linux/drivers/net/ethernet/sfc/net_driver.h
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2005-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11/* Common definitions for all Efx net driver code */
  12
  13#ifndef EFX_NET_DRIVER_H
  14#define EFX_NET_DRIVER_H
  15
  16#include <linux/netdevice.h>
  17#include <linux/etherdevice.h>
  18#include <linux/ethtool.h>
  19#include <linux/if_vlan.h>
  20#include <linux/timer.h>
  21#include <linux/mdio.h>
  22#include <linux/list.h>
  23#include <linux/pci.h>
  24#include <linux/device.h>
  25#include <linux/highmem.h>
  26#include <linux/workqueue.h>
  27#include <linux/mutex.h>
  28#include <linux/rwsem.h>
  29#include <linux/vmalloc.h>
  30#include <linux/i2c.h>
  31#include <linux/mtd/mtd.h>
  32#include <net/busy_poll.h>
  33
  34#include "enum.h"
  35#include "bitfield.h"
  36#include "filter.h"
  37
  38/**************************************************************************
  39 *
  40 * Build definitions
  41 *
  42 **************************************************************************/
  43
  44#define EFX_DRIVER_VERSION      "4.0"
  45
  46#ifdef DEBUG
  47#define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
  48#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
  49#else
  50#define EFX_BUG_ON_PARANOID(x) do {} while (0)
  51#define EFX_WARN_ON_PARANOID(x) do {} while (0)
  52#endif
  53
  54/**************************************************************************
  55 *
  56 * Efx data structures
  57 *
  58 **************************************************************************/
  59
  60#define EFX_MAX_CHANNELS 32U
  61#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
  62#define EFX_EXTRA_CHANNEL_IOV   0
  63#define EFX_EXTRA_CHANNEL_PTP   1
  64#define EFX_MAX_EXTRA_CHANNELS  2U
  65
  66/* Checksum generation is a per-queue option in hardware, so each
  67 * queue visible to the networking core is backed by two hardware TX
  68 * queues. */
  69#define EFX_MAX_TX_TC           2
  70#define EFX_MAX_CORE_TX_QUEUES  (EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
  71#define EFX_TXQ_TYPE_OFFLOAD    1       /* flag */
  72#define EFX_TXQ_TYPE_HIGHPRI    2       /* flag */
  73#define EFX_TXQ_TYPES           4
  74#define EFX_MAX_TX_QUEUES       (EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
  75
  76/* Maximum possible MTU the driver supports */
  77#define EFX_MAX_MTU (9 * 1024)
  78
  79/* Minimum MTU, from RFC791 (IP) */
  80#define EFX_MIN_MTU 68
  81
  82/* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
  83 * and should be a multiple of the cache line size.
  84 */
  85#define EFX_RX_USR_BUF_SIZE     (2048 - 256)
  86
  87/* If possible, we should ensure cache line alignment at start and end
  88 * of every buffer.  Otherwise, we just need to ensure 4-byte
  89 * alignment of the network header.
  90 */
  91#if NET_IP_ALIGN == 0
  92#define EFX_RX_BUF_ALIGNMENT    L1_CACHE_BYTES
  93#else
  94#define EFX_RX_BUF_ALIGNMENT    4
  95#endif
  96
  97/* Forward declare Precision Time Protocol (PTP) support structure. */
  98struct efx_ptp_data;
  99struct hwtstamp_config;
 100
 101struct efx_self_tests;
 102
 103/**
 104 * struct efx_buffer - A general-purpose DMA buffer
 105 * @addr: host base address of the buffer
 106 * @dma_addr: DMA base address of the buffer
 107 * @len: Buffer length, in bytes
 108 *
 109 * The NIC uses these buffers for its interrupt status registers and
 110 * MAC stats dumps.
 111 */
 112struct efx_buffer {
 113        void *addr;
 114        dma_addr_t dma_addr;
 115        unsigned int len;
 116};
 117
 118/**
 119 * struct efx_special_buffer - DMA buffer entered into buffer table
 120 * @buf: Standard &struct efx_buffer
 121 * @index: Buffer index within controller;s buffer table
 122 * @entries: Number of buffer table entries
 123 *
 124 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
 125 * Event and descriptor rings are addressed via one or more buffer
 126 * table entries (and so can be physically non-contiguous, although we
 127 * currently do not take advantage of that).  On Falcon and Siena we
 128 * have to take care of allocating and initialising the entries
 129 * ourselves.  On later hardware this is managed by the firmware and
 130 * @index and @entries are left as 0.
 131 */
 132struct efx_special_buffer {
 133        struct efx_buffer buf;
 134        unsigned int index;
 135        unsigned int entries;
 136};
 137
 138/**
 139 * struct efx_tx_buffer - buffer state for a TX descriptor
 140 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
 141 *      freed when descriptor completes
 142 * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
 143 *      freed when descriptor completes.
 144 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
 145 * @dma_addr: DMA address of the fragment.
 146 * @flags: Flags for allocation and DMA mapping type
 147 * @len: Length of this fragment.
 148 *      This field is zero when the queue slot is empty.
 149 * @unmap_len: Length of this fragment to unmap
 150 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
 151 * Only valid if @unmap_len != 0.
 152 */
 153struct efx_tx_buffer {
 154        union {
 155                const struct sk_buff *skb;
 156                void *heap_buf;
 157        };
 158        union {
 159                efx_qword_t option;
 160                dma_addr_t dma_addr;
 161        };
 162        unsigned short flags;
 163        unsigned short len;
 164        unsigned short unmap_len;
 165        unsigned short dma_offset;
 166};
 167#define EFX_TX_BUF_CONT         1       /* not last descriptor of packet */
 168#define EFX_TX_BUF_SKB          2       /* buffer is last part of skb */
 169#define EFX_TX_BUF_HEAP         4       /* buffer was allocated with kmalloc() */
 170#define EFX_TX_BUF_MAP_SINGLE   8       /* buffer was mapped with dma_map_single() */
 171#define EFX_TX_BUF_OPTION       0x10    /* empty buffer for option descriptor */
 172
 173/**
 174 * struct efx_tx_queue - An Efx TX queue
 175 *
 176 * This is a ring buffer of TX fragments.
 177 * Since the TX completion path always executes on the same
 178 * CPU and the xmit path can operate on different CPUs,
 179 * performance is increased by ensuring that the completion
 180 * path and the xmit path operate on different cache lines.
 181 * This is particularly important if the xmit path is always
 182 * executing on one CPU which is different from the completion
 183 * path.  There is also a cache line for members which are
 184 * read but not written on the fast path.
 185 *
 186 * @efx: The associated Efx NIC
 187 * @queue: DMA queue number
 188 * @tso_version: Version of TSO in use for this queue.
 189 * @channel: The associated channel
 190 * @core_txq: The networking core TX queue structure
 191 * @buffer: The software buffer ring
 192 * @tsoh_page: Array of pages of TSO header buffers
 193 * @txd: The hardware descriptor ring
 194 * @ptr_mask: The size of the ring minus 1.
 195 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
 196 *      Size of the region is efx_piobuf_size.
 197 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
 198 * @initialised: Has hardware queue been initialised?
 199 * @read_count: Current read pointer.
 200 *      This is the number of buffers that have been removed from both rings.
 201 * @old_write_count: The value of @write_count when last checked.
 202 *      This is here for performance reasons.  The xmit path will
 203 *      only get the up-to-date value of @write_count if this
 204 *      variable indicates that the queue is empty.  This is to
 205 *      avoid cache-line ping-pong between the xmit path and the
 206 *      completion path.
 207 * @merge_events: Number of TX merged completion events
 208 * @insert_count: Current insert pointer
 209 *      This is the number of buffers that have been added to the
 210 *      software ring.
 211 * @write_count: Current write pointer
 212 *      This is the number of buffers that have been added to the
 213 *      hardware ring.
 214 * @old_read_count: The value of read_count when last checked.
 215 *      This is here for performance reasons.  The xmit path will
 216 *      only get the up-to-date value of read_count if this
 217 *      variable indicates that the queue is full.  This is to
 218 *      avoid cache-line ping-pong between the xmit path and the
 219 *      completion path.
 220 * @tso_bursts: Number of times TSO xmit invoked by kernel
 221 * @tso_long_headers: Number of packets with headers too long for standard
 222 *      blocks
 223 * @tso_packets: Number of packets via the TSO xmit path
 224 * @pushes: Number of times the TX push feature has been used
 225 * @pio_packets: Number of times the TX PIO feature has been used
 226 * @xmit_more_available: Are any packets waiting to be pushed to the NIC
 227 * @empty_read_count: If the completion path has seen the queue as empty
 228 *      and the transmission path has not yet checked this, the value of
 229 *      @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
 230 */
 231struct efx_tx_queue {
 232        /* Members which don't change on the fast path */
 233        struct efx_nic *efx ____cacheline_aligned_in_smp;
 234        unsigned queue;
 235        unsigned int tso_version;
 236        struct efx_channel *channel;
 237        struct netdev_queue *core_txq;
 238        struct efx_tx_buffer *buffer;
 239        struct efx_buffer *tsoh_page;
 240        struct efx_special_buffer txd;
 241        unsigned int ptr_mask;
 242        void __iomem *piobuf;
 243        unsigned int piobuf_offset;
 244        bool initialised;
 245
 246        /* Members used mainly on the completion path */
 247        unsigned int read_count ____cacheline_aligned_in_smp;
 248        unsigned int old_write_count;
 249        unsigned int merge_events;
 250        unsigned int bytes_compl;
 251        unsigned int pkts_compl;
 252
 253        /* Members used only on the xmit path */
 254        unsigned int insert_count ____cacheline_aligned_in_smp;
 255        unsigned int write_count;
 256        unsigned int old_read_count;
 257        unsigned int tso_bursts;
 258        unsigned int tso_long_headers;
 259        unsigned int tso_packets;
 260        unsigned int pushes;
 261        unsigned int pio_packets;
 262        bool xmit_more_available;
 263        /* Statistics to supplement MAC stats */
 264        unsigned long tx_packets;
 265
 266        /* Members shared between paths and sometimes updated */
 267        unsigned int empty_read_count ____cacheline_aligned_in_smp;
 268#define EFX_EMPTY_COUNT_VALID 0x80000000
 269        atomic_t flush_outstanding;
 270};
 271
 272/**
 273 * struct efx_rx_buffer - An Efx RX data buffer
 274 * @dma_addr: DMA base address of the buffer
 275 * @page: The associated page buffer.
 276 *      Will be %NULL if the buffer slot is currently free.
 277 * @page_offset: If pending: offset in @page of DMA base address.
 278 *      If completed: offset in @page of Ethernet header.
 279 * @len: If pending: length for DMA descriptor.
 280 *      If completed: received length, excluding hash prefix.
 281 * @flags: Flags for buffer and packet state.  These are only set on the
 282 *      first buffer of a scattered packet.
 283 */
 284struct efx_rx_buffer {
 285        dma_addr_t dma_addr;
 286        struct page *page;
 287        u16 page_offset;
 288        u16 len;
 289        u16 flags;
 290};
 291#define EFX_RX_BUF_LAST_IN_PAGE 0x0001
 292#define EFX_RX_PKT_CSUMMED      0x0002
 293#define EFX_RX_PKT_DISCARD      0x0004
 294#define EFX_RX_PKT_TCP          0x0040
 295#define EFX_RX_PKT_PREFIX_LEN   0x0080  /* length is in prefix only */
 296
 297/**
 298 * struct efx_rx_page_state - Page-based rx buffer state
 299 *
 300 * Inserted at the start of every page allocated for receive buffers.
 301 * Used to facilitate sharing dma mappings between recycled rx buffers
 302 * and those passed up to the kernel.
 303 *
 304 * @dma_addr: The dma address of this page.
 305 */
 306struct efx_rx_page_state {
 307        dma_addr_t dma_addr;
 308
 309        unsigned int __pad[0] ____cacheline_aligned;
 310};
 311
 312/**
 313 * struct efx_rx_queue - An Efx RX queue
 314 * @efx: The associated Efx NIC
 315 * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
 316 *      is associated with a real RX queue.
 317 * @buffer: The software buffer ring
 318 * @rxd: The hardware descriptor ring
 319 * @ptr_mask: The size of the ring minus 1.
 320 * @refill_enabled: Enable refill whenever fill level is low
 321 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
 322 *      @rxq_flush_pending.
 323 * @added_count: Number of buffers added to the receive queue.
 324 * @notified_count: Number of buffers given to NIC (<= @added_count).
 325 * @removed_count: Number of buffers removed from the receive queue.
 326 * @scatter_n: Used by NIC specific receive code.
 327 * @scatter_len: Used by NIC specific receive code.
 328 * @page_ring: The ring to store DMA mapped pages for reuse.
 329 * @page_add: Counter to calculate the write pointer for the recycle ring.
 330 * @page_remove: Counter to calculate the read pointer for the recycle ring.
 331 * @page_recycle_count: The number of pages that have been recycled.
 332 * @page_recycle_failed: The number of pages that couldn't be recycled because
 333 *      the kernel still held a reference to them.
 334 * @page_recycle_full: The number of pages that were released because the
 335 *      recycle ring was full.
 336 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
 337 * @max_fill: RX descriptor maximum fill level (<= ring size)
 338 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
 339 *      (<= @max_fill)
 340 * @min_fill: RX descriptor minimum non-zero fill level.
 341 *      This records the minimum fill level observed when a ring
 342 *      refill was triggered.
 343 * @recycle_count: RX buffer recycle counter.
 344 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
 345 */
 346struct efx_rx_queue {
 347        struct efx_nic *efx;
 348        int core_index;
 349        struct efx_rx_buffer *buffer;
 350        struct efx_special_buffer rxd;
 351        unsigned int ptr_mask;
 352        bool refill_enabled;
 353        bool flush_pending;
 354
 355        unsigned int added_count;
 356        unsigned int notified_count;
 357        unsigned int removed_count;
 358        unsigned int scatter_n;
 359        unsigned int scatter_len;
 360        struct page **page_ring;
 361        unsigned int page_add;
 362        unsigned int page_remove;
 363        unsigned int page_recycle_count;
 364        unsigned int page_recycle_failed;
 365        unsigned int page_recycle_full;
 366        unsigned int page_ptr_mask;
 367        unsigned int max_fill;
 368        unsigned int fast_fill_trigger;
 369        unsigned int min_fill;
 370        unsigned int min_overfill;
 371        unsigned int recycle_count;
 372        struct timer_list slow_fill;
 373        unsigned int slow_fill_count;
 374        /* Statistics to supplement MAC stats */
 375        unsigned long rx_packets;
 376};
 377
 378enum efx_sync_events_state {
 379        SYNC_EVENTS_DISABLED = 0,
 380        SYNC_EVENTS_QUIESCENT,
 381        SYNC_EVENTS_REQUESTED,
 382        SYNC_EVENTS_VALID,
 383};
 384
 385/**
 386 * struct efx_channel - An Efx channel
 387 *
 388 * A channel comprises an event queue, at least one TX queue, at least
 389 * one RX queue, and an associated tasklet for processing the event
 390 * queue.
 391 *
 392 * @efx: Associated Efx NIC
 393 * @channel: Channel instance number
 394 * @type: Channel type definition
 395 * @eventq_init: Event queue initialised flag
 396 * @enabled: Channel enabled indicator
 397 * @irq: IRQ number (MSI and MSI-X only)
 398 * @irq_moderation_us: IRQ moderation value (in microseconds)
 399 * @napi_dev: Net device used with NAPI
 400 * @napi_str: NAPI control structure
 401 * @state: state for NAPI vs busy polling
 402 * @state_lock: lock protecting @state
 403 * @eventq: Event queue buffer
 404 * @eventq_mask: Event queue pointer mask
 405 * @eventq_read_ptr: Event queue read pointer
 406 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
 407 * @irq_count: Number of IRQs since last adaptive moderation decision
 408 * @irq_mod_score: IRQ moderation score
 409 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
 410 *      indexed by filter ID
 411 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
 412 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
 413 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
 414 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
 415 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
 416 * @n_rx_overlength: Count of RX_OVERLENGTH errors
 417 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
 418 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
 419 *      lack of descriptors
 420 * @n_rx_merge_events: Number of RX merged completion events
 421 * @n_rx_merge_packets: Number of RX packets completed by merged events
 422 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
 423 *      __efx_rx_packet(), or zero if there is none
 424 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
 425 *      by __efx_rx_packet(), if @rx_pkt_n_frags != 0
 426 * @rx_queue: RX queue for this channel
 427 * @tx_queue: TX queues for this channel
 428 * @sync_events_state: Current state of sync events on this channel
 429 * @sync_timestamp_major: Major part of the last ptp sync event
 430 * @sync_timestamp_minor: Minor part of the last ptp sync event
 431 */
 432struct efx_channel {
 433        struct efx_nic *efx;
 434        int channel;
 435        const struct efx_channel_type *type;
 436        bool eventq_init;
 437        bool enabled;
 438        int irq;
 439        unsigned int irq_moderation_us;
 440        struct net_device *napi_dev;
 441        struct napi_struct napi_str;
 442#ifdef CONFIG_NET_RX_BUSY_POLL
 443        unsigned long busy_poll_state;
 444#endif
 445        struct efx_special_buffer eventq;
 446        unsigned int eventq_mask;
 447        unsigned int eventq_read_ptr;
 448        int event_test_cpu;
 449
 450        unsigned int irq_count;
 451        unsigned int irq_mod_score;
 452#ifdef CONFIG_RFS_ACCEL
 453        unsigned int rfs_filters_added;
 454#define RPS_FLOW_ID_INVALID 0xFFFFFFFF
 455        u32 *rps_flow_id;
 456#endif
 457
 458        unsigned n_rx_tobe_disc;
 459        unsigned n_rx_ip_hdr_chksum_err;
 460        unsigned n_rx_tcp_udp_chksum_err;
 461        unsigned n_rx_mcast_mismatch;
 462        unsigned n_rx_frm_trunc;
 463        unsigned n_rx_overlength;
 464        unsigned n_skbuff_leaks;
 465        unsigned int n_rx_nodesc_trunc;
 466        unsigned int n_rx_merge_events;
 467        unsigned int n_rx_merge_packets;
 468
 469        unsigned int rx_pkt_n_frags;
 470        unsigned int rx_pkt_index;
 471
 472        struct efx_rx_queue rx_queue;
 473        struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
 474
 475        enum efx_sync_events_state sync_events_state;
 476        u32 sync_timestamp_major;
 477        u32 sync_timestamp_minor;
 478};
 479
 480#ifdef CONFIG_NET_RX_BUSY_POLL
 481enum efx_channel_busy_poll_state {
 482        EFX_CHANNEL_STATE_IDLE = 0,
 483        EFX_CHANNEL_STATE_NAPI = BIT(0),
 484        EFX_CHANNEL_STATE_NAPI_REQ_BIT = 1,
 485        EFX_CHANNEL_STATE_NAPI_REQ = BIT(1),
 486        EFX_CHANNEL_STATE_POLL_BIT = 2,
 487        EFX_CHANNEL_STATE_POLL = BIT(2),
 488        EFX_CHANNEL_STATE_DISABLE_BIT = 3,
 489};
 490
 491static inline void efx_channel_busy_poll_init(struct efx_channel *channel)
 492{
 493        WRITE_ONCE(channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE);
 494}
 495
 496/* Called from the device poll routine to get ownership of a channel. */
 497static inline bool efx_channel_lock_napi(struct efx_channel *channel)
 498{
 499        unsigned long prev, old = READ_ONCE(channel->busy_poll_state);
 500
 501        while (1) {
 502                switch (old) {
 503                case EFX_CHANNEL_STATE_POLL:
 504                        /* Ensure efx_channel_try_lock_poll() wont starve us */
 505                        set_bit(EFX_CHANNEL_STATE_NAPI_REQ_BIT,
 506                                &channel->busy_poll_state);
 507                        /* fallthrough */
 508                case EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_NAPI_REQ:
 509                        return false;
 510                default:
 511                        break;
 512                }
 513                prev = cmpxchg(&channel->busy_poll_state, old,
 514                               EFX_CHANNEL_STATE_NAPI);
 515                if (unlikely(prev != old)) {
 516                        /* This is likely to mean we've just entered polling
 517                         * state. Go back round to set the REQ bit.
 518                         */
 519                        old = prev;
 520                        continue;
 521                }
 522                return true;
 523        }
 524}
 525
 526static inline void efx_channel_unlock_napi(struct efx_channel *channel)
 527{
 528        /* Make sure write has completed from efx_channel_lock_napi() */
 529        smp_wmb();
 530        WRITE_ONCE(channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE);
 531}
 532
 533/* Called from efx_busy_poll(). */
 534static inline bool efx_channel_try_lock_poll(struct efx_channel *channel)
 535{
 536        return cmpxchg(&channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE,
 537                        EFX_CHANNEL_STATE_POLL) == EFX_CHANNEL_STATE_IDLE;
 538}
 539
 540static inline void efx_channel_unlock_poll(struct efx_channel *channel)
 541{
 542        clear_bit_unlock(EFX_CHANNEL_STATE_POLL_BIT, &channel->busy_poll_state);
 543}
 544
 545static inline bool efx_channel_busy_polling(struct efx_channel *channel)
 546{
 547        return test_bit(EFX_CHANNEL_STATE_POLL_BIT, &channel->busy_poll_state);
 548}
 549
 550static inline void efx_channel_enable(struct efx_channel *channel)
 551{
 552        clear_bit_unlock(EFX_CHANNEL_STATE_DISABLE_BIT,
 553                         &channel->busy_poll_state);
 554}
 555
 556/* Stop further polling or napi access.
 557 * Returns false if the channel is currently busy polling.
 558 */
 559static inline bool efx_channel_disable(struct efx_channel *channel)
 560{
 561        set_bit(EFX_CHANNEL_STATE_DISABLE_BIT, &channel->busy_poll_state);
 562        /* Implicit barrier in efx_channel_busy_polling() */
 563        return !efx_channel_busy_polling(channel);
 564}
 565
 566#else /* CONFIG_NET_RX_BUSY_POLL */
 567
 568static inline void efx_channel_busy_poll_init(struct efx_channel *channel)
 569{
 570}
 571
 572static inline bool efx_channel_lock_napi(struct efx_channel *channel)
 573{
 574        return true;
 575}
 576
 577static inline void efx_channel_unlock_napi(struct efx_channel *channel)
 578{
 579}
 580
 581static inline bool efx_channel_try_lock_poll(struct efx_channel *channel)
 582{
 583        return false;
 584}
 585
 586static inline void efx_channel_unlock_poll(struct efx_channel *channel)
 587{
 588}
 589
 590static inline bool efx_channel_busy_polling(struct efx_channel *channel)
 591{
 592        return false;
 593}
 594
 595static inline void efx_channel_enable(struct efx_channel *channel)
 596{
 597}
 598
 599static inline bool efx_channel_disable(struct efx_channel *channel)
 600{
 601        return true;
 602}
 603#endif /* CONFIG_NET_RX_BUSY_POLL */
 604
 605/**
 606 * struct efx_msi_context - Context for each MSI
 607 * @efx: The associated NIC
 608 * @index: Index of the channel/IRQ
 609 * @name: Name of the channel/IRQ
 610 *
 611 * Unlike &struct efx_channel, this is never reallocated and is always
 612 * safe for the IRQ handler to access.
 613 */
 614struct efx_msi_context {
 615        struct efx_nic *efx;
 616        unsigned int index;
 617        char name[IFNAMSIZ + 6];
 618};
 619
 620/**
 621 * struct efx_channel_type - distinguishes traffic and extra channels
 622 * @handle_no_channel: Handle failure to allocate an extra channel
 623 * @pre_probe: Set up extra state prior to initialisation
 624 * @post_remove: Tear down extra state after finalisation, if allocated.
 625 *      May be called on channels that have not been probed.
 626 * @get_name: Generate the channel's name (used for its IRQ handler)
 627 * @copy: Copy the channel state prior to reallocation.  May be %NULL if
 628 *      reallocation is not supported.
 629 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
 630 * @keep_eventq: Flag for whether event queue should be kept initialised
 631 *      while the device is stopped
 632 */
 633struct efx_channel_type {
 634        void (*handle_no_channel)(struct efx_nic *);
 635        int (*pre_probe)(struct efx_channel *);
 636        void (*post_remove)(struct efx_channel *);
 637        void (*get_name)(struct efx_channel *, char *buf, size_t len);
 638        struct efx_channel *(*copy)(const struct efx_channel *);
 639        bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
 640        bool keep_eventq;
 641};
 642
 643enum efx_led_mode {
 644        EFX_LED_OFF     = 0,
 645        EFX_LED_ON      = 1,
 646        EFX_LED_DEFAULT = 2
 647};
 648
 649#define STRING_TABLE_LOOKUP(val, member) \
 650        ((val) < member ## _max) ? member ## _names[val] : "(invalid)"
 651
 652extern const char *const efx_loopback_mode_names[];
 653extern const unsigned int efx_loopback_mode_max;
 654#define LOOPBACK_MODE(efx) \
 655        STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
 656
 657extern const char *const efx_reset_type_names[];
 658extern const unsigned int efx_reset_type_max;
 659#define RESET_TYPE(type) \
 660        STRING_TABLE_LOOKUP(type, efx_reset_type)
 661
 662enum efx_int_mode {
 663        /* Be careful if altering to correct macro below */
 664        EFX_INT_MODE_MSIX = 0,
 665        EFX_INT_MODE_MSI = 1,
 666        EFX_INT_MODE_LEGACY = 2,
 667        EFX_INT_MODE_MAX        /* Insert any new items before this */
 668};
 669#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
 670
 671enum nic_state {
 672        STATE_UNINIT = 0,       /* device being probed/removed or is frozen */
 673        STATE_READY = 1,        /* hardware ready and netdev registered */
 674        STATE_DISABLED = 2,     /* device disabled due to hardware errors */
 675        STATE_RECOVERY = 3,     /* device recovering from PCI error */
 676};
 677
 678/* Forward declaration */
 679struct efx_nic;
 680
 681/* Pseudo bit-mask flow control field */
 682#define EFX_FC_RX       FLOW_CTRL_RX
 683#define EFX_FC_TX       FLOW_CTRL_TX
 684#define EFX_FC_AUTO     4
 685
 686/**
 687 * struct efx_link_state - Current state of the link
 688 * @up: Link is up
 689 * @fd: Link is full-duplex
 690 * @fc: Actual flow control flags
 691 * @speed: Link speed (Mbps)
 692 */
 693struct efx_link_state {
 694        bool up;
 695        bool fd;
 696        u8 fc;
 697        unsigned int speed;
 698};
 699
 700static inline bool efx_link_state_equal(const struct efx_link_state *left,
 701                                        const struct efx_link_state *right)
 702{
 703        return left->up == right->up && left->fd == right->fd &&
 704                left->fc == right->fc && left->speed == right->speed;
 705}
 706
 707/**
 708 * struct efx_phy_operations - Efx PHY operations table
 709 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
 710 *      efx->loopback_modes.
 711 * @init: Initialise PHY
 712 * @fini: Shut down PHY
 713 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
 714 * @poll: Update @link_state and report whether it changed.
 715 *      Serialised by the mac_lock.
 716 * @get_settings: Get ethtool settings. Serialised by the mac_lock.
 717 * @set_settings: Set ethtool settings. Serialised by the mac_lock.
 718 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
 719 *      (only needed where AN bit is set in mmds)
 720 * @test_alive: Test that PHY is 'alive' (online)
 721 * @test_name: Get the name of a PHY-specific test/result
 722 * @run_tests: Run tests and record results as appropriate (offline).
 723 *      Flags are the ethtool tests flags.
 724 */
 725struct efx_phy_operations {
 726        int (*probe) (struct efx_nic *efx);
 727        int (*init) (struct efx_nic *efx);
 728        void (*fini) (struct efx_nic *efx);
 729        void (*remove) (struct efx_nic *efx);
 730        int (*reconfigure) (struct efx_nic *efx);
 731        bool (*poll) (struct efx_nic *efx);
 732        void (*get_settings) (struct efx_nic *efx,
 733                              struct ethtool_cmd *ecmd);
 734        int (*set_settings) (struct efx_nic *efx,
 735                             struct ethtool_cmd *ecmd);
 736        void (*set_npage_adv) (struct efx_nic *efx, u32);
 737        int (*test_alive) (struct efx_nic *efx);
 738        const char *(*test_name) (struct efx_nic *efx, unsigned int index);
 739        int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
 740        int (*get_module_eeprom) (struct efx_nic *efx,
 741                               struct ethtool_eeprom *ee,
 742                               u8 *data);
 743        int (*get_module_info) (struct efx_nic *efx,
 744                                struct ethtool_modinfo *modinfo);
 745};
 746
 747/**
 748 * enum efx_phy_mode - PHY operating mode flags
 749 * @PHY_MODE_NORMAL: on and should pass traffic
 750 * @PHY_MODE_TX_DISABLED: on with TX disabled
 751 * @PHY_MODE_LOW_POWER: set to low power through MDIO
 752 * @PHY_MODE_OFF: switched off through external control
 753 * @PHY_MODE_SPECIAL: on but will not pass traffic
 754 */
 755enum efx_phy_mode {
 756        PHY_MODE_NORMAL         = 0,
 757        PHY_MODE_TX_DISABLED    = 1,
 758        PHY_MODE_LOW_POWER      = 2,
 759        PHY_MODE_OFF            = 4,
 760        PHY_MODE_SPECIAL        = 8,
 761};
 762
 763static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
 764{
 765        return !!(mode & ~PHY_MODE_TX_DISABLED);
 766}
 767
 768/**
 769 * struct efx_hw_stat_desc - Description of a hardware statistic
 770 * @name: Name of the statistic as visible through ethtool, or %NULL if
 771 *      it should not be exposed
 772 * @dma_width: Width in bits (0 for non-DMA statistics)
 773 * @offset: Offset within stats (ignored for non-DMA statistics)
 774 */
 775struct efx_hw_stat_desc {
 776        const char *name;
 777        u16 dma_width;
 778        u16 offset;
 779};
 780
 781/* Number of bits used in a multicast filter hash address */
 782#define EFX_MCAST_HASH_BITS 8
 783
 784/* Number of (single-bit) entries in a multicast filter hash */
 785#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
 786
 787/* An Efx multicast filter hash */
 788union efx_multicast_hash {
 789        u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
 790        efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
 791};
 792
 793struct vfdi_status;
 794
 795/**
 796 * struct efx_nic - an Efx NIC
 797 * @name: Device name (net device name or bus id before net device registered)
 798 * @pci_dev: The PCI device
 799 * @node: List node for maintaning primary/secondary function lists
 800 * @primary: &struct efx_nic instance for the primary function of this
 801 *      controller.  May be the same structure, and may be %NULL if no
 802 *      primary function is bound.  Serialised by rtnl_lock.
 803 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
 804 *      functions of the controller, if this is for the primary function.
 805 *      Serialised by rtnl_lock.
 806 * @type: Controller type attributes
 807 * @legacy_irq: IRQ number
 808 * @workqueue: Workqueue for port reconfigures and the HW monitor.
 809 *      Work items do not hold and must not acquire RTNL.
 810 * @workqueue_name: Name of workqueue
 811 * @reset_work: Scheduled reset workitem
 812 * @membase_phys: Memory BAR value as physical address
 813 * @membase: Memory BAR value
 814 * @interrupt_mode: Interrupt mode
 815 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
 816 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
 817 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
 818 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
 819 * @irq_rx_moderation_us: IRQ moderation time for RX event queues
 820 * @msg_enable: Log message enable flags
 821 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
 822 * @reset_pending: Bitmask for pending resets
 823 * @tx_queue: TX DMA queues
 824 * @rx_queue: RX DMA queues
 825 * @channel: Channels
 826 * @msi_context: Context for each MSI
 827 * @extra_channel_types: Types of extra (non-traffic) channels that
 828 *      should be allocated for this NIC
 829 * @rxq_entries: Size of receive queues requested by user.
 830 * @txq_entries: Size of transmit queues requested by user.
 831 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
 832 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
 833 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
 834 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
 835 * @sram_lim_qw: Qword address limit of SRAM
 836 * @next_buffer_table: First available buffer table id
 837 * @n_channels: Number of channels in use
 838 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
 839 * @n_tx_channels: Number of channels used for TX
 840 * @rx_ip_align: RX DMA address offset to have IP header aligned in
 841 *      in accordance with NET_IP_ALIGN
 842 * @rx_dma_len: Current maximum RX DMA length
 843 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
 844 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
 845 *      for use in sk_buff::truesize
 846 * @rx_prefix_size: Size of RX prefix before packet data
 847 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
 848 *      (valid only if @rx_prefix_size != 0; always negative)
 849 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
 850 *      (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
 851 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
 852 *      (valid only if channel->sync_timestamps_enabled; always negative)
 853 * @rx_hash_key: Toeplitz hash key for RSS
 854 * @rx_indir_table: Indirection table for RSS
 855 * @rx_scatter: Scatter mode enabled for receives
 856 * @int_error_count: Number of internal errors seen recently
 857 * @int_error_expire: Time at which error count will be expired
 858 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
 859 *      acknowledge but do nothing else.
 860 * @irq_status: Interrupt status buffer
 861 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
 862 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
 863 * @selftest_work: Work item for asynchronous self-test
 864 * @mtd_list: List of MTDs attached to the NIC
 865 * @nic_data: Hardware dependent state
 866 * @mcdi: Management-Controller-to-Driver Interface state
 867 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
 868 *      efx_monitor() and efx_reconfigure_port()
 869 * @port_enabled: Port enabled indicator.
 870 *      Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
 871 *      efx_mac_work() with kernel interfaces. Safe to read under any
 872 *      one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
 873 *      be held to modify it.
 874 * @port_initialized: Port initialized?
 875 * @net_dev: Operating system network device. Consider holding the rtnl lock
 876 * @fixed_features: Features which cannot be turned off
 877 * @stats_buffer: DMA buffer for statistics
 878 * @phy_type: PHY type
 879 * @phy_op: PHY interface
 880 * @phy_data: PHY private data (including PHY-specific stats)
 881 * @mdio: PHY MDIO interface
 882 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
 883 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
 884 * @link_advertising: Autonegotiation advertising flags
 885 * @link_state: Current state of the link
 886 * @n_link_state_changes: Number of times the link has changed state
 887 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
 888 *      Protected by @mac_lock.
 889 * @multicast_hash: Multicast hash table for Falcon-arch.
 890 *      Protected by @mac_lock.
 891 * @wanted_fc: Wanted flow control flags
 892 * @fc_disable: When non-zero flow control is disabled. Typically used to
 893 *      ensure that network back pressure doesn't delay dma queue flushes.
 894 *      Serialised by the rtnl lock.
 895 * @mac_work: Work item for changing MAC promiscuity and multicast hash
 896 * @loopback_mode: Loopback status
 897 * @loopback_modes: Supported loopback mode bitmask
 898 * @loopback_selftest: Offline self-test private state
 899 * @filter_sem: Filter table rw_semaphore, for freeing the table
 900 * @filter_lock: Filter table lock, for mere content changes
 901 * @filter_state: Architecture-dependent filter table state
 902 * @rps_expire_channel: Next channel to check for expiry
 903 * @rps_expire_index: Next index to check for expiry in
 904 *      @rps_expire_channel's @rps_flow_id
 905 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
 906 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
 907 *      Decremented when the efx_flush_rx_queue() is called.
 908 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
 909 *      completed (either success or failure). Not used when MCDI is used to
 910 *      flush receive queues.
 911 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
 912 * @vf_count: Number of VFs intended to be enabled.
 913 * @vf_init_count: Number of VFs that have been fully initialised.
 914 * @vi_scale: log2 number of vnics per VF.
 915 * @ptp_data: PTP state data
 916 * @vpd_sn: Serial number read from VPD
 917 * @monitor_work: Hardware monitor workitem
 918 * @biu_lock: BIU (bus interface unit) lock
 919 * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
 920 *      field is used by efx_test_interrupts() to verify that an
 921 *      interrupt has occurred.
 922 * @stats_lock: Statistics update lock. Must be held when calling
 923 *      efx_nic_type::{update,start,stop}_stats.
 924 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
 925 *
 926 * This is stored in the private area of the &struct net_device.
 927 */
 928struct efx_nic {
 929        /* The following fields should be written very rarely */
 930
 931        char name[IFNAMSIZ];
 932        struct list_head node;
 933        struct efx_nic *primary;
 934        struct list_head secondary_list;
 935        struct pci_dev *pci_dev;
 936        unsigned int port_num;
 937        const struct efx_nic_type *type;
 938        int legacy_irq;
 939        bool eeh_disabled_legacy_irq;
 940        struct workqueue_struct *workqueue;
 941        char workqueue_name[16];
 942        struct work_struct reset_work;
 943        resource_size_t membase_phys;
 944        void __iomem *membase;
 945
 946        enum efx_int_mode interrupt_mode;
 947        unsigned int timer_quantum_ns;
 948        unsigned int timer_max_ns;
 949        bool irq_rx_adaptive;
 950        unsigned int irq_mod_step_us;
 951        unsigned int irq_rx_moderation_us;
 952        u32 msg_enable;
 953
 954        enum nic_state state;
 955        unsigned long reset_pending;
 956
 957        struct efx_channel *channel[EFX_MAX_CHANNELS];
 958        struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
 959        const struct efx_channel_type *
 960        extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
 961
 962        unsigned rxq_entries;
 963        unsigned txq_entries;
 964        unsigned int txq_stop_thresh;
 965        unsigned int txq_wake_thresh;
 966
 967        unsigned tx_dc_base;
 968        unsigned rx_dc_base;
 969        unsigned sram_lim_qw;
 970        unsigned next_buffer_table;
 971
 972        unsigned int max_channels;
 973        unsigned int max_tx_channels;
 974        unsigned n_channels;
 975        unsigned n_rx_channels;
 976        unsigned rss_spread;
 977        unsigned tx_channel_offset;
 978        unsigned n_tx_channels;
 979        unsigned int rx_ip_align;
 980        unsigned int rx_dma_len;
 981        unsigned int rx_buffer_order;
 982        unsigned int rx_buffer_truesize;
 983        unsigned int rx_page_buf_step;
 984        unsigned int rx_bufs_per_page;
 985        unsigned int rx_pages_per_batch;
 986        unsigned int rx_prefix_size;
 987        int rx_packet_hash_offset;
 988        int rx_packet_len_offset;
 989        int rx_packet_ts_offset;
 990        u8 rx_hash_key[40];
 991        u32 rx_indir_table[128];
 992        bool rx_scatter;
 993
 994        unsigned int_error_count;
 995        unsigned long int_error_expire;
 996
 997        bool irq_soft_enabled;
 998        struct efx_buffer irq_status;
 999        unsigned irq_zero_count;
1000        unsigned irq_level;
1001        struct delayed_work selftest_work;
1002
1003#ifdef CONFIG_SFC_MTD
1004        struct list_head mtd_list;
1005#endif
1006
1007        void *nic_data;
1008        struct efx_mcdi_data *mcdi;
1009
1010        struct mutex mac_lock;
1011        struct work_struct mac_work;
1012        bool port_enabled;
1013
1014        bool mc_bist_for_other_fn;
1015        bool port_initialized;
1016        struct net_device *net_dev;
1017
1018        netdev_features_t fixed_features;
1019
1020        struct efx_buffer stats_buffer;
1021        u64 rx_nodesc_drops_total;
1022        u64 rx_nodesc_drops_while_down;
1023        bool rx_nodesc_drops_prev_state;
1024
1025        unsigned int phy_type;
1026        const struct efx_phy_operations *phy_op;
1027        void *phy_data;
1028        struct mdio_if_info mdio;
1029        unsigned int mdio_bus;
1030        enum efx_phy_mode phy_mode;
1031
1032        u32 link_advertising;
1033        struct efx_link_state link_state;
1034        unsigned int n_link_state_changes;
1035
1036        bool unicast_filter;
1037        union efx_multicast_hash multicast_hash;
1038        u8 wanted_fc;
1039        unsigned fc_disable;
1040
1041        atomic_t rx_reset;
1042        enum efx_loopback_mode loopback_mode;
1043        u64 loopback_modes;
1044
1045        void *loopback_selftest;
1046
1047        struct rw_semaphore filter_sem;
1048        spinlock_t filter_lock;
1049        void *filter_state;
1050#ifdef CONFIG_RFS_ACCEL
1051        unsigned int rps_expire_channel;
1052        unsigned int rps_expire_index;
1053#endif
1054
1055        atomic_t active_queues;
1056        atomic_t rxq_flush_pending;
1057        atomic_t rxq_flush_outstanding;
1058        wait_queue_head_t flush_wq;
1059
1060#ifdef CONFIG_SFC_SRIOV
1061        unsigned vf_count;
1062        unsigned vf_init_count;
1063        unsigned vi_scale;
1064#endif
1065
1066        struct efx_ptp_data *ptp_data;
1067
1068        char *vpd_sn;
1069
1070        /* The following fields may be written more often */
1071
1072        struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1073        spinlock_t biu_lock;
1074        int last_irq_cpu;
1075        spinlock_t stats_lock;
1076        atomic_t n_rx_noskb_drops;
1077};
1078
1079static inline int efx_dev_registered(struct efx_nic *efx)
1080{
1081        return efx->net_dev->reg_state == NETREG_REGISTERED;
1082}
1083
1084static inline unsigned int efx_port_num(struct efx_nic *efx)
1085{
1086        return efx->port_num;
1087}
1088
1089struct efx_mtd_partition {
1090        struct list_head node;
1091        struct mtd_info mtd;
1092        const char *dev_type_name;
1093        const char *type_name;
1094        char name[IFNAMSIZ + 20];
1095};
1096
1097/**
1098 * struct efx_nic_type - Efx device type definition
1099 * @mem_bar: Get the memory BAR
1100 * @mem_map_size: Get memory BAR mapped size
1101 * @probe: Probe the controller
1102 * @remove: Free resources allocated by probe()
1103 * @init: Initialise the controller
1104 * @dimension_resources: Dimension controller resources (buffer table,
1105 *      and VIs once the available interrupt resources are clear)
1106 * @fini: Shut down the controller
1107 * @monitor: Periodic function for polling link state and hardware monitor
1108 * @map_reset_reason: Map ethtool reset reason to a reset method
1109 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1110 * @reset: Reset the controller hardware and possibly the PHY.  This will
1111 *      be called while the controller is uninitialised.
1112 * @probe_port: Probe the MAC and PHY
1113 * @remove_port: Free resources allocated by probe_port()
1114 * @handle_global_event: Handle a "global" event (may be %NULL)
1115 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1116 * @prepare_flush: Prepare the hardware for flushing the DMA queues
1117 *      (for Falcon architecture)
1118 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1119 *      architecture)
1120 * @prepare_flr: Prepare for an FLR
1121 * @finish_flr: Clean up after an FLR
1122 * @describe_stats: Describe statistics for ethtool
1123 * @update_stats: Update statistics not provided by event handling.
1124 *      Either argument may be %NULL.
1125 * @start_stats: Start the regular fetching of statistics
1126 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1127 * @stop_stats: Stop the regular fetching of statistics
1128 * @set_id_led: Set state of identifying LED or revert to automatic function
1129 * @push_irq_moderation: Apply interrupt moderation value
1130 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1131 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1132 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1133 *      to the hardware.  Serialised by the mac_lock.
1134 * @check_mac_fault: Check MAC fault state. True if fault present.
1135 * @get_wol: Get WoL configuration from driver state
1136 * @set_wol: Push WoL configuration to the NIC
1137 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1138 * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1139 *      expected to reset the NIC.
1140 * @test_nvram: Test validity of NVRAM contents
1141 * @mcdi_request: Send an MCDI request with the given header and SDU.
1142 *      The SDU length may be any value from 0 up to the protocol-
1143 *      defined maximum, but its buffer will be padded to a multiple
1144 *      of 4 bytes.
1145 * @mcdi_poll_response: Test whether an MCDI response is available.
1146 * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1147 *      be a multiple of 4.  The length may not be, but the buffer
1148 *      will be padded so it is safe to round up.
1149 * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1150 *      return an appropriate error code for aborting any current
1151 *      request; otherwise return 0.
1152 * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1153 *      be separately enabled after this.
1154 * @irq_test_generate: Generate a test IRQ
1155 * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1156 *      queue must be separately disabled before this.
1157 * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1158 *      a pointer to the &struct efx_msi_context for the channel.
1159 * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1160 *      is a pointer to the &struct efx_nic.
1161 * @tx_probe: Allocate resources for TX queue
1162 * @tx_init: Initialise TX queue on the NIC
1163 * @tx_remove: Free resources for TX queue
1164 * @tx_write: Write TX descriptors and doorbell
1165 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1166 * @rx_probe: Allocate resources for RX queue
1167 * @rx_init: Initialise RX queue on the NIC
1168 * @rx_remove: Free resources for RX queue
1169 * @rx_write: Write RX descriptors and doorbell
1170 * @rx_defer_refill: Generate a refill reminder event
1171 * @ev_probe: Allocate resources for event queue
1172 * @ev_init: Initialise event queue on the NIC
1173 * @ev_fini: Deinitialise event queue on the NIC
1174 * @ev_remove: Free resources for event queue
1175 * @ev_process: Process events for a queue, up to the given NAPI quota
1176 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1177 * @ev_test_generate: Generate a test event
1178 * @filter_table_probe: Probe filter capabilities and set up filter software state
1179 * @filter_table_restore: Restore filters removed from hardware
1180 * @filter_table_remove: Remove filters from hardware and tear down software state
1181 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1182 * @filter_insert: add or replace a filter
1183 * @filter_remove_safe: remove a filter by ID, carefully
1184 * @filter_get_safe: retrieve a filter by ID, carefully
1185 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1186 *      equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1187 * @filter_count_rx_used: Get the number of filters in use at a given priority
1188 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1189 * @filter_get_rx_ids: Get list of RX filters at a given priority
1190 * @filter_rfs_insert: Add or replace a filter for RFS.  This must be
1191 *      atomic.  The hardware change may be asynchronous but should
1192 *      not be delayed for long.  It may fail if this can't be done
1193 *      atomically.
1194 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1195 *      This must check whether the specified table entry is used by RFS
1196 *      and that rps_may_expire_flow() returns true for it.
1197 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1198 *       using efx_mtd_add()
1199 * @mtd_rename: Set an MTD partition name using the net device name
1200 * @mtd_read: Read from an MTD partition
1201 * @mtd_erase: Erase part of an MTD partition
1202 * @mtd_write: Write to an MTD partition
1203 * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1204 *      also notifies the driver that a writer has finished using this
1205 *      partition.
1206 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1207 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1208 *      timestamping, possibly only temporarily for the purposes of a reset.
1209 * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1210 *      and tx_type will already have been validated but this operation
1211 *      must validate and update rx_filter.
1212 * @set_mac_address: Set the MAC address of the device
1213 * @revision: Hardware architecture revision
1214 * @txd_ptr_tbl_base: TX descriptor ring base address
1215 * @rxd_ptr_tbl_base: RX descriptor ring base address
1216 * @buf_tbl_base: Buffer table base address
1217 * @evq_ptr_tbl_base: Event queue pointer table base address
1218 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1219 * @max_dma_mask: Maximum possible DMA mask
1220 * @rx_prefix_size: Size of RX prefix before packet data
1221 * @rx_hash_offset: Offset of RX flow hash within prefix
1222 * @rx_ts_offset: Offset of timestamp within prefix
1223 * @rx_buffer_padding: Size of padding at end of RX packet
1224 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1225 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1226 * @max_interrupt_mode: Highest capability interrupt mode supported
1227 *      from &enum efx_init_mode.
1228 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1229 * @offload_features: net_device feature flags for protocol offload
1230 *      features implemented in hardware
1231 * @mcdi_max_ver: Maximum MCDI version supported
1232 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1233 */
1234struct efx_nic_type {
1235        bool is_vf;
1236        unsigned int mem_bar;
1237        unsigned int (*mem_map_size)(struct efx_nic *efx);
1238        int (*probe)(struct efx_nic *efx);
1239        void (*remove)(struct efx_nic *efx);
1240        int (*init)(struct efx_nic *efx);
1241        int (*dimension_resources)(struct efx_nic *efx);
1242        void (*fini)(struct efx_nic *efx);
1243        void (*monitor)(struct efx_nic *efx);
1244        enum reset_type (*map_reset_reason)(enum reset_type reason);
1245        int (*map_reset_flags)(u32 *flags);
1246        int (*reset)(struct efx_nic *efx, enum reset_type method);
1247        int (*probe_port)(struct efx_nic *efx);
1248        void (*remove_port)(struct efx_nic *efx);
1249        bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1250        int (*fini_dmaq)(struct efx_nic *efx);
1251        void (*prepare_flush)(struct efx_nic *efx);
1252        void (*finish_flush)(struct efx_nic *efx);
1253        void (*prepare_flr)(struct efx_nic *efx);
1254        void (*finish_flr)(struct efx_nic *efx);
1255        size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1256        size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1257                               struct rtnl_link_stats64 *core_stats);
1258        void (*start_stats)(struct efx_nic *efx);
1259        void (*pull_stats)(struct efx_nic *efx);
1260        void (*stop_stats)(struct efx_nic *efx);
1261        void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1262        void (*push_irq_moderation)(struct efx_channel *channel);
1263        int (*reconfigure_port)(struct efx_nic *efx);
1264        void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1265        int (*reconfigure_mac)(struct efx_nic *efx);
1266        bool (*check_mac_fault)(struct efx_nic *efx);
1267        void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1268        int (*set_wol)(struct efx_nic *efx, u32 type);
1269        void (*resume_wol)(struct efx_nic *efx);
1270        int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1271        int (*test_nvram)(struct efx_nic *efx);
1272        void (*mcdi_request)(struct efx_nic *efx,
1273                             const efx_dword_t *hdr, size_t hdr_len,
1274                             const efx_dword_t *sdu, size_t sdu_len);
1275        bool (*mcdi_poll_response)(struct efx_nic *efx);
1276        void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1277                                   size_t pdu_offset, size_t pdu_len);
1278        int (*mcdi_poll_reboot)(struct efx_nic *efx);
1279        void (*mcdi_reboot_detected)(struct efx_nic *efx);
1280        void (*irq_enable_master)(struct efx_nic *efx);
1281        int (*irq_test_generate)(struct efx_nic *efx);
1282        void (*irq_disable_non_ev)(struct efx_nic *efx);
1283        irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1284        irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1285        int (*tx_probe)(struct efx_tx_queue *tx_queue);
1286        void (*tx_init)(struct efx_tx_queue *tx_queue);
1287        void (*tx_remove)(struct efx_tx_queue *tx_queue);
1288        void (*tx_write)(struct efx_tx_queue *tx_queue);
1289        int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1290                                  const u32 *rx_indir_table);
1291        int (*rx_probe)(struct efx_rx_queue *rx_queue);
1292        void (*rx_init)(struct efx_rx_queue *rx_queue);
1293        void (*rx_remove)(struct efx_rx_queue *rx_queue);
1294        void (*rx_write)(struct efx_rx_queue *rx_queue);
1295        void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1296        int (*ev_probe)(struct efx_channel *channel);
1297        int (*ev_init)(struct efx_channel *channel);
1298        void (*ev_fini)(struct efx_channel *channel);
1299        void (*ev_remove)(struct efx_channel *channel);
1300        int (*ev_process)(struct efx_channel *channel, int quota);
1301        void (*ev_read_ack)(struct efx_channel *channel);
1302        void (*ev_test_generate)(struct efx_channel *channel);
1303        int (*filter_table_probe)(struct efx_nic *efx);
1304        void (*filter_table_restore)(struct efx_nic *efx);
1305        void (*filter_table_remove)(struct efx_nic *efx);
1306        void (*filter_update_rx_scatter)(struct efx_nic *efx);
1307        s32 (*filter_insert)(struct efx_nic *efx,
1308                             struct efx_filter_spec *spec, bool replace);
1309        int (*filter_remove_safe)(struct efx_nic *efx,
1310                                  enum efx_filter_priority priority,
1311                                  u32 filter_id);
1312        int (*filter_get_safe)(struct efx_nic *efx,
1313                               enum efx_filter_priority priority,
1314                               u32 filter_id, struct efx_filter_spec *);
1315        int (*filter_clear_rx)(struct efx_nic *efx,
1316                               enum efx_filter_priority priority);
1317        u32 (*filter_count_rx_used)(struct efx_nic *efx,
1318                                    enum efx_filter_priority priority);
1319        u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1320        s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1321                                 enum efx_filter_priority priority,
1322                                 u32 *buf, u32 size);
1323#ifdef CONFIG_RFS_ACCEL
1324        s32 (*filter_rfs_insert)(struct efx_nic *efx,
1325                                 struct efx_filter_spec *spec);
1326        bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1327                                      unsigned int index);
1328#endif
1329#ifdef CONFIG_SFC_MTD
1330        int (*mtd_probe)(struct efx_nic *efx);
1331        void (*mtd_rename)(struct efx_mtd_partition *part);
1332        int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1333                        size_t *retlen, u8 *buffer);
1334        int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1335        int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1336                         size_t *retlen, const u8 *buffer);
1337        int (*mtd_sync)(struct mtd_info *mtd);
1338#endif
1339        void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1340        int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1341        int (*ptp_set_ts_config)(struct efx_nic *efx,
1342                                 struct hwtstamp_config *init);
1343        int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1344        int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1345        int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1346        int (*sriov_init)(struct efx_nic *efx);
1347        void (*sriov_fini)(struct efx_nic *efx);
1348        bool (*sriov_wanted)(struct efx_nic *efx);
1349        void (*sriov_reset)(struct efx_nic *efx);
1350        void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1351        int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
1352        int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1353                                 u8 qos);
1354        int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1355                                     bool spoofchk);
1356        int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1357                                   struct ifla_vf_info *ivi);
1358        int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1359                                       int link_state);
1360        int (*sriov_get_phys_port_id)(struct efx_nic *efx,
1361                                      struct netdev_phys_item_id *ppid);
1362        int (*vswitching_probe)(struct efx_nic *efx);
1363        int (*vswitching_restore)(struct efx_nic *efx);
1364        void (*vswitching_remove)(struct efx_nic *efx);
1365        int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1366        int (*set_mac_address)(struct efx_nic *efx);
1367
1368        int revision;
1369        unsigned int txd_ptr_tbl_base;
1370        unsigned int rxd_ptr_tbl_base;
1371        unsigned int buf_tbl_base;
1372        unsigned int evq_ptr_tbl_base;
1373        unsigned int evq_rptr_tbl_base;
1374        u64 max_dma_mask;
1375        unsigned int rx_prefix_size;
1376        unsigned int rx_hash_offset;
1377        unsigned int rx_ts_offset;
1378        unsigned int rx_buffer_padding;
1379        bool can_rx_scatter;
1380        bool always_rx_scatter;
1381        unsigned int max_interrupt_mode;
1382        unsigned int timer_period_max;
1383        netdev_features_t offload_features;
1384        int mcdi_max_ver;
1385        unsigned int max_rx_ip_filters;
1386        u32 hwtstamp_filters;
1387};
1388
1389/**************************************************************************
1390 *
1391 * Prototypes and inline functions
1392 *
1393 *************************************************************************/
1394
1395static inline struct efx_channel *
1396efx_get_channel(struct efx_nic *efx, unsigned index)
1397{
1398        EFX_BUG_ON_PARANOID(index >= efx->n_channels);
1399        return efx->channel[index];
1400}
1401
1402/* Iterate over all used channels */
1403#define efx_for_each_channel(_channel, _efx)                            \
1404        for (_channel = (_efx)->channel[0];                             \
1405             _channel;                                                  \
1406             _channel = (_channel->channel + 1 < (_efx)->n_channels) ?  \
1407                     (_efx)->channel[_channel->channel + 1] : NULL)
1408
1409/* Iterate over all used channels in reverse */
1410#define efx_for_each_channel_rev(_channel, _efx)                        \
1411        for (_channel = (_efx)->channel[(_efx)->n_channels - 1];        \
1412             _channel;                                                  \
1413             _channel = _channel->channel ?                             \
1414                     (_efx)->channel[_channel->channel - 1] : NULL)
1415
1416static inline struct efx_tx_queue *
1417efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1418{
1419        EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1420                            type >= EFX_TXQ_TYPES);
1421        return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1422}
1423
1424static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1425{
1426        return channel->channel - channel->efx->tx_channel_offset <
1427                channel->efx->n_tx_channels;
1428}
1429
1430static inline struct efx_tx_queue *
1431efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1432{
1433        EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1434                            type >= EFX_TXQ_TYPES);
1435        return &channel->tx_queue[type];
1436}
1437
1438static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1439{
1440        return !(tx_queue->efx->net_dev->num_tc < 2 &&
1441                 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1442}
1443
1444/* Iterate over all TX queues belonging to a channel */
1445#define efx_for_each_channel_tx_queue(_tx_queue, _channel)              \
1446        if (!efx_channel_has_tx_queues(_channel))                       \
1447                ;                                                       \
1448        else                                                            \
1449                for (_tx_queue = (_channel)->tx_queue;                  \
1450                     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1451                             efx_tx_queue_used(_tx_queue);              \
1452                     _tx_queue++)
1453
1454/* Iterate over all possible TX queues belonging to a channel */
1455#define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)     \
1456        if (!efx_channel_has_tx_queues(_channel))                       \
1457                ;                                                       \
1458        else                                                            \
1459                for (_tx_queue = (_channel)->tx_queue;                  \
1460                     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;  \
1461                     _tx_queue++)
1462
1463static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1464{
1465        return channel->rx_queue.core_index >= 0;
1466}
1467
1468static inline struct efx_rx_queue *
1469efx_channel_get_rx_queue(struct efx_channel *channel)
1470{
1471        EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1472        return &channel->rx_queue;
1473}
1474
1475/* Iterate over all RX queues belonging to a channel */
1476#define efx_for_each_channel_rx_queue(_rx_queue, _channel)              \
1477        if (!efx_channel_has_rx_queue(_channel))                        \
1478                ;                                                       \
1479        else                                                            \
1480                for (_rx_queue = &(_channel)->rx_queue;                 \
1481                     _rx_queue;                                         \
1482                     _rx_queue = NULL)
1483
1484static inline struct efx_channel *
1485efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1486{
1487        return container_of(rx_queue, struct efx_channel, rx_queue);
1488}
1489
1490static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1491{
1492        return efx_rx_queue_channel(rx_queue)->channel;
1493}
1494
1495/* Returns a pointer to the specified receive buffer in the RX
1496 * descriptor queue.
1497 */
1498static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1499                                                  unsigned int index)
1500{
1501        return &rx_queue->buffer[index];
1502}
1503
1504/**
1505 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1506 *
1507 * This calculates the maximum frame length that will be used for a
1508 * given MTU.  The frame length will be equal to the MTU plus a
1509 * constant amount of header space and padding.  This is the quantity
1510 * that the net driver will program into the MAC as the maximum frame
1511 * length.
1512 *
1513 * The 10G MAC requires 8-byte alignment on the frame
1514 * length, so we round up to the nearest 8.
1515 *
1516 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1517 * XGMII cycle).  If the frame length reaches the maximum value in the
1518 * same cycle, the XMAC can miss the IPG altogether.  We work around
1519 * this by adding a further 16 bytes.
1520 */
1521#define EFX_FRAME_PAD   16
1522#define EFX_MAX_FRAME_LEN(mtu) \
1523        (ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1524
1525static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1526{
1527        return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1528}
1529static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1530{
1531        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1532}
1533
1534/* Get all supported features.
1535 * If a feature is not fixed, it is present in hw_features.
1536 * If a feature is fixed, it does not present in hw_features, but
1537 * always in features.
1538 */
1539static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1540{
1541        const struct net_device *net_dev = efx->net_dev;
1542
1543        return net_dev->features | net_dev->hw_features;
1544}
1545
1546#endif /* EFX_NET_DRIVER_H */
1547