linux/drivers/tty/serial/ifx6x60.c
<<
>>
Prefs
   1/****************************************************************************
   2 *
   3 * Driver for the IFX 6x60 spi modem.
   4 *
   5 * Copyright (C) 2008 Option International
   6 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
   7 *                    Denis Joseph Barrow <d.barow@option.com>
   8 *                    Jan Dumon <j.dumon@option.com>
   9 *
  10 * Copyright (C) 2009, 2010 Intel Corp
  11 * Russ Gorby <russ.gorby@intel.com>
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
  25 * USA
  26 *
  27 * Driver modified by Intel from Option gtm501l_spi.c
  28 *
  29 * Notes
  30 * o    The driver currently assumes a single device only. If you need to
  31 *      change this then look for saved_ifx_dev and add a device lookup
  32 * o    The driver is intended to be big-endian safe but has never been
  33 *      tested that way (no suitable hardware). There are a couple of FIXME
  34 *      notes by areas that may need addressing
  35 * o    Some of the GPIO naming/setup assumptions may need revisiting if
  36 *      you need to use this driver for another platform.
  37 *
  38 *****************************************************************************/
  39#include <linux/dma-mapping.h>
  40#include <linux/module.h>
  41#include <linux/termios.h>
  42#include <linux/tty.h>
  43#include <linux/device.h>
  44#include <linux/spi/spi.h>
  45#include <linux/kfifo.h>
  46#include <linux/tty_flip.h>
  47#include <linux/timer.h>
  48#include <linux/serial.h>
  49#include <linux/interrupt.h>
  50#include <linux/irq.h>
  51#include <linux/rfkill.h>
  52#include <linux/fs.h>
  53#include <linux/ip.h>
  54#include <linux/dmapool.h>
  55#include <linux/gpio.h>
  56#include <linux/sched.h>
  57#include <linux/time.h>
  58#include <linux/wait.h>
  59#include <linux/pm.h>
  60#include <linux/pm_runtime.h>
  61#include <linux/spi/ifx_modem.h>
  62#include <linux/delay.h>
  63#include <linux/reboot.h>
  64
  65#include "ifx6x60.h"
  66
  67#define IFX_SPI_MORE_MASK               0x10
  68#define IFX_SPI_MORE_BIT                4       /* bit position in u8 */
  69#define IFX_SPI_CTS_BIT                 6       /* bit position in u8 */
  70#define IFX_SPI_MODE                    SPI_MODE_1
  71#define IFX_SPI_TTY_ID                  0
  72#define IFX_SPI_TIMEOUT_SEC             2
  73#define IFX_SPI_HEADER_0                (-1)
  74#define IFX_SPI_HEADER_F                (-2)
  75
  76#define PO_POST_DELAY           200
  77#define IFX_MDM_RST_PMU 4
  78
  79/* forward reference */
  80static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
  81static int ifx_modem_reboot_callback(struct notifier_block *nfb,
  82                                unsigned long event, void *data);
  83static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
  84
  85/* local variables */
  86static int spi_bpw = 16;                /* 8, 16 or 32 bit word length */
  87static struct tty_driver *tty_drv;
  88static struct ifx_spi_device *saved_ifx_dev;
  89static struct lock_class_key ifx_spi_key;
  90
  91static struct notifier_block ifx_modem_reboot_notifier_block = {
  92        .notifier_call = ifx_modem_reboot_callback,
  93};
  94
  95static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
  96{
  97        gpio_set_value(IFX_MDM_RST_PMU, 1);
  98        msleep(PO_POST_DELAY);
  99
 100        return 0;
 101}
 102
 103static int ifx_modem_reboot_callback(struct notifier_block *nfb,
 104                                 unsigned long event, void *data)
 105{
 106        if (saved_ifx_dev)
 107                ifx_modem_power_off(saved_ifx_dev);
 108        else
 109                pr_warn("no ifx modem active;\n");
 110
 111        return NOTIFY_OK;
 112}
 113
 114/* GPIO/GPE settings */
 115
 116/**
 117 *      mrdy_set_high           -       set MRDY GPIO
 118 *      @ifx: device we are controlling
 119 *
 120 */
 121static inline void mrdy_set_high(struct ifx_spi_device *ifx)
 122{
 123        gpio_set_value(ifx->gpio.mrdy, 1);
 124}
 125
 126/**
 127 *      mrdy_set_low            -       clear MRDY GPIO
 128 *      @ifx: device we are controlling
 129 *
 130 */
 131static inline void mrdy_set_low(struct ifx_spi_device *ifx)
 132{
 133        gpio_set_value(ifx->gpio.mrdy, 0);
 134}
 135
 136/**
 137 *      ifx_spi_power_state_set
 138 *      @ifx_dev: our SPI device
 139 *      @val: bits to set
 140 *
 141 *      Set bit in power status and signal power system if status becomes non-0
 142 */
 143static void
 144ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
 145{
 146        unsigned long flags;
 147
 148        spin_lock_irqsave(&ifx_dev->power_lock, flags);
 149
 150        /*
 151         * if power status is already non-0, just update, else
 152         * tell power system
 153         */
 154        if (!ifx_dev->power_status)
 155                pm_runtime_get(&ifx_dev->spi_dev->dev);
 156        ifx_dev->power_status |= val;
 157
 158        spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 159}
 160
 161/**
 162 *      ifx_spi_power_state_clear       -       clear power bit
 163 *      @ifx_dev: our SPI device
 164 *      @val: bits to clear
 165 *
 166 *      clear bit in power status and signal power system if status becomes 0
 167 */
 168static void
 169ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
 170{
 171        unsigned long flags;
 172
 173        spin_lock_irqsave(&ifx_dev->power_lock, flags);
 174
 175        if (ifx_dev->power_status) {
 176                ifx_dev->power_status &= ~val;
 177                if (!ifx_dev->power_status)
 178                        pm_runtime_put(&ifx_dev->spi_dev->dev);
 179        }
 180
 181        spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 182}
 183
 184/**
 185 *      swap_buf_8
 186 *      @buf: our buffer
 187 *      @len : number of bytes (not words) in the buffer
 188 *      @end: end of buffer
 189 *
 190 *      Swap the contents of a buffer into big endian format
 191 */
 192static inline void swap_buf_8(unsigned char *buf, int len, void *end)
 193{
 194        /* don't swap buffer if SPI word width is 8 bits */
 195        return;
 196}
 197
 198/**
 199 *      swap_buf_16
 200 *      @buf: our buffer
 201 *      @len : number of bytes (not words) in the buffer
 202 *      @end: end of buffer
 203 *
 204 *      Swap the contents of a buffer into big endian format
 205 */
 206static inline void swap_buf_16(unsigned char *buf, int len, void *end)
 207{
 208        int n;
 209
 210        u16 *buf_16 = (u16 *)buf;
 211        len = ((len + 1) >> 1);
 212        if ((void *)&buf_16[len] > end) {
 213                pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
 214                       &buf_16[len], end);
 215                return;
 216        }
 217        for (n = 0; n < len; n++) {
 218                *buf_16 = cpu_to_be16(*buf_16);
 219                buf_16++;
 220        }
 221}
 222
 223/**
 224 *      swap_buf_32
 225 *      @buf: our buffer
 226 *      @len : number of bytes (not words) in the buffer
 227 *      @end: end of buffer
 228 *
 229 *      Swap the contents of a buffer into big endian format
 230 */
 231static inline void swap_buf_32(unsigned char *buf, int len, void *end)
 232{
 233        int n;
 234
 235        u32 *buf_32 = (u32 *)buf;
 236        len = (len + 3) >> 2;
 237
 238        if ((void *)&buf_32[len] > end) {
 239                pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
 240                       &buf_32[len], end);
 241                return;
 242        }
 243        for (n = 0; n < len; n++) {
 244                *buf_32 = cpu_to_be32(*buf_32);
 245                buf_32++;
 246        }
 247}
 248
 249/**
 250 *      mrdy_assert             -       assert MRDY line
 251 *      @ifx_dev: our SPI device
 252 *
 253 *      Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
 254 *      now.
 255 *
 256 *      FIXME: Can SRDY even go high as we are running this code ?
 257 */
 258static void mrdy_assert(struct ifx_spi_device *ifx_dev)
 259{
 260        int val = gpio_get_value(ifx_dev->gpio.srdy);
 261        if (!val) {
 262                if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
 263                                      &ifx_dev->flags)) {
 264                        mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
 265
 266                }
 267        }
 268        ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
 269        mrdy_set_high(ifx_dev);
 270}
 271
 272/**
 273 *      ifx_spi_timeout         -       SPI timeout
 274 *      @arg: our SPI device
 275 *
 276 *      The SPI has timed out: hang up the tty. Users will then see a hangup
 277 *      and error events.
 278 */
 279static void ifx_spi_timeout(unsigned long arg)
 280{
 281        struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
 282
 283        dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
 284        tty_port_tty_hangup(&ifx_dev->tty_port, false);
 285        mrdy_set_low(ifx_dev);
 286        clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 287}
 288
 289/* char/tty operations */
 290
 291/**
 292 *      ifx_spi_tiocmget        -       get modem lines
 293 *      @tty: our tty device
 294 *      @filp: file handle issuing the request
 295 *
 296 *      Map the signal state into Linux modem flags and report the value
 297 *      in Linux terms
 298 */
 299static int ifx_spi_tiocmget(struct tty_struct *tty)
 300{
 301        unsigned int value;
 302        struct ifx_spi_device *ifx_dev = tty->driver_data;
 303
 304        value =
 305        (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
 306        (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
 307        (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
 308        (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
 309        (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
 310        (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
 311        return value;
 312}
 313
 314/**
 315 *      ifx_spi_tiocmset        -       set modem bits
 316 *      @tty: the tty structure
 317 *      @set: bits to set
 318 *      @clear: bits to clear
 319 *
 320 *      The IFX6x60 only supports DTR and RTS. Set them accordingly
 321 *      and flag that an update to the modem is needed.
 322 *
 323 *      FIXME: do we need to kick the tranfers when we do this ?
 324 */
 325static int ifx_spi_tiocmset(struct tty_struct *tty,
 326                            unsigned int set, unsigned int clear)
 327{
 328        struct ifx_spi_device *ifx_dev = tty->driver_data;
 329
 330        if (set & TIOCM_RTS)
 331                set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 332        if (set & TIOCM_DTR)
 333                set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 334        if (clear & TIOCM_RTS)
 335                clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 336        if (clear & TIOCM_DTR)
 337                clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 338
 339        set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
 340        return 0;
 341}
 342
 343/**
 344 *      ifx_spi_open    -       called on tty open
 345 *      @tty: our tty device
 346 *      @filp: file handle being associated with the tty
 347 *
 348 *      Open the tty interface. We let the tty_port layer do all the work
 349 *      for us.
 350 *
 351 *      FIXME: Remove single device assumption and saved_ifx_dev
 352 */
 353static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
 354{
 355        return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
 356}
 357
 358/**
 359 *      ifx_spi_close   -       called when our tty closes
 360 *      @tty: the tty being closed
 361 *      @filp: the file handle being closed
 362 *
 363 *      Perform the close of the tty. We use the tty_port layer to do all
 364 *      our hard work.
 365 */
 366static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
 367{
 368        struct ifx_spi_device *ifx_dev = tty->driver_data;
 369        tty_port_close(&ifx_dev->tty_port, tty, filp);
 370        /* FIXME: should we do an ifx_spi_reset here ? */
 371}
 372
 373/**
 374 *      ifx_decode_spi_header   -       decode received header
 375 *      @buffer: the received data
 376 *      @length: decoded length
 377 *      @more: decoded more flag
 378 *      @received_cts: status of cts we received
 379 *
 380 *      Note how received_cts is handled -- if header is all F it is left
 381 *      the same as it was, if header is all 0 it is set to 0 otherwise it is
 382 *      taken from the incoming header.
 383 *
 384 *      FIXME: endianness
 385 */
 386static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
 387                        unsigned char *more, unsigned char *received_cts)
 388{
 389        u16 h1;
 390        u16 h2;
 391        u16 *in_buffer = (u16 *)buffer;
 392
 393        h1 = *in_buffer;
 394        h2 = *(in_buffer+1);
 395
 396        if (h1 == 0 && h2 == 0) {
 397                *received_cts = 0;
 398                *more = 0;
 399                return IFX_SPI_HEADER_0;
 400        } else if (h1 == 0xffff && h2 == 0xffff) {
 401                *more = 0;
 402                /* spi_slave_cts remains as it was */
 403                return IFX_SPI_HEADER_F;
 404        }
 405
 406        *length = h1 & 0xfff;   /* upper bits of byte are flags */
 407        *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
 408        *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
 409        return 0;
 410}
 411
 412/**
 413 *      ifx_setup_spi_header    -       set header fields
 414 *      @txbuffer: pointer to start of SPI buffer
 415 *      @tx_count: bytes
 416 *      @more: indicate if more to follow
 417 *
 418 *      Format up an SPI header for a transfer
 419 *
 420 *      FIXME: endianness?
 421 */
 422static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
 423                                        unsigned char more)
 424{
 425        *(u16 *)(txbuffer) = tx_count;
 426        *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
 427        txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
 428}
 429
 430/**
 431 *      ifx_spi_prepare_tx_buffer       -       prepare transmit frame
 432 *      @ifx_dev: our SPI device
 433 *
 434 *      The transmit buffr needs a header and various other bits of
 435 *      information followed by as much data as we can pull from the FIFO
 436 *      and transfer. This function formats up a suitable buffer in the
 437 *      ifx_dev->tx_buffer
 438 *
 439 *      FIXME: performance - should we wake the tty when the queue is half
 440 *                           empty ?
 441 */
 442static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
 443{
 444        int temp_count;
 445        int queue_length;
 446        int tx_count;
 447        unsigned char *tx_buffer;
 448
 449        tx_buffer = ifx_dev->tx_buffer;
 450
 451        /* make room for required SPI header */
 452        tx_buffer += IFX_SPI_HEADER_OVERHEAD;
 453        tx_count = IFX_SPI_HEADER_OVERHEAD;
 454
 455        /* clear to signal no more data if this turns out to be the
 456         * last buffer sent in a sequence */
 457        ifx_dev->spi_more = 0;
 458
 459        /* if modem cts is set, just send empty buffer */
 460        if (!ifx_dev->spi_slave_cts) {
 461                /* see if there's tx data */
 462                queue_length = kfifo_len(&ifx_dev->tx_fifo);
 463                if (queue_length != 0) {
 464                        /* data to mux -- see if there's room for it */
 465                        temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
 466                        temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
 467                                        tx_buffer, temp_count,
 468                                        &ifx_dev->fifo_lock);
 469
 470                        /* update buffer pointer and data count in message */
 471                        tx_buffer += temp_count;
 472                        tx_count += temp_count;
 473                        if (temp_count == queue_length)
 474                                /* poke port to get more data */
 475                                tty_port_tty_wakeup(&ifx_dev->tty_port);
 476                        else /* more data in port, use next SPI message */
 477                                ifx_dev->spi_more = 1;
 478                }
 479        }
 480        /* have data and info for header -- set up SPI header in buffer */
 481        /* spi header needs payload size, not entire buffer size */
 482        ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
 483                                        tx_count-IFX_SPI_HEADER_OVERHEAD,
 484                                        ifx_dev->spi_more);
 485        /* swap actual data in the buffer */
 486        ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
 487                &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
 488        return tx_count;
 489}
 490
 491/**
 492 *      ifx_spi_write           -       line discipline write
 493 *      @tty: our tty device
 494 *      @buf: pointer to buffer to write (kernel space)
 495 *      @count: size of buffer
 496 *
 497 *      Write the characters we have been given into the FIFO. If the device
 498 *      is not active then activate it, when the SRDY line is asserted back
 499 *      this will commence I/O
 500 */
 501static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
 502                         int count)
 503{
 504        struct ifx_spi_device *ifx_dev = tty->driver_data;
 505        unsigned char *tmp_buf = (unsigned char *)buf;
 506        unsigned long flags;
 507        bool is_fifo_empty;
 508        int tx_count;
 509
 510        spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
 511        is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
 512        tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
 513        spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
 514        if (is_fifo_empty)
 515                mrdy_assert(ifx_dev);
 516
 517        return tx_count;
 518}
 519
 520/**
 521 *      ifx_spi_chars_in_buffer -       line discipline helper
 522 *      @tty: our tty device
 523 *
 524 *      Report how much data we can accept before we drop bytes. As we use
 525 *      a simple FIFO this is nice and easy.
 526 */
 527static int ifx_spi_write_room(struct tty_struct *tty)
 528{
 529        struct ifx_spi_device *ifx_dev = tty->driver_data;
 530        return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
 531}
 532
 533/**
 534 *      ifx_spi_chars_in_buffer -       line discipline helper
 535 *      @tty: our tty device
 536 *
 537 *      Report how many characters we have buffered. In our case this is the
 538 *      number of bytes sitting in our transmit FIFO.
 539 */
 540static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
 541{
 542        struct ifx_spi_device *ifx_dev = tty->driver_data;
 543        return kfifo_len(&ifx_dev->tx_fifo);
 544}
 545
 546/**
 547 *      ifx_port_hangup
 548 *      @port: our tty port
 549 *
 550 *      tty port hang up. Called when tty_hangup processing is invoked either
 551 *      by loss of carrier, or by software (eg vhangup). Serialized against
 552 *      activate/shutdown by the tty layer.
 553 */
 554static void ifx_spi_hangup(struct tty_struct *tty)
 555{
 556        struct ifx_spi_device *ifx_dev = tty->driver_data;
 557        tty_port_hangup(&ifx_dev->tty_port);
 558}
 559
 560/**
 561 *      ifx_port_activate
 562 *      @port: our tty port
 563 *
 564 *      tty port activate method - called for first open. Serialized
 565 *      with hangup and shutdown by the tty layer.
 566 */
 567static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
 568{
 569        struct ifx_spi_device *ifx_dev =
 570                container_of(port, struct ifx_spi_device, tty_port);
 571
 572        /* clear any old data; can't do this in 'close' */
 573        kfifo_reset(&ifx_dev->tx_fifo);
 574
 575        /* clear any flag which may be set in port shutdown procedure */
 576        clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
 577        clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
 578
 579        /* put port data into this tty */
 580        tty->driver_data = ifx_dev;
 581
 582        /* allows flip string push from int context */
 583        port->low_latency = 1;
 584
 585        /* set flag to allows data transfer */
 586        set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
 587
 588        return 0;
 589}
 590
 591/**
 592 *      ifx_port_shutdown
 593 *      @port: our tty port
 594 *
 595 *      tty port shutdown method - called for last port close. Serialized
 596 *      with hangup and activate by the tty layer.
 597 */
 598static void ifx_port_shutdown(struct tty_port *port)
 599{
 600        struct ifx_spi_device *ifx_dev =
 601                container_of(port, struct ifx_spi_device, tty_port);
 602
 603        clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
 604        mrdy_set_low(ifx_dev);
 605        del_timer(&ifx_dev->spi_timer);
 606        clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 607        tasklet_kill(&ifx_dev->io_work_tasklet);
 608}
 609
 610static const struct tty_port_operations ifx_tty_port_ops = {
 611        .activate = ifx_port_activate,
 612        .shutdown = ifx_port_shutdown,
 613};
 614
 615static const struct tty_operations ifx_spi_serial_ops = {
 616        .open = ifx_spi_open,
 617        .close = ifx_spi_close,
 618        .write = ifx_spi_write,
 619        .hangup = ifx_spi_hangup,
 620        .write_room = ifx_spi_write_room,
 621        .chars_in_buffer = ifx_spi_chars_in_buffer,
 622        .tiocmget = ifx_spi_tiocmget,
 623        .tiocmset = ifx_spi_tiocmset,
 624};
 625
 626/**
 627 *      ifx_spi_insert_fip_string       -       queue received data
 628 *      @ifx_ser: our SPI device
 629 *      @chars: buffer we have received
 630 *      @size: number of chars reeived
 631 *
 632 *      Queue bytes to the tty assuming the tty side is currently open. If
 633 *      not the discard the data.
 634 */
 635static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
 636                                    unsigned char *chars, size_t size)
 637{
 638        tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
 639        tty_flip_buffer_push(&ifx_dev->tty_port);
 640}
 641
 642/**
 643 *      ifx_spi_complete        -       SPI transfer completed
 644 *      @ctx: our SPI device
 645 *
 646 *      An SPI transfer has completed. Process any received data and kick off
 647 *      any further transmits we can commence.
 648 */
 649static void ifx_spi_complete(void *ctx)
 650{
 651        struct ifx_spi_device *ifx_dev = ctx;
 652        int length;
 653        int actual_length;
 654        unsigned char more = 0;
 655        unsigned char cts;
 656        int local_write_pending = 0;
 657        int queue_length;
 658        int srdy;
 659        int decode_result;
 660
 661        mrdy_set_low(ifx_dev);
 662
 663        if (!ifx_dev->spi_msg.status) {
 664                /* check header validity, get comm flags */
 665                ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
 666                        &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
 667                decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
 668                                &length, &more, &cts);
 669                if (decode_result == IFX_SPI_HEADER_0) {
 670                        dev_dbg(&ifx_dev->spi_dev->dev,
 671                                "ignore input: invalid header 0");
 672                        ifx_dev->spi_slave_cts = 0;
 673                        goto complete_exit;
 674                } else if (decode_result == IFX_SPI_HEADER_F) {
 675                        dev_dbg(&ifx_dev->spi_dev->dev,
 676                                "ignore input: invalid header F");
 677                        goto complete_exit;
 678                }
 679
 680                ifx_dev->spi_slave_cts = cts;
 681
 682                actual_length = min((unsigned int)length,
 683                                        ifx_dev->spi_msg.actual_length);
 684                ifx_dev->swap_buf(
 685                        (ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
 686                         actual_length,
 687                         &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
 688                ifx_spi_insert_flip_string(
 689                        ifx_dev,
 690                        ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
 691                        (size_t)actual_length);
 692        } else {
 693                more = 0;
 694                dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
 695                       ifx_dev->spi_msg.status);
 696        }
 697
 698complete_exit:
 699        if (ifx_dev->write_pending) {
 700                ifx_dev->write_pending = 0;
 701                local_write_pending = 1;
 702        }
 703
 704        clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
 705
 706        queue_length = kfifo_len(&ifx_dev->tx_fifo);
 707        srdy = gpio_get_value(ifx_dev->gpio.srdy);
 708        if (!srdy)
 709                ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
 710
 711        /* schedule output if there is more to do */
 712        if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
 713                tasklet_schedule(&ifx_dev->io_work_tasklet);
 714        else {
 715                if (more || ifx_dev->spi_more || queue_length > 0 ||
 716                        local_write_pending) {
 717                        if (ifx_dev->spi_slave_cts) {
 718                                if (more)
 719                                        mrdy_assert(ifx_dev);
 720                        } else
 721                                mrdy_assert(ifx_dev);
 722                } else {
 723                        /*
 724                         * poke line discipline driver if any for more data
 725                         * may or may not get more data to write
 726                         * for now, say not busy
 727                         */
 728                        ifx_spi_power_state_clear(ifx_dev,
 729                                                  IFX_SPI_POWER_DATA_PENDING);
 730                        tty_port_tty_wakeup(&ifx_dev->tty_port);
 731                }
 732        }
 733}
 734
 735/**
 736 *      ifx_spio_io             -       I/O tasklet
 737 *      @data: our SPI device
 738 *
 739 *      Queue data for transmission if possible and then kick off the
 740 *      transfer.
 741 */
 742static void ifx_spi_io(unsigned long data)
 743{
 744        int retval;
 745        struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
 746
 747        if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
 748                test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
 749                if (ifx_dev->gpio.unack_srdy_int_nb > 0)
 750                        ifx_dev->gpio.unack_srdy_int_nb--;
 751
 752                ifx_spi_prepare_tx_buffer(ifx_dev);
 753
 754                spi_message_init(&ifx_dev->spi_msg);
 755                INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
 756
 757                ifx_dev->spi_msg.context = ifx_dev;
 758                ifx_dev->spi_msg.complete = ifx_spi_complete;
 759
 760                /* set up our spi transfer */
 761                /* note len is BYTES, not transfers */
 762                ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
 763                ifx_dev->spi_xfer.cs_change = 0;
 764                ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
 765                /* ifx_dev->spi_xfer.speed_hz = 390625; */
 766                ifx_dev->spi_xfer.bits_per_word =
 767                        ifx_dev->spi_dev->bits_per_word;
 768
 769                ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
 770                ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
 771
 772                /*
 773                 * setup dma pointers
 774                 */
 775                if (ifx_dev->use_dma) {
 776                        ifx_dev->spi_msg.is_dma_mapped = 1;
 777                        ifx_dev->tx_dma = ifx_dev->tx_bus;
 778                        ifx_dev->rx_dma = ifx_dev->rx_bus;
 779                        ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
 780                        ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
 781                } else {
 782                        ifx_dev->spi_msg.is_dma_mapped = 0;
 783                        ifx_dev->tx_dma = (dma_addr_t)0;
 784                        ifx_dev->rx_dma = (dma_addr_t)0;
 785                        ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
 786                        ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
 787                }
 788
 789                spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
 790
 791                /* Assert MRDY. This may have already been done by the write
 792                 * routine.
 793                 */
 794                mrdy_assert(ifx_dev);
 795
 796                retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
 797                if (retval) {
 798                        clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
 799                                  &ifx_dev->flags);
 800                        tasklet_schedule(&ifx_dev->io_work_tasklet);
 801                        return;
 802                }
 803        } else
 804                ifx_dev->write_pending = 1;
 805}
 806
 807/**
 808 *      ifx_spi_free_port       -       free up the tty side
 809 *      @ifx_dev: IFX device going away
 810 *
 811 *      Unregister and free up a port when the device goes away
 812 */
 813static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
 814{
 815        if (ifx_dev->tty_dev)
 816                tty_unregister_device(tty_drv, ifx_dev->minor);
 817        tty_port_destroy(&ifx_dev->tty_port);
 818        kfifo_free(&ifx_dev->tx_fifo);
 819}
 820
 821/**
 822 *      ifx_spi_create_port     -       create a new port
 823 *      @ifx_dev: our spi device
 824 *
 825 *      Allocate and initialise the tty port that goes with this interface
 826 *      and add it to the tty layer so that it can be opened.
 827 */
 828static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
 829{
 830        int ret = 0;
 831        struct tty_port *pport = &ifx_dev->tty_port;
 832
 833        spin_lock_init(&ifx_dev->fifo_lock);
 834        lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
 835                &ifx_spi_key, 0);
 836
 837        if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
 838                ret = -ENOMEM;
 839                goto error_ret;
 840        }
 841
 842        tty_port_init(pport);
 843        pport->ops = &ifx_tty_port_ops;
 844        ifx_dev->minor = IFX_SPI_TTY_ID;
 845        ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
 846                        ifx_dev->minor, &ifx_dev->spi_dev->dev);
 847        if (IS_ERR(ifx_dev->tty_dev)) {
 848                dev_dbg(&ifx_dev->spi_dev->dev,
 849                        "%s: registering tty device failed", __func__);
 850                ret = PTR_ERR(ifx_dev->tty_dev);
 851                goto error_port;
 852        }
 853        return 0;
 854
 855error_port:
 856        tty_port_destroy(pport);
 857error_ret:
 858        ifx_spi_free_port(ifx_dev);
 859        return ret;
 860}
 861
 862/**
 863 *      ifx_spi_handle_srdy             -       handle SRDY
 864 *      @ifx_dev: device asserting SRDY
 865 *
 866 *      Check our device state and see what we need to kick off when SRDY
 867 *      is asserted. This usually means killing the timer and firing off the
 868 *      I/O processing.
 869 */
 870static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
 871{
 872        if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
 873                del_timer(&ifx_dev->spi_timer);
 874                clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 875        }
 876
 877        ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
 878
 879        if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
 880                tasklet_schedule(&ifx_dev->io_work_tasklet);
 881        else
 882                set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
 883}
 884
 885/**
 886 *      ifx_spi_srdy_interrupt  -       SRDY asserted
 887 *      @irq: our IRQ number
 888 *      @dev: our ifx device
 889 *
 890 *      The modem asserted SRDY. Handle the srdy event
 891 */
 892static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
 893{
 894        struct ifx_spi_device *ifx_dev = dev;
 895        ifx_dev->gpio.unack_srdy_int_nb++;
 896        ifx_spi_handle_srdy(ifx_dev);
 897        return IRQ_HANDLED;
 898}
 899
 900/**
 901 *      ifx_spi_reset_interrupt -       Modem has changed reset state
 902 *      @irq: interrupt number
 903 *      @dev: our device pointer
 904 *
 905 *      The modem has either entered or left reset state. Check the GPIO
 906 *      line to see which.
 907 *
 908 *      FIXME: review locking on MR_INPROGRESS versus
 909 *      parallel unsolicited reset/solicited reset
 910 */
 911static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
 912{
 913        struct ifx_spi_device *ifx_dev = dev;
 914        int val = gpio_get_value(ifx_dev->gpio.reset_out);
 915        int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
 916
 917        if (val == 0) {
 918                /* entered reset */
 919                set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 920                if (!solreset) {
 921                        /* unsolicited reset  */
 922                        tty_port_tty_hangup(&ifx_dev->tty_port, false);
 923                }
 924        } else {
 925                /* exited reset */
 926                clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 927                if (solreset) {
 928                        set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
 929                        wake_up(&ifx_dev->mdm_reset_wait);
 930                }
 931        }
 932        return IRQ_HANDLED;
 933}
 934
 935/**
 936 *      ifx_spi_free_device - free device
 937 *      @ifx_dev: device to free
 938 *
 939 *      Free the IFX device
 940 */
 941static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
 942{
 943        ifx_spi_free_port(ifx_dev);
 944        dma_free_coherent(&ifx_dev->spi_dev->dev,
 945                                IFX_SPI_TRANSFER_SIZE,
 946                                ifx_dev->tx_buffer,
 947                                ifx_dev->tx_bus);
 948        dma_free_coherent(&ifx_dev->spi_dev->dev,
 949                                IFX_SPI_TRANSFER_SIZE,
 950                                ifx_dev->rx_buffer,
 951                                ifx_dev->rx_bus);
 952}
 953
 954/**
 955 *      ifx_spi_reset   -       reset modem
 956 *      @ifx_dev: modem to reset
 957 *
 958 *      Perform a reset on the modem
 959 */
 960static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
 961{
 962        int ret;
 963        /*
 964         * set up modem power, reset
 965         *
 966         * delays are required on some platforms for the modem
 967         * to reset properly
 968         */
 969        set_bit(MR_START, &ifx_dev->mdm_reset_state);
 970        gpio_set_value(ifx_dev->gpio.po, 0);
 971        gpio_set_value(ifx_dev->gpio.reset, 0);
 972        msleep(25);
 973        gpio_set_value(ifx_dev->gpio.reset, 1);
 974        msleep(1);
 975        gpio_set_value(ifx_dev->gpio.po, 1);
 976        msleep(1);
 977        gpio_set_value(ifx_dev->gpio.po, 0);
 978        ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
 979                                 test_bit(MR_COMPLETE,
 980                                          &ifx_dev->mdm_reset_state),
 981                                 IFX_RESET_TIMEOUT);
 982        if (!ret)
 983                dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
 984                         ifx_dev->mdm_reset_state);
 985
 986        ifx_dev->mdm_reset_state = 0;
 987        return ret;
 988}
 989
 990/**
 991 *      ifx_spi_spi_probe       -       probe callback
 992 *      @spi: our possible matching SPI device
 993 *
 994 *      Probe for a 6x60 modem on SPI bus. Perform any needed device and
 995 *      GPIO setup.
 996 *
 997 *      FIXME:
 998 *      -       Support for multiple devices
 999 *      -       Split out MID specific GPIO handling eventually
1000 */
1001
1002static int ifx_spi_spi_probe(struct spi_device *spi)
1003{
1004        int ret;
1005        int srdy;
1006        struct ifx_modem_platform_data *pl_data;
1007        struct ifx_spi_device *ifx_dev;
1008
1009        if (saved_ifx_dev) {
1010                dev_dbg(&spi->dev, "ignoring subsequent detection");
1011                return -ENODEV;
1012        }
1013
1014        pl_data = dev_get_platdata(&spi->dev);
1015        if (!pl_data) {
1016                dev_err(&spi->dev, "missing platform data!");
1017                return -ENODEV;
1018        }
1019
1020        /* initialize structure to hold our device variables */
1021        ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1022        if (!ifx_dev) {
1023                dev_err(&spi->dev, "spi device allocation failed");
1024                return -ENOMEM;
1025        }
1026        saved_ifx_dev = ifx_dev;
1027        ifx_dev->spi_dev = spi;
1028        clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1029        spin_lock_init(&ifx_dev->write_lock);
1030        spin_lock_init(&ifx_dev->power_lock);
1031        ifx_dev->power_status = 0;
1032        init_timer(&ifx_dev->spi_timer);
1033        ifx_dev->spi_timer.function = ifx_spi_timeout;
1034        ifx_dev->spi_timer.data = (unsigned long)ifx_dev;
1035        ifx_dev->modem = pl_data->modem_type;
1036        ifx_dev->use_dma = pl_data->use_dma;
1037        ifx_dev->max_hz = pl_data->max_hz;
1038        /* initialize spi mode, etc */
1039        spi->max_speed_hz = ifx_dev->max_hz;
1040        spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1041        spi->bits_per_word = spi_bpw;
1042        ret = spi_setup(spi);
1043        if (ret) {
1044                dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1045                return -ENODEV;
1046        }
1047
1048        /* init swap_buf function according to word width configuration */
1049        if (spi->bits_per_word == 32)
1050                ifx_dev->swap_buf = swap_buf_32;
1051        else if (spi->bits_per_word == 16)
1052                ifx_dev->swap_buf = swap_buf_16;
1053        else
1054                ifx_dev->swap_buf = swap_buf_8;
1055
1056        /* ensure SPI protocol flags are initialized to enable transfer */
1057        ifx_dev->spi_more = 0;
1058        ifx_dev->spi_slave_cts = 0;
1059
1060        /*initialize transfer and dma buffers */
1061        ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1062                                IFX_SPI_TRANSFER_SIZE,
1063                                &ifx_dev->tx_bus,
1064                                GFP_KERNEL);
1065        if (!ifx_dev->tx_buffer) {
1066                dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1067                ret = -ENOMEM;
1068                goto error_ret;
1069        }
1070        ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1071                                IFX_SPI_TRANSFER_SIZE,
1072                                &ifx_dev->rx_bus,
1073                                GFP_KERNEL);
1074        if (!ifx_dev->rx_buffer) {
1075                dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1076                ret = -ENOMEM;
1077                goto error_ret;
1078        }
1079
1080        /* initialize waitq for modem reset */
1081        init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1082
1083        spi_set_drvdata(spi, ifx_dev);
1084        tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1085                                                (unsigned long)ifx_dev);
1086
1087        set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1088
1089        /* create our tty port */
1090        ret = ifx_spi_create_port(ifx_dev);
1091        if (ret != 0) {
1092                dev_err(&spi->dev, "create default tty port failed");
1093                goto error_ret;
1094        }
1095
1096        ifx_dev->gpio.reset = pl_data->rst_pmu;
1097        ifx_dev->gpio.po = pl_data->pwr_on;
1098        ifx_dev->gpio.mrdy = pl_data->mrdy;
1099        ifx_dev->gpio.srdy = pl_data->srdy;
1100        ifx_dev->gpio.reset_out = pl_data->rst_out;
1101
1102        dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1103                 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1104                 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1105
1106        /* Configure gpios */
1107        ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1108        if (ret < 0) {
1109                dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1110                        ifx_dev->gpio.reset);
1111                goto error_ret;
1112        }
1113        ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1114        ret += gpio_export(ifx_dev->gpio.reset, 1);
1115        if (ret) {
1116                dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1117                        ifx_dev->gpio.reset);
1118                ret = -EBUSY;
1119                goto error_ret2;
1120        }
1121
1122        ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1123        ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1124        ret += gpio_export(ifx_dev->gpio.po, 1);
1125        if (ret) {
1126                dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1127                        ifx_dev->gpio.po);
1128                ret = -EBUSY;
1129                goto error_ret3;
1130        }
1131
1132        ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1133        if (ret < 0) {
1134                dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1135                        ifx_dev->gpio.mrdy);
1136                goto error_ret3;
1137        }
1138        ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1139        ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1140        if (ret) {
1141                dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1142                        ifx_dev->gpio.mrdy);
1143                ret = -EBUSY;
1144                goto error_ret4;
1145        }
1146
1147        ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1148        if (ret < 0) {
1149                dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1150                        ifx_dev->gpio.srdy);
1151                ret = -EBUSY;
1152                goto error_ret4;
1153        }
1154        ret += gpio_export(ifx_dev->gpio.srdy, 1);
1155        ret += gpio_direction_input(ifx_dev->gpio.srdy);
1156        if (ret) {
1157                dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1158                        ifx_dev->gpio.srdy);
1159                ret = -EBUSY;
1160                goto error_ret5;
1161        }
1162
1163        ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1164        if (ret < 0) {
1165                dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1166                        ifx_dev->gpio.reset_out);
1167                goto error_ret5;
1168        }
1169        ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1170        ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1171        if (ret) {
1172                dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1173                        ifx_dev->gpio.reset_out);
1174                ret = -EBUSY;
1175                goto error_ret6;
1176        }
1177
1178        ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1179                          ifx_spi_reset_interrupt,
1180                          IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1181                          ifx_dev);
1182        if (ret) {
1183                dev_err(&spi->dev, "Unable to get irq %x\n",
1184                        gpio_to_irq(ifx_dev->gpio.reset_out));
1185                goto error_ret6;
1186        }
1187
1188        ret = ifx_spi_reset(ifx_dev);
1189
1190        ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1191                          ifx_spi_srdy_interrupt, IRQF_TRIGGER_RISING, DRVNAME,
1192                          ifx_dev);
1193        if (ret) {
1194                dev_err(&spi->dev, "Unable to get irq %x",
1195                        gpio_to_irq(ifx_dev->gpio.srdy));
1196                goto error_ret7;
1197        }
1198
1199        /* set pm runtime power state and register with power system */
1200        pm_runtime_set_active(&spi->dev);
1201        pm_runtime_enable(&spi->dev);
1202
1203        /* handle case that modem is already signaling SRDY */
1204        /* no outgoing tty open at this point, this just satisfies the
1205         * modem's read and should reset communication properly
1206         */
1207        srdy = gpio_get_value(ifx_dev->gpio.srdy);
1208
1209        if (srdy) {
1210                mrdy_assert(ifx_dev);
1211                ifx_spi_handle_srdy(ifx_dev);
1212        } else
1213                mrdy_set_low(ifx_dev);
1214        return 0;
1215
1216error_ret7:
1217        free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1218error_ret6:
1219        gpio_free(ifx_dev->gpio.srdy);
1220error_ret5:
1221        gpio_free(ifx_dev->gpio.mrdy);
1222error_ret4:
1223        gpio_free(ifx_dev->gpio.reset);
1224error_ret3:
1225        gpio_free(ifx_dev->gpio.po);
1226error_ret2:
1227        gpio_free(ifx_dev->gpio.reset_out);
1228error_ret:
1229        ifx_spi_free_device(ifx_dev);
1230        saved_ifx_dev = NULL;
1231        return ret;
1232}
1233
1234/**
1235 *      ifx_spi_spi_remove      -       SPI device was removed
1236 *      @spi: SPI device
1237 *
1238 *      FIXME: We should be shutting the device down here not in
1239 *      the module unload path.
1240 */
1241
1242static int ifx_spi_spi_remove(struct spi_device *spi)
1243{
1244        struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1245        /* stop activity */
1246        tasklet_kill(&ifx_dev->io_work_tasklet);
1247        /* free irq */
1248        free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1249        free_irq(gpio_to_irq(ifx_dev->gpio.srdy), ifx_dev);
1250
1251        gpio_free(ifx_dev->gpio.srdy);
1252        gpio_free(ifx_dev->gpio.mrdy);
1253        gpio_free(ifx_dev->gpio.reset);
1254        gpio_free(ifx_dev->gpio.po);
1255        gpio_free(ifx_dev->gpio.reset_out);
1256
1257        /* free allocations */
1258        ifx_spi_free_device(ifx_dev);
1259
1260        saved_ifx_dev = NULL;
1261        return 0;
1262}
1263
1264/**
1265 *      ifx_spi_spi_shutdown    -       called on SPI shutdown
1266 *      @spi: SPI device
1267 *
1268 *      No action needs to be taken here
1269 */
1270
1271static void ifx_spi_spi_shutdown(struct spi_device *spi)
1272{
1273        struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1274
1275        ifx_modem_power_off(ifx_dev);
1276}
1277
1278/*
1279 * various suspends and resumes have nothing to do
1280 * no hardware to save state for
1281 */
1282
1283/**
1284 *      ifx_spi_pm_suspend      -       suspend modem on system suspend
1285 *      @dev: device being suspended
1286 *
1287 *      Suspend the modem. No action needed on Intel MID platforms, may
1288 *      need extending for other systems.
1289 */
1290static int ifx_spi_pm_suspend(struct device *dev)
1291{
1292        return 0;
1293}
1294
1295/**
1296 *      ifx_spi_pm_resume       -       resume modem on system resume
1297 *      @dev: device being suspended
1298 *
1299 *      Allow the modem to resume. No action needed.
1300 *
1301 *      FIXME: do we need to reset anything here ?
1302 */
1303static int ifx_spi_pm_resume(struct device *dev)
1304{
1305        return 0;
1306}
1307
1308/**
1309 *      ifx_spi_pm_runtime_resume       -       suspend modem
1310 *      @dev: device being suspended
1311 *
1312 *      Allow the modem to resume. No action needed.
1313 */
1314static int ifx_spi_pm_runtime_resume(struct device *dev)
1315{
1316        return 0;
1317}
1318
1319/**
1320 *      ifx_spi_pm_runtime_suspend      -       suspend modem
1321 *      @dev: device being suspended
1322 *
1323 *      Allow the modem to suspend and thus suspend to continue up the
1324 *      device tree.
1325 */
1326static int ifx_spi_pm_runtime_suspend(struct device *dev)
1327{
1328        return 0;
1329}
1330
1331/**
1332 *      ifx_spi_pm_runtime_idle         -       check if modem idle
1333 *      @dev: our device
1334 *
1335 *      Check conditions and queue runtime suspend if idle.
1336 */
1337static int ifx_spi_pm_runtime_idle(struct device *dev)
1338{
1339        struct spi_device *spi = to_spi_device(dev);
1340        struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1341
1342        if (!ifx_dev->power_status)
1343                pm_runtime_suspend(dev);
1344
1345        return 0;
1346}
1347
1348static const struct dev_pm_ops ifx_spi_pm = {
1349        .resume = ifx_spi_pm_resume,
1350        .suspend = ifx_spi_pm_suspend,
1351        .runtime_resume = ifx_spi_pm_runtime_resume,
1352        .runtime_suspend = ifx_spi_pm_runtime_suspend,
1353        .runtime_idle = ifx_spi_pm_runtime_idle
1354};
1355
1356static const struct spi_device_id ifx_id_table[] = {
1357        {"ifx6160", 0},
1358        {"ifx6260", 0},
1359        { }
1360};
1361MODULE_DEVICE_TABLE(spi, ifx_id_table);
1362
1363/* spi operations */
1364static struct spi_driver ifx_spi_driver = {
1365        .driver = {
1366                .name = DRVNAME,
1367                .pm = &ifx_spi_pm,
1368        },
1369        .probe = ifx_spi_spi_probe,
1370        .shutdown = ifx_spi_spi_shutdown,
1371        .remove = ifx_spi_spi_remove,
1372        .id_table = ifx_id_table
1373};
1374
1375/**
1376 *      ifx_spi_exit    -       module exit
1377 *
1378 *      Unload the module.
1379 */
1380
1381static void __exit ifx_spi_exit(void)
1382{
1383        /* unregister */
1384        tty_unregister_driver(tty_drv);
1385        put_tty_driver(tty_drv);
1386        spi_unregister_driver(&ifx_spi_driver);
1387        unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1388}
1389
1390/**
1391 *      ifx_spi_init            -       module entry point
1392 *
1393 *      Initialise the SPI and tty interfaces for the IFX SPI driver
1394 *      We need to initialize upper-edge spi driver after the tty
1395 *      driver because otherwise the spi probe will race
1396 */
1397
1398static int __init ifx_spi_init(void)
1399{
1400        int result;
1401
1402        tty_drv = alloc_tty_driver(1);
1403        if (!tty_drv) {
1404                pr_err("%s: alloc_tty_driver failed", DRVNAME);
1405                return -ENOMEM;
1406        }
1407
1408        tty_drv->driver_name = DRVNAME;
1409        tty_drv->name = TTYNAME;
1410        tty_drv->minor_start = IFX_SPI_TTY_ID;
1411        tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1412        tty_drv->subtype = SERIAL_TYPE_NORMAL;
1413        tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1414        tty_drv->init_termios = tty_std_termios;
1415
1416        tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1417
1418        result = tty_register_driver(tty_drv);
1419        if (result) {
1420                pr_err("%s: tty_register_driver failed(%d)",
1421                        DRVNAME, result);
1422                goto err_free_tty;
1423        }
1424
1425        result = spi_register_driver(&ifx_spi_driver);
1426        if (result) {
1427                pr_err("%s: spi_register_driver failed(%d)",
1428                        DRVNAME, result);
1429                goto err_unreg_tty;
1430        }
1431
1432        result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1433        if (result) {
1434                pr_err("%s: register ifx modem reboot notifier failed(%d)",
1435                        DRVNAME, result);
1436                goto err_unreg_spi;
1437        }
1438
1439        return 0;
1440err_unreg_spi:
1441        spi_unregister_driver(&ifx_spi_driver);
1442err_unreg_tty:
1443        tty_unregister_driver(tty_drv);
1444err_free_tty:
1445        put_tty_driver(tty_drv);
1446
1447        return result;
1448}
1449
1450module_init(ifx_spi_init);
1451module_exit(ifx_spi_exit);
1452
1453MODULE_AUTHOR("Intel");
1454MODULE_DESCRIPTION("IFX6x60 spi driver");
1455MODULE_LICENSE("GPL");
1456MODULE_INFO(Version, "0.1-IFX6x60");
1457