linux/drivers/spi/spi-bitbang.c
<<
>>
Prefs
   1/*
   2 * polling/bitbanging SPI master controller driver utilities
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 */
  14
  15#include <linux/spinlock.h>
  16#include <linux/workqueue.h>
  17#include <linux/interrupt.h>
  18#include <linux/module.h>
  19#include <linux/delay.h>
  20#include <linux/errno.h>
  21#include <linux/platform_device.h>
  22#include <linux/slab.h>
  23
  24#include <linux/spi/spi.h>
  25#include <linux/spi/spi_bitbang.h>
  26
  27#define SPI_BITBANG_CS_DELAY    100
  28
  29
  30/*----------------------------------------------------------------------*/
  31
  32/*
  33 * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
  34 * Use this for GPIO or shift-register level hardware APIs.
  35 *
  36 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
  37 * to glue code.  These bitbang setup() and cleanup() routines are always
  38 * used, though maybe they're called from controller-aware code.
  39 *
  40 * chipselect() and friends may use spi_device->controller_data and
  41 * controller registers as appropriate.
  42 *
  43 *
  44 * NOTE:  SPI controller pins can often be used as GPIO pins instead,
  45 * which means you could use a bitbang driver either to get hardware
  46 * working quickly, or testing for differences that aren't speed related.
  47 */
  48
  49struct spi_bitbang_cs {
  50        unsigned        nsecs;  /* (clock cycle time)/2 */
  51        u32             (*txrx_word)(struct spi_device *spi, unsigned nsecs,
  52                                        u32 word, u8 bits);
  53        unsigned        (*txrx_bufs)(struct spi_device *,
  54                                        u32 (*txrx_word)(
  55                                                struct spi_device *spi,
  56                                                unsigned nsecs,
  57                                                u32 word, u8 bits),
  58                                        unsigned, struct spi_transfer *);
  59};
  60
  61static unsigned bitbang_txrx_8(
  62        struct spi_device       *spi,
  63        u32                     (*txrx_word)(struct spi_device *spi,
  64                                        unsigned nsecs,
  65                                        u32 word, u8 bits),
  66        unsigned                ns,
  67        struct spi_transfer     *t
  68) {
  69        unsigned                bits = t->bits_per_word;
  70        unsigned                count = t->len;
  71        const u8                *tx = t->tx_buf;
  72        u8                      *rx = t->rx_buf;
  73
  74        while (likely(count > 0)) {
  75                u8              word = 0;
  76
  77                if (tx)
  78                        word = *tx++;
  79                word = txrx_word(spi, ns, word, bits);
  80                if (rx)
  81                        *rx++ = word;
  82                count -= 1;
  83        }
  84        return t->len - count;
  85}
  86
  87static unsigned bitbang_txrx_16(
  88        struct spi_device       *spi,
  89        u32                     (*txrx_word)(struct spi_device *spi,
  90                                        unsigned nsecs,
  91                                        u32 word, u8 bits),
  92        unsigned                ns,
  93        struct spi_transfer     *t
  94) {
  95        unsigned                bits = t->bits_per_word;
  96        unsigned                count = t->len;
  97        const u16               *tx = t->tx_buf;
  98        u16                     *rx = t->rx_buf;
  99
 100        while (likely(count > 1)) {
 101                u16             word = 0;
 102
 103                if (tx)
 104                        word = *tx++;
 105                word = txrx_word(spi, ns, word, bits);
 106                if (rx)
 107                        *rx++ = word;
 108                count -= 2;
 109        }
 110        return t->len - count;
 111}
 112
 113static unsigned bitbang_txrx_32(
 114        struct spi_device       *spi,
 115        u32                     (*txrx_word)(struct spi_device *spi,
 116                                        unsigned nsecs,
 117                                        u32 word, u8 bits),
 118        unsigned                ns,
 119        struct spi_transfer     *t
 120) {
 121        unsigned                bits = t->bits_per_word;
 122        unsigned                count = t->len;
 123        const u32               *tx = t->tx_buf;
 124        u32                     *rx = t->rx_buf;
 125
 126        while (likely(count > 3)) {
 127                u32             word = 0;
 128
 129                if (tx)
 130                        word = *tx++;
 131                word = txrx_word(spi, ns, word, bits);
 132                if (rx)
 133                        *rx++ = word;
 134                count -= 4;
 135        }
 136        return t->len - count;
 137}
 138
 139int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
 140{
 141        struct spi_bitbang_cs   *cs = spi->controller_state;
 142        u8                      bits_per_word;
 143        u32                     hz;
 144
 145        if (t) {
 146                bits_per_word = t->bits_per_word;
 147                hz = t->speed_hz;
 148        } else {
 149                bits_per_word = 0;
 150                hz = 0;
 151        }
 152
 153        /* spi_transfer level calls that work per-word */
 154        if (!bits_per_word)
 155                bits_per_word = spi->bits_per_word;
 156        if (bits_per_word <= 8)
 157                cs->txrx_bufs = bitbang_txrx_8;
 158        else if (bits_per_word <= 16)
 159                cs->txrx_bufs = bitbang_txrx_16;
 160        else if (bits_per_word <= 32)
 161                cs->txrx_bufs = bitbang_txrx_32;
 162        else
 163                return -EINVAL;
 164
 165        /* nsecs = (clock period)/2 */
 166        if (!hz)
 167                hz = spi->max_speed_hz;
 168        if (hz) {
 169                cs->nsecs = (1000000000/2) / hz;
 170                if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
 171                        return -EINVAL;
 172        }
 173
 174        return 0;
 175}
 176EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
 177
 178/**
 179 * spi_bitbang_setup - default setup for per-word I/O loops
 180 */
 181int spi_bitbang_setup(struct spi_device *spi)
 182{
 183        struct spi_bitbang_cs   *cs = spi->controller_state;
 184        struct spi_bitbang      *bitbang;
 185
 186        bitbang = spi_master_get_devdata(spi->master);
 187
 188        if (!cs) {
 189                cs = kzalloc(sizeof(*cs), GFP_KERNEL);
 190                if (!cs)
 191                        return -ENOMEM;
 192                spi->controller_state = cs;
 193        }
 194
 195        /* per-word shift register access, in hardware or bitbanging */
 196        cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
 197        if (!cs->txrx_word)
 198                return -EINVAL;
 199
 200        if (bitbang->setup_transfer) {
 201                int retval = bitbang->setup_transfer(spi, NULL);
 202                if (retval < 0)
 203                        return retval;
 204        }
 205
 206        dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
 207
 208        /* NOTE we _need_ to call chipselect() early, ideally with adapter
 209         * setup, unless the hardware defaults cooperate to avoid confusion
 210         * between normal (active low) and inverted chipselects.
 211         */
 212
 213        /* deselect chip (low or high) */
 214        mutex_lock(&bitbang->lock);
 215        if (!bitbang->busy) {
 216                bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
 217                ndelay(cs->nsecs);
 218        }
 219        mutex_unlock(&bitbang->lock);
 220
 221        return 0;
 222}
 223EXPORT_SYMBOL_GPL(spi_bitbang_setup);
 224
 225/**
 226 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
 227 */
 228void spi_bitbang_cleanup(struct spi_device *spi)
 229{
 230        kfree(spi->controller_state);
 231}
 232EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
 233
 234static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
 235{
 236        struct spi_bitbang_cs   *cs = spi->controller_state;
 237        unsigned                nsecs = cs->nsecs;
 238
 239        return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
 240}
 241
 242/*----------------------------------------------------------------------*/
 243
 244/*
 245 * SECOND PART ... simple transfer queue runner.
 246 *
 247 * This costs a task context per controller, running the queue by
 248 * performing each transfer in sequence.  Smarter hardware can queue
 249 * several DMA transfers at once, and process several controller queues
 250 * in parallel; this driver doesn't match such hardware very well.
 251 *
 252 * Drivers can provide word-at-a-time i/o primitives, or provide
 253 * transfer-at-a-time ones to leverage dma or fifo hardware.
 254 */
 255
 256static int spi_bitbang_prepare_hardware(struct spi_master *spi)
 257{
 258        struct spi_bitbang      *bitbang;
 259
 260        bitbang = spi_master_get_devdata(spi);
 261
 262        mutex_lock(&bitbang->lock);
 263        bitbang->busy = 1;
 264        mutex_unlock(&bitbang->lock);
 265
 266        return 0;
 267}
 268
 269static int spi_bitbang_transfer_one(struct spi_master *master,
 270                                    struct spi_device *spi,
 271                                    struct spi_transfer *transfer)
 272{
 273        struct spi_bitbang *bitbang = spi_master_get_devdata(master);
 274        int status = 0;
 275
 276        if (bitbang->setup_transfer) {
 277                status = bitbang->setup_transfer(spi, transfer);
 278                if (status < 0)
 279                        goto out;
 280        }
 281
 282        if (transfer->len)
 283                status = bitbang->txrx_bufs(spi, transfer);
 284
 285        if (status == transfer->len)
 286                status = 0;
 287        else if (status >= 0)
 288                status = -EREMOTEIO;
 289
 290out:
 291        spi_finalize_current_transfer(master);
 292
 293        return status;
 294}
 295
 296static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
 297{
 298        struct spi_bitbang      *bitbang;
 299
 300        bitbang = spi_master_get_devdata(spi);
 301
 302        mutex_lock(&bitbang->lock);
 303        bitbang->busy = 0;
 304        mutex_unlock(&bitbang->lock);
 305
 306        return 0;
 307}
 308
 309static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
 310{
 311        struct spi_bitbang *bitbang = spi_master_get_devdata(spi->master);
 312
 313        /* SPI core provides CS high / low, but bitbang driver
 314         * expects CS active
 315         * spi device driver takes care of handling SPI_CS_HIGH
 316         */
 317        enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
 318
 319        ndelay(SPI_BITBANG_CS_DELAY);
 320        bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
 321                            BITBANG_CS_INACTIVE);
 322        ndelay(SPI_BITBANG_CS_DELAY);
 323}
 324
 325/*----------------------------------------------------------------------*/
 326
 327/**
 328 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
 329 * @bitbang: driver handle
 330 *
 331 * Caller should have zero-initialized all parts of the structure, and then
 332 * provided callbacks for chip selection and I/O loops.  If the master has
 333 * a transfer method, its final step should call spi_bitbang_transfer; or,
 334 * that's the default if the transfer routine is not initialized.  It should
 335 * also set up the bus number and number of chipselects.
 336 *
 337 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
 338 * hardware that basically exposes a shift register) or per-spi_transfer
 339 * (which takes better advantage of hardware like fifos or DMA engines).
 340 *
 341 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
 342 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
 343 * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
 344 * routine isn't initialized.
 345 *
 346 * This routine registers the spi_master, which will process requests in a
 347 * dedicated task, keeping IRQs unblocked most of the time.  To stop
 348 * processing those requests, call spi_bitbang_stop().
 349 *
 350 * On success, this routine will take a reference to master. The caller is
 351 * responsible for calling spi_bitbang_stop() to decrement the reference and
 352 * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
 353 * leak.
 354 */
 355int spi_bitbang_start(struct spi_bitbang *bitbang)
 356{
 357        struct spi_master *master = bitbang->master;
 358        int ret;
 359
 360        if (!master || !bitbang->chipselect)
 361                return -EINVAL;
 362
 363        mutex_init(&bitbang->lock);
 364
 365        if (!master->mode_bits)
 366                master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
 367
 368        if (master->transfer || master->transfer_one_message)
 369                return -EINVAL;
 370
 371        master->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
 372        master->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
 373        master->transfer_one = spi_bitbang_transfer_one;
 374        master->set_cs = spi_bitbang_set_cs;
 375
 376        if (!bitbang->txrx_bufs) {
 377                bitbang->use_dma = 0;
 378                bitbang->txrx_bufs = spi_bitbang_bufs;
 379                if (!master->setup) {
 380                        if (!bitbang->setup_transfer)
 381                                bitbang->setup_transfer =
 382                                         spi_bitbang_setup_transfer;
 383                        master->setup = spi_bitbang_setup;
 384                        master->cleanup = spi_bitbang_cleanup;
 385                }
 386        }
 387
 388        /* driver may get busy before register() returns, especially
 389         * if someone registered boardinfo for devices
 390         */
 391        ret = spi_register_master(spi_master_get(master));
 392        if (ret)
 393                spi_master_put(master);
 394
 395        return 0;
 396}
 397EXPORT_SYMBOL_GPL(spi_bitbang_start);
 398
 399/**
 400 * spi_bitbang_stop - stops the task providing spi communication
 401 */
 402void spi_bitbang_stop(struct spi_bitbang *bitbang)
 403{
 404        spi_unregister_master(bitbang->master);
 405}
 406EXPORT_SYMBOL_GPL(spi_bitbang_stop);
 407
 408MODULE_LICENSE("GPL");
 409
 410