        magic_num = le16_to_cpu(nvconfig->board_magic_num);
1815        struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1816
1817        rc = -EINVAL;
1818        if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1819                netif_err(efx, hw, efx->net_dev,
1820                          "NVRAM bad magic 0x%x\n", magic_num);
1821                goto out;
1822        }
1823        if (struct_ver < 2) {
1824                netif_err(efx, hw, efx->net_dev,
1825                          "NVRAM has ancient version 0x%x\n", struct_ver);
1826                goto out;
1827        } else if (struct_ver < 4) {
1828                word = &nvconfig->board_magic_num;
1829                limit = (__le16 *) (nvconfig + 1);
1830        } else {
1831                word = region;
1832                limit = region + FALCON_NVCONFIG_END;
1833        }
1834        for (csum = 0; word < limit; ++word)
1835                csum += le16_to_cpu(*word);
1836
1837        if (~csum & 0xffff) {
1838                netif_err(efx, hw, efx->net_dev,
1839                          "NVRAM has incorrect checksum\n");
1840                goto out;
1841        }
1842
1843        rc = 0;
1844        if (nvconfig_out)
1845                memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1846
1847 out:
1848        kfree(region);
1849        return rc;
1850}
1851
1852static int falcon_test_nvram(struct efx_nic *efx)
1853{
1854        return falcon_read_nvram(efx, NULL);
1855}
1856
1857static const struct efx_farch_register_test falcon_b0_register_tests[] = {
1858        { FR_AZ_ADR_REGION,
1859          EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1860        { FR_AZ_RX_CFG,
1861          EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1862        { FR_AZ_TX_CFG,
1863          EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1864        { FR_AZ_TX_RESERVED,
1865          EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1866        { FR_AB_MAC_CTRL,
1867          EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1868        { FR_AZ_SRM_TX_DC_CFG,
1869          EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1870        { FR_AZ_RX_DC_CFG,
1871          EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1872        { FR_AZ_RX_DC_PF_WM,
1873          EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1874        { FR_BZ_DP_CTRL,
1875          EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1876        { FR_AB_GM_CFG2,
1877          EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1878        { FR_AB_GMF_CFG0,
1879          EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1880        { FR_AB_XM_GLB_CFG,
1881          EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1882        { FR_AB_XM_TX_CFG,
1883          EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1884        { FR_AB_XM_RX_CFG,
1885          EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1886        { FR_AB_XM_RX_PARAM,
1887          EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1888        { FR_AB_XM_FC,
1889          EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1890        { FR_AB_XM_ADR_LO,
1891          EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1892        { FR_AB_XX_SD_CTL,
1893          EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1894};
1895
1896static int
1897falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1898{
1899        enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1900        int rc, rc2;
1901
1902        mutex_lock(&efx->mac_lock);
1903        if (efx->loopback_modes) {
1904                /* We need the 312 clock from the PHY to test the XMAC
1905                 * registers, so move into XGMII loopback if available */
1906                if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1907                        efx->loopback_mode = LOOPBACK_XGMII;
1908                else
1909                        efx->loopback_mode = __ffs(efx->loopback_modes);
1910        }
1911        __efx_reconfigure_port(efx);
1912        mutex_unlock(&efx->mac_lock);
1913
1914        efx_reset_down(efx, reset_method);
1915
1916        tests->registers =
1917                efx_farch_test_registers(efx, falcon_b0_register_tests,
1918                                         ARRAY_SIZE(falcon_b0_register_tests))
1919                ? -1 : 1;
1920
1921        rc = falcon_reset_hw(efx, reset_method);
1922        rc2 = efx_reset_up(efx, reset_method, rc == 0);
1923        return rc ? rc : rc2;
1924}
1925
1926/**************************************************************************
1927 *
1928 * Device reset
1929 *
1930 **************************************************************************
1931 */
1932
1933static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1934{
1935        switch (reason) {
1936        case RESET_TYPE_RX_RECOVERY:
1937        case RESET_TYPE_DMA_ERROR:
1938        case RESET_TYPE_TX_SKIP:
1939                /* These can occasionally occur due to hardware bugs.
1940                 * We try to reset without disrupting the link.
1941                 */
1942                return RESET_TYPE_INVISIBLE;
1943        default:
1944                return RESET_TYPE_ALL;
1945        }
1946}
1947
1948static int falcon_map_reset_flags(u32 *flags)
1949{
1950        enum {
1951                FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1952                                          ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1953                FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1954                FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1955        };
1956
1957        if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1958                *flags &= ~FALCON_RESET_WORLD;
1959                return RESET_TYPE_WORLD;
1960        }
1961
1962        if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1963                *flags &= ~FALCON_RESET_ALL;
1964                return RESET_TYPE_ALL;
1965        }
1966
1967        if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1968                *flags &= ~FALCON_RESET_INVISIBLE;
1969                return RESET_TYPE_INVISIBLE;
1970        }
1971
1972        return -EINVAL;
1973}
1974
1975/* Resets NIC to known state.  This routine must be called in process
1976 * context and is allowed to sleep. */
1977static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1978{
1979        struct falcon_nic_data *nic_data = efx->nic_data;
1980        efx_oword_t glb_ctl_reg_ker;
1981        int rc;
1982
1983        netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1984                  RESET_TYPE(method));
1985
1986        /* Initiate device reset */
1987        if (method == RESET_TYPE_WORLD) {
1988                rc = pci_save_state(efx->pci_dev);
1989                if (rc) {
1990                        netif_err(efx, drv, efx->net_dev,
1991                                  "failed to backup PCI state of primary "
1992                                  "function prior to hardware reset\n");
1993                        goto fail1;
1994                }
1995                if (efx_nic_is_dual_func(efx)) {
1996                        rc = pci_save_state(nic_data->pci_dev2);
1997                        if (rc) {
1998                                netif_err(efx, drv, efx->net_dev,
1999                                          "failed to backup PCI state of "
2000                                          "secondary function prior to "
2001                                          "hardware reset\n");
2002                                goto fail2;
2003                        }
2004                }
2005
2006                EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2007                                     FRF_AB_EXT_PHY_RST_DUR,
2008                                     FFE_AB_EXT_PHY_RST_DUR_10240US,
2009                                     FRF_AB_SWRST, 1);
2010        } else {
2011                EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2012                                     /* exclude PHY from "invisible" reset */
2013                                     FRF_AB_EXT_PHY_RST_CTL,
2014                                     method == RESET_TYPE_INVISIBLE,
2015                                     /* exclude EEPROM/flash and PCIe */
2016                                     FRF_AB_PCIE_CORE_RST_CTL, 1,
2017                                     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2018                                     FRF_AB_PCIE_SD_RST_CTL, 1,
2019                                     FRF_AB_EE_RST_CTL, 1,
2020                                     FRF_AB_EXT_PHY_RST_DUR,
2021                                     FFE_AB_EXT_PHY_RST_DUR_10240US,
2022                                     FRF_AB_SWRST, 1);
2023        }
2024        efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2025
2026        netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2027        schedule_timeout_uninterruptible(HZ / 20);
2028
2029        /* Restore PCI configuration if needed */
2030        if (method == RESET_TYPE_WORLD) {
2031                if (efx_nic_is_dual_func(efx))
2032                        pci_restore_state(nic_data->pci_dev2);
2033                pci_restore_state(efx->pci_dev);
2034                netif_dbg(efx, drv, efx->net_dev,
2035                          "successfully restored PCI config\n");
2036        }
2037
2038        /* Assert that reset complete */
2039        efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2040        if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2041                rc = -ETIMEDOUT;
2042                netif_err(efx, hw, efx->net_dev,
2043                          "timed out waiting for hardware reset\n");
2044                goto fail3;
2045        }
2046        netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2047
2048        return 0;
2049
2050        /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2051fail2:
2052        pci_restore_state(efx->pci_dev);
2053fail1:
2054fail3:
2055        return rc;
2056}
2057
2058static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2059{
2060        struct falcon_nic_data *nic_data = efx->nic_data;
2061        int rc;
2062
2063        mutex_lock(&nic_data->spi_lock);
2064        rc = __falcon_reset_hw(efx, method);
2065        mutex_unlock(&nic_data->spi_lock);
2066
2067        return rc;
2068}
2069
2070static void falcon_monitor(struct efx_nic *efx)
2071{
2072        bool link_changed;
2073        int rc;
2074
2075        BUG_ON(!mutex_is_locked(&efx->mac_lock));
2076
2077        rc = falcon_board(efx)->type->monitor(efx);
2078        if (rc) {
2079                netif_err(efx, hw, efx->net_dev,
2080                          "Board sensor %s; shutting down PHY\n",
2081                          (rc == -ERANGE) ? "reported fault" : "failed");
2082                efx->phy_mode |= PHY_MODE_LOW_POWER;
2083                rc = __efx_reconfigure_port(efx);
2084                WARN_ON(rc);
2085        }
2086
2087        if (LOOPBACK_INTERNAL(efx))
2088                link_changed = falcon_loopback_link_poll(efx);
2089        else
2090                link_changed = efx->phy_op->poll(efx);
2091
2092        if (link_changed) {
2093                falcon_stop_nic_stats(efx);
2094                falcon_deconfigure_mac_wrapper(efx);
2095
2096                falcon_reset_macs(efx);
2097                rc = falcon_reconfigure_xmac(efx);
2098                BUG_ON(rc);
2099
2100                falcon_start_nic_stats(efx);
2101
2102                efx_link_status_changed(efx);
2103        }
2104
2105        falcon_poll_xmac(efx);
2106}
2107
2108/* Zeroes out the SRAM contents.  This routine must be called in
2109 * process context and is allowed to sleep.
2110 */
2111static int falcon_reset_sram(struct efx_nic *efx)
2112{
2113        efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2114        int count;
2115
2116        /* Set the SRAM wake/sleep GPIO appropriately. */
2117        efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2118        EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2119        EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2120        efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2121
2122        /* Initiate SRAM reset */
2123        EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2124                             FRF_AZ_SRM_INIT_EN, 1,
2125                             FRF_AZ_SRM_NB_SZ, 0);
2126        efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2127
2128        /* Wait for SRAM reset to complete */
2129        count = 0;
2130        do {
2131                netif_dbg(efx, hw, efx->net_dev,
2132                          "waiting for SRAM reset (attempt %d)...\n", count);
2133
2134                /* SRAM reset is slow; expect around 16ms */
2135                schedule_timeout_uninterruptible(HZ / 50);
2136
2137                /* Check for reset complete */
2138                efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2139                if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2140                        netif_dbg(efx, hw, efx->net_dev,
2141                                  "SRAM reset complete\n");
2142
2143                        return 0;
2144                }
2145        } while (++count < 20); /* wait up to 0.4 sec */
2146
2147        netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2148        return -ETIMEDOUT;
2149}
2150
2151static void falcon_spi_device_init(struct efx_nic *efx,
2152                                  struct falcon_spi_device *spi_device,
2153                                  unsigned int device_id, u32 device_type)
2154{
2155        if (device_type != 0) {
2156                spi_device->device_id = device_id;
2157                spi_device->size =
2158                        1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2159                spi_device->addr_len =
2160                        SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2161                spi_device->munge_address = (spi_device->size == 1 << 9 &&
2162                                             spi_device->addr_len == 1);
2163                spi_device->erase_command =
2164                        SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2165                spi_device->erase_size =
2166                        1 << SPI_DEV_TYPE_FIELD(device_type,
2167                                                SPI_DEV_TYPE_ERASE_SIZE);
2168                spi_device->block_size =
2169                        1 << SPI_DEV_TYPE_FIELD(device_type,
2170                                                SPI_DEV_TYPE_BLOCK_SIZE);
2171        } else {
2172                spi_device->size = 0;
2173        }
2174}
2175
2176/* Extract non-volatile configuration */
2177static int falcon_probe_nvconfig(struct efx_nic *efx)
2178{
2179        struct falcon_nic_data *nic_data = efx->nic_data;
2180        struct falcon_nvconfig *nvconfig;
2181        int rc;
2182
2183        nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2184        if (!nvconfig)
2185                return -ENOMEM;
2186
2187        rc = falcon_read_nvram(efx, nvconfig);
2188        if (rc)
2189                goto out;
2190
2191        efx->phy_type = nvconfig->board_v2.port0_phy_type;
2192        efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2193
2194        if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2195                falcon_spi_device_init(
2196                        efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2197                        le32_to_cpu(nvconfig->board_v3
2198                                    .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2199                falcon_spi_device_init(
2200                        efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2201                        le32_to_cpu(nvconfig->board_v3
2202                                    .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2203        }
2204
2205        /* Read the MAC addresses */
2206        ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2207
2208        netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2209                  efx->phy_type, efx->mdio.prtad);
2210
2211        rc = falcon_probe_board(efx,
2212                                le16_to_cpu(nvconfig->board_v2.board_revision));
2213out:
2214        kfree(nvconfig);
2215        return rc;
2216}
2217
2218static int falcon_dimension_resources(struct efx_nic *efx)
2219{
2220        efx->rx_dc_base = 0x20000;
2221        efx->tx_dc_base = 0x26000;
2222        return 0;
2223}
2224
2225/* Probe all SPI devices on the NIC */
2226static void falcon_probe_spi_devices(struct efx_nic *efx)
2227{
2228        struct falcon_nic_data *nic_data = efx->nic_data;
2229        efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2230        int boot_dev;
2231
2232        efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2233        efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2234        efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2235
2236        if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2237                boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2238                            FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2239                netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2240                          boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2241                          "flash" : "EEPROM");
2242        } else {
2243                /* Disable VPD and set clock dividers to safe
2244                 * values for initial programming. */
2245                boot_dev = -1;
2246                netif_dbg(efx, probe, efx->net_dev,
2247                          "Booted from internal ASIC settings;"
2248                          " setting SPI config\n");
2249                EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2250                                     /* 125 MHz / 7 ~= 20 MHz */
2251                                     FRF_AB_EE_SF_CLOCK_DIV, 7,
2252                                     /* 125 MHz / 63 ~= 2 MHz */
2253                                     FRF_AB_EE_EE_CLOCK_DIV, 63);
2254                efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2255        }
2256
2257        mutex_init(&nic_data->spi_lock);
2258
2259        if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2260                falcon_spi_device_init(efx, &nic_data->spi_flash,
2261                                       FFE_AB_SPI_DEVICE_FLASH,
2262                                       default_flash_type);
2263        if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2264                falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2265                                       FFE_AB_SPI_DEVICE_EEPROM,
2266                                       large_eeprom_type);
2267}
2268
2269static unsigned int falcon_a1_mem_map_size(struct efx_nic *efx)
2270{
2271        return 0x20000;
2272}
2273
2274static unsigned int falcon_b0_mem_map_size(struct efx_nic *efx)
2275{
2276        /* Map everything up to and including the RSS indirection table.
2277         * The PCI core takes care of mapping the MSI-X tables.
2278         */
2279        return FR_BZ_RX_INDIRECTION_TBL +
2280                FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2281}
2282
2283static int falcon_probe_nic(struct efx_nic *efx)
2284{
2285        struct falcon_nic_data *nic_data;
2286        struct falcon_board *board;
2287        int rc;
2288
2289        efx->primary = efx; /* only one usable function per controller */
2290
2291        /* Allocate storage for hardware specific data */
2292        nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2293        if (!nic_data)
2294                return -ENOMEM;
2295        efx->nic_data = nic_data;
2296
2297        rc = -ENODEV;
2298
2299        if (efx_farch_fpga_ver(efx) != 0) {
2300                netif_err(efx, probe, efx->net_dev,
2301                          "Falcon FPGA not supported\n");
2302                goto fail1;
2303        }
2304
2305        if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2306                efx_oword_t nic_stat;
2307                struct pci_dev *dev;
2308                u8 pci_rev = efx->pci_dev->revision;
2309
2310                if ((pci_rev == 0xff) || (pci_rev == 0)) {
2311                        netif_err(efx, probe, efx->net_dev,
2312                                  "Falcon rev A0 not supported\n");
2313                        goto fail1;
2314                }
2315                efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2316                if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2317                        netif_err(efx, probe, efx->net_dev,
2318                                  "Falcon rev A1 1G not supported\n");
2319                        goto fail1;
2320                }
2321                if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2322                        netif_err(efx, probe, efx->net_dev,
2323                                  "Falcon rev A1 PCI-X not supported\n");
2324                        goto fail1;
2325                }
2326
2327                dev = pci_dev_get(efx->pci_dev);
2328                while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2329                                             PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2330                                             dev))) {
2331                        if (dev->bus == efx->pci_dev->bus &&
2332                            dev->devfn == efx->pci_dev->devfn + 1) {
2333                                nic_data->pci_dev2 = dev;
2334                                break;
2335                        }
2336                }
2337                if (!nic_data->pci_dev2) {
2338                        netif_err(efx, probe, efx->net_dev,
2339                                  "failed to find secondary function\n");
2340                        rc = -ENODEV;
2341                        goto fail2;
2342                }
2343        }
2344
2345        /* Now we can reset the NIC */
2346        rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2347        if (rc) {
2348                netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2349                goto fail3;
2350        }
2351
2352        /* Allocate memory for INT_KER */
2353        rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
2354                                  GFP_KERNEL);
2355        if (rc)
2356                goto fail4;
2357        BUG_ON(efx->irq_status.dma_addr & 0x0f);
2358
2359        netif_dbg(efx, probe, efx->net_dev,
2360                  "INT_KER at %llx (virt %p phys %llx)\n",
2361                  (u64)efx->irq_status.dma_addr,
2362                  efx->irq_status.addr,
2363                  (u64)virt_to_phys(efx->irq_status.addr));
2364
2365        falcon_probe_spi_devices(efx);
2366
2367        /* Read in the non-volatile configuration */
2368        rc = falcon_probe_nvconfig(efx);
2369        if (rc) {
2370                if (rc == -EINVAL)
2371                        netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2372                goto fail5;
2373        }
2374
2375        efx->max_channels = (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? 4 :
2376                             EFX_MAX_CHANNELS);
2377        efx->max_tx_channels = efx->max_channels;
2378        efx->timer_quantum_ns = 4968; /* 621 cycles */
2379        efx->timer_max_ns = efx->type->timer_period_max *
2380                            efx->timer_quantum_ns;
2381
2382        /* Initialise I2C adapter */
2383        board = falcon_board(efx);
2384        board->i2c_adap.owner = THIS_MODULE;
2385        board->i2c_data = falcon_i2c_bit_operations;
2386        board->i2c_data.data = efx;
2387        board->i2c_adap.algo_data = &board->i2c_data;
2388        board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2389        strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2390                sizeof(board->i2c_adap.name));
2391        rc = i2c_bit_add_bus(&board->i2c_adap);
2392        if (rc)
2393                goto fail5;
2394
2395        rc = falcon_board(efx)->type->init(efx);
2396        if (rc) {
2397                netif_err(efx, probe, efx->net_dev,
2398                          "failed to initialise board\n");
2399                goto fail6;
2400        }
2401
2402        nic_data->stats_disable_count = 1;
2403        setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2404                    (unsigned long)efx);
2405
2406        return 0;
2407
2408 fail6:
2409        i2c_del_adapter(&board->i2c_adap);
2410        memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2411 fail5:
2412        efx_nic_free_buffer(efx, &efx->irq_status);
2413 fail4:
2414 fail3:
2415        if (nic_data->pci_dev2) {
2416                pci_dev_put(nic_data->pci_dev2);
2417                nic_data->pci_dev2 = NULL;
2418        }
2419 fail2:
2420 fail1:
2421        kfree(efx->nic_data);
2422        return rc;
2423}
2424
2425static void falcon_init_rx_cfg(struct efx_nic *efx)
2426{
2427        /* RX control FIFO thresholds (32 entries) */
2428        const unsigned ctrl_xon_thr = 20;
2429        const unsigned ctrl_xoff_thr = 25;
2430        efx_oword_t reg;
2431
2432        efx_reado(efx, &reg, FR_AZ_RX_CFG);
2433        if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2434                /* Data FIFO size is 5.5K.  The RX DMA engine only
2435                 * supports scattering for user-mode queues, but will
2436                 * split DMA writes at intervals of RX_USR_BUF_SIZE
2437                 * (32-byte units) even for kernel-mode queues.  We
2438                 * set it to be so large that that never happens.
2439                 */
2440                EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2441                EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2442                                    (3 * 4096) >> 5);
2443                EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2444                EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2445                EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2446                EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2447        } else {
2448                /* Data FIFO size is 80K; register fields moved */
2449                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2450                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2451                                    EFX_RX_USR_BUF_SIZE >> 5);
2452                /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2453                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2454                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2455                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2456                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2457                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2458
2459                /* Enable hash insertion. This is broken for the
2460                 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2461                 * IPv4 hashes. */
2462                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2463                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2464                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2465        }
2466        /* Always enable XOFF signal from RX FIFO.  We enable
2467         * or disable transmission of pause frames at the MAC. */
2468        EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2469        efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2470}
2471
2472/* This call performs hardware-specific global initialisation, such as
2473 * defining the descriptor cache sizes and number of RSS channels.
2474 * It does not set up any buffers, descriptor rings or event queues.
2475 */
2476static int falcon_init_nic(struct efx_nic *efx)
2477{
2478        efx_oword_t temp;
2479        int rc;
2480
2481        /* Use on-chip SRAM */
2482        efx_reado(efx, &temp, FR_AB_NIC_STAT);
2483        EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2484        efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2485
2486        rc = falcon_reset_sram(efx);
2487        if (rc)
2488                return rc;
2489
2490        /* Clear the parity enables on the TX data fifos as
2491         * they produce false parity errors because of timing issues
2492         */
2493        if (EFX_WORKAROUND_5129(efx)) {
2494                efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2495                EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2496                efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2497        }
2498
2499        if (EFX_WORKAROUND_7244(efx)) {
2500                efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2501                EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2502                EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2503                EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2504                EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2505                efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2506        }
2507
2508        /* XXX This is documented only for Falcon A0/A1 */
2509        /* Setup RX.  Wait for descriptor is broken and must
2510         * be disabled.  RXDP recovery shouldn't be needed, but is.
2511         */
2512        efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
2513        EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2514        EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2515        if (EFX_WORKAROUND_5583(efx))
2516                EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2517        efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2518
2519        /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2520         * descriptors (which is bad).
2521         */
2522        efx_reado(efx, &temp, FR_AZ_TX_CFG);
2523        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2524        efx_writeo(efx, &temp, FR_AZ_TX_CFG);
2525
2526        falcon_init_rx_cfg(efx);
2527
2528        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2529                falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
2530
2531                /* Set destination of both TX and RX Flush events */
2532                EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2533                efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
2534        }
2535
2536        efx_farch_init_common(efx);
2537
2538        return 0;
2539}
2540
2541static void falcon_remove_nic(struct efx_nic *efx)
2542{
2543        struct falcon_nic_data *nic_data = efx->nic_data;
2544        struct falcon_board *board = falcon_board(efx);
2545
2546        board->type->fini(efx);
2547
2548        /* Remove I2C adapter and clear it in preparation for a retry */
2549        i2c_del_adapter(&board->i2c_adap);
2550        memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2551
2552        efx_nic_free_buffer(efx, &efx->irq_status);
2553
2554        __falcon_reset_hw(efx, RESET_TYPE_ALL);
2555
2556        /* Release the second function after the reset */
2557        if (nic_data->pci_dev2) {
2558                pci_dev_put(nic_data->pci_dev2);
2559                nic_data->pci_dev2 = NULL;
2560        }
2561
2562        /* Tear down the private nic state */
2563        kfree(efx->nic_data);
2564        efx->nic_data = NULL;
2565}
2566
2567static size_t falcon_describe_nic_stats(struct efx_nic *efx, u8 *names)
2568{
2569        return efx_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2570                                      falcon_stat_mask, names);
2571}
2572
2573static size_t falcon_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
2574                                      struct rtnl_link_stats64 *core_stats)
2575{
2576        struct falcon_nic_data *nic_data = efx->nic_data;
2577        u64 *stats = nic_data->stats;
2578        efx_oword_t cnt;
2579
2580        if (!nic_data->stats_disable_count) {
2581                efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2582                stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2583                        EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2584
2585                if (nic_data->stats_pending &&
2586                    FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2587                        nic_data->stats_pending = false;
2588                        rmb(); /* read the done flag before the stats */
2589                        efx_nic_update_stats(
2590                                falcon_stat_desc, FALCON_STAT_COUNT,
2591                                falcon_stat_mask,
2592                                stats, efx->stats_buffer.addr, true);
2593                }
2594
2595                /* Update derived statistic */
2596                efx_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2597                                     stats[FALCON_STAT_rx_bytes] -
2598                                     stats[FALCON_STAT_rx_good_bytes] -
2599                                     stats[FALCON_STAT_rx_control] * 64);
2600                efx_update_sw_stats(efx, stats);
2601        }
2602
2603        if (full_stats)
2604                memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2605
2606        if (core_stats) {
2607                core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2608                core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2609                core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2610                core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2611                core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2612                                         stats[GENERIC_STAT_rx_nodesc_trunc] +
2613                                         stats[GENERIC_STAT_rx_noskb_drops];
2614                core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2615                core_stats->rx_length_errors =
2616                        stats[FALCON_STAT_rx_gtjumbo] +
2617                        stats[FALCON_STAT_rx_length_error];
2618                core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2619                core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2620                core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2621
2622                core_stats->rx_errors = (core_stats->rx_length_errors +
2623                                         core_stats->rx_crc_errors +
2624                                         core_stats->rx_frame_errors +
2625                                         stats[FALCON_STAT_rx_symbol_error]);
2626        }
2627
2628        return FALCON_STAT_COUNT;
2629}
2630
2631void falcon_start_nic_stats(struct efx_nic *efx)
2632{
2633        struct falcon_nic_data *nic_data = efx->nic_data;
2634
2635        spin_lock_bh(&efx->stats_lock);
2636        if (--nic_data->stats_disable_count == 0)
2637                falcon_stats_request(efx);
2638        spin_unlock_bh(&efx->stats_lock);
2639}
2640
2641/* We don't acutally pull stats on falcon. Wait 10ms so that
2642 * they arrive when we call this just after start_stats
2643 */
2644static void falcon_pull_nic_stats(struct efx_nic *efx)
2645{
2646        msleep(10);
2647}
2648
2649void falcon_stop_nic_stats(struct efx_nic *efx)
2650{
2651        struct falcon_nic_data *nic_data = efx->nic_data;
2652        int i;
2653
2654        might_sleep();
2655
2656        spin_lock_bh(&efx->stats_lock);
2657        ++nic_data->stats_disable_count;
2658        spin_unlock_bh(&efx->stats_lock);
2659
2660        del_timer_sync(&nic_data->stats_timer);
2661
2662        /* Wait enough time for the most recent transfer to
2663         * complete. */
2664        for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2665                if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2666                        break;
2667                msleep(1);
2668        }
2669
2670        spin_lock_bh(&efx->stats_lock);
2671        falcon_stats_complete(efx);
2672        spin_unlock_bh(&efx->stats_lock);
2673}
2674
2675static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2676{
2677        falcon_board(efx)->type->set_id_led(efx, mode);
2678}
2679
2680/**************************************************************************
2681 *
2682 * Wake on LAN
2683 *
2684 **************************************************************************
2685 */
2686
2687static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2688{
2689        wol->supported = 0;
2690        wol->wolopts = 0;
2691        memset(&wol->sopass, 0, sizeof(wol->sopass));
2692}
2693
2694static int falcon_set_wol(struct efx_nic *efx, u32 type)
2695{
2696        if (type != 0)
2697                return -EINVAL;
2698        return 0;
2699}
2700
2701/**************************************************************************
2702 *
2703 * Revision-dependent attributes used by efx.c and nic.c
2704 *
2705 **************************************************************************
2706 */
2707
2708const struct efx_nic_type falcon_a1_nic_type = {
2709        .is_vf = false,
2710        .mem_bar = EFX_MEM_BAR,
2711        .mem_map_size = falcon_a1_mem_map_size,
2712        .probe = falcon_probe_nic,
2713        .remove = falcon_remove_nic,
2714        .init = falcon_init_nic,
2715        .dimension_resources = falcon_dimension_resources,
2716        .fini = falcon_irq_ack_a1,
2717        .monitor = falcon_monitor,
2718        .map_reset_reason = falcon_map_reset_reason,
2719        .map_reset_flags = falcon_map_reset_flags,
2720        .reset = falcon_reset_hw,
2721        .probe_port = falcon_probe_port,
2722        .remove_port = falcon_remove_port,
2723        .handle_global_event = falcon_handle_global_event,
2724        .fini_dmaq = efx_farch_fini_dmaq,
2725        .prepare_flush = falcon_prepare_flush,
2726        .finish_flush = efx_port_dummy_op_void,
2727        .prepare_flr = efx_port_dummy_op_void,
2728        .finish_flr = efx_farch_finish_flr,
2729        .describe_stats = falcon_describe_nic_stats,
2730        .update_stats = falcon_update_nic_stats,
2731        .start_stats = falcon_start_nic_stats,
2732        .pull_stats = falcon_pull_nic_stats,
2733        .stop_stats = falcon_stop_nic_stats,
2734        .set_id_led = falcon_set_id_led,
2735        .push_irq_moderation = falcon_push_irq_moderation,
2736        .reconfigure_port = falcon_reconfigure_port,
2737        .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2738        .reconfigure_mac = falcon_reconfigure_xmac,
2739        .check_mac_fault = falcon_xmac_check_fault,
2740        .get_wol = falcon_get_wol,
2741        .set_wol = falcon_set_wol,
2742        .resume_wol = efx_port_dummy_op_void,
2743        .test_nvram = falcon_test_nvram,
2744        .irq_enable_master = efx_farch_irq_enable_master,
2745        .irq_test_generate = efx_farch_irq_test_generate,
2746        .irq_disable_non_ev = efx_farch_irq_disable_master,
2747        .irq_handle_msi = efx_farch_msi_interrupt,
2748        .irq_handle_legacy = falcon_legacy_interrupt_a1,
2749        .tx_probe = efx_farch_tx_probe,
2750        .tx_init = efx_farch_tx_init,
2751        .tx_remove = efx_farch_tx_remove,
2752        .tx_write = efx_farch_tx_write,
2753        .rx_push_rss_config = dummy_rx_push_rss_config,
2754        .rx_probe = efx_farch_rx_probe,
2755        .rx_init = efx_farch_rx_init,
2756        .rx_remove = efx_farch_rx_remove,
2757        .rx_write = efx_farch_rx_write,
2758        .rx_defer_refill = efx_farch_rx_defer_refill,
2759        .ev_probe = efx_farch_ev_probe,
2760        .ev_init = efx_farch_ev_init,
2761        .ev_fini = efx_farch_ev_fini,
2762        .ev_remove = efx_farch_ev_remove,
2763        .ev_process = efx_farch_ev_process,
2764        .ev_read_ack = efx_farch_ev_read_ack,
2765        .ev_test_generate = efx_farch_ev_test_generate,
2766
2767        /* We don't expose the filter table on Falcon A1 as it is not
2768         * mapped into function 0, but these implementations still
2769         * work with a degenerate case of all tables set to size 0.
2770         */
2771        .filter_table_probe = efx_farch_filter_table_probe,
2772        .filter_table_restore = efx_farch_filter_table_restore,
2773        .filter_table_remove = efx_farch_filter_table_remove,
2774        .filter_insert = efx_farch_filter_insert,
2775        .filter_remove_safe = efx_farch_filter_remove_safe,
2776        .filter_get_safe = efx_farch_filter_get_safe,
2777        .filter_clear_rx = efx_farch_filter_clear_rx,
2778        .filter_count_rx_used = efx_farch_filter_count_rx_used,
2779        .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2780        .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2781
2782#ifdef CONFIG_SFC_MTD
2783        .mtd_probe = falcon_mtd_probe,
2784        .mtd_rename = falcon_mtd_rename,
2785        .mtd_read = falcon_mtd_read,
2786        .mtd_erase = falcon_mtd_erase,
2787        .mtd_write = falcon_mtd_write,
2788        .mtd_sync = falcon_mtd_sync,
2789#endif
2790
2791        .revision = EFX_REV_FALCON_A1,
2792        .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2793        .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2794        .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2795        .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2796        .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2797        .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2798        .rx_buffer_padding = 0x24,
2799        .can_rx_scatter = false,
2800        .max_interrupt_mode = EFX_INT_MODE_MSI,
2801        .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2802        .offload_features = NETIF_F_IP_CSUM,
2803        .mcdi_max_ver = -1,
2804};
2805
2806const struct efx_nic_type falcon_b0_nic_type = {
2807        .is_vf = false,
2808        .mem_bar = EFX_MEM_BAR,
2809        .mem_map_size = falcon_b0_mem_map_size,
2810        .probe = falcon_probe_nic,
2811        .remove = falcon_remove_nic,
2812        .init = falcon_init_nic,
2813        .dimension_resources = falcon_dimension_resources,
2814        .fini = efx_port_dummy_op_void,
2815        .monitor = falcon_monitor,
2816        .map_reset_reason = falcon_map_reset_reason,
2817        .map_reset_flags = falcon_map_reset_flags,
2818        .reset = falcon_reset_hw,
2819        .probe_port = falcon_probe_port,
2820        .remove_port = falcon_remove_port,
2821        .handle_global_event = falcon_handle_global_event,
2822        .fini_dmaq = efx_farch_fini_dmaq,
2823        .prepare_flush = falcon_prepare_flush,
2824        .finish_flush = efx_port_dummy_op_void,
2825        .prepare_flr = efx_port_dummy_op_void,
2826        .finish_flr = efx_farch_finish_flr,
2827        .describe_stats = falcon_describe_nic_stats,
2828        .update_stats = falcon_update_nic_stats,
2829        .start_stats = falcon_start_nic_stats,
2830        .pull_stats = falcon_pull_nic_stats,
2831        .stop_stats = falcon_stop_nic_stats,
2832        .set_id_led = falcon_set_id_led,
2833        .push_irq_moderation = falcon_push_irq_moderation,
2834        .reconfigure_port = falcon_reconfigure_port,
2835        .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2836        .reconfigure_mac = falcon_reconfigure_xmac,
2837        .check_mac_fault = falcon_xmac_check_fault,
2838        .get_wol = falcon_get_wol,
2839        .set_wol = falcon_set_wol,
2840        .resume_wol = efx_port_dummy_op_void,
2841        .test_chip = falcon_b0_test_chip,
2842        .test_nvram = falcon_test_nvram,
2843        .irq_enable_master = efx_farch_irq_enable_master,
2844        .irq_test_generate = efx_farch_irq_test_generate,
2845        .irq_disable_non_ev = efx_farch_irq_disable_master,
2846        .irq_handle_msi = efx_farch_msi_interrupt,
2847        .irq_handle_legacy = efx_farch_legacy_interrupt,
2848        .tx_probe = efx_farch_tx_probe,
2849        .tx_init = efx_farch_tx_init,
2850        .tx_remove = efx_farch_tx_remove,
2851        .tx_write = efx_farch_tx_write,
2852        .rx_push_rss_config = falcon_b0_rx_push_rss_config,
2853        .rx_probe = efx_farch_rx_probe,
2854        .rx_init = efx_farch_rx_init,
2855        .rx_remove = efx_farch_rx_remove,
2856        .rx_write = efx_farch_rx_write,
2857        .rx_defer_refill = efx_farch_rx_defer_refill,
2858        .ev_probe = efx_farch_ev_probe,
2859        .ev_init = efx_farch_ev_init,
2860        .ev_fini = efx_farch_ev_fini,
2861        .ev_remove = efx_farch_ev_remove,
2862        .ev_process = efx_farch_ev_process,
2863        .ev_read_ack = efx_farch_ev_read_ack,
2864        .ev_test_generate = efx_farch_ev_test_generate,
2865        .filter_table_probe = efx_farch_filter_table_probe,
2866        .filter_table_restore = efx_farch_filter_table_restore,
2867        .filter_table_remove = efx_farch_filter_table_remove,
2868        .filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
2869        .filter_insert = efx_farch_filter_insert,
2870        .filter_remove_safe = efx_farch_filter_remove_safe,
2871        .filter_get_safe = efx_farch_filter_get_safe,
2872        .filter_clear_rx = efx_farch_filter_clear_rx,
2873        .filter_count_rx_used = efx_farch_filter_count_rx_used,
2874        .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2875        .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2876#ifdef CONFIG_RFS_ACCEL
2877        .filter_rfs_insert = efx_farch_filter_rfs_insert,
2878        .filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
2879#endif
2880#ifdef CONFIG_SFC_MTD
2881        .mtd_probe = falcon_mtd_probe,
2882        .mtd_rename = falcon_mtd_rename,
2883        .mtd_read = falcon_mtd_read,
2884        .mtd_erase = falcon_mtd_erase,
2885        .mtd_write = falcon_mtd_write,
2886        .mtd_sync = falcon_mtd_sync,
2887#endif
2888
2889        .revision = EFX_REV_FALCON_B0,
2890        .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2891        .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2892        .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2893        .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2894        .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2895        .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2896        .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2897        .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2898        .rx_buffer_padding = 0,
2899        .can_rx_scatter = true,
2900        .max_interrupt_mode = EFX_INT_MODE_MSIX,
2901        .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2902        .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2903        .mcdi_max_ver = -1,
2904        .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2905};
2906