linux/drivers/net/fddi/skfp/skfddi.c
<<
>>
Prefs
   1/*
   2 * File Name:
   3 *   skfddi.c
   4 *
   5 * Copyright Information:
   6 *   Copyright SysKonnect 1998,1999.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * The information in this file is provided "AS IS" without warranty.
  14 *
  15 * Abstract:
  16 *   A Linux device driver supporting the SysKonnect FDDI PCI controller
  17 *   familie.
  18 *
  19 * Maintainers:
  20 *   CG    Christoph Goos (cgoos@syskonnect.de)
  21 *
  22 * Contributors:
  23 *   DM    David S. Miller
  24 *
  25 * Address all question to:
  26 *   linux@syskonnect.de
  27 *
  28 * The technical manual for the adapters is available from SysKonnect's
  29 * web pages: www.syskonnect.com
  30 * Goto "Support" and search Knowledge Base for "manual".
  31 *
  32 * Driver Architecture:
  33 *   The driver architecture is based on the DEC FDDI driver by
  34 *   Lawrence V. Stefani and several ethernet drivers.
  35 *   I also used an existing Windows NT miniport driver.
  36 *   All hardware dependent functions are handled by the SysKonnect
  37 *   Hardware Module.
  38 *   The only headerfiles that are directly related to this source
  39 *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
  40 *   The others belong to the SysKonnect FDDI Hardware Module and
  41 *   should better not be changed.
  42 *
  43 * Modification History:
  44 *              Date            Name    Description
  45 *              02-Mar-98       CG      Created.
  46 *
  47 *              10-Mar-99       CG      Support for 2.2.x added.
  48 *              25-Mar-99       CG      Corrected IRQ routing for SMP (APIC)
  49 *              26-Oct-99       CG      Fixed compilation error on 2.2.13
  50 *              12-Nov-99       CG      Source code release
  51 *              22-Nov-99       CG      Included in kernel source.
  52 *              07-May-00       DM      64 bit fixes, new dma interface
  53 *              31-Jul-03       DB      Audit copy_*_user in skfp_ioctl
  54 *                                        Daniele Bellucci <bellucda@tiscali.it>
  55 *              03-Dec-03       SH      Convert to PCI device model
  56 *
  57 * Compilation options (-Dxxx):
  58 *              DRIVERDEBUG     print lots of messages to log file
  59 *              DUMPPACKETS     print received/transmitted packets to logfile
  60 * 
  61 * Tested cpu architectures:
  62 *      - i386
  63 *      - sparc64
  64 */
  65
  66/* Version information string - should be updated prior to */
  67/* each new release!!! */
  68#define VERSION         "2.07"
  69
  70static const char * const boot_msg = 
  71        "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
  72        "  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
  73
  74/* Include files */
  75
  76#include <linux/capability.h>
  77#include <linux/module.h>
  78#include <linux/kernel.h>
  79#include <linux/errno.h>
  80#include <linux/ioport.h>
  81#include <linux/interrupt.h>
  82#include <linux/pci.h>
  83#include <linux/netdevice.h>
  84#include <linux/fddidevice.h>
  85#include <linux/skbuff.h>
  86#include <linux/bitops.h>
  87#include <linux/gfp.h>
  88
  89#include <asm/byteorder.h>
  90#include <asm/io.h>
  91#include <asm/uaccess.h>
  92
  93#include        "h/types.h"
  94#undef ADDR                     // undo Linux definition
  95#include        "h/skfbi.h"
  96#include        "h/fddi.h"
  97#include        "h/smc.h"
  98#include        "h/smtstate.h"
  99
 100
 101// Define module-wide (static) routines
 102static int skfp_driver_init(struct net_device *dev);
 103static int skfp_open(struct net_device *dev);
 104static int skfp_close(struct net_device *dev);
 105static irqreturn_t skfp_interrupt(int irq, void *dev_id);
 106static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
 107static void skfp_ctl_set_multicast_list(struct net_device *dev);
 108static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
 109static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
 110static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 111static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
 112                                       struct net_device *dev);
 113static void send_queued_packets(struct s_smc *smc);
 114static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
 115static void ResetAdapter(struct s_smc *smc);
 116
 117
 118// Functions needed by the hardware module
 119void *mac_drv_get_space(struct s_smc *smc, u_int size);
 120void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
 121unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
 122unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
 123void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
 124                  int flag);
 125void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
 126void llc_restart_tx(struct s_smc *smc);
 127void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
 128                         int frag_count, int len);
 129void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
 130                         int frag_count);
 131void mac_drv_fill_rxd(struct s_smc *smc);
 132void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
 133                       int frag_count);
 134int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
 135                    int la_len);
 136void dump_data(unsigned char *Data, int length);
 137
 138// External functions from the hardware module
 139extern u_int mac_drv_check_space(void);
 140extern int mac_drv_init(struct s_smc *smc);
 141extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
 142                        int len, int frame_status);
 143extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
 144                       int frame_len, int frame_status);
 145extern void fddi_isr(struct s_smc *smc);
 146extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
 147                        int len, int frame_status);
 148extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
 149extern void mac_drv_clear_rx_queue(struct s_smc *smc);
 150extern void enable_tx_irq(struct s_smc *smc, u_short queue);
 151
 152static const struct pci_device_id skfddi_pci_tbl[] = {
 153        { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
 154        { }                     /* Terminating entry */
 155};
 156MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
 157MODULE_LICENSE("GPL");
 158MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
 159
 160// Define module-wide (static) variables
 161
 162static int num_boards;  /* total number of adapters configured */
 163
 164static const struct net_device_ops skfp_netdev_ops = {
 165        .ndo_open               = skfp_open,
 166        .ndo_stop               = skfp_close,
 167        .ndo_start_xmit         = skfp_send_pkt,
 168        .ndo_get_stats          = skfp_ctl_get_stats,
 169        .ndo_change_mtu         = fddi_change_mtu,
 170        .ndo_set_rx_mode        = skfp_ctl_set_multicast_list,
 171        .ndo_set_mac_address    = skfp_ctl_set_mac_address,
 172        .ndo_do_ioctl           = skfp_ioctl,
 173};
 174
 175/*
 176 * =================
 177 * = skfp_init_one =
 178 * =================
 179 *   
 180 * Overview:
 181 *   Probes for supported FDDI PCI controllers
 182 *  
 183 * Returns:
 184 *   Condition code
 185 *       
 186 * Arguments:
 187 *   pdev - pointer to PCI device information
 188 *
 189 * Functional Description:
 190 *   This is now called by PCI driver registration process
 191 *   for each board found.
 192 *   
 193 * Return Codes:
 194 *   0           - This device (fddi0, fddi1, etc) configured successfully
 195 *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
 196 *                         present for this device name
 197 *
 198 *
 199 * Side Effects:
 200 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
 201 *   initialized and the board resources are read and stored in
 202 *   the device structure.
 203 */
 204static int skfp_init_one(struct pci_dev *pdev,
 205                                const struct pci_device_id *ent)
 206{
 207        struct net_device *dev;
 208        struct s_smc *smc;      /* board pointer */
 209        void __iomem *mem;
 210        int err;
 211
 212        pr_debug("entering skfp_init_one\n");
 213
 214        if (num_boards == 0) 
 215                printk("%s\n", boot_msg);
 216
 217        err = pci_enable_device(pdev);
 218        if (err)
 219                return err;
 220
 221        err = pci_request_regions(pdev, "skfddi");
 222        if (err)
 223                goto err_out1;
 224
 225        pci_set_master(pdev);
 226
 227#ifdef MEM_MAPPED_IO
 228        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
 229                printk(KERN_ERR "skfp: region is not an MMIO resource\n");
 230                err = -EIO;
 231                goto err_out2;
 232        }
 233
 234        mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
 235#else
 236        if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
 237                printk(KERN_ERR "skfp: region is not PIO resource\n");
 238                err = -EIO;
 239                goto err_out2;
 240        }
 241
 242        mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
 243#endif
 244        if (!mem) {
 245                printk(KERN_ERR "skfp:  Unable to map register, "
 246                                "FDDI adapter will be disabled.\n");
 247                err = -EIO;
 248                goto err_out2;
 249        }
 250
 251        dev = alloc_fddidev(sizeof(struct s_smc));
 252        if (!dev) {
 253                printk(KERN_ERR "skfp: Unable to allocate fddi device, "
 254                                "FDDI adapter will be disabled.\n");
 255                err = -ENOMEM;
 256                goto err_out3;
 257        }
 258
 259        dev->irq = pdev->irq;
 260        dev->netdev_ops = &skfp_netdev_ops;
 261
 262        SET_NETDEV_DEV(dev, &pdev->dev);
 263
 264        /* Initialize board structure with bus-specific info */
 265        smc = netdev_priv(dev);
 266        smc->os.dev = dev;
 267        smc->os.bus_type = SK_BUS_TYPE_PCI;
 268        smc->os.pdev = *pdev;
 269        smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
 270        smc->os.MaxFrameSize = MAX_FRAME_SIZE;
 271        smc->os.dev = dev;
 272        smc->hw.slot = -1;
 273        smc->hw.iop = mem;
 274        smc->os.ResetRequested = FALSE;
 275        skb_queue_head_init(&smc->os.SendSkbQueue);
 276
 277        dev->base_addr = (unsigned long)mem;
 278
 279        err = skfp_driver_init(dev);
 280        if (err)
 281                goto err_out4;
 282
 283        err = register_netdev(dev);
 284        if (err)
 285                goto err_out5;
 286
 287        ++num_boards;
 288        pci_set_drvdata(pdev, dev);
 289
 290        if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
 291            (pdev->subsystem_device & 0xff00) == 0x5800) 
 292                printk("%s: SysKonnect FDDI PCI adapter"
 293                       " found (SK-%04X)\n", dev->name, 
 294                       pdev->subsystem_device);
 295        else
 296                printk("%s: FDDI PCI adapter found\n", dev->name);
 297
 298        return 0;
 299err_out5:
 300        if (smc->os.SharedMemAddr) 
 301                pci_free_consistent(pdev, smc->os.SharedMemSize,
 302                                    smc->os.SharedMemAddr, 
 303                                    smc->os.SharedMemDMA);
 304        pci_free_consistent(pdev, MAX_FRAME_SIZE,
 305                            smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
 306err_out4:
 307        free_netdev(dev);
 308err_out3:
 309#ifdef MEM_MAPPED_IO
 310        iounmap(mem);
 311#else
 312        ioport_unmap(mem);
 313#endif
 314err_out2:
 315        pci_release_regions(pdev);
 316err_out1:
 317        pci_disable_device(pdev);
 318        return err;
 319}
 320
 321/*
 322 * Called for each adapter board from pci_unregister_driver
 323 */
 324static void skfp_remove_one(struct pci_dev *pdev)
 325{
 326        struct net_device *p = pci_get_drvdata(pdev);
 327        struct s_smc *lp = netdev_priv(p);
 328
 329        unregister_netdev(p);
 330
 331        if (lp->os.SharedMemAddr) {
 332                pci_free_consistent(&lp->os.pdev,
 333                                    lp->os.SharedMemSize,
 334                                    lp->os.SharedMemAddr,
 335                                    lp->os.SharedMemDMA);
 336                lp->os.SharedMemAddr = NULL;
 337        }
 338        if (lp->os.LocalRxBuffer) {
 339                pci_free_consistent(&lp->os.pdev,
 340                                    MAX_FRAME_SIZE,
 341                                    lp->os.LocalRxBuffer,
 342                                    lp->os.LocalRxBufferDMA);
 343                lp->os.LocalRxBuffer = NULL;
 344        }
 345#ifdef MEM_MAPPED_IO
 346        iounmap(lp->hw.iop);
 347#else
 348        ioport_unmap(lp->hw.iop);
 349#endif
 350        pci_release_regions(pdev);
 351        free_netdev(p);
 352
 353        pci_disable_device(pdev);
 354}
 355
 356/*
 357 * ====================
 358 * = skfp_driver_init =
 359 * ====================
 360 *   
 361 * Overview:
 362 *   Initializes remaining adapter board structure information
 363 *   and makes sure adapter is in a safe state prior to skfp_open().
 364 *  
 365 * Returns:
 366 *   Condition code
 367 *       
 368 * Arguments:
 369 *   dev - pointer to device information
 370 *
 371 * Functional Description:
 372 *   This function allocates additional resources such as the host memory
 373 *   blocks needed by the adapter.
 374 *   The adapter is also reset. The OS must call skfp_open() to open 
 375 *   the adapter and bring it on-line.
 376 *
 377 * Return Codes:
 378 *    0 - initialization succeeded
 379 *   -1 - initialization failed
 380 */
 381static  int skfp_driver_init(struct net_device *dev)
 382{
 383        struct s_smc *smc = netdev_priv(dev);
 384        skfddi_priv *bp = &smc->os;
 385        int err = -EIO;
 386
 387        pr_debug("entering skfp_driver_init\n");
 388
 389        // set the io address in private structures
 390        bp->base_addr = dev->base_addr;
 391
 392        // Get the interrupt level from the PCI Configuration Table
 393        smc->hw.irq = dev->irq;
 394
 395        spin_lock_init(&bp->DriverLock);
 396        
 397        // Allocate invalid frame
 398        bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
 399        if (!bp->LocalRxBuffer) {
 400                printk("could not allocate mem for ");
 401                printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
 402                goto fail;
 403        }
 404
 405        // Determine the required size of the 'shared' memory area.
 406        bp->SharedMemSize = mac_drv_check_space();
 407        pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
 408        if (bp->SharedMemSize > 0) {
 409                bp->SharedMemSize += 16;        // for descriptor alignment
 410
 411                bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
 412                                                         bp->SharedMemSize,
 413                                                         &bp->SharedMemDMA);
 414                if (!bp->SharedMemAddr) {
 415                        printk("could not allocate mem for ");
 416                        printk("hardware module: %ld byte\n",
 417                               bp->SharedMemSize);
 418                        goto fail;
 419                }
 420                bp->SharedMemHeap = 0;  // Nothing used yet.
 421
 422        } else {
 423                bp->SharedMemAddr = NULL;
 424                bp->SharedMemHeap = 0;
 425        }                       // SharedMemSize > 0
 426
 427        memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
 428
 429        card_stop(smc);         // Reset adapter.
 430
 431        pr_debug("mac_drv_init()..\n");
 432        if (mac_drv_init(smc) != 0) {
 433                pr_debug("mac_drv_init() failed\n");
 434                goto fail;
 435        }
 436        read_address(smc, NULL);
 437        pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
 438        memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
 439
 440        smt_reset_defaults(smc, 0);
 441
 442        return 0;
 443
 444fail:
 445        if (bp->SharedMemAddr) {
 446                pci_free_consistent(&bp->pdev,
 447                                    bp->SharedMemSize,
 448                                    bp->SharedMemAddr,
 449                                    bp->SharedMemDMA);
 450                bp->SharedMemAddr = NULL;
 451        }
 452        if (bp->LocalRxBuffer) {
 453                pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
 454                                    bp->LocalRxBuffer, bp->LocalRxBufferDMA);
 455                bp->LocalRxBuffer = NULL;
 456        }
 457        return err;
 458}                               // skfp_driver_init
 459
 460
 461/*
 462 * =============
 463 * = skfp_open =
 464 * =============
 465 *   
 466 * Overview:
 467 *   Opens the adapter
 468 *  
 469 * Returns:
 470 *   Condition code
 471 *       
 472 * Arguments:
 473 *   dev - pointer to device information
 474 *
 475 * Functional Description:
 476 *   This function brings the adapter to an operational state.
 477 *
 478 * Return Codes:
 479 *   0           - Adapter was successfully opened
 480 *   -EAGAIN - Could not register IRQ
 481 */
 482static int skfp_open(struct net_device *dev)
 483{
 484        struct s_smc *smc = netdev_priv(dev);
 485        int err;
 486
 487        pr_debug("entering skfp_open\n");
 488        /* Register IRQ - support shared interrupts by passing device ptr */
 489        err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
 490                          dev->name, dev);
 491        if (err)
 492                return err;
 493
 494        /*
 495         * Set current address to factory MAC address
 496         *
 497         * Note: We've already done this step in skfp_driver_init.
 498         *       However, it's possible that a user has set a node
 499         *               address override, then closed and reopened the
 500         *               adapter.  Unless we reset the device address field
 501         *               now, we'll continue to use the existing modified
 502         *               address.
 503         */
 504        read_address(smc, NULL);
 505        memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
 506
 507        init_smt(smc, NULL);
 508        smt_online(smc, 1);
 509        STI_FBI();
 510
 511        /* Clear local multicast address tables */
 512        mac_clear_multicast(smc);
 513
 514        /* Disable promiscuous filter settings */
 515        mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
 516
 517        netif_start_queue(dev);
 518        return 0;
 519}                               // skfp_open
 520
 521
 522/*
 523 * ==============
 524 * = skfp_close =
 525 * ==============
 526 *   
 527 * Overview:
 528 *   Closes the device/module.
 529 *  
 530 * Returns:
 531 *   Condition code
 532 *       
 533 * Arguments:
 534 *   dev - pointer to device information
 535 *
 536 * Functional Description:
 537 *   This routine closes the adapter and brings it to a safe state.
 538 *   The interrupt service routine is deregistered with the OS.
 539 *   The adapter can be opened again with another call to skfp_open().
 540 *
 541 * Return Codes:
 542 *   Always return 0.
 543 *
 544 * Assumptions:
 545 *   No further requests for this adapter are made after this routine is
 546 *   called.  skfp_open() can be called to reset and reinitialize the
 547 *   adapter.
 548 */
 549static int skfp_close(struct net_device *dev)
 550{
 551        struct s_smc *smc = netdev_priv(dev);
 552        skfddi_priv *bp = &smc->os;
 553
 554        CLI_FBI();
 555        smt_reset_defaults(smc, 1);
 556        card_stop(smc);
 557        mac_drv_clear_tx_queue(smc);
 558        mac_drv_clear_rx_queue(smc);
 559
 560        netif_stop_queue(dev);
 561        /* Deregister (free) IRQ */
 562        free_irq(dev->irq, dev);
 563
 564        skb_queue_purge(&bp->SendSkbQueue);
 565        bp->QueueSkb = MAX_TX_QUEUE_LEN;
 566
 567        return 0;
 568}                               // skfp_close
 569
 570
 571/*
 572 * ==================
 573 * = skfp_interrupt =
 574 * ==================
 575 *   
 576 * Overview:
 577 *   Interrupt processing routine
 578 *  
 579 * Returns:
 580 *   None
 581 *       
 582 * Arguments:
 583 *   irq        - interrupt vector
 584 *   dev_id     - pointer to device information
 585 *
 586 * Functional Description:
 587 *   This routine calls the interrupt processing routine for this adapter.  It
 588 *   disables and reenables adapter interrupts, as appropriate.  We can support
 589 *   shared interrupts since the incoming dev_id pointer provides our device
 590 *   structure context. All the real work is done in the hardware module.
 591 *
 592 * Return Codes:
 593 *   None
 594 *
 595 * Assumptions:
 596 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
 597 *   on Intel-based systems) is done by the operating system outside this
 598 *   routine.
 599 *
 600 *       System interrupts are enabled through this call.
 601 *
 602 * Side Effects:
 603 *   Interrupts are disabled, then reenabled at the adapter.
 604 */
 605
 606static irqreturn_t skfp_interrupt(int irq, void *dev_id)
 607{
 608        struct net_device *dev = dev_id;
 609        struct s_smc *smc;      /* private board structure pointer */
 610        skfddi_priv *bp;
 611
 612        smc = netdev_priv(dev);
 613        bp = &smc->os;
 614
 615        // IRQs enabled or disabled ?
 616        if (inpd(ADDR(B0_IMSK)) == 0) {
 617                // IRQs are disabled: must be shared interrupt
 618                return IRQ_NONE;
 619        }
 620        // Note: At this point, IRQs are enabled.
 621        if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {    // IRQ?
 622                // Adapter did not issue an IRQ: must be shared interrupt
 623                return IRQ_NONE;
 624        }
 625        CLI_FBI();              // Disable IRQs from our adapter.
 626        spin_lock(&bp->DriverLock);
 627
 628        // Call interrupt handler in hardware module (HWM).
 629        fddi_isr(smc);
 630
 631        if (smc->os.ResetRequested) {
 632                ResetAdapter(smc);
 633                smc->os.ResetRequested = FALSE;
 634        }
 635        spin_unlock(&bp->DriverLock);
 636        STI_FBI();              // Enable IRQs from our adapter.
 637
 638        return IRQ_HANDLED;
 639}                               // skfp_interrupt
 640
 641
 642/*
 643 * ======================
 644 * = skfp_ctl_get_stats =
 645 * ======================
 646 *   
 647 * Overview:
 648 *   Get statistics for FDDI adapter
 649 *  
 650 * Returns:
 651 *   Pointer to FDDI statistics structure
 652 *       
 653 * Arguments:
 654 *   dev - pointer to device information
 655 *
 656 * Functional Description:
 657 *   Gets current MIB objects from adapter, then
 658 *   returns FDDI statistics structure as defined
 659 *   in if_fddi.h.
 660 *
 661 *   Note: Since the FDDI statistics structure is
 662 *   still new and the device structure doesn't
 663 *   have an FDDI-specific get statistics handler,
 664 *   we'll return the FDDI statistics structure as
 665 *   a pointer to an Ethernet statistics structure.
 666 *   That way, at least the first part of the statistics
 667 *   structure can be decoded properly.
 668 *   We'll have to pay attention to this routine as the
 669 *   device structure becomes more mature and LAN media
 670 *   independent.
 671 *
 672 */
 673static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
 674{
 675        struct s_smc *bp = netdev_priv(dev);
 676
 677        /* Fill the bp->stats structure with driver-maintained counters */
 678
 679        bp->os.MacStat.port_bs_flag[0] = 0x1234;
 680        bp->os.MacStat.port_bs_flag[1] = 0x5678;
 681// goos: need to fill out fddi statistic
 682#if 0
 683        /* Get FDDI SMT MIB objects */
 684
 685/* Fill the bp->stats structure with the SMT MIB object values */
 686
 687        memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
 688        bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
 689        bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
 690        bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
 691        memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
 692        bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
 693        bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
 694        bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
 695        bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
 696        bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
 697        bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
 698        bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
 699        bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
 700        bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
 701        bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
 702        bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
 703        bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
 704        bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
 705        bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
 706        bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
 707        bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
 708        bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
 709        bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
 710        bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
 711        bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
 712        bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
 713        bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
 714        bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
 715        bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
 716        memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
 717        memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
 718        memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
 719        memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
 720        bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
 721        bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
 722        bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
 723        memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
 724        bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
 725        bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
 726        bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
 727        bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
 728        bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
 729        bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
 730        bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
 731        bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
 732        bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
 733        bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
 734        bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
 735        bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
 736        bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
 737        bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
 738        bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
 739        bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
 740        memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
 741        bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
 742        bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
 743        bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
 744        bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
 745        bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
 746        bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
 747        bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
 748        bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
 749        bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
 750        bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
 751        memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
 752        memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
 753        bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
 754        bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
 755        bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
 756        bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
 757        bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
 758        bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
 759        bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
 760        bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
 761        bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
 762        bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
 763        bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
 764        bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
 765        bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
 766        bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
 767        bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
 768        bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
 769        bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
 770        bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
 771        bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
 772        bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
 773        bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
 774        bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
 775        bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
 776        bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
 777        bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
 778        bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
 779
 780
 781        /* Fill the bp->stats structure with the FDDI counter values */
 782
 783        bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
 784        bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
 785        bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
 786        bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
 787        bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
 788        bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
 789        bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
 790        bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
 791        bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
 792        bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
 793        bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
 794
 795#endif
 796        return (struct net_device_stats *)&bp->os.MacStat;
 797}                               // ctl_get_stat
 798
 799
 800/*
 801 * ==============================
 802 * = skfp_ctl_set_multicast_list =
 803 * ==============================
 804 *   
 805 * Overview:
 806 *   Enable/Disable LLC frame promiscuous mode reception
 807 *   on the adapter and/or update multicast address table.
 808 *  
 809 * Returns:
 810 *   None
 811 *       
 812 * Arguments:
 813 *   dev - pointer to device information
 814 *
 815 * Functional Description:
 816 *   This function acquires the driver lock and only calls
 817 *   skfp_ctl_set_multicast_list_wo_lock then.
 818 *   This routine follows a fairly simple algorithm for setting the
 819 *   adapter filters and CAM:
 820 *
 821 *      if IFF_PROMISC flag is set
 822 *              enable promiscuous mode
 823 *      else
 824 *              disable promiscuous mode
 825 *              if number of multicast addresses <= max. multicast number
 826 *                      add mc addresses to adapter table
 827 *              else
 828 *                      enable promiscuous mode
 829 *              update adapter filters
 830 *
 831 * Assumptions:
 832 *   Multicast addresses are presented in canonical (LSB) format.
 833 *
 834 * Side Effects:
 835 *   On-board adapter filters are updated.
 836 */
 837static void skfp_ctl_set_multicast_list(struct net_device *dev)
 838{
 839        struct s_smc *smc = netdev_priv(dev);
 840        skfddi_priv *bp = &smc->os;
 841        unsigned long Flags;
 842
 843        spin_lock_irqsave(&bp->DriverLock, Flags);
 844        skfp_ctl_set_multicast_list_wo_lock(dev);
 845        spin_unlock_irqrestore(&bp->DriverLock, Flags);
 846}                               // skfp_ctl_set_multicast_list
 847
 848
 849
 850static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
 851{
 852        struct s_smc *smc = netdev_priv(dev);
 853        struct netdev_hw_addr *ha;
 854
 855        /* Enable promiscuous mode, if necessary */
 856        if (dev->flags & IFF_PROMISC) {
 857                mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
 858                pr_debug("PROMISCUOUS MODE ENABLED\n");
 859        }
 860        /* Else, update multicast address table */
 861        else {
 862                mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
 863                pr_debug("PROMISCUOUS MODE DISABLED\n");
 864
 865                // Reset all MC addresses
 866                mac_clear_multicast(smc);
 867                mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
 868
 869                if (dev->flags & IFF_ALLMULTI) {
 870                        mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
 871                        pr_debug("ENABLE ALL MC ADDRESSES\n");
 872                } else if (!netdev_mc_empty(dev)) {
 873                        if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
 874                                /* use exact filtering */
 875
 876                                // point to first multicast addr
 877                                netdev_for_each_mc_addr(ha, dev) {
 878                                        mac_add_multicast(smc,
 879                                                (struct fddi_addr *)ha->addr,
 880                                                1);
 881
 882                                        pr_debug("ENABLE MC ADDRESS: %pMF\n",
 883                                                 ha->addr);
 884                                }
 885
 886                        } else {        // more MC addresses than HW supports
 887
 888                                mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
 889                                pr_debug("ENABLE ALL MC ADDRESSES\n");
 890                        }
 891                } else {        // no MC addresses
 892
 893                        pr_debug("DISABLE ALL MC ADDRESSES\n");
 894                }
 895
 896                /* Update adapter filters */
 897                mac_update_multicast(smc);
 898        }
 899}                               // skfp_ctl_set_multicast_list_wo_lock
 900
 901
 902/*
 903 * ===========================
 904 * = skfp_ctl_set_mac_address =
 905 * ===========================
 906 *   
 907 * Overview:
 908 *   set new mac address on adapter and update dev_addr field in device table.
 909 *  
 910 * Returns:
 911 *   None
 912 *       
 913 * Arguments:
 914 *   dev  - pointer to device information
 915 *   addr - pointer to sockaddr structure containing unicast address to set
 916 *
 917 * Assumptions:
 918 *   The address pointed to by addr->sa_data is a valid unicast
 919 *   address and is presented in canonical (LSB) format.
 920 */
 921static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
 922{
 923        struct s_smc *smc = netdev_priv(dev);
 924        struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
 925        skfddi_priv *bp = &smc->os;
 926        unsigned long Flags;
 927
 928
 929        memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
 930        spin_lock_irqsave(&bp->DriverLock, Flags);
 931        ResetAdapter(smc);
 932        spin_unlock_irqrestore(&bp->DriverLock, Flags);
 933
 934        return 0;               /* always return zero */
 935}                               // skfp_ctl_set_mac_address
 936
 937
 938/*
 939 * ==============
 940 * = skfp_ioctl =
 941 * ==============
 942 *   
 943 * Overview:
 944 *
 945 * Perform IOCTL call functions here. Some are privileged operations and the
 946 * effective uid is checked in those cases.
 947 *  
 948 * Returns:
 949 *   status value
 950 *   0 - success
 951 *   other - failure
 952 *       
 953 * Arguments:
 954 *   dev  - pointer to device information
 955 *   rq - pointer to ioctl request structure
 956 *   cmd - ?
 957 *
 958 */
 959
 960
 961static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 962{
 963        struct s_smc *smc = netdev_priv(dev);
 964        skfddi_priv *lp = &smc->os;
 965        struct s_skfp_ioctl ioc;
 966        int status = 0;
 967
 968        if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
 969                return -EFAULT;
 970
 971        switch (ioc.cmd) {
 972        case SKFP_GET_STATS:    /* Get the driver statistics */
 973                ioc.len = sizeof(lp->MacStat);
 974                status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
 975                                ? -EFAULT : 0;
 976                break;
 977        case SKFP_CLR_STATS:    /* Zero out the driver statistics */
 978                if (!capable(CAP_NET_ADMIN)) {
 979                        status = -EPERM;
 980                } else {
 981                        memset(&lp->MacStat, 0, sizeof(lp->MacStat));
 982                }
 983                break;
 984        default:
 985                printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
 986                status = -EOPNOTSUPP;
 987
 988        }                       // switch
 989
 990        return status;
 991}                               // skfp_ioctl
 992
 993
 994/*
 995 * =====================
 996 * = skfp_send_pkt     =
 997 * =====================
 998 *   
 999 * Overview:
1000 *   Queues a packet for transmission and try to transmit it.
1001 *  
1002 * Returns:
1003 *   Condition code
1004 *       
1005 * Arguments:
1006 *   skb - pointer to sk_buff to queue for transmission
1007 *   dev - pointer to device information
1008 *
1009 * Functional Description:
1010 *   Here we assume that an incoming skb transmit request
1011 *   is contained in a single physically contiguous buffer
1012 *   in which the virtual address of the start of packet
1013 *   (skb->data) can be converted to a physical address
1014 *   by using pci_map_single().
1015 *
1016 *   We have an internal queue for packets we can not send 
1017 *   immediately. Packets in this queue can be given to the 
1018 *   adapter if transmit buffers are freed.
1019 *
1020 *   We can't free the skb until after it's been DMA'd
1021 *   out by the adapter, so we'll keep it in the driver and
1022 *   return it in mac_drv_tx_complete.
1023 *
1024 * Return Codes:
1025 *   0 - driver has queued and/or sent packet
1026 *       1 - caller should requeue the sk_buff for later transmission
1027 *
1028 * Assumptions:
1029 *   The entire packet is stored in one physically
1030 *   contiguous buffer which is not cached and whose
1031 *   32-bit physical address can be determined.
1032 *
1033 *   It's vital that this routine is NOT reentered for the
1034 *   same board and that the OS is not in another section of
1035 *   code (eg. skfp_interrupt) for the same board on a
1036 *   different thread.
1037 *
1038 * Side Effects:
1039 *   None
1040 */
1041static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1042                                       struct net_device *dev)
1043{
1044        struct s_smc *smc = netdev_priv(dev);
1045        skfddi_priv *bp = &smc->os;
1046
1047        pr_debug("skfp_send_pkt\n");
1048
1049        /*
1050         * Verify that incoming transmit request is OK
1051         *
1052         * Note: The packet size check is consistent with other
1053         *               Linux device drivers, although the correct packet
1054         *               size should be verified before calling the
1055         *               transmit routine.
1056         */
1057
1058        if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1059                bp->MacStat.gen.tx_errors++;    /* bump error counter */
1060                // dequeue packets from xmt queue and send them
1061                netif_start_queue(dev);
1062                dev_kfree_skb(skb);
1063                return NETDEV_TX_OK;    /* return "success" */
1064        }
1065        if (bp->QueueSkb == 0) {        // return with tbusy set: queue full
1066
1067                netif_stop_queue(dev);
1068                return NETDEV_TX_BUSY;
1069        }
1070        bp->QueueSkb--;
1071        skb_queue_tail(&bp->SendSkbQueue, skb);
1072        send_queued_packets(netdev_priv(dev));
1073        if (bp->QueueSkb == 0) {
1074                netif_stop_queue(dev);
1075        }
1076        return NETDEV_TX_OK;
1077
1078}                               // skfp_send_pkt
1079
1080
1081/*
1082 * =======================
1083 * = send_queued_packets =
1084 * =======================
1085 *   
1086 * Overview:
1087 *   Send packets from the driver queue as long as there are some and
1088 *   transmit resources are available.
1089 *  
1090 * Returns:
1091 *   None
1092 *       
1093 * Arguments:
1094 *   smc - pointer to smc (adapter) structure
1095 *
1096 * Functional Description:
1097 *   Take a packet from queue if there is any. If not, then we are done.
1098 *   Check if there are resources to send the packet. If not, requeue it
1099 *   and exit. 
1100 *   Set packet descriptor flags and give packet to adapter.
1101 *   Check if any send resources can be freed (we do not use the
1102 *   transmit complete interrupt).
1103 */
1104static void send_queued_packets(struct s_smc *smc)
1105{
1106        skfddi_priv *bp = &smc->os;
1107        struct sk_buff *skb;
1108        unsigned char fc;
1109        int queue;
1110        struct s_smt_fp_txd *txd;       // Current TxD.
1111        dma_addr_t dma_address;
1112        unsigned long Flags;
1113
1114        int frame_status;       // HWM tx frame status.
1115
1116        pr_debug("send queued packets\n");
1117        for (;;) {
1118                // send first buffer from queue
1119                skb = skb_dequeue(&bp->SendSkbQueue);
1120
1121                if (!skb) {
1122                        pr_debug("queue empty\n");
1123                        return;
1124                }               // queue empty !
1125
1126                spin_lock_irqsave(&bp->DriverLock, Flags);
1127                fc = skb->data[0];
1128                queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1129#ifdef ESS
1130                // Check if the frame may/must be sent as a synchronous frame.
1131
1132                if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1133                        // It's an LLC frame.
1134                        if (!smc->ess.sync_bw_available)
1135                                fc &= ~FC_SYNC_BIT; // No bandwidth available.
1136
1137                        else {  // Bandwidth is available.
1138
1139                                if (smc->mib.fddiESSSynchTxMode) {
1140                                        // Send as sync. frame.
1141                                        fc |= FC_SYNC_BIT;
1142                                }
1143                        }
1144                }
1145#endif                          // ESS
1146                frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1147
1148                if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1149                        // Unable to send the frame.
1150
1151                        if ((frame_status & RING_DOWN) != 0) {
1152                                // Ring is down.
1153                                pr_debug("Tx attempt while ring down.\n");
1154                        } else if ((frame_status & OUT_OF_TXD) != 0) {
1155                                pr_debug("%s: out of TXDs.\n", bp->dev->name);
1156                        } else {
1157                                pr_debug("%s: out of transmit resources",
1158                                        bp->dev->name);
1159                        }
1160
1161                        // Note: We will retry the operation as soon as
1162                        // transmit resources become available.
1163                        skb_queue_head(&bp->SendSkbQueue, skb);
1164                        spin_unlock_irqrestore(&bp->DriverLock, Flags);
1165                        return; // Packet has been queued.
1166
1167                }               // if (unable to send frame)
1168
1169                bp->QueueSkb++; // one packet less in local queue
1170
1171                // source address in packet ?
1172                CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1173
1174                txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1175
1176                dma_address = pci_map_single(&bp->pdev, skb->data,
1177                                             skb->len, PCI_DMA_TODEVICE);
1178                if (frame_status & LAN_TX) {
1179                        txd->txd_os.skb = skb;                  // save skb
1180                        txd->txd_os.dma_addr = dma_address;     // save dma mapping
1181                }
1182                hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1183                      frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1184
1185                if (!(frame_status & LAN_TX)) {         // local only frame
1186                        pci_unmap_single(&bp->pdev, dma_address,
1187                                         skb->len, PCI_DMA_TODEVICE);
1188                        dev_kfree_skb_irq(skb);
1189                }
1190                spin_unlock_irqrestore(&bp->DriverLock, Flags);
1191        }                       // for
1192
1193        return;                 // never reached
1194
1195}                               // send_queued_packets
1196
1197
1198/************************
1199 * 
1200 * CheckSourceAddress
1201 *
1202 * Verify if the source address is set. Insert it if necessary.
1203 *
1204 ************************/
1205static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1206{
1207        unsigned char SRBit;
1208
1209        if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1210
1211                return;
1212        if ((unsigned short) frame[1 + 10] != 0)
1213                return;
1214        SRBit = frame[1 + 6] & 0x01;
1215        memcpy(&frame[1 + 6], hw_addr, ETH_ALEN);
1216        frame[8] |= SRBit;
1217}                               // CheckSourceAddress
1218
1219
1220/************************
1221 *
1222 *      ResetAdapter
1223 *
1224 *      Reset the adapter and bring it back to operational mode.
1225 * Args
1226 *      smc - A pointer to the SMT context struct.
1227 * Out
1228 *      Nothing.
1229 *
1230 ************************/
1231static void ResetAdapter(struct s_smc *smc)
1232{
1233
1234        pr_debug("[fddi: ResetAdapter]\n");
1235
1236        // Stop the adapter.
1237
1238        card_stop(smc);         // Stop all activity.
1239
1240        // Clear the transmit and receive descriptor queues.
1241        mac_drv_clear_tx_queue(smc);
1242        mac_drv_clear_rx_queue(smc);
1243
1244        // Restart the adapter.
1245
1246        smt_reset_defaults(smc, 1);     // Initialize the SMT module.
1247
1248        init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware.
1249
1250        smt_online(smc, 1);     // Insert into the ring again.
1251        STI_FBI();
1252
1253        // Restore original receive mode (multicasts, promiscuous, etc.).
1254        skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1255}                               // ResetAdapter
1256
1257
1258//--------------- functions called by hardware module ----------------
1259
1260/************************
1261 *
1262 *      llc_restart_tx
1263 *
1264 *      The hardware driver calls this routine when the transmit complete
1265 *      interrupt bits (end of frame) for the synchronous or asynchronous
1266 *      queue is set.
1267 *
1268 * NOTE The hardware driver calls this function also if no packets are queued.
1269 *      The routine must be able to handle this case.
1270 * Args
1271 *      smc - A pointer to the SMT context struct.
1272 * Out
1273 *      Nothing.
1274 *
1275 ************************/
1276void llc_restart_tx(struct s_smc *smc)
1277{
1278        skfddi_priv *bp = &smc->os;
1279
1280        pr_debug("[llc_restart_tx]\n");
1281
1282        // Try to send queued packets
1283        spin_unlock(&bp->DriverLock);
1284        send_queued_packets(smc);
1285        spin_lock(&bp->DriverLock);
1286        netif_start_queue(bp->dev);// system may send again if it was blocked
1287
1288}                               // llc_restart_tx
1289
1290
1291/************************
1292 *
1293 *      mac_drv_get_space
1294 *
1295 *      The hardware module calls this function to allocate the memory
1296 *      for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1297 * Args
1298 *      smc - A pointer to the SMT context struct.
1299 *
1300 *      size - Size of memory in bytes to allocate.
1301 * Out
1302 *      != 0    A pointer to the virtual address of the allocated memory.
1303 *      == 0    Allocation error.
1304 *
1305 ************************/
1306void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1307{
1308        void *virt;
1309
1310        pr_debug("mac_drv_get_space (%d bytes), ", size);
1311        virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1312
1313        if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1314                printk("Unexpected SMT memory size requested: %d\n", size);
1315                return NULL;
1316        }
1317        smc->os.SharedMemHeap += size;  // Move heap pointer.
1318
1319        pr_debug("mac_drv_get_space end\n");
1320        pr_debug("virt addr: %lx\n", (ulong) virt);
1321        pr_debug("bus  addr: %lx\n", (ulong)
1322               (smc->os.SharedMemDMA +
1323                ((char *) virt - (char *)smc->os.SharedMemAddr)));
1324        return virt;
1325}                               // mac_drv_get_space
1326
1327
1328/************************
1329 *
1330 *      mac_drv_get_desc_mem
1331 *
1332 *      This function is called by the hardware dependent module.
1333 *      It allocates the memory for the RxD and TxD descriptors.
1334 *
1335 *      This memory must be non-cached, non-movable and non-swappable.
1336 *      This memory should start at a physical page boundary.
1337 * Args
1338 *      smc - A pointer to the SMT context struct.
1339 *
1340 *      size - Size of memory in bytes to allocate.
1341 * Out
1342 *      != 0    A pointer to the virtual address of the allocated memory.
1343 *      == 0    Allocation error.
1344 *
1345 ************************/
1346void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1347{
1348
1349        char *virt;
1350
1351        pr_debug("mac_drv_get_desc_mem\n");
1352
1353        // Descriptor memory must be aligned on 16-byte boundary.
1354
1355        virt = mac_drv_get_space(smc, size);
1356
1357        size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1358        size = size % 16;
1359
1360        pr_debug("Allocate %u bytes alignment gap ", size);
1361        pr_debug("for descriptor memory.\n");
1362
1363        if (!mac_drv_get_space(smc, size)) {
1364                printk("fddi: Unable to align descriptor memory.\n");
1365                return NULL;
1366        }
1367        return virt + size;
1368}                               // mac_drv_get_desc_mem
1369
1370
1371/************************
1372 *
1373 *      mac_drv_virt2phys
1374 *
1375 *      Get the physical address of a given virtual address.
1376 * Args
1377 *      smc - A pointer to the SMT context struct.
1378 *
1379 *      virt - A (virtual) pointer into our 'shared' memory area.
1380 * Out
1381 *      Physical address of the given virtual address.
1382 *
1383 ************************/
1384unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1385{
1386        return smc->os.SharedMemDMA +
1387                ((char *) virt - (char *)smc->os.SharedMemAddr);
1388}                               // mac_drv_virt2phys
1389
1390
1391/************************
1392 *
1393 *      dma_master
1394 *
1395 *      The HWM calls this function, when the driver leads through a DMA
1396 *      transfer. If the OS-specific module must prepare the system hardware
1397 *      for the DMA transfer, it should do it in this function.
1398 *
1399 *      The hardware module calls this dma_master if it wants to send an SMT
1400 *      frame.  This means that the virt address passed in here is part of
1401 *      the 'shared' memory area.
1402 * Args
1403 *      smc - A pointer to the SMT context struct.
1404 *
1405 *      virt - The virtual address of the data.
1406 *
1407 *      len - The length in bytes of the data.
1408 *
1409 *      flag - Indicates the transmit direction and the buffer type:
1410 *              DMA_RD  (0x01)  system RAM ==> adapter buffer memory
1411 *              DMA_WR  (0x02)  adapter buffer memory ==> system RAM
1412 *              SMT_BUF (0x80)  SMT buffer
1413 *
1414 *      >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1415 * Out
1416 *      Returns the pyhsical address for the DMA transfer.
1417 *
1418 ************************/
1419u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1420{
1421        return smc->os.SharedMemDMA +
1422                ((char *) virt - (char *)smc->os.SharedMemAddr);
1423}                               // dma_master
1424
1425
1426/************************
1427 *
1428 *      dma_complete
1429 *
1430 *      The hardware module calls this routine when it has completed a DMA
1431 *      transfer. If the operating system dependent module has set up the DMA
1432 *      channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1433 *      the DMA channel.
1434 * Args
1435 *      smc - A pointer to the SMT context struct.
1436 *
1437 *      descr - A pointer to a TxD or RxD, respectively.
1438 *
1439 *      flag - Indicates the DMA transfer direction / SMT buffer:
1440 *              DMA_RD  (0x01)  system RAM ==> adapter buffer memory
1441 *              DMA_WR  (0x02)  adapter buffer memory ==> system RAM
1442 *              SMT_BUF (0x80)  SMT buffer (managed by HWM)
1443 * Out
1444 *      Nothing.
1445 *
1446 ************************/
1447void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1448{
1449        /* For TX buffers, there are two cases.  If it is an SMT transmit
1450         * buffer, there is nothing to do since we use consistent memory
1451         * for the 'shared' memory area.  The other case is for normal
1452         * transmit packets given to us by the networking stack, and in
1453         * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1454         * below.
1455         *
1456         * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1457         * because the hardware module is about to potentially look at
1458         * the contents of the buffer.  If we did not call the PCI DMA
1459         * unmap first, the hardware module could read inconsistent data.
1460         */
1461        if (flag & DMA_WR) {
1462                skfddi_priv *bp = &smc->os;
1463                volatile struct s_smt_fp_rxd *r = &descr->r;
1464
1465                /* If SKB is NULL, we used the local buffer. */
1466                if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1467                        int MaxFrameSize = bp->MaxFrameSize;
1468
1469                        pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1470                                         MaxFrameSize, PCI_DMA_FROMDEVICE);
1471                        r->rxd_os.dma_addr = 0;
1472                }
1473        }
1474}                               // dma_complete
1475
1476
1477/************************
1478 *
1479 *      mac_drv_tx_complete
1480 *
1481 *      Transmit of a packet is complete. Release the tx staging buffer.
1482 *
1483 * Args
1484 *      smc - A pointer to the SMT context struct.
1485 *
1486 *      txd - A pointer to the last TxD which is used by the frame.
1487 * Out
1488 *      Returns nothing.
1489 *
1490 ************************/
1491void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1492{
1493        struct sk_buff *skb;
1494
1495        pr_debug("entering mac_drv_tx_complete\n");
1496        // Check if this TxD points to a skb
1497
1498        if (!(skb = txd->txd_os.skb)) {
1499                pr_debug("TXD with no skb assigned.\n");
1500                return;
1501        }
1502        txd->txd_os.skb = NULL;
1503
1504        // release the DMA mapping
1505        pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1506                         skb->len, PCI_DMA_TODEVICE);
1507        txd->txd_os.dma_addr = 0;
1508
1509        smc->os.MacStat.gen.tx_packets++;       // Count transmitted packets.
1510        smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes
1511
1512        // free the skb
1513        dev_kfree_skb_irq(skb);
1514
1515        pr_debug("leaving mac_drv_tx_complete\n");
1516}                               // mac_drv_tx_complete
1517
1518
1519/************************
1520 *
1521 * dump packets to logfile
1522 *
1523 ************************/
1524#ifdef DUMPPACKETS
1525void dump_data(unsigned char *Data, int length)
1526{
1527        int i, j;
1528        unsigned char s[255], sh[10];
1529        if (length > 64) {
1530                length = 64;
1531        }
1532        printk(KERN_INFO "---Packet start---\n");
1533        for (i = 0, j = 0; i < length / 8; i++, j += 8)
1534                printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1535                       Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1536                       Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1537        strcpy(s, "");
1538        for (i = 0; i < length % 8; i++) {
1539                sprintf(sh, "%02x ", Data[j + i]);
1540                strcat(s, sh);
1541        }
1542        printk(KERN_INFO "%s\n", s);
1543        printk(KERN_INFO "------------------\n");
1544}                               // dump_data
1545#else
1546#define dump_data(data,len)
1547#endif                          // DUMPPACKETS
1548
1549/************************
1550 *
1551 *      mac_drv_rx_complete
1552 *
1553 *      The hardware module calls this function if an LLC frame is received
1554 *      in a receive buffer. Also the SMT, NSA, and directed beacon frames
1555 *      from the network will be passed to the LLC layer by this function
1556 *      if passing is enabled.
1557 *
1558 *      mac_drv_rx_complete forwards the frame to the LLC layer if it should
1559 *      be received. It also fills the RxD ring with new receive buffers if
1560 *      some can be queued.
1561 * Args
1562 *      smc - A pointer to the SMT context struct.
1563 *
1564 *      rxd - A pointer to the first RxD which is used by the receive frame.
1565 *
1566 *      frag_count - Count of RxDs used by the received frame.
1567 *
1568 *      len - Frame length.
1569 * Out
1570 *      Nothing.
1571 *
1572 ************************/
1573void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1574                         int frag_count, int len)
1575{
1576        skfddi_priv *bp = &smc->os;
1577        struct sk_buff *skb;
1578        unsigned char *virt, *cp;
1579        unsigned short ri;
1580        u_int RifLength;
1581
1582        pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
1583        if (frag_count != 1) {  // This is not allowed to happen.
1584
1585                printk("fddi: Multi-fragment receive!\n");
1586                goto RequeueRxd;        // Re-use the given RXD(s).
1587
1588        }
1589        skb = rxd->rxd_os.skb;
1590        if (!skb) {
1591                pr_debug("No skb in rxd\n");
1592                smc->os.MacStat.gen.rx_errors++;
1593                goto RequeueRxd;
1594        }
1595        virt = skb->data;
1596
1597        // The DMA mapping was released in dma_complete above.
1598
1599        dump_data(skb->data, len);
1600
1601        /*
1602         * FDDI Frame format:
1603         * +-------+-------+-------+------------+--------+------------+
1604         * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1605         * +-------+-------+-------+------------+--------+------------+
1606         *
1607         * FC = Frame Control
1608         * DA = Destination Address
1609         * SA = Source Address
1610         * RIF = Routing Information Field
1611         * LLC = Logical Link Control
1612         */
1613
1614        // Remove Routing Information Field (RIF), if present.
1615
1616        if ((virt[1 + 6] & FDDI_RII) == 0)
1617                RifLength = 0;
1618        else {
1619                int n;
1620// goos: RIF removal has still to be tested
1621                pr_debug("RIF found\n");
1622                // Get RIF length from Routing Control (RC) field.
1623                cp = virt + FDDI_MAC_HDR_LEN;   // Point behind MAC header.
1624
1625                ri = ntohs(*((__be16 *) cp));
1626                RifLength = ri & FDDI_RCF_LEN_MASK;
1627                if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1628                        printk("fddi: Invalid RIF.\n");
1629                        goto RequeueRxd;        // Discard the frame.
1630
1631                }
1632                virt[1 + 6] &= ~FDDI_RII;       // Clear RII bit.
1633                // regions overlap
1634
1635                virt = cp + RifLength;
1636                for (n = FDDI_MAC_HDR_LEN; n; n--)
1637                        *--virt = *--cp;
1638                // adjust sbd->data pointer
1639                skb_pull(skb, RifLength);
1640                len -= RifLength;
1641                RifLength = 0;
1642        }
1643
1644        // Count statistics.
1645        smc->os.MacStat.gen.rx_packets++;       // Count indicated receive
1646                                                // packets.
1647        smc->os.MacStat.gen.rx_bytes+=len;      // Count bytes.
1648
1649        // virt points to header again
1650        if (virt[1] & 0x01) {   // Check group (multicast) bit.
1651
1652                smc->os.MacStat.gen.multicast++;
1653        }
1654
1655        // deliver frame to system
1656        rxd->rxd_os.skb = NULL;
1657        skb_trim(skb, len);
1658        skb->protocol = fddi_type_trans(skb, bp->dev);
1659
1660        netif_rx(skb);
1661
1662        HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1663        return;
1664
1665      RequeueRxd:
1666        pr_debug("Rx: re-queue RXD.\n");
1667        mac_drv_requeue_rxd(smc, rxd, frag_count);
1668        smc->os.MacStat.gen.rx_errors++;        // Count receive packets
1669                                                // not indicated.
1670
1671}                               // mac_drv_rx_complete
1672
1673
1674/************************
1675 *
1676 *      mac_drv_requeue_rxd
1677 *
1678 *      The hardware module calls this function to request the OS-specific
1679 *      module to queue the receive buffer(s) represented by the pointer
1680 *      to the RxD and the frag_count into the receive queue again. This
1681 *      buffer was filled with an invalid frame or an SMT frame.
1682 * Args
1683 *      smc - A pointer to the SMT context struct.
1684 *
1685 *      rxd - A pointer to the first RxD which is used by the receive frame.
1686 *
1687 *      frag_count - Count of RxDs used by the received frame.
1688 * Out
1689 *      Nothing.
1690 *
1691 ************************/
1692void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1693                         int frag_count)
1694{
1695        volatile struct s_smt_fp_rxd *next_rxd;
1696        volatile struct s_smt_fp_rxd *src_rxd;
1697        struct sk_buff *skb;
1698        int MaxFrameSize;
1699        unsigned char *v_addr;
1700        dma_addr_t b_addr;
1701
1702        if (frag_count != 1)    // This is not allowed to happen.
1703
1704                printk("fddi: Multi-fragment requeue!\n");
1705
1706        MaxFrameSize = smc->os.MaxFrameSize;
1707        src_rxd = rxd;
1708        for (; frag_count > 0; frag_count--) {
1709                next_rxd = src_rxd->rxd_next;
1710                rxd = HWM_GET_CURR_RXD(smc);
1711
1712                skb = src_rxd->rxd_os.skb;
1713                if (skb == NULL) {      // this should not happen
1714
1715                        pr_debug("Requeue with no skb in rxd!\n");
1716                        skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1717                        if (skb) {
1718                                // we got a skb
1719                                rxd->rxd_os.skb = skb;
1720                                skb_reserve(skb, 3);
1721                                skb_put(skb, MaxFrameSize);
1722                                v_addr = skb->data;
1723                                b_addr = pci_map_single(&smc->os.pdev,
1724                                                        v_addr,
1725                                                        MaxFrameSize,
1726                                                        PCI_DMA_FROMDEVICE);
1727                                rxd->rxd_os.dma_addr = b_addr;
1728                        } else {
1729                                // no skb available, use local buffer
1730                                pr_debug("Queueing invalid buffer!\n");
1731                                rxd->rxd_os.skb = NULL;
1732                                v_addr = smc->os.LocalRxBuffer;
1733                                b_addr = smc->os.LocalRxBufferDMA;
1734                        }
1735                } else {
1736                        // we use skb from old rxd
1737                        rxd->rxd_os.skb = skb;
1738                        v_addr = skb->data;
1739                        b_addr = pci_map_single(&smc->os.pdev,
1740                                                v_addr,
1741                                                MaxFrameSize,
1742                                                PCI_DMA_FROMDEVICE);
1743                        rxd->rxd_os.dma_addr = b_addr;
1744                }
1745                hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1746                            FIRST_FRAG | LAST_FRAG);
1747
1748                src_rxd = next_rxd;
1749        }
1750}                               // mac_drv_requeue_rxd
1751
1752
1753/************************
1754 *
1755 *      mac_drv_fill_rxd
1756 *
1757 *      The hardware module calls this function at initialization time
1758 *      to fill the RxD ring with receive buffers. It is also called by
1759 *      mac_drv_rx_complete if rx_free is large enough to queue some new
1760 *      receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1761 *      receive buffers as long as enough RxDs and receive buffers are
1762 *      available.
1763 * Args
1764 *      smc - A pointer to the SMT context struct.
1765 * Out
1766 *      Nothing.
1767 *
1768 ************************/
1769void mac_drv_fill_rxd(struct s_smc *smc)
1770{
1771        int MaxFrameSize;
1772        unsigned char *v_addr;
1773        unsigned long b_addr;
1774        struct sk_buff *skb;
1775        volatile struct s_smt_fp_rxd *rxd;
1776
1777        pr_debug("entering mac_drv_fill_rxd\n");
1778
1779        // Walk through the list of free receive buffers, passing receive
1780        // buffers to the HWM as long as RXDs are available.
1781
1782        MaxFrameSize = smc->os.MaxFrameSize;
1783        // Check if there is any RXD left.
1784        while (HWM_GET_RX_FREE(smc) > 0) {
1785                pr_debug(".\n");
1786
1787                rxd = HWM_GET_CURR_RXD(smc);
1788                skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1789                if (skb) {
1790                        // we got a skb
1791                        skb_reserve(skb, 3);
1792                        skb_put(skb, MaxFrameSize);
1793                        v_addr = skb->data;
1794                        b_addr = pci_map_single(&smc->os.pdev,
1795                                                v_addr,
1796                                                MaxFrameSize,
1797                                                PCI_DMA_FROMDEVICE);
1798                        rxd->rxd_os.dma_addr = b_addr;
1799                } else {
1800                        // no skb available, use local buffer
1801                        // System has run out of buffer memory, but we want to
1802                        // keep the receiver running in hope of better times.
1803                        // Multiple descriptors may point to this local buffer,
1804                        // so data in it must be considered invalid.
1805                        pr_debug("Queueing invalid buffer!\n");
1806                        v_addr = smc->os.LocalRxBuffer;
1807                        b_addr = smc->os.LocalRxBufferDMA;
1808                }
1809
1810                rxd->rxd_os.skb = skb;
1811
1812                // Pass receive buffer to HWM.
1813                hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1814                            FIRST_FRAG | LAST_FRAG);
1815        }
1816        pr_debug("leaving mac_drv_fill_rxd\n");
1817}                               // mac_drv_fill_rxd
1818
1819
1820/************************
1821 *
1822 *      mac_drv_clear_rxd
1823 *
1824 *      The hardware module calls this function to release unused
1825 *      receive buffers.
1826 * Args
1827 *      smc - A pointer to the SMT context struct.
1828 *
1829 *      rxd - A pointer to the first RxD which is used by the receive buffer.
1830 *
1831 *      frag_count - Count of RxDs used by the receive buffer.
1832 * Out
1833 *      Nothing.
1834 *
1835 ************************/
1836void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1837                       int frag_count)
1838{
1839
1840        struct sk_buff *skb;
1841
1842        pr_debug("entering mac_drv_clear_rxd\n");
1843
1844        if (frag_count != 1)    // This is not allowed to happen.
1845
1846                printk("fddi: Multi-fragment clear!\n");
1847
1848        for (; frag_count > 0; frag_count--) {
1849                skb = rxd->rxd_os.skb;
1850                if (skb != NULL) {
1851                        skfddi_priv *bp = &smc->os;
1852                        int MaxFrameSize = bp->MaxFrameSize;
1853
1854                        pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1855                                         MaxFrameSize, PCI_DMA_FROMDEVICE);
1856
1857                        dev_kfree_skb(skb);
1858                        rxd->rxd_os.skb = NULL;
1859                }
1860                rxd = rxd->rxd_next;    // Next RXD.
1861
1862        }
1863}                               // mac_drv_clear_rxd
1864
1865
1866/************************
1867 *
1868 *      mac_drv_rx_init
1869 *
1870 *      The hardware module calls this routine when an SMT or NSA frame of the
1871 *      local SMT should be delivered to the LLC layer.
1872 *
1873 *      It is necessary to have this function, because there is no other way to
1874 *      copy the contents of SMT MBufs into receive buffers.
1875 *
1876 *      mac_drv_rx_init allocates the required target memory for this frame,
1877 *      and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1878 * Args
1879 *      smc - A pointer to the SMT context struct.
1880 *
1881 *      len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1882 *
1883 *      fc - The Frame Control field of the received frame.
1884 *
1885 *      look_ahead - A pointer to the lookahead data buffer (may be NULL).
1886 *
1887 *      la_len - The length of the lookahead data stored in the lookahead
1888 *      buffer (may be zero).
1889 * Out
1890 *      Always returns zero (0).
1891 *
1892 ************************/
1893int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1894                    char *look_ahead, int la_len)
1895{
1896        struct sk_buff *skb;
1897
1898        pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1899
1900        // "Received" a SMT or NSA frame of the local SMT.
1901
1902        if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1903                pr_debug("fddi: Discard invalid local SMT frame\n");
1904                pr_debug("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1905                       len, la_len, (unsigned long) look_ahead);
1906                return 0;
1907        }
1908        skb = alloc_skb(len + 3, GFP_ATOMIC);
1909        if (!skb) {
1910                pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1911                return 0;
1912        }
1913        skb_reserve(skb, 3);
1914        skb_put(skb, len);
1915        skb_copy_to_linear_data(skb, look_ahead, len);
1916
1917        // deliver frame to system
1918        skb->protocol = fddi_type_trans(skb, smc->os.dev);
1919        netif_rx(skb);
1920
1921        return 0;
1922}                               // mac_drv_rx_init
1923
1924
1925/************************
1926 *
1927 *      smt_timer_poll
1928 *
1929 *      This routine is called periodically by the SMT module to clean up the
1930 *      driver.
1931 *
1932 *      Return any queued frames back to the upper protocol layers if the ring
1933 *      is down.
1934 * Args
1935 *      smc - A pointer to the SMT context struct.
1936 * Out
1937 *      Nothing.
1938 *
1939 ************************/
1940void smt_timer_poll(struct s_smc *smc)
1941{
1942}                               // smt_timer_poll
1943
1944
1945/************************
1946 *
1947 *      ring_status_indication
1948 *
1949 *      This function indicates a change of the ring state.
1950 * Args
1951 *      smc - A pointer to the SMT context struct.
1952 *
1953 *      status - The current ring status.
1954 * Out
1955 *      Nothing.
1956 *
1957 ************************/
1958void ring_status_indication(struct s_smc *smc, u_long status)
1959{
1960        pr_debug("ring_status_indication( ");
1961        if (status & RS_RES15)
1962                pr_debug("RS_RES15 ");
1963        if (status & RS_HARDERROR)
1964                pr_debug("RS_HARDERROR ");
1965        if (status & RS_SOFTERROR)
1966                pr_debug("RS_SOFTERROR ");
1967        if (status & RS_BEACON)
1968                pr_debug("RS_BEACON ");
1969        if (status & RS_PATHTEST)
1970                pr_debug("RS_PATHTEST ");
1971        if (status & RS_SELFTEST)
1972                pr_debug("RS_SELFTEST ");
1973        if (status & RS_RES9)
1974                pr_debug("RS_RES9 ");
1975        if (status & RS_DISCONNECT)
1976                pr_debug("RS_DISCONNECT ");
1977        if (status & RS_RES7)
1978                pr_debug("RS_RES7 ");
1979        if (status & RS_DUPADDR)
1980                pr_debug("RS_DUPADDR ");
1981        if (status & RS_NORINGOP)
1982                pr_debug("RS_NORINGOP ");
1983        if (status & RS_VERSION)
1984                pr_debug("RS_VERSION ");
1985        if (status & RS_STUCKBYPASSS)
1986                pr_debug("RS_STUCKBYPASSS ");
1987        if (status & RS_EVENT)
1988                pr_debug("RS_EVENT ");
1989        if (status & RS_RINGOPCHANGE)
1990                pr_debug("RS_RINGOPCHANGE ");
1991        if (status & RS_RES0)
1992                pr_debug("RS_RES0 ");
1993        pr_debug("]\n");
1994}                               // ring_status_indication
1995
1996
1997/************************
1998 *
1999 *      smt_get_time
2000 *
2001 *      Gets the current time from the system.
2002 * Args
2003 *      None.
2004 * Out
2005 *      The current time in TICKS_PER_SECOND.
2006 *
2007 *      TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2008 *      defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2009 *      to the time returned by smt_get_time().
2010 *
2011 ************************/
2012unsigned long smt_get_time(void)
2013{
2014        return jiffies;
2015}                               // smt_get_time
2016
2017
2018/************************
2019 *
2020 *      smt_stat_counter
2021 *
2022 *      Status counter update (ring_op, fifo full).
2023 * Args
2024 *      smc - A pointer to the SMT context struct.
2025 *
2026 *      stat -  = 0: A ring operational change occurred.
2027 *              = 1: The FORMAC FIFO buffer is full / FIFO overflow.
2028 * Out
2029 *      Nothing.
2030 *
2031 ************************/
2032void smt_stat_counter(struct s_smc *smc, int stat)
2033{
2034//      BOOLEAN RingIsUp ;
2035
2036        pr_debug("smt_stat_counter\n");
2037        switch (stat) {
2038        case 0:
2039                pr_debug("Ring operational change.\n");
2040                break;
2041        case 1:
2042                pr_debug("Receive fifo overflow.\n");
2043                smc->os.MacStat.gen.rx_errors++;
2044                break;
2045        default:
2046                pr_debug("Unknown status (%d).\n", stat);
2047                break;
2048        }
2049}                               // smt_stat_counter
2050
2051
2052/************************
2053 *
2054 *      cfm_state_change
2055 *
2056 *      Sets CFM state in custom statistics.
2057 * Args
2058 *      smc - A pointer to the SMT context struct.
2059 *
2060 *      c_state - Possible values are:
2061 *
2062 *              EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2063 *              EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2064 * Out
2065 *      Nothing.
2066 *
2067 ************************/
2068void cfm_state_change(struct s_smc *smc, int c_state)
2069{
2070#ifdef DRIVERDEBUG
2071        char *s;
2072
2073        switch (c_state) {
2074        case SC0_ISOLATED:
2075                s = "SC0_ISOLATED";
2076                break;
2077        case SC1_WRAP_A:
2078                s = "SC1_WRAP_A";
2079                break;
2080        case SC2_WRAP_B:
2081                s = "SC2_WRAP_B";
2082                break;
2083        case SC4_THRU_A:
2084                s = "SC4_THRU_A";
2085                break;
2086        case SC5_THRU_B:
2087                s = "SC5_THRU_B";
2088                break;
2089        case SC7_WRAP_S:
2090                s = "SC7_WRAP_S";
2091                break;
2092        case SC9_C_WRAP_A:
2093                s = "SC9_C_WRAP_A";
2094                break;
2095        case SC10_C_WRAP_B:
2096                s = "SC10_C_WRAP_B";
2097                break;
2098        case SC11_C_WRAP_S:
2099                s = "SC11_C_WRAP_S";
2100                break;
2101        default:
2102                pr_debug("cfm_state_change: unknown %d\n", c_state);
2103                return;
2104        }
2105        pr_debug("cfm_state_change: %s\n", s);
2106#endif                          // DRIVERDEBUG
2107}                               // cfm_state_change
2108
2109
2110/************************
2111 *
2112 *      ecm_state_change
2113 *
2114 *      Sets ECM state in custom statistics.
2115 * Args
2116 *      smc - A pointer to the SMT context struct.
2117 *
2118 *      e_state - Possible values are:
2119 *
2120 *              SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2121 *              SC5_THRU_B (7), SC7_WRAP_S (8)
2122 * Out
2123 *      Nothing.
2124 *
2125 ************************/
2126void ecm_state_change(struct s_smc *smc, int e_state)
2127{
2128#ifdef DRIVERDEBUG
2129        char *s;
2130
2131        switch (e_state) {
2132        case EC0_OUT:
2133                s = "EC0_OUT";
2134                break;
2135        case EC1_IN:
2136                s = "EC1_IN";
2137                break;
2138        case EC2_TRACE:
2139                s = "EC2_TRACE";
2140                break;
2141        case EC3_LEAVE:
2142                s = "EC3_LEAVE";
2143                break;
2144        case EC4_PATH_TEST:
2145                s = "EC4_PATH_TEST";
2146                break;
2147        case EC5_INSERT:
2148                s = "EC5_INSERT";
2149                break;
2150        case EC6_CHECK:
2151                s = "EC6_CHECK";
2152                break;
2153        case EC7_DEINSERT:
2154                s = "EC7_DEINSERT";
2155                break;
2156        default:
2157                s = "unknown";
2158                break;
2159        }
2160        pr_debug("ecm_state_change: %s\n", s);
2161#endif                          //DRIVERDEBUG
2162}                               // ecm_state_change
2163
2164
2165/************************
2166 *
2167 *      rmt_state_change
2168 *
2169 *      Sets RMT state in custom statistics.
2170 * Args
2171 *      smc - A pointer to the SMT context struct.
2172 *
2173 *      r_state - Possible values are:
2174 *
2175 *              RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2176 *              RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2177 * Out
2178 *      Nothing.
2179 *
2180 ************************/
2181void rmt_state_change(struct s_smc *smc, int r_state)
2182{
2183#ifdef DRIVERDEBUG
2184        char *s;
2185
2186        switch (r_state) {
2187        case RM0_ISOLATED:
2188                s = "RM0_ISOLATED";
2189                break;
2190        case RM1_NON_OP:
2191                s = "RM1_NON_OP - not operational";
2192                break;
2193        case RM2_RING_OP:
2194                s = "RM2_RING_OP - ring operational";
2195                break;
2196        case RM3_DETECT:
2197                s = "RM3_DETECT - detect dupl addresses";
2198                break;
2199        case RM4_NON_OP_DUP:
2200                s = "RM4_NON_OP_DUP - dupl. addr detected";
2201                break;
2202        case RM5_RING_OP_DUP:
2203                s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2204                break;
2205        case RM6_DIRECTED:
2206                s = "RM6_DIRECTED - sending directed beacons";
2207                break;
2208        case RM7_TRACE:
2209                s = "RM7_TRACE - trace initiated";
2210                break;
2211        default:
2212                s = "unknown";
2213                break;
2214        }
2215        pr_debug("[rmt_state_change: %s]\n", s);
2216#endif                          // DRIVERDEBUG
2217}                               // rmt_state_change
2218
2219
2220/************************
2221 *
2222 *      drv_reset_indication
2223 *
2224 *      This function is called by the SMT when it has detected a severe
2225 *      hardware problem. The driver should perform a reset on the adapter
2226 *      as soon as possible, but not from within this function.
2227 * Args
2228 *      smc - A pointer to the SMT context struct.
2229 * Out
2230 *      Nothing.
2231 *
2232 ************************/
2233void drv_reset_indication(struct s_smc *smc)
2234{
2235        pr_debug("entering drv_reset_indication\n");
2236
2237        smc->os.ResetRequested = TRUE;  // Set flag.
2238
2239}                               // drv_reset_indication
2240
2241static struct pci_driver skfddi_pci_driver = {
2242        .name           = "skfddi",
2243        .id_table       = skfddi_pci_tbl,
2244        .probe          = skfp_init_one,
2245        .remove         = skfp_remove_one,
2246};
2247
2248module_pci_driver(skfddi_pci_driver);
2249