linux/drivers/spi/spi-pxa2xx.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   3 * Copyright (C) 2013, Intel Corporation
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/bitops.h>
  17#include <linux/init.h>
  18#include <linux/module.h>
  19#include <linux/device.h>
  20#include <linux/ioport.h>
  21#include <linux/errno.h>
  22#include <linux/err.h>
  23#include <linux/interrupt.h>
  24#include <linux/kernel.h>
  25#include <linux/pci.h>
  26#include <linux/platform_device.h>
  27#include <linux/spi/pxa2xx_spi.h>
  28#include <linux/spi/spi.h>
  29#include <linux/delay.h>
  30#include <linux/gpio.h>
  31#include <linux/gpio/consumer.h>
  32#include <linux/slab.h>
  33#include <linux/clk.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/acpi.h>
  36
  37#include "spi-pxa2xx.h"
  38
  39MODULE_AUTHOR("Stephen Street");
  40MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  41MODULE_LICENSE("GPL");
  42MODULE_ALIAS("platform:pxa2xx-spi");
  43
  44#define TIMOUT_DFLT             1000
  45
  46/*
  47 * for testing SSCR1 changes that require SSP restart, basically
  48 * everything except the service and interrupt enables, the pxa270 developer
  49 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  50 * list, but the PXA255 dev man says all bits without really meaning the
  51 * service and interrupt enables
  52 */
  53#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  54                                | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  55                                | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  56                                | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  57                                | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  58                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  59
  60#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF   \
  61                                | QUARK_X1000_SSCR1_EFWR        \
  62                                | QUARK_X1000_SSCR1_RFT         \
  63                                | QUARK_X1000_SSCR1_TFT         \
  64                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  65
  66#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  67                                | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  68                                | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  69                                | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  70                                | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
  71                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  72
  73#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE   BIT(24)
  74#define LPSS_CS_CONTROL_SW_MODE                 BIT(0)
  75#define LPSS_CS_CONTROL_CS_HIGH                 BIT(1)
  76#define LPSS_CAPS_CS_EN_SHIFT                   9
  77#define LPSS_CAPS_CS_EN_MASK                    (0xf << LPSS_CAPS_CS_EN_SHIFT)
  78
  79struct lpss_config {
  80        /* LPSS offset from drv_data->ioaddr */
  81        unsigned offset;
  82        /* Register offsets from drv_data->lpss_base or -1 */
  83        int reg_general;
  84        int reg_ssp;
  85        int reg_cs_ctrl;
  86        int reg_capabilities;
  87        /* FIFO thresholds */
  88        u32 rx_threshold;
  89        u32 tx_threshold_lo;
  90        u32 tx_threshold_hi;
  91        /* Chip select control */
  92        unsigned cs_sel_shift;
  93        unsigned cs_sel_mask;
  94        unsigned cs_num;
  95};
  96
  97/* Keep these sorted with enum pxa_ssp_type */
  98static const struct lpss_config lpss_platforms[] = {
  99        {       /* LPSS_LPT_SSP */
 100                .offset = 0x800,
 101                .reg_general = 0x08,
 102                .reg_ssp = 0x0c,
 103                .reg_cs_ctrl = 0x18,
 104                .reg_capabilities = -1,
 105                .rx_threshold = 64,
 106                .tx_threshold_lo = 160,
 107                .tx_threshold_hi = 224,
 108        },
 109        {       /* LPSS_BYT_SSP */
 110                .offset = 0x400,
 111                .reg_general = 0x08,
 112                .reg_ssp = 0x0c,
 113                .reg_cs_ctrl = 0x18,
 114                .reg_capabilities = -1,
 115                .rx_threshold = 64,
 116                .tx_threshold_lo = 160,
 117                .tx_threshold_hi = 224,
 118        },
 119        {       /* LPSS_BSW_SSP */
 120                .offset = 0x400,
 121                .reg_general = 0x08,
 122                .reg_ssp = 0x0c,
 123                .reg_cs_ctrl = 0x18,
 124                .reg_capabilities = -1,
 125                .rx_threshold = 64,
 126                .tx_threshold_lo = 160,
 127                .tx_threshold_hi = 224,
 128                .cs_sel_shift = 2,
 129                .cs_sel_mask = 1 << 2,
 130                .cs_num = 2,
 131        },
 132        {       /* LPSS_SPT_SSP */
 133                .offset = 0x200,
 134                .reg_general = -1,
 135                .reg_ssp = 0x20,
 136                .reg_cs_ctrl = 0x24,
 137                .reg_capabilities = -1,
 138                .rx_threshold = 1,
 139                .tx_threshold_lo = 32,
 140                .tx_threshold_hi = 56,
 141        },
 142        {       /* LPSS_BXT_SSP */
 143                .offset = 0x200,
 144                .reg_general = -1,
 145                .reg_ssp = 0x20,
 146                .reg_cs_ctrl = 0x24,
 147                .reg_capabilities = 0xfc,
 148                .rx_threshold = 1,
 149                .tx_threshold_lo = 16,
 150                .tx_threshold_hi = 48,
 151                .cs_sel_shift = 8,
 152                .cs_sel_mask = 3 << 8,
 153        },
 154};
 155
 156static inline const struct lpss_config
 157*lpss_get_config(const struct driver_data *drv_data)
 158{
 159        return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 160}
 161
 162static bool is_lpss_ssp(const struct driver_data *drv_data)
 163{
 164        switch (drv_data->ssp_type) {
 165        case LPSS_LPT_SSP:
 166        case LPSS_BYT_SSP:
 167        case LPSS_BSW_SSP:
 168        case LPSS_SPT_SSP:
 169        case LPSS_BXT_SSP:
 170                return true;
 171        default:
 172                return false;
 173        }
 174}
 175
 176static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 177{
 178        return drv_data->ssp_type == QUARK_X1000_SSP;
 179}
 180
 181static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 182{
 183        switch (drv_data->ssp_type) {
 184        case QUARK_X1000_SSP:
 185                return QUARK_X1000_SSCR1_CHANGE_MASK;
 186        case CE4100_SSP:
 187                return CE4100_SSCR1_CHANGE_MASK;
 188        default:
 189                return SSCR1_CHANGE_MASK;
 190        }
 191}
 192
 193static u32
 194pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 195{
 196        switch (drv_data->ssp_type) {
 197        case QUARK_X1000_SSP:
 198                return RX_THRESH_QUARK_X1000_DFLT;
 199        case CE4100_SSP:
 200                return RX_THRESH_CE4100_DFLT;
 201        default:
 202                return RX_THRESH_DFLT;
 203        }
 204}
 205
 206static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 207{
 208        u32 mask;
 209
 210        switch (drv_data->ssp_type) {
 211        case QUARK_X1000_SSP:
 212                mask = QUARK_X1000_SSSR_TFL_MASK;
 213                break;
 214        case CE4100_SSP:
 215                mask = CE4100_SSSR_TFL_MASK;
 216                break;
 217        default:
 218                mask = SSSR_TFL_MASK;
 219                break;
 220        }
 221
 222        return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
 223}
 224
 225static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 226                                     u32 *sccr1_reg)
 227{
 228        u32 mask;
 229
 230        switch (drv_data->ssp_type) {
 231        case QUARK_X1000_SSP:
 232                mask = QUARK_X1000_SSCR1_RFT;
 233                break;
 234        case CE4100_SSP:
 235                mask = CE4100_SSCR1_RFT;
 236                break;
 237        default:
 238                mask = SSCR1_RFT;
 239                break;
 240        }
 241        *sccr1_reg &= ~mask;
 242}
 243
 244static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 245                                   u32 *sccr1_reg, u32 threshold)
 246{
 247        switch (drv_data->ssp_type) {
 248        case QUARK_X1000_SSP:
 249                *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 250                break;
 251        case CE4100_SSP:
 252                *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
 253                break;
 254        default:
 255                *sccr1_reg |= SSCR1_RxTresh(threshold);
 256                break;
 257        }
 258}
 259
 260static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 261                                  u32 clk_div, u8 bits)
 262{
 263        switch (drv_data->ssp_type) {
 264        case QUARK_X1000_SSP:
 265                return clk_div
 266                        | QUARK_X1000_SSCR0_Motorola
 267                        | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
 268                        | SSCR0_SSE;
 269        default:
 270                return clk_div
 271                        | SSCR0_Motorola
 272                        | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 273                        | SSCR0_SSE
 274                        | (bits > 16 ? SSCR0_EDSS : 0);
 275        }
 276}
 277
 278/*
 279 * Read and write LPSS SSP private registers. Caller must first check that
 280 * is_lpss_ssp() returns true before these can be called.
 281 */
 282static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 283{
 284        WARN_ON(!drv_data->lpss_base);
 285        return readl(drv_data->lpss_base + offset);
 286}
 287
 288static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 289                                  unsigned offset, u32 value)
 290{
 291        WARN_ON(!drv_data->lpss_base);
 292        writel(value, drv_data->lpss_base + offset);
 293}
 294
 295/*
 296 * lpss_ssp_setup - perform LPSS SSP specific setup
 297 * @drv_data: pointer to the driver private data
 298 *
 299 * Perform LPSS SSP specific setup. This function must be called first if
 300 * one is going to use LPSS SSP private registers.
 301 */
 302static void lpss_ssp_setup(struct driver_data *drv_data)
 303{
 304        const struct lpss_config *config;
 305        u32 value;
 306
 307        config = lpss_get_config(drv_data);
 308        drv_data->lpss_base = drv_data->ioaddr + config->offset;
 309
 310        /* Enable software chip select control */
 311        value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 312        value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 313        value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 314        __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 315
 316        /* Enable multiblock DMA transfers */
 317        if (drv_data->master_info->enable_dma) {
 318                __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 319
 320                if (config->reg_general >= 0) {
 321                        value = __lpss_ssp_read_priv(drv_data,
 322                                                     config->reg_general);
 323                        value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 324                        __lpss_ssp_write_priv(drv_data,
 325                                              config->reg_general, value);
 326                }
 327        }
 328}
 329
 330static void lpss_ssp_select_cs(struct driver_data *drv_data,
 331                               const struct lpss_config *config)
 332{
 333        u32 value, cs;
 334
 335        if (!config->cs_sel_mask)
 336                return;
 337
 338        value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 339
 340        cs = drv_data->master->cur_msg->spi->chip_select;
 341        cs <<= config->cs_sel_shift;
 342        if (cs != (value & config->cs_sel_mask)) {
 343                /*
 344                 * When switching another chip select output active the
 345                 * output must be selected first and wait 2 ssp_clk cycles
 346                 * before changing state to active. Otherwise a short
 347                 * glitch will occur on the previous chip select since
 348                 * output select is latched but state control is not.
 349                 */
 350                value &= ~config->cs_sel_mask;
 351                value |= cs;
 352                __lpss_ssp_write_priv(drv_data,
 353                                      config->reg_cs_ctrl, value);
 354                ndelay(1000000000 /
 355                       (drv_data->master->max_speed_hz / 2));
 356        }
 357}
 358
 359static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
 360{
 361        const struct lpss_config *config;
 362        u32 value;
 363
 364        config = lpss_get_config(drv_data);
 365
 366        if (enable)
 367                lpss_ssp_select_cs(drv_data, config);
 368
 369        value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 370        if (enable)
 371                value &= ~LPSS_CS_CONTROL_CS_HIGH;
 372        else
 373                value |= LPSS_CS_CONTROL_CS_HIGH;
 374        __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 375}
 376
 377static void cs_assert(struct driver_data *drv_data)
 378{
 379        struct chip_data *chip =
 380                spi_get_ctldata(drv_data->master->cur_msg->spi);
 381
 382        if (drv_data->ssp_type == CE4100_SSP) {
 383                pxa2xx_spi_write(drv_data, SSSR, chip->frm);
 384                return;
 385        }
 386
 387        if (chip->cs_control) {
 388                chip->cs_control(PXA2XX_CS_ASSERT);
 389                return;
 390        }
 391
 392        if (gpio_is_valid(chip->gpio_cs)) {
 393                gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
 394                return;
 395        }
 396
 397        if (is_lpss_ssp(drv_data))
 398                lpss_ssp_cs_control(drv_data, true);
 399}
 400
 401static void cs_deassert(struct driver_data *drv_data)
 402{
 403        struct chip_data *chip =
 404                spi_get_ctldata(drv_data->master->cur_msg->spi);
 405
 406        if (drv_data->ssp_type == CE4100_SSP)
 407                return;
 408
 409        if (chip->cs_control) {
 410                chip->cs_control(PXA2XX_CS_DEASSERT);
 411                return;
 412        }
 413
 414        if (gpio_is_valid(chip->gpio_cs)) {
 415                gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
 416                return;
 417        }
 418
 419        if (is_lpss_ssp(drv_data))
 420                lpss_ssp_cs_control(drv_data, false);
 421}
 422
 423int pxa2xx_spi_flush(struct driver_data *drv_data)
 424{
 425        unsigned long limit = loops_per_jiffy << 1;
 426
 427        do {
 428                while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 429                        pxa2xx_spi_read(drv_data, SSDR);
 430        } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 431        write_SSSR_CS(drv_data, SSSR_ROR);
 432
 433        return limit;
 434}
 435
 436static int null_writer(struct driver_data *drv_data)
 437{
 438        u8 n_bytes = drv_data->n_bytes;
 439
 440        if (pxa2xx_spi_txfifo_full(drv_data)
 441                || (drv_data->tx == drv_data->tx_end))
 442                return 0;
 443
 444        pxa2xx_spi_write(drv_data, SSDR, 0);
 445        drv_data->tx += n_bytes;
 446
 447        return 1;
 448}
 449
 450static int null_reader(struct driver_data *drv_data)
 451{
 452        u8 n_bytes = drv_data->n_bytes;
 453
 454        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 455               && (drv_data->rx < drv_data->rx_end)) {
 456                pxa2xx_spi_read(drv_data, SSDR);
 457                drv_data->rx += n_bytes;
 458        }
 459
 460        return drv_data->rx == drv_data->rx_end;
 461}
 462
 463static int u8_writer(struct driver_data *drv_data)
 464{
 465        if (pxa2xx_spi_txfifo_full(drv_data)
 466                || (drv_data->tx == drv_data->tx_end))
 467                return 0;
 468
 469        pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 470        ++drv_data->tx;
 471
 472        return 1;
 473}
 474
 475static int u8_reader(struct driver_data *drv_data)
 476{
 477        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 478               && (drv_data->rx < drv_data->rx_end)) {
 479                *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 480                ++drv_data->rx;
 481        }
 482
 483        return drv_data->rx == drv_data->rx_end;
 484}
 485
 486static int u16_writer(struct driver_data *drv_data)
 487{
 488        if (pxa2xx_spi_txfifo_full(drv_data)
 489                || (drv_data->tx == drv_data->tx_end))
 490                return 0;
 491
 492        pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 493        drv_data->tx += 2;
 494
 495        return 1;
 496}
 497
 498static int u16_reader(struct driver_data *drv_data)
 499{
 500        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 501               && (drv_data->rx < drv_data->rx_end)) {
 502                *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 503                drv_data->rx += 2;
 504        }
 505
 506        return drv_data->rx == drv_data->rx_end;
 507}
 508
 509static int u32_writer(struct driver_data *drv_data)
 510{
 511        if (pxa2xx_spi_txfifo_full(drv_data)
 512                || (drv_data->tx == drv_data->tx_end))
 513                return 0;
 514
 515        pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 516        drv_data->tx += 4;
 517
 518        return 1;
 519}
 520
 521static int u32_reader(struct driver_data *drv_data)
 522{
 523        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 524               && (drv_data->rx < drv_data->rx_end)) {
 525                *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 526                drv_data->rx += 4;
 527        }
 528
 529        return drv_data->rx == drv_data->rx_end;
 530}
 531
 532void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
 533{
 534        struct spi_message *msg = drv_data->master->cur_msg;
 535        struct spi_transfer *trans = drv_data->cur_transfer;
 536
 537        /* Move to next transfer */
 538        if (trans->transfer_list.next != &msg->transfers) {
 539                drv_data->cur_transfer =
 540                        list_entry(trans->transfer_list.next,
 541                                        struct spi_transfer,
 542                                        transfer_list);
 543                return RUNNING_STATE;
 544        } else
 545                return DONE_STATE;
 546}
 547
 548/* caller already set message->status; dma and pio irqs are blocked */
 549static void giveback(struct driver_data *drv_data)
 550{
 551        struct spi_transfer* last_transfer;
 552        struct spi_message *msg;
 553        unsigned long timeout;
 554
 555        msg = drv_data->master->cur_msg;
 556        drv_data->cur_transfer = NULL;
 557
 558        last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
 559                                        transfer_list);
 560
 561        /* Delay if requested before any change in chip select */
 562        if (last_transfer->delay_usecs)
 563                udelay(last_transfer->delay_usecs);
 564
 565        /* Wait until SSP becomes idle before deasserting the CS */
 566        timeout = jiffies + msecs_to_jiffies(10);
 567        while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 568               !time_after(jiffies, timeout))
 569                cpu_relax();
 570
 571        /* Drop chip select UNLESS cs_change is true or we are returning
 572         * a message with an error, or next message is for another chip
 573         */
 574        if (!last_transfer->cs_change)
 575                cs_deassert(drv_data);
 576        else {
 577                struct spi_message *next_msg;
 578
 579                /* Holding of cs was hinted, but we need to make sure
 580                 * the next message is for the same chip.  Don't waste
 581                 * time with the following tests unless this was hinted.
 582                 *
 583                 * We cannot postpone this until pump_messages, because
 584                 * after calling msg->complete (below) the driver that
 585                 * sent the current message could be unloaded, which
 586                 * could invalidate the cs_control() callback...
 587                 */
 588
 589                /* get a pointer to the next message, if any */
 590                next_msg = spi_get_next_queued_message(drv_data->master);
 591
 592                /* see if the next and current messages point
 593                 * to the same chip
 594                 */
 595                if ((next_msg && next_msg->spi != msg->spi) ||
 596                    msg->state == ERROR_STATE)
 597                        cs_deassert(drv_data);
 598        }
 599
 600        spi_finalize_current_message(drv_data->master);
 601}
 602
 603static void reset_sccr1(struct driver_data *drv_data)
 604{
 605        struct chip_data *chip =
 606                spi_get_ctldata(drv_data->master->cur_msg->spi);
 607        u32 sccr1_reg;
 608
 609        sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
 610        switch (drv_data->ssp_type) {
 611        case QUARK_X1000_SSP:
 612                sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
 613                break;
 614        case CE4100_SSP:
 615                sccr1_reg &= ~CE4100_SSCR1_RFT;
 616                break;
 617        default:
 618                sccr1_reg &= ~SSCR1_RFT;
 619                break;
 620        }
 621        sccr1_reg |= chip->threshold;
 622        pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 623}
 624
 625static void int_error_stop(struct driver_data *drv_data, const char* msg)
 626{
 627        /* Stop and reset SSP */
 628        write_SSSR_CS(drv_data, drv_data->clear_sr);
 629        reset_sccr1(drv_data);
 630        if (!pxa25x_ssp_comp(drv_data))
 631                pxa2xx_spi_write(drv_data, SSTO, 0);
 632        pxa2xx_spi_flush(drv_data);
 633        pxa2xx_spi_write(drv_data, SSCR0,
 634                         pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 635
 636        dev_err(&drv_data->pdev->dev, "%s\n", msg);
 637
 638        drv_data->master->cur_msg->state = ERROR_STATE;
 639        tasklet_schedule(&drv_data->pump_transfers);
 640}
 641
 642static void int_transfer_complete(struct driver_data *drv_data)
 643{
 644        /* Clear and disable interrupts */
 645        write_SSSR_CS(drv_data, drv_data->clear_sr);
 646        reset_sccr1(drv_data);
 647        if (!pxa25x_ssp_comp(drv_data))
 648                pxa2xx_spi_write(drv_data, SSTO, 0);
 649
 650        /* Update total byte transferred return count actual bytes read */
 651        drv_data->master->cur_msg->actual_length += drv_data->len -
 652                                (drv_data->rx_end - drv_data->rx);
 653
 654        /* Transfer delays and chip select release are
 655         * handled in pump_transfers or giveback
 656         */
 657
 658        /* Move to next transfer */
 659        drv_data->master->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
 660
 661        /* Schedule transfer tasklet */
 662        tasklet_schedule(&drv_data->pump_transfers);
 663}
 664
 665static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 666{
 667        u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
 668                       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 669
 670        u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
 671
 672        if (irq_status & SSSR_ROR) {
 673                int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 674                return IRQ_HANDLED;
 675        }
 676
 677        if (irq_status & SSSR_TINT) {
 678                pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 679                if (drv_data->read(drv_data)) {
 680                        int_transfer_complete(drv_data);
 681                        return IRQ_HANDLED;
 682                }
 683        }
 684
 685        /* Drain rx fifo, Fill tx fifo and prevent overruns */
 686        do {
 687                if (drv_data->read(drv_data)) {
 688                        int_transfer_complete(drv_data);
 689                        return IRQ_HANDLED;
 690                }
 691        } while (drv_data->write(drv_data));
 692
 693        if (drv_data->read(drv_data)) {
 694                int_transfer_complete(drv_data);
 695                return IRQ_HANDLED;
 696        }
 697
 698        if (drv_data->tx == drv_data->tx_end) {
 699                u32 bytes_left;
 700                u32 sccr1_reg;
 701
 702                sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 703                sccr1_reg &= ~SSCR1_TIE;
 704
 705                /*
 706                 * PXA25x_SSP has no timeout, set up rx threshould for the
 707                 * remaining RX bytes.
 708                 */
 709                if (pxa25x_ssp_comp(drv_data)) {
 710                        u32 rx_thre;
 711
 712                        pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 713
 714                        bytes_left = drv_data->rx_end - drv_data->rx;
 715                        switch (drv_data->n_bytes) {
 716                        case 4:
 717                                bytes_left >>= 1;
 718                        case 2:
 719                                bytes_left >>= 1;
 720                        }
 721
 722                        rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 723                        if (rx_thre > bytes_left)
 724                                rx_thre = bytes_left;
 725
 726                        pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 727                }
 728                pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 729        }
 730
 731        /* We did something */
 732        return IRQ_HANDLED;
 733}
 734
 735static irqreturn_t ssp_int(int irq, void *dev_id)
 736{
 737        struct driver_data *drv_data = dev_id;
 738        u32 sccr1_reg;
 739        u32 mask = drv_data->mask_sr;
 740        u32 status;
 741
 742        /*
 743         * The IRQ might be shared with other peripherals so we must first
 744         * check that are we RPM suspended or not. If we are we assume that
 745         * the IRQ was not for us (we shouldn't be RPM suspended when the
 746         * interrupt is enabled).
 747         */
 748        if (pm_runtime_suspended(&drv_data->pdev->dev))
 749                return IRQ_NONE;
 750
 751        /*
 752         * If the device is not yet in RPM suspended state and we get an
 753         * interrupt that is meant for another device, check if status bits
 754         * are all set to one. That means that the device is already
 755         * powered off.
 756         */
 757        status = pxa2xx_spi_read(drv_data, SSSR);
 758        if (status == ~0)
 759                return IRQ_NONE;
 760
 761        sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 762
 763        /* Ignore possible writes if we don't need to write */
 764        if (!(sccr1_reg & SSCR1_TIE))
 765                mask &= ~SSSR_TFS;
 766
 767        /* Ignore RX timeout interrupt if it is disabled */
 768        if (!(sccr1_reg & SSCR1_TINTE))
 769                mask &= ~SSSR_TINT;
 770
 771        if (!(status & mask))
 772                return IRQ_NONE;
 773
 774        if (!drv_data->master->cur_msg) {
 775
 776                pxa2xx_spi_write(drv_data, SSCR0,
 777                                 pxa2xx_spi_read(drv_data, SSCR0)
 778                                 & ~SSCR0_SSE);
 779                pxa2xx_spi_write(drv_data, SSCR1,
 780                                 pxa2xx_spi_read(drv_data, SSCR1)
 781                                 & ~drv_data->int_cr1);
 782                if (!pxa25x_ssp_comp(drv_data))
 783                        pxa2xx_spi_write(drv_data, SSTO, 0);
 784                write_SSSR_CS(drv_data, drv_data->clear_sr);
 785
 786                dev_err(&drv_data->pdev->dev,
 787                        "bad message state in interrupt handler\n");
 788
 789                /* Never fail */
 790                return IRQ_HANDLED;
 791        }
 792
 793        return drv_data->transfer_handler(drv_data);
 794}
 795
 796/*
 797 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 798 * input frequency by fractions of 2^24. It also has a divider by 5.
 799 *
 800 * There are formulas to get baud rate value for given input frequency and
 801 * divider parameters, such as DDS_CLK_RATE and SCR:
 802 *
 803 * Fsys = 200MHz
 804 *
 805 * Fssp = Fsys * DDS_CLK_RATE / 2^24                    (1)
 806 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))           (2)
 807 *
 808 * DDS_CLK_RATE either 2^n or 2^n / 5.
 809 * SCR is in range 0 .. 255
 810 *
 811 * Divisor = 5^i * 2^j * 2 * k
 812 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 813 *       j = [0, 23]     j = 0 iff i = 1
 814 *       k = [1, 256]
 815 * Special case: j = 0, i = 1: Divisor = 2 / 5
 816 *
 817 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 818 * are:
 819 *      Case 1:         2^n, n = [0, 23]
 820 *      Case 2:         2^24 * 2 / 5 (0x666666)
 821 *      Case 3:         less than or equal to 2^24 / 5 / 16 (0x33333)
 822 *
 823 * In all cases the lowest possible value is better.
 824 *
 825 * The function calculates parameters for all cases and chooses the one closest
 826 * to the asked baud rate.
 827 */
 828static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 829{
 830        unsigned long xtal = 200000000;
 831        unsigned long fref = xtal / 2;          /* mandatory division by 2,
 832                                                   see (2) */
 833                                                /* case 3 */
 834        unsigned long fref1 = fref / 2;         /* case 1 */
 835        unsigned long fref2 = fref * 2 / 5;     /* case 2 */
 836        unsigned long scale;
 837        unsigned long q, q1, q2;
 838        long r, r1, r2;
 839        u32 mul;
 840
 841        /* Case 1 */
 842
 843        /* Set initial value for DDS_CLK_RATE */
 844        mul = (1 << 24) >> 1;
 845
 846        /* Calculate initial quot */
 847        q1 = DIV_ROUND_UP(fref1, rate);
 848
 849        /* Scale q1 if it's too big */
 850        if (q1 > 256) {
 851                /* Scale q1 to range [1, 512] */
 852                scale = fls_long(q1 - 1);
 853                if (scale > 9) {
 854                        q1 >>= scale - 9;
 855                        mul >>= scale - 9;
 856                }
 857
 858                /* Round the result if we have a remainder */
 859                q1 += q1 & 1;
 860        }
 861
 862        /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 863        scale = __ffs(q1);
 864        q1 >>= scale;
 865        mul >>= scale;
 866
 867        /* Get the remainder */
 868        r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 869
 870        /* Case 2 */
 871
 872        q2 = DIV_ROUND_UP(fref2, rate);
 873        r2 = abs(fref2 / q2 - rate);
 874
 875        /*
 876         * Choose the best between two: less remainder we have the better. We
 877         * can't go case 2 if q2 is greater than 256 since SCR register can
 878         * hold only values 0 .. 255.
 879         */
 880        if (r2 >= r1 || q2 > 256) {
 881                /* case 1 is better */
 882                r = r1;
 883                q = q1;
 884        } else {
 885                /* case 2 is better */
 886                r = r2;
 887                q = q2;
 888                mul = (1 << 24) * 2 / 5;
 889        }
 890
 891        /* Check case 3 only if the divisor is big enough */
 892        if (fref / rate >= 80) {
 893                u64 fssp;
 894                u32 m;
 895
 896                /* Calculate initial quot */
 897                q1 = DIV_ROUND_UP(fref, rate);
 898                m = (1 << 24) / q1;
 899
 900                /* Get the remainder */
 901                fssp = (u64)fref * m;
 902                do_div(fssp, 1 << 24);
 903                r1 = abs(fssp - rate);
 904
 905                /* Choose this one if it suits better */
 906                if (r1 < r) {
 907                        /* case 3 is better */
 908                        q = 1;
 909                        mul = m;
 910                }
 911        }
 912
 913        *dds = mul;
 914        return q - 1;
 915}
 916
 917static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 918{
 919        unsigned long ssp_clk = drv_data->master->max_speed_hz;
 920        const struct ssp_device *ssp = drv_data->ssp;
 921
 922        rate = min_t(int, ssp_clk, rate);
 923
 924        if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 925                return (ssp_clk / (2 * rate) - 1) & 0xff;
 926        else
 927                return (ssp_clk / rate - 1) & 0xfff;
 928}
 929
 930static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 931                                           int rate)
 932{
 933        struct chip_data *chip =
 934                spi_get_ctldata(drv_data->master->cur_msg->spi);
 935        unsigned int clk_div;
 936
 937        switch (drv_data->ssp_type) {
 938        case QUARK_X1000_SSP:
 939                clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 940                break;
 941        default:
 942                clk_div = ssp_get_clk_div(drv_data, rate);
 943                break;
 944        }
 945        return clk_div << 8;
 946}
 947
 948static bool pxa2xx_spi_can_dma(struct spi_master *master,
 949                               struct spi_device *spi,
 950                               struct spi_transfer *xfer)
 951{
 952        struct chip_data *chip = spi_get_ctldata(spi);
 953
 954        return chip->enable_dma &&
 955               xfer->len <= MAX_DMA_LEN &&
 956               xfer->len >= chip->dma_burst_size;
 957}
 958
 959static void pump_transfers(unsigned long data)
 960{
 961        struct driver_data *drv_data = (struct driver_data *)data;
 962        struct spi_master *master = drv_data->master;
 963        struct spi_message *message = master->cur_msg;
 964        struct chip_data *chip = spi_get_ctldata(message->spi);
 965        u32 dma_thresh = chip->dma_threshold;
 966        u32 dma_burst = chip->dma_burst_size;
 967        u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 968        struct spi_transfer *transfer;
 969        struct spi_transfer *previous;
 970        u32 clk_div;
 971        u8 bits;
 972        u32 speed;
 973        u32 cr0;
 974        u32 cr1;
 975        int err;
 976        int dma_mapped;
 977
 978        /* Get current state information */
 979        transfer = drv_data->cur_transfer;
 980
 981        /* Handle for abort */
 982        if (message->state == ERROR_STATE) {
 983                message->status = -EIO;
 984                giveback(drv_data);
 985                return;
 986        }
 987
 988        /* Handle end of message */
 989        if (message->state == DONE_STATE) {
 990                message->status = 0;
 991                giveback(drv_data);
 992                return;
 993        }
 994
 995        /* Delay if requested at end of transfer before CS change */
 996        if (message->state == RUNNING_STATE) {
 997                previous = list_entry(transfer->transfer_list.prev,
 998                                        struct spi_transfer,
 999                                        transfer_list);
1000                if (previous->delay_usecs)
1001                        udelay(previous->delay_usecs);
1002
1003                /* Drop chip select only if cs_change is requested */
1004                if (previous->cs_change)
1005                        cs_deassert(drv_data);
1006        }
1007
1008        /* Check if we can DMA this transfer */
1009        if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
1010
1011                /* reject already-mapped transfers; PIO won't always work */
1012                if (message->is_dma_mapped
1013                                || transfer->rx_dma || transfer->tx_dma) {
1014                        dev_err(&drv_data->pdev->dev,
1015                                "pump_transfers: mapped transfer length of "
1016                                "%u is greater than %d\n",
1017                                transfer->len, MAX_DMA_LEN);
1018                        message->status = -EINVAL;
1019                        giveback(drv_data);
1020                        return;
1021                }
1022
1023                /* warn ... we force this to PIO mode */
1024                dev_warn_ratelimited(&message->spi->dev,
1025                                     "pump_transfers: DMA disabled for transfer length %ld "
1026                                     "greater than %d\n",
1027                                     (long)drv_data->len, MAX_DMA_LEN);
1028        }
1029
1030        /* Setup the transfer state based on the type of transfer */
1031        if (pxa2xx_spi_flush(drv_data) == 0) {
1032                dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
1033                message->status = -EIO;
1034                giveback(drv_data);
1035                return;
1036        }
1037        drv_data->n_bytes = chip->n_bytes;
1038        drv_data->tx = (void *)transfer->tx_buf;
1039        drv_data->tx_end = drv_data->tx + transfer->len;
1040        drv_data->rx = transfer->rx_buf;
1041        drv_data->rx_end = drv_data->rx + transfer->len;
1042        drv_data->len = transfer->len;
1043        drv_data->write = drv_data->tx ? chip->write : null_writer;
1044        drv_data->read = drv_data->rx ? chip->read : null_reader;
1045
1046        /* Change speed and bit per word on a per transfer */
1047        bits = transfer->bits_per_word;
1048        speed = transfer->speed_hz;
1049
1050        clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1051
1052        if (bits <= 8) {
1053                drv_data->n_bytes = 1;
1054                drv_data->read = drv_data->read != null_reader ?
1055                                        u8_reader : null_reader;
1056                drv_data->write = drv_data->write != null_writer ?
1057                                        u8_writer : null_writer;
1058        } else if (bits <= 16) {
1059                drv_data->n_bytes = 2;
1060                drv_data->read = drv_data->read != null_reader ?
1061                                        u16_reader : null_reader;
1062                drv_data->write = drv_data->write != null_writer ?
1063                                        u16_writer : null_writer;
1064        } else if (bits <= 32) {
1065                drv_data->n_bytes = 4;
1066                drv_data->read = drv_data->read != null_reader ?
1067                                        u32_reader : null_reader;
1068                drv_data->write = drv_data->write != null_writer ?
1069                                        u32_writer : null_writer;
1070        }
1071        /*
1072         * if bits/word is changed in dma mode, then must check the
1073         * thresholds and burst also
1074         */
1075        if (chip->enable_dma) {
1076                if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1077                                                message->spi,
1078                                                bits, &dma_burst,
1079                                                &dma_thresh))
1080                        dev_warn_ratelimited(&message->spi->dev,
1081                                             "pump_transfers: DMA burst size reduced to match bits_per_word\n");
1082        }
1083
1084        message->state = RUNNING_STATE;
1085
1086        dma_mapped = master->can_dma &&
1087                     master->can_dma(master, message->spi, transfer) &&
1088                     master->cur_msg_mapped;
1089        if (dma_mapped) {
1090
1091                /* Ensure we have the correct interrupt handler */
1092                drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1093
1094                err = pxa2xx_spi_dma_prepare(drv_data, dma_burst);
1095                if (err) {
1096                        message->status = err;
1097                        giveback(drv_data);
1098                        return;
1099                }
1100
1101                /* Clear status and start DMA engine */
1102                cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1103                pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1104
1105                pxa2xx_spi_dma_start(drv_data);
1106        } else {
1107                /* Ensure we have the correct interrupt handler */
1108                drv_data->transfer_handler = interrupt_transfer;
1109
1110                /* Clear status  */
1111                cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1112                write_SSSR_CS(drv_data, drv_data->clear_sr);
1113        }
1114
1115        /* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1116        cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1117        if (!pxa25x_ssp_comp(drv_data))
1118                dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1119                        master->max_speed_hz
1120                                / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1121                        dma_mapped ? "DMA" : "PIO");
1122        else
1123                dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1124                        master->max_speed_hz / 2
1125                                / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1126                        dma_mapped ? "DMA" : "PIO");
1127
1128        if (is_lpss_ssp(drv_data)) {
1129                if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1130                    != chip->lpss_rx_threshold)
1131                        pxa2xx_spi_write(drv_data, SSIRF,
1132                                         chip->lpss_rx_threshold);
1133                if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1134                    != chip->lpss_tx_threshold)
1135                        pxa2xx_spi_write(drv_data, SSITF,
1136                                         chip->lpss_tx_threshold);
1137        }
1138
1139        if (is_quark_x1000_ssp(drv_data) &&
1140            (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1141                pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1142
1143        /* see if we need to reload the config registers */
1144        if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1145            || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1146            != (cr1 & change_mask)) {
1147                /* stop the SSP, and update the other bits */
1148                pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1149                if (!pxa25x_ssp_comp(drv_data))
1150                        pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1151                /* first set CR1 without interrupt and service enables */
1152                pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1153                /* restart the SSP */
1154                pxa2xx_spi_write(drv_data, SSCR0, cr0);
1155
1156        } else {
1157                if (!pxa25x_ssp_comp(drv_data))
1158                        pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1159        }
1160
1161        cs_assert(drv_data);
1162
1163        /* after chip select, release the data by enabling service
1164         * requests and interrupts, without changing any mode bits */
1165        pxa2xx_spi_write(drv_data, SSCR1, cr1);
1166}
1167
1168static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
1169                                           struct spi_message *msg)
1170{
1171        struct driver_data *drv_data = spi_master_get_devdata(master);
1172
1173        /* Initial message state*/
1174        msg->state = START_STATE;
1175        drv_data->cur_transfer = list_entry(msg->transfers.next,
1176                                                struct spi_transfer,
1177                                                transfer_list);
1178
1179        /* Mark as busy and launch transfers */
1180        tasklet_schedule(&drv_data->pump_transfers);
1181        return 0;
1182}
1183
1184static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1185{
1186        struct driver_data *drv_data = spi_master_get_devdata(master);
1187
1188        /* Disable the SSP now */
1189        pxa2xx_spi_write(drv_data, SSCR0,
1190                         pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1191
1192        return 0;
1193}
1194
1195static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1196                    struct pxa2xx_spi_chip *chip_info)
1197{
1198        struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1199        int err = 0;
1200
1201        if (chip == NULL)
1202                return 0;
1203
1204        if (drv_data->cs_gpiods) {
1205                struct gpio_desc *gpiod;
1206
1207                gpiod = drv_data->cs_gpiods[spi->chip_select];
1208                if (gpiod) {
1209                        chip->gpio_cs = desc_to_gpio(gpiod);
1210                        chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1211                        gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1212                }
1213
1214                return 0;
1215        }
1216
1217        if (chip_info == NULL)
1218                return 0;
1219
1220        /* NOTE: setup() can be called multiple times, possibly with
1221         * different chip_info, release previously requested GPIO
1222         */
1223        if (gpio_is_valid(chip->gpio_cs))
1224                gpio_free(chip->gpio_cs);
1225
1226        /* If (*cs_control) is provided, ignore GPIO chip select */
1227        if (chip_info->cs_control) {
1228                chip->cs_control = chip_info->cs_control;
1229                return 0;
1230        }
1231
1232        if (gpio_is_valid(chip_info->gpio_cs)) {
1233                err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1234                if (err) {
1235                        dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1236                                chip_info->gpio_cs);
1237                        return err;
1238                }
1239
1240                chip->gpio_cs = chip_info->gpio_cs;
1241                chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1242
1243                err = gpio_direction_output(chip->gpio_cs,
1244                                        !chip->gpio_cs_inverted);
1245        }
1246
1247        return err;
1248}
1249
1250static int setup(struct spi_device *spi)
1251{
1252        struct pxa2xx_spi_chip *chip_info;
1253        struct chip_data *chip;
1254        const struct lpss_config *config;
1255        struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1256        uint tx_thres, tx_hi_thres, rx_thres;
1257
1258        switch (drv_data->ssp_type) {
1259        case QUARK_X1000_SSP:
1260                tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1261                tx_hi_thres = 0;
1262                rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1263                break;
1264        case CE4100_SSP:
1265                tx_thres = TX_THRESH_CE4100_DFLT;
1266                tx_hi_thres = 0;
1267                rx_thres = RX_THRESH_CE4100_DFLT;
1268                break;
1269        case LPSS_LPT_SSP:
1270        case LPSS_BYT_SSP:
1271        case LPSS_BSW_SSP:
1272        case LPSS_SPT_SSP:
1273        case LPSS_BXT_SSP:
1274                config = lpss_get_config(drv_data);
1275                tx_thres = config->tx_threshold_lo;
1276                tx_hi_thres = config->tx_threshold_hi;
1277                rx_thres = config->rx_threshold;
1278                break;
1279        default:
1280                tx_thres = TX_THRESH_DFLT;
1281                tx_hi_thres = 0;
1282                rx_thres = RX_THRESH_DFLT;
1283                break;
1284        }
1285
1286        /* Only alloc on first setup */
1287        chip = spi_get_ctldata(spi);
1288        if (!chip) {
1289                chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1290                if (!chip)
1291                        return -ENOMEM;
1292
1293                if (drv_data->ssp_type == CE4100_SSP) {
1294                        if (spi->chip_select > 4) {
1295                                dev_err(&spi->dev,
1296                                        "failed setup: cs number must not be > 4.\n");
1297                                kfree(chip);
1298                                return -EINVAL;
1299                        }
1300
1301                        chip->frm = spi->chip_select;
1302                } else
1303                        chip->gpio_cs = -1;
1304                chip->enable_dma = drv_data->master_info->enable_dma;
1305                chip->timeout = TIMOUT_DFLT;
1306        }
1307
1308        /* protocol drivers may change the chip settings, so...
1309         * if chip_info exists, use it */
1310        chip_info = spi->controller_data;
1311
1312        /* chip_info isn't always needed */
1313        chip->cr1 = 0;
1314        if (chip_info) {
1315                if (chip_info->timeout)
1316                        chip->timeout = chip_info->timeout;
1317                if (chip_info->tx_threshold)
1318                        tx_thres = chip_info->tx_threshold;
1319                if (chip_info->tx_hi_threshold)
1320                        tx_hi_thres = chip_info->tx_hi_threshold;
1321                if (chip_info->rx_threshold)
1322                        rx_thres = chip_info->rx_threshold;
1323                chip->dma_threshold = 0;
1324                if (chip_info->enable_loopback)
1325                        chip->cr1 = SSCR1_LBM;
1326        }
1327
1328        chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1329        chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1330                                | SSITF_TxHiThresh(tx_hi_thres);
1331
1332        /* set dma burst and threshold outside of chip_info path so that if
1333         * chip_info goes away after setting chip->enable_dma, the
1334         * burst and threshold can still respond to changes in bits_per_word */
1335        if (chip->enable_dma) {
1336                /* set up legal burst and threshold for dma */
1337                if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1338                                                spi->bits_per_word,
1339                                                &chip->dma_burst_size,
1340                                                &chip->dma_threshold)) {
1341                        dev_warn(&spi->dev,
1342                                 "in setup: DMA burst size reduced to match bits_per_word\n");
1343                }
1344        }
1345
1346        switch (drv_data->ssp_type) {
1347        case QUARK_X1000_SSP:
1348                chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1349                                   & QUARK_X1000_SSCR1_RFT)
1350                                   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1351                                   & QUARK_X1000_SSCR1_TFT);
1352                break;
1353        case CE4100_SSP:
1354                chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1355                        (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1356                break;
1357        default:
1358                chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1359                        (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1360                break;
1361        }
1362
1363        chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1364        chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1365                        | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1366
1367        if (spi->mode & SPI_LOOP)
1368                chip->cr1 |= SSCR1_LBM;
1369
1370        if (spi->bits_per_word <= 8) {
1371                chip->n_bytes = 1;
1372                chip->read = u8_reader;
1373                chip->write = u8_writer;
1374        } else if (spi->bits_per_word <= 16) {
1375                chip->n_bytes = 2;
1376                chip->read = u16_reader;
1377                chip->write = u16_writer;
1378        } else if (spi->bits_per_word <= 32) {
1379                chip->n_bytes = 4;
1380                chip->read = u32_reader;
1381                chip->write = u32_writer;
1382        }
1383
1384        spi_set_ctldata(spi, chip);
1385
1386        if (drv_data->ssp_type == CE4100_SSP)
1387                return 0;
1388
1389        return setup_cs(spi, chip, chip_info);
1390}
1391
1392static void cleanup(struct spi_device *spi)
1393{
1394        struct chip_data *chip = spi_get_ctldata(spi);
1395        struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1396
1397        if (!chip)
1398                return;
1399
1400        if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1401            gpio_is_valid(chip->gpio_cs))
1402                gpio_free(chip->gpio_cs);
1403
1404        kfree(chip);
1405}
1406
1407#ifdef CONFIG_PCI
1408#ifdef CONFIG_ACPI
1409
1410static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1411        { "INT33C0", LPSS_LPT_SSP },
1412        { "INT33C1", LPSS_LPT_SSP },
1413        { "INT3430", LPSS_LPT_SSP },
1414        { "INT3431", LPSS_LPT_SSP },
1415        { "80860F0E", LPSS_BYT_SSP },
1416        { "8086228E", LPSS_BSW_SSP },
1417        { },
1418};
1419MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1420
1421static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1422{
1423        unsigned int devid;
1424        int port_id = -1;
1425
1426        if (adev && adev->pnp.unique_id &&
1427            !kstrtouint(adev->pnp.unique_id, 0, &devid))
1428                port_id = devid;
1429        return port_id;
1430}
1431#else /* !CONFIG_ACPI */
1432static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1433{
1434        return -1;
1435}
1436#endif
1437
1438/*
1439 * PCI IDs of compound devices that integrate both host controller and private
1440 * integrated DMA engine. Please note these are not used in module
1441 * autoloading and probing in this module but matching the LPSS SSP type.
1442 */
1443static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1444        /* SPT-LP */
1445        { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1446        { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1447        /* SPT-H */
1448        { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1449        { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1450        /* KBL-H */
1451        { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1452        { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1453        /* BXT A-Step */
1454        { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1455        { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1456        { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1457        /* BXT B-Step */
1458        { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1459        { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1460        { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1461        /* APL */
1462        { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1463        { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1464        { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1465        { },
1466};
1467
1468static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1469{
1470        struct device *dev = param;
1471
1472        if (dev != chan->device->dev->parent)
1473                return false;
1474
1475        return true;
1476}
1477
1478static struct pxa2xx_spi_master *
1479pxa2xx_spi_init_pdata(struct platform_device *pdev)
1480{
1481        struct pxa2xx_spi_master *pdata;
1482        struct acpi_device *adev;
1483        struct ssp_device *ssp;
1484        struct resource *res;
1485        const struct acpi_device_id *adev_id = NULL;
1486        const struct pci_device_id *pcidev_id = NULL;
1487        int type;
1488
1489        adev = ACPI_COMPANION(&pdev->dev);
1490
1491        if (dev_is_pci(pdev->dev.parent))
1492                pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1493                                         to_pci_dev(pdev->dev.parent));
1494        else if (adev)
1495                adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1496                                            &pdev->dev);
1497        else
1498                return NULL;
1499
1500        if (adev_id)
1501                type = (int)adev_id->driver_data;
1502        else if (pcidev_id)
1503                type = (int)pcidev_id->driver_data;
1504        else
1505                return NULL;
1506
1507        pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1508        if (!pdata)
1509                return NULL;
1510
1511        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1512        if (!res)
1513                return NULL;
1514
1515        ssp = &pdata->ssp;
1516
1517        ssp->phys_base = res->start;
1518        ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1519        if (IS_ERR(ssp->mmio_base))
1520                return NULL;
1521
1522        if (pcidev_id) {
1523                pdata->tx_param = pdev->dev.parent;
1524                pdata->rx_param = pdev->dev.parent;
1525                pdata->dma_filter = pxa2xx_spi_idma_filter;
1526        }
1527
1528        ssp->clk = devm_clk_get(&pdev->dev, NULL);
1529        ssp->irq = platform_get_irq(pdev, 0);
1530        ssp->type = type;
1531        ssp->pdev = pdev;
1532        ssp->port_id = pxa2xx_spi_get_port_id(adev);
1533
1534        pdata->num_chipselect = 1;
1535        pdata->enable_dma = true;
1536
1537        return pdata;
1538}
1539
1540#else /* !CONFIG_PCI */
1541static inline struct pxa2xx_spi_master *
1542pxa2xx_spi_init_pdata(struct platform_device *pdev)
1543{
1544        return NULL;
1545}
1546#endif
1547
1548static int pxa2xx_spi_fw_translate_cs(struct spi_master *master, unsigned cs)
1549{
1550        struct driver_data *drv_data = spi_master_get_devdata(master);
1551
1552        if (has_acpi_companion(&drv_data->pdev->dev)) {
1553                switch (drv_data->ssp_type) {
1554                /*
1555                 * For Atoms the ACPI DeviceSelection used by the Windows
1556                 * driver starts from 1 instead of 0 so translate it here
1557                 * to match what Linux expects.
1558                 */
1559                case LPSS_BYT_SSP:
1560                case LPSS_BSW_SSP:
1561                        return cs - 1;
1562
1563                default:
1564                        break;
1565                }
1566        }
1567
1568        return cs;
1569}
1570
1571static int pxa2xx_spi_probe(struct platform_device *pdev)
1572{
1573        struct device *dev = &pdev->dev;
1574        struct pxa2xx_spi_master *platform_info;
1575        struct spi_master *master;
1576        struct driver_data *drv_data;
1577        struct ssp_device *ssp;
1578        const struct lpss_config *config;
1579        int status, count;
1580        u32 tmp;
1581
1582        platform_info = dev_get_platdata(dev);
1583        if (!platform_info) {
1584                platform_info = pxa2xx_spi_init_pdata(pdev);
1585                if (!platform_info) {
1586                        dev_err(&pdev->dev, "missing platform data\n");
1587                        return -ENODEV;
1588                }
1589        }
1590
1591        ssp = pxa_ssp_request(pdev->id, pdev->name);
1592        if (!ssp)
1593                ssp = &platform_info->ssp;
1594
1595        if (!ssp->mmio_base) {
1596                dev_err(&pdev->dev, "failed to get ssp\n");
1597                return -ENODEV;
1598        }
1599
1600        master = spi_alloc_master(dev, sizeof(struct driver_data));
1601        if (!master) {
1602                dev_err(&pdev->dev, "cannot alloc spi_master\n");
1603                pxa_ssp_free(ssp);
1604                return -ENOMEM;
1605        }
1606        drv_data = spi_master_get_devdata(master);
1607        drv_data->master = master;
1608        drv_data->master_info = platform_info;
1609        drv_data->pdev = pdev;
1610        drv_data->ssp = ssp;
1611
1612        master->dev.of_node = pdev->dev.of_node;
1613        /* the spi->mode bits understood by this driver: */
1614        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1615
1616        master->bus_num = ssp->port_id;
1617        master->dma_alignment = DMA_ALIGNMENT;
1618        master->cleanup = cleanup;
1619        master->setup = setup;
1620        master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1621        master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1622        master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1623        master->auto_runtime_pm = true;
1624        master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
1625
1626        drv_data->ssp_type = ssp->type;
1627
1628        drv_data->ioaddr = ssp->mmio_base;
1629        drv_data->ssdr_physical = ssp->phys_base + SSDR;
1630        if (pxa25x_ssp_comp(drv_data)) {
1631                switch (drv_data->ssp_type) {
1632                case QUARK_X1000_SSP:
1633                        master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1634                        break;
1635                default:
1636                        master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1637                        break;
1638                }
1639
1640                drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1641                drv_data->dma_cr1 = 0;
1642                drv_data->clear_sr = SSSR_ROR;
1643                drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1644        } else {
1645                master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1646                drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1647                drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1648                drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1649                drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1650        }
1651
1652        status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1653                        drv_data);
1654        if (status < 0) {
1655                dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1656                goto out_error_master_alloc;
1657        }
1658
1659        /* Setup DMA if requested */
1660        if (platform_info->enable_dma) {
1661                status = pxa2xx_spi_dma_setup(drv_data);
1662                if (status) {
1663                        dev_dbg(dev, "no DMA channels available, using PIO\n");
1664                        platform_info->enable_dma = false;
1665                } else {
1666                        master->can_dma = pxa2xx_spi_can_dma;
1667                }
1668        }
1669
1670        /* Enable SOC clock */
1671        clk_prepare_enable(ssp->clk);
1672
1673        master->max_speed_hz = clk_get_rate(ssp->clk);
1674
1675        /* Load default SSP configuration */
1676        pxa2xx_spi_write(drv_data, SSCR0, 0);
1677        switch (drv_data->ssp_type) {
1678        case QUARK_X1000_SSP:
1679                tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1680                      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1681                pxa2xx_spi_write(drv_data, SSCR1, tmp);
1682
1683                /* using the Motorola SPI protocol and use 8 bit frame */
1684                tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1685                pxa2xx_spi_write(drv_data, SSCR0, tmp);
1686                break;
1687        case CE4100_SSP:
1688                tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1689                      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1690                pxa2xx_spi_write(drv_data, SSCR1, tmp);
1691                tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1692                pxa2xx_spi_write(drv_data, SSCR0, tmp);
1693        default:
1694                tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1695                      SSCR1_TxTresh(TX_THRESH_DFLT);
1696                pxa2xx_spi_write(drv_data, SSCR1, tmp);
1697                tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1698                pxa2xx_spi_write(drv_data, SSCR0, tmp);
1699                break;
1700        }
1701
1702        if (!pxa25x_ssp_comp(drv_data))
1703                pxa2xx_spi_write(drv_data, SSTO, 0);
1704
1705        if (!is_quark_x1000_ssp(drv_data))
1706                pxa2xx_spi_write(drv_data, SSPSP, 0);
1707
1708        if (is_lpss_ssp(drv_data)) {
1709                lpss_ssp_setup(drv_data);
1710                config = lpss_get_config(drv_data);
1711                if (config->reg_capabilities >= 0) {
1712                        tmp = __lpss_ssp_read_priv(drv_data,
1713                                                   config->reg_capabilities);
1714                        tmp &= LPSS_CAPS_CS_EN_MASK;
1715                        tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1716                        platform_info->num_chipselect = ffz(tmp);
1717                } else if (config->cs_num) {
1718                        platform_info->num_chipselect = config->cs_num;
1719                }
1720        }
1721        master->num_chipselect = platform_info->num_chipselect;
1722
1723        count = gpiod_count(&pdev->dev, "cs");
1724        if (count > 0) {
1725                int i;
1726
1727                master->num_chipselect = max_t(int, count,
1728                        master->num_chipselect);
1729
1730                drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1731                        master->num_chipselect, sizeof(struct gpio_desc *),
1732                        GFP_KERNEL);
1733                if (!drv_data->cs_gpiods) {
1734                        status = -ENOMEM;
1735                        goto out_error_clock_enabled;
1736                }
1737
1738                for (i = 0; i < master->num_chipselect; i++) {
1739                        struct gpio_desc *gpiod;
1740
1741                        gpiod = devm_gpiod_get_index(dev, "cs", i,
1742                                                     GPIOD_OUT_HIGH);
1743                        if (IS_ERR(gpiod)) {
1744                                /* Means use native chip select */
1745                                if (PTR_ERR(gpiod) == -ENOENT)
1746                                        continue;
1747
1748                                status = (int)PTR_ERR(gpiod);
1749                                goto out_error_clock_enabled;
1750                        } else {
1751                                drv_data->cs_gpiods[i] = gpiod;
1752                        }
1753                }
1754        }
1755
1756        tasklet_init(&drv_data->pump_transfers, pump_transfers,
1757                     (unsigned long)drv_data);
1758
1759        pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1760        pm_runtime_use_autosuspend(&pdev->dev);
1761        pm_runtime_set_active(&pdev->dev);
1762        pm_runtime_enable(&pdev->dev);
1763
1764        /* Register with the SPI framework */
1765        platform_set_drvdata(pdev, drv_data);
1766        status = devm_spi_register_master(&pdev->dev, master);
1767        if (status != 0) {
1768                dev_err(&pdev->dev, "problem registering spi master\n");
1769                goto out_error_clock_enabled;
1770        }
1771
1772        return status;
1773
1774out_error_clock_enabled:
1775        clk_disable_unprepare(ssp->clk);
1776        pxa2xx_spi_dma_release(drv_data);
1777        free_irq(ssp->irq, drv_data);
1778
1779out_error_master_alloc:
1780        spi_master_put(master);
1781        pxa_ssp_free(ssp);
1782        return status;
1783}
1784
1785static int pxa2xx_spi_remove(struct platform_device *pdev)
1786{
1787        struct driver_data *drv_data = platform_get_drvdata(pdev);
1788        struct ssp_device *ssp;
1789
1790        if (!drv_data)
1791                return 0;
1792        ssp = drv_data->ssp;
1793
1794        pm_runtime_get_sync(&pdev->dev);
1795
1796        /* Disable the SSP at the peripheral and SOC level */
1797        pxa2xx_spi_write(drv_data, SSCR0, 0);
1798        clk_disable_unprepare(ssp->clk);
1799
1800        /* Release DMA */
1801        if (drv_data->master_info->enable_dma)
1802                pxa2xx_spi_dma_release(drv_data);
1803
1804        pm_runtime_put_noidle(&pdev->dev);
1805        pm_runtime_disable(&pdev->dev);
1806
1807        /* Release IRQ */
1808        free_irq(ssp->irq, drv_data);
1809
1810        /* Release SSP */
1811        pxa_ssp_free(ssp);
1812
1813        return 0;
1814}
1815
1816static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1817{
1818        int status = 0;
1819
1820        if ((status = pxa2xx_spi_remove(pdev)) != 0)
1821                dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1822}
1823
1824#ifdef CONFIG_PM_SLEEP
1825static int pxa2xx_spi_suspend(struct device *dev)
1826{
1827        struct driver_data *drv_data = dev_get_drvdata(dev);
1828        struct ssp_device *ssp = drv_data->ssp;
1829        int status;
1830
1831        status = spi_master_suspend(drv_data->master);
1832        if (status != 0)
1833                return status;
1834        pxa2xx_spi_write(drv_data, SSCR0, 0);
1835
1836        if (!pm_runtime_suspended(dev))
1837                clk_disable_unprepare(ssp->clk);
1838
1839        return 0;
1840}
1841
1842static int pxa2xx_spi_resume(struct device *dev)
1843{
1844        struct driver_data *drv_data = dev_get_drvdata(dev);
1845        struct ssp_device *ssp = drv_data->ssp;
1846        int status;
1847
1848        /* Enable the SSP clock */
1849        if (!pm_runtime_suspended(dev))
1850                clk_prepare_enable(ssp->clk);
1851
1852        /* Restore LPSS private register bits */
1853        if (is_lpss_ssp(drv_data))
1854                lpss_ssp_setup(drv_data);
1855
1856        /* Start the queue running */
1857        status = spi_master_resume(drv_data->master);
1858        if (status != 0) {
1859                dev_err(dev, "problem starting queue (%d)\n", status);
1860                return status;
1861        }
1862
1863        return 0;
1864}
1865#endif
1866
1867#ifdef CONFIG_PM
1868static int pxa2xx_spi_runtime_suspend(struct device *dev)
1869{
1870        struct driver_data *drv_data = dev_get_drvdata(dev);
1871
1872        clk_disable_unprepare(drv_data->ssp->clk);
1873        return 0;
1874}
1875
1876static int pxa2xx_spi_runtime_resume(struct device *dev)
1877{
1878        struct driver_data *drv_data = dev_get_drvdata(dev);
1879
1880        clk_prepare_enable(drv_data->ssp->clk);
1881        return 0;
1882}
1883#endif
1884
1885static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1886        SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1887        SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1888                           pxa2xx_spi_runtime_resume, NULL)
1889};
1890
1891static struct platform_driver driver = {
1892        .driver = {
1893                .name   = "pxa2xx-spi",
1894                .pm     = &pxa2xx_spi_pm_ops,
1895                .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1896        },
1897        .probe = pxa2xx_spi_probe,
1898        .remove = pxa2xx_spi_remove,
1899        .shutdown = pxa2xx_spi_shutdown,
1900};
1901
1902static int __init pxa2xx_spi_init(void)
1903{
1904        return platform_driver_register(&driver);
1905}
1906subsys_initcall(pxa2xx_spi_init);
1907
1908static void __exit pxa2xx_spi_exit(void)
1909{
1910        platform_driver_unregister(&driver);
1911}
1912module_exit(pxa2xx_spi_exit);
1913