linux/drivers/usb/core/usb.c
<<
>>
Prefs
   1/*
   2 * drivers/usb/core/usb.c
   3 *
   4 * (C) Copyright Linus Torvalds 1999
   5 * (C) Copyright Johannes Erdfelt 1999-2001
   6 * (C) Copyright Andreas Gal 1999
   7 * (C) Copyright Gregory P. Smith 1999
   8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
   9 * (C) Copyright Randy Dunlap 2000
  10 * (C) Copyright David Brownell 2000-2004
  11 * (C) Copyright Yggdrasil Computing, Inc. 2000
  12 *     (usb_device_id matching changes by Adam J. Richter)
  13 * (C) Copyright Greg Kroah-Hartman 2002-2003
  14 *
  15 * NOTE! This is not actually a driver at all, rather this is
  16 * just a collection of helper routines that implement the
  17 * generic USB things that the real drivers can use..
  18 *
  19 * Think of this as a "USB library" rather than anything else.
  20 * It should be considered a slave, with no callbacks. Callbacks
  21 * are evil.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/moduleparam.h>
  26#include <linux/string.h>
  27#include <linux/bitops.h>
  28#include <linux/slab.h>
  29#include <linux/interrupt.h>  /* for in_interrupt() */
  30#include <linux/kmod.h>
  31#include <linux/init.h>
  32#include <linux/spinlock.h>
  33#include <linux/errno.h>
  34#include <linux/usb.h>
  35#include <linux/usb/hcd.h>
  36#include <linux/mutex.h>
  37#include <linux/workqueue.h>
  38#include <linux/debugfs.h>
  39#include <linux/usb/of.h>
  40
  41#include <asm/io.h>
  42#include <linux/scatterlist.h>
  43#include <linux/mm.h>
  44#include <linux/dma-mapping.h>
  45
  46#include "usb.h"
  47
  48
  49const char *usbcore_name = "usbcore";
  50
  51static bool nousb;      /* Disable USB when built into kernel image */
  52
  53module_param(nousb, bool, 0444);
  54
  55/*
  56 * for external read access to <nousb>
  57 */
  58int usb_disabled(void)
  59{
  60        return nousb;
  61}
  62EXPORT_SYMBOL_GPL(usb_disabled);
  63
  64#ifdef  CONFIG_PM
  65static int usb_autosuspend_delay = 2;           /* Default delay value,
  66                                                 * in seconds */
  67module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
  68MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
  69
  70#else
  71#define usb_autosuspend_delay           0
  72#endif
  73
  74
  75/**
  76 * usb_find_alt_setting() - Given a configuration, find the alternate setting
  77 * for the given interface.
  78 * @config: the configuration to search (not necessarily the current config).
  79 * @iface_num: interface number to search in
  80 * @alt_num: alternate interface setting number to search for.
  81 *
  82 * Search the configuration's interface cache for the given alt setting.
  83 *
  84 * Return: The alternate setting, if found. %NULL otherwise.
  85 */
  86struct usb_host_interface *usb_find_alt_setting(
  87                struct usb_host_config *config,
  88                unsigned int iface_num,
  89                unsigned int alt_num)
  90{
  91        struct usb_interface_cache *intf_cache = NULL;
  92        int i;
  93
  94        for (i = 0; i < config->desc.bNumInterfaces; i++) {
  95                if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
  96                                == iface_num) {
  97                        intf_cache = config->intf_cache[i];
  98                        break;
  99                }
 100        }
 101        if (!intf_cache)
 102                return NULL;
 103        for (i = 0; i < intf_cache->num_altsetting; i++)
 104                if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
 105                        return &intf_cache->altsetting[i];
 106
 107        printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
 108                        "config %u\n", alt_num, iface_num,
 109                        config->desc.bConfigurationValue);
 110        return NULL;
 111}
 112EXPORT_SYMBOL_GPL(usb_find_alt_setting);
 113
 114/**
 115 * usb_ifnum_to_if - get the interface object with a given interface number
 116 * @dev: the device whose current configuration is considered
 117 * @ifnum: the desired interface
 118 *
 119 * This walks the device descriptor for the currently active configuration
 120 * to find the interface object with the particular interface number.
 121 *
 122 * Note that configuration descriptors are not required to assign interface
 123 * numbers sequentially, so that it would be incorrect to assume that
 124 * the first interface in that descriptor corresponds to interface zero.
 125 * This routine helps device drivers avoid such mistakes.
 126 * However, you should make sure that you do the right thing with any
 127 * alternate settings available for this interfaces.
 128 *
 129 * Don't call this function unless you are bound to one of the interfaces
 130 * on this device or you have locked the device!
 131 *
 132 * Return: A pointer to the interface that has @ifnum as interface number,
 133 * if found. %NULL otherwise.
 134 */
 135struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 136                                      unsigned ifnum)
 137{
 138        struct usb_host_config *config = dev->actconfig;
 139        int i;
 140
 141        if (!config)
 142                return NULL;
 143        for (i = 0; i < config->desc.bNumInterfaces; i++)
 144                if (config->interface[i]->altsetting[0]
 145                                .desc.bInterfaceNumber == ifnum)
 146                        return config->interface[i];
 147
 148        return NULL;
 149}
 150EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
 151
 152/**
 153 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
 154 * @intf: the interface containing the altsetting in question
 155 * @altnum: the desired alternate setting number
 156 *
 157 * This searches the altsetting array of the specified interface for
 158 * an entry with the correct bAlternateSetting value.
 159 *
 160 * Note that altsettings need not be stored sequentially by number, so
 161 * it would be incorrect to assume that the first altsetting entry in
 162 * the array corresponds to altsetting zero.  This routine helps device
 163 * drivers avoid such mistakes.
 164 *
 165 * Don't call this function unless you are bound to the intf interface
 166 * or you have locked the device!
 167 *
 168 * Return: A pointer to the entry of the altsetting array of @intf that
 169 * has @altnum as the alternate setting number. %NULL if not found.
 170 */
 171struct usb_host_interface *usb_altnum_to_altsetting(
 172                                        const struct usb_interface *intf,
 173                                        unsigned int altnum)
 174{
 175        int i;
 176
 177        for (i = 0; i < intf->num_altsetting; i++) {
 178                if (intf->altsetting[i].desc.bAlternateSetting == altnum)
 179                        return &intf->altsetting[i];
 180        }
 181        return NULL;
 182}
 183EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
 184
 185struct find_interface_arg {
 186        int minor;
 187        struct device_driver *drv;
 188};
 189
 190static int __find_interface(struct device *dev, void *data)
 191{
 192        struct find_interface_arg *arg = data;
 193        struct usb_interface *intf;
 194
 195        if (!is_usb_interface(dev))
 196                return 0;
 197
 198        if (dev->driver != arg->drv)
 199                return 0;
 200        intf = to_usb_interface(dev);
 201        return intf->minor == arg->minor;
 202}
 203
 204/**
 205 * usb_find_interface - find usb_interface pointer for driver and device
 206 * @drv: the driver whose current configuration is considered
 207 * @minor: the minor number of the desired device
 208 *
 209 * This walks the bus device list and returns a pointer to the interface
 210 * with the matching minor and driver.  Note, this only works for devices
 211 * that share the USB major number.
 212 *
 213 * Return: A pointer to the interface with the matching major and @minor.
 214 */
 215struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
 216{
 217        struct find_interface_arg argb;
 218        struct device *dev;
 219
 220        argb.minor = minor;
 221        argb.drv = &drv->drvwrap.driver;
 222
 223        dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
 224
 225        /* Drop reference count from bus_find_device */
 226        put_device(dev);
 227
 228        return dev ? to_usb_interface(dev) : NULL;
 229}
 230EXPORT_SYMBOL_GPL(usb_find_interface);
 231
 232struct each_dev_arg {
 233        void *data;
 234        int (*fn)(struct usb_device *, void *);
 235};
 236
 237static int __each_dev(struct device *dev, void *data)
 238{
 239        struct each_dev_arg *arg = (struct each_dev_arg *)data;
 240
 241        /* There are struct usb_interface on the same bus, filter them out */
 242        if (!is_usb_device(dev))
 243                return 0;
 244
 245        return arg->fn(to_usb_device(dev), arg->data);
 246}
 247
 248/**
 249 * usb_for_each_dev - iterate over all USB devices in the system
 250 * @data: data pointer that will be handed to the callback function
 251 * @fn: callback function to be called for each USB device
 252 *
 253 * Iterate over all USB devices and call @fn for each, passing it @data. If it
 254 * returns anything other than 0, we break the iteration prematurely and return
 255 * that value.
 256 */
 257int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
 258{
 259        struct each_dev_arg arg = {data, fn};
 260
 261        return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
 262}
 263EXPORT_SYMBOL_GPL(usb_for_each_dev);
 264
 265/**
 266 * usb_release_dev - free a usb device structure when all users of it are finished.
 267 * @dev: device that's been disconnected
 268 *
 269 * Will be called only by the device core when all users of this usb device are
 270 * done.
 271 */
 272static void usb_release_dev(struct device *dev)
 273{
 274        struct usb_device *udev;
 275        struct usb_hcd *hcd;
 276
 277        udev = to_usb_device(dev);
 278        hcd = bus_to_hcd(udev->bus);
 279
 280        usb_destroy_configuration(udev);
 281        usb_release_bos_descriptor(udev);
 282        usb_put_hcd(hcd);
 283        kfree(udev->product);
 284        kfree(udev->manufacturer);
 285        kfree(udev->serial);
 286        kfree(udev);
 287}
 288
 289static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 290{
 291        struct usb_device *usb_dev;
 292
 293        usb_dev = to_usb_device(dev);
 294
 295        if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
 296                return -ENOMEM;
 297
 298        if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
 299                return -ENOMEM;
 300
 301        return 0;
 302}
 303
 304#ifdef  CONFIG_PM
 305
 306/* USB device Power-Management thunks.
 307 * There's no need to distinguish here between quiescing a USB device
 308 * and powering it down; the generic_suspend() routine takes care of
 309 * it by skipping the usb_port_suspend() call for a quiesce.  And for
 310 * USB interfaces there's no difference at all.
 311 */
 312
 313static int usb_dev_prepare(struct device *dev)
 314{
 315        return 0;               /* Implement eventually? */
 316}
 317
 318static void usb_dev_complete(struct device *dev)
 319{
 320        /* Currently used only for rebinding interfaces */
 321        usb_resume_complete(dev);
 322}
 323
 324static int usb_dev_suspend(struct device *dev)
 325{
 326        return usb_suspend(dev, PMSG_SUSPEND);
 327}
 328
 329static int usb_dev_resume(struct device *dev)
 330{
 331        return usb_resume(dev, PMSG_RESUME);
 332}
 333
 334static int usb_dev_freeze(struct device *dev)
 335{
 336        return usb_suspend(dev, PMSG_FREEZE);
 337}
 338
 339static int usb_dev_thaw(struct device *dev)
 340{
 341        return usb_resume(dev, PMSG_THAW);
 342}
 343
 344static int usb_dev_poweroff(struct device *dev)
 345{
 346        return usb_suspend(dev, PMSG_HIBERNATE);
 347}
 348
 349static int usb_dev_restore(struct device *dev)
 350{
 351        return usb_resume(dev, PMSG_RESTORE);
 352}
 353
 354static const struct dev_pm_ops usb_device_pm_ops = {
 355        .prepare =      usb_dev_prepare,
 356        .complete =     usb_dev_complete,
 357        .suspend =      usb_dev_suspend,
 358        .resume =       usb_dev_resume,
 359        .freeze =       usb_dev_freeze,
 360        .thaw =         usb_dev_thaw,
 361        .poweroff =     usb_dev_poweroff,
 362        .restore =      usb_dev_restore,
 363        .runtime_suspend =      usb_runtime_suspend,
 364        .runtime_resume =       usb_runtime_resume,
 365        .runtime_idle =         usb_runtime_idle,
 366};
 367
 368#endif  /* CONFIG_PM */
 369
 370
 371static char *usb_devnode(struct device *dev,
 372                         umode_t *mode, kuid_t *uid, kgid_t *gid)
 373{
 374        struct usb_device *usb_dev;
 375
 376        usb_dev = to_usb_device(dev);
 377        return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
 378                         usb_dev->bus->busnum, usb_dev->devnum);
 379}
 380
 381struct device_type usb_device_type = {
 382        .name =         "usb_device",
 383        .release =      usb_release_dev,
 384        .uevent =       usb_dev_uevent,
 385        .devnode =      usb_devnode,
 386#ifdef CONFIG_PM
 387        .pm =           &usb_device_pm_ops,
 388#endif
 389};
 390
 391
 392/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
 393static unsigned usb_bus_is_wusb(struct usb_bus *bus)
 394{
 395        struct usb_hcd *hcd = bus_to_hcd(bus);
 396        return hcd->wireless;
 397}
 398
 399
 400/**
 401 * usb_alloc_dev - usb device constructor (usbcore-internal)
 402 * @parent: hub to which device is connected; null to allocate a root hub
 403 * @bus: bus used to access the device
 404 * @port1: one-based index of port; ignored for root hubs
 405 * Context: !in_interrupt()
 406 *
 407 * Only hub drivers (including virtual root hub drivers for host
 408 * controllers) should ever call this.
 409 *
 410 * This call may not be used in a non-sleeping context.
 411 *
 412 * Return: On success, a pointer to the allocated usb device. %NULL on
 413 * failure.
 414 */
 415struct usb_device *usb_alloc_dev(struct usb_device *parent,
 416                                 struct usb_bus *bus, unsigned port1)
 417{
 418        struct usb_device *dev;
 419        struct usb_hcd *usb_hcd = bus_to_hcd(bus);
 420        unsigned root_hub = 0;
 421        unsigned raw_port = port1;
 422
 423        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 424        if (!dev)
 425                return NULL;
 426
 427        if (!usb_get_hcd(usb_hcd)) {
 428                kfree(dev);
 429                return NULL;
 430        }
 431        /* Root hubs aren't true devices, so don't allocate HCD resources */
 432        if (usb_hcd->driver->alloc_dev && parent &&
 433                !usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
 434                usb_put_hcd(bus_to_hcd(bus));
 435                kfree(dev);
 436                return NULL;
 437        }
 438
 439        device_initialize(&dev->dev);
 440        dev->dev.bus = &usb_bus_type;
 441        dev->dev.type = &usb_device_type;
 442        dev->dev.groups = usb_device_groups;
 443        /*
 444         * Fake a dma_mask/offset for the USB device:
 445         * We cannot really use the dma-mapping API (dma_alloc_* and
 446         * dma_map_*) for USB devices but instead need to use
 447         * usb_alloc_coherent and pass data in 'urb's, but some subsystems
 448         * manually look into the mask/offset pair to determine whether
 449         * they need bounce buffers.
 450         * Note: calling dma_set_mask() on a USB device would set the
 451         * mask for the entire HCD, so don't do that.
 452         */
 453        dev->dev.dma_mask = bus->controller->dma_mask;
 454        dev->dev.dma_pfn_offset = bus->controller->dma_pfn_offset;
 455        set_dev_node(&dev->dev, dev_to_node(bus->controller));
 456        dev->state = USB_STATE_ATTACHED;
 457        dev->lpm_disable_count = 1;
 458        atomic_set(&dev->urbnum, 0);
 459
 460        INIT_LIST_HEAD(&dev->ep0.urb_list);
 461        dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
 462        dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
 463        /* ep0 maxpacket comes later, from device descriptor */
 464        usb_enable_endpoint(dev, &dev->ep0, false);
 465        dev->can_submit = 1;
 466
 467        /* Save readable and stable topology id, distinguishing devices
 468         * by location for diagnostics, tools, driver model, etc.  The
 469         * string is a path along hub ports, from the root.  Each device's
 470         * dev->devpath will be stable until USB is re-cabled, and hubs
 471         * are often labeled with these port numbers.  The name isn't
 472         * as stable:  bus->busnum changes easily from modprobe order,
 473         * cardbus or pci hotplugging, and so on.
 474         */
 475        if (unlikely(!parent)) {
 476                dev->devpath[0] = '0';
 477                dev->route = 0;
 478
 479                dev->dev.parent = bus->controller;
 480                dev_set_name(&dev->dev, "usb%d", bus->busnum);
 481                root_hub = 1;
 482        } else {
 483                /* match any labeling on the hubs; it's one-based */
 484                if (parent->devpath[0] == '0') {
 485                        snprintf(dev->devpath, sizeof dev->devpath,
 486                                "%d", port1);
 487                        /* Root ports are not counted in route string */
 488                        dev->route = 0;
 489                } else {
 490                        snprintf(dev->devpath, sizeof dev->devpath,
 491                                "%s.%d", parent->devpath, port1);
 492                        /* Route string assumes hubs have less than 16 ports */
 493                        if (port1 < 15)
 494                                dev->route = parent->route +
 495                                        (port1 << ((parent->level - 1)*4));
 496                        else
 497                                dev->route = parent->route +
 498                                        (15 << ((parent->level - 1)*4));
 499                }
 500
 501                dev->dev.parent = &parent->dev;
 502                dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
 503
 504                if (!parent->parent) {
 505                        /* device under root hub's port */
 506                        raw_port = usb_hcd_find_raw_port_number(usb_hcd,
 507                                port1);
 508                }
 509                dev->dev.of_node = usb_of_get_child_node(parent->dev.of_node,
 510                                raw_port);
 511
 512                /* hub driver sets up TT records */
 513        }
 514
 515        dev->portnum = port1;
 516        dev->bus = bus;
 517        dev->parent = parent;
 518        INIT_LIST_HEAD(&dev->filelist);
 519
 520#ifdef  CONFIG_PM
 521        pm_runtime_set_autosuspend_delay(&dev->dev,
 522                        usb_autosuspend_delay * 1000);
 523        dev->connect_time = jiffies;
 524        dev->active_duration = -jiffies;
 525#endif
 526        if (root_hub)   /* Root hub always ok [and always wired] */
 527                dev->authorized = 1;
 528        else {
 529                dev->authorized = !!HCD_DEV_AUTHORIZED(usb_hcd);
 530                dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
 531        }
 532        return dev;
 533}
 534EXPORT_SYMBOL_GPL(usb_alloc_dev);
 535
 536/**
 537 * usb_get_dev - increments the reference count of the usb device structure
 538 * @dev: the device being referenced
 539 *
 540 * Each live reference to a device should be refcounted.
 541 *
 542 * Drivers for USB interfaces should normally record such references in
 543 * their probe() methods, when they bind to an interface, and release
 544 * them by calling usb_put_dev(), in their disconnect() methods.
 545 *
 546 * Return: A pointer to the device with the incremented reference counter.
 547 */
 548struct usb_device *usb_get_dev(struct usb_device *dev)
 549{
 550        if (dev)
 551                get_device(&dev->dev);
 552        return dev;
 553}
 554EXPORT_SYMBOL_GPL(usb_get_dev);
 555
 556/**
 557 * usb_put_dev - release a use of the usb device structure
 558 * @dev: device that's been disconnected
 559 *
 560 * Must be called when a user of a device is finished with it.  When the last
 561 * user of the device calls this function, the memory of the device is freed.
 562 */
 563void usb_put_dev(struct usb_device *dev)
 564{
 565        if (dev)
 566                put_device(&dev->dev);
 567}
 568EXPORT_SYMBOL_GPL(usb_put_dev);
 569
 570/**
 571 * usb_get_intf - increments the reference count of the usb interface structure
 572 * @intf: the interface being referenced
 573 *
 574 * Each live reference to a interface must be refcounted.
 575 *
 576 * Drivers for USB interfaces should normally record such references in
 577 * their probe() methods, when they bind to an interface, and release
 578 * them by calling usb_put_intf(), in their disconnect() methods.
 579 *
 580 * Return: A pointer to the interface with the incremented reference counter.
 581 */
 582struct usb_interface *usb_get_intf(struct usb_interface *intf)
 583{
 584        if (intf)
 585                get_device(&intf->dev);
 586        return intf;
 587}
 588EXPORT_SYMBOL_GPL(usb_get_intf);
 589
 590/**
 591 * usb_put_intf - release a use of the usb interface structure
 592 * @intf: interface that's been decremented
 593 *
 594 * Must be called when a user of an interface is finished with it.  When the
 595 * last user of the interface calls this function, the memory of the interface
 596 * is freed.
 597 */
 598void usb_put_intf(struct usb_interface *intf)
 599{
 600        if (intf)
 601                put_device(&intf->dev);
 602}
 603EXPORT_SYMBOL_GPL(usb_put_intf);
 604
 605/*                      USB device locking
 606 *
 607 * USB devices and interfaces are locked using the semaphore in their
 608 * embedded struct device.  The hub driver guarantees that whenever a
 609 * device is connected or disconnected, drivers are called with the
 610 * USB device locked as well as their particular interface.
 611 *
 612 * Complications arise when several devices are to be locked at the same
 613 * time.  Only hub-aware drivers that are part of usbcore ever have to
 614 * do this; nobody else needs to worry about it.  The rule for locking
 615 * is simple:
 616 *
 617 *      When locking both a device and its parent, always lock the
 618 *      the parent first.
 619 */
 620
 621/**
 622 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
 623 * @udev: device that's being locked
 624 * @iface: interface bound to the driver making the request (optional)
 625 *
 626 * Attempts to acquire the device lock, but fails if the device is
 627 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
 628 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
 629 * lock, the routine polls repeatedly.  This is to prevent deadlock with
 630 * disconnect; in some drivers (such as usb-storage) the disconnect()
 631 * or suspend() method will block waiting for a device reset to complete.
 632 *
 633 * Return: A negative error code for failure, otherwise 0.
 634 */
 635int usb_lock_device_for_reset(struct usb_device *udev,
 636                              const struct usb_interface *iface)
 637{
 638        unsigned long jiffies_expire = jiffies + HZ;
 639
 640        if (udev->state == USB_STATE_NOTATTACHED)
 641                return -ENODEV;
 642        if (udev->state == USB_STATE_SUSPENDED)
 643                return -EHOSTUNREACH;
 644        if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 645                        iface->condition == USB_INTERFACE_UNBOUND))
 646                return -EINTR;
 647
 648        while (!usb_trylock_device(udev)) {
 649
 650                /* If we can't acquire the lock after waiting one second,
 651                 * we're probably deadlocked */
 652                if (time_after(jiffies, jiffies_expire))
 653                        return -EBUSY;
 654
 655                msleep(15);
 656                if (udev->state == USB_STATE_NOTATTACHED)
 657                        return -ENODEV;
 658                if (udev->state == USB_STATE_SUSPENDED)
 659                        return -EHOSTUNREACH;
 660                if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 661                                iface->condition == USB_INTERFACE_UNBOUND))
 662                        return -EINTR;
 663        }
 664        return 0;
 665}
 666EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
 667
 668/**
 669 * usb_get_current_frame_number - return current bus frame number
 670 * @dev: the device whose bus is being queried
 671 *
 672 * Return: The current frame number for the USB host controller used
 673 * with the given USB device. This can be used when scheduling
 674 * isochronous requests.
 675 *
 676 * Note: Different kinds of host controller have different "scheduling
 677 * horizons". While one type might support scheduling only 32 frames
 678 * into the future, others could support scheduling up to 1024 frames
 679 * into the future.
 680 *
 681 */
 682int usb_get_current_frame_number(struct usb_device *dev)
 683{
 684        return usb_hcd_get_frame_number(dev);
 685}
 686EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
 687
 688/*-------------------------------------------------------------------*/
 689/*
 690 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
 691 * extra field of the interface and endpoint descriptor structs.
 692 */
 693
 694int __usb_get_extra_descriptor(char *buffer, unsigned size,
 695                               unsigned char type, void **ptr)
 696{
 697        struct usb_descriptor_header *header;
 698
 699        while (size >= sizeof(struct usb_descriptor_header)) {
 700                header = (struct usb_descriptor_header *)buffer;
 701
 702                if (header->bLength < 2) {
 703                        printk(KERN_ERR
 704                                "%s: bogus descriptor, type %d length %d\n",
 705                                usbcore_name,
 706                                header->bDescriptorType,
 707                                header->bLength);
 708                        return -1;
 709                }
 710
 711                if (header->bDescriptorType == type) {
 712                        *ptr = header;
 713                        return 0;
 714                }
 715
 716                buffer += header->bLength;
 717                size -= header->bLength;
 718        }
 719        return -1;
 720}
 721EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
 722
 723/**
 724 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
 725 * @dev: device the buffer will be used with
 726 * @size: requested buffer size
 727 * @mem_flags: affect whether allocation may block
 728 * @dma: used to return DMA address of buffer
 729 *
 730 * Return: Either null (indicating no buffer could be allocated), or the
 731 * cpu-space pointer to a buffer that may be used to perform DMA to the
 732 * specified device.  Such cpu-space buffers are returned along with the DMA
 733 * address (through the pointer provided).
 734 *
 735 * Note:
 736 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
 737 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
 738 * hardware during URB completion/resubmit.  The implementation varies between
 739 * platforms, depending on details of how DMA will work to this device.
 740 * Using these buffers also eliminates cacheline sharing problems on
 741 * architectures where CPU caches are not DMA-coherent.  On systems without
 742 * bus-snooping caches, these buffers are uncached.
 743 *
 744 * When the buffer is no longer used, free it with usb_free_coherent().
 745 */
 746void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
 747                         dma_addr_t *dma)
 748{
 749        if (!dev || !dev->bus)
 750                return NULL;
 751        return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
 752}
 753EXPORT_SYMBOL_GPL(usb_alloc_coherent);
 754
 755/**
 756 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
 757 * @dev: device the buffer was used with
 758 * @size: requested buffer size
 759 * @addr: CPU address of buffer
 760 * @dma: DMA address of buffer
 761 *
 762 * This reclaims an I/O buffer, letting it be reused.  The memory must have
 763 * been allocated using usb_alloc_coherent(), and the parameters must match
 764 * those provided in that allocation request.
 765 */
 766void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
 767                       dma_addr_t dma)
 768{
 769        if (!dev || !dev->bus)
 770                return;
 771        if (!addr)
 772                return;
 773        hcd_buffer_free(dev->bus, size, addr, dma);
 774}
 775EXPORT_SYMBOL_GPL(usb_free_coherent);
 776
 777/**
 778 * usb_buffer_map - create DMA mapping(s) for an urb
 779 * @urb: urb whose transfer_buffer/setup_packet will be mapped
 780 *
 781 * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
 782 * succeeds. If the device is connected to this system through a non-DMA
 783 * controller, this operation always succeeds.
 784 *
 785 * This call would normally be used for an urb which is reused, perhaps
 786 * as the target of a large periodic transfer, with usb_buffer_dmasync()
 787 * calls to synchronize memory and dma state.
 788 *
 789 * Reverse the effect of this call with usb_buffer_unmap().
 790 *
 791 * Return: Either %NULL (indicating no buffer could be mapped), or @urb.
 792 *
 793 */
 794#if 0
 795struct urb *usb_buffer_map(struct urb *urb)
 796{
 797        struct usb_bus          *bus;
 798        struct device           *controller;
 799
 800        if (!urb
 801                        || !urb->dev
 802                        || !(bus = urb->dev->bus)
 803                        || !(controller = bus->controller))
 804                return NULL;
 805
 806        if (controller->dma_mask) {
 807                urb->transfer_dma = dma_map_single(controller,
 808                        urb->transfer_buffer, urb->transfer_buffer_length,
 809                        usb_pipein(urb->pipe)
 810                                ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 811        /* FIXME generic api broken like pci, can't report errors */
 812        /* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
 813        } else
 814                urb->transfer_dma = ~0;
 815        urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
 816        return urb;
 817}
 818EXPORT_SYMBOL_GPL(usb_buffer_map);
 819#endif  /*  0  */
 820
 821/* XXX DISABLED, no users currently.  If you wish to re-enable this
 822 * XXX please determine whether the sync is to transfer ownership of
 823 * XXX the buffer from device to cpu or vice verse, and thusly use the
 824 * XXX appropriate _for_{cpu,device}() method.  -DaveM
 825 */
 826#if 0
 827
 828/**
 829 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
 830 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
 831 */
 832void usb_buffer_dmasync(struct urb *urb)
 833{
 834        struct usb_bus          *bus;
 835        struct device           *controller;
 836
 837        if (!urb
 838                        || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
 839                        || !urb->dev
 840                        || !(bus = urb->dev->bus)
 841                        || !(controller = bus->controller))
 842                return;
 843
 844        if (controller->dma_mask) {
 845                dma_sync_single_for_cpu(controller,
 846                        urb->transfer_dma, urb->transfer_buffer_length,
 847                        usb_pipein(urb->pipe)
 848                                ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 849                if (usb_pipecontrol(urb->pipe))
 850                        dma_sync_single_for_cpu(controller,
 851                                        urb->setup_dma,
 852                                        sizeof(struct usb_ctrlrequest),
 853                                        DMA_TO_DEVICE);
 854        }
 855}
 856EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
 857#endif
 858
 859/**
 860 * usb_buffer_unmap - free DMA mapping(s) for an urb
 861 * @urb: urb whose transfer_buffer will be unmapped
 862 *
 863 * Reverses the effect of usb_buffer_map().
 864 */
 865#if 0
 866void usb_buffer_unmap(struct urb *urb)
 867{
 868        struct usb_bus          *bus;
 869        struct device           *controller;
 870
 871        if (!urb
 872                        || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
 873                        || !urb->dev
 874                        || !(bus = urb->dev->bus)
 875                        || !(controller = bus->controller))
 876                return;
 877
 878        if (controller->dma_mask) {
 879                dma_unmap_single(controller,
 880                        urb->transfer_dma, urb->transfer_buffer_length,
 881                        usb_pipein(urb->pipe)
 882                                ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 883        }
 884        urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
 885}
 886EXPORT_SYMBOL_GPL(usb_buffer_unmap);
 887#endif  /*  0  */
 888
 889#if 0
 890/**
 891 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
 892 * @dev: device to which the scatterlist will be mapped
 893 * @is_in: mapping transfer direction
 894 * @sg: the scatterlist to map
 895 * @nents: the number of entries in the scatterlist
 896 *
 897 * Return: Either < 0 (indicating no buffers could be mapped), or the
 898 * number of DMA mapping array entries in the scatterlist.
 899 *
 900 * Note:
 901 * The caller is responsible for placing the resulting DMA addresses from
 902 * the scatterlist into URB transfer buffer pointers, and for setting the
 903 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
 904 *
 905 * Top I/O rates come from queuing URBs, instead of waiting for each one
 906 * to complete before starting the next I/O.   This is particularly easy
 907 * to do with scatterlists.  Just allocate and submit one URB for each DMA
 908 * mapping entry returned, stopping on the first error or when all succeed.
 909 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
 910 *
 911 * This call would normally be used when translating scatterlist requests,
 912 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
 913 * may be able to coalesce mappings for improved I/O efficiency.
 914 *
 915 * Reverse the effect of this call with usb_buffer_unmap_sg().
 916 */
 917int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
 918                      struct scatterlist *sg, int nents)
 919{
 920        struct usb_bus          *bus;
 921        struct device           *controller;
 922
 923        if (!dev
 924                        || !(bus = dev->bus)
 925                        || !(controller = bus->controller)
 926                        || !controller->dma_mask)
 927                return -EINVAL;
 928
 929        /* FIXME generic api broken like pci, can't report errors */
 930        return dma_map_sg(controller, sg, nents,
 931                        is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
 932}
 933EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
 934#endif
 935
 936/* XXX DISABLED, no users currently.  If you wish to re-enable this
 937 * XXX please determine whether the sync is to transfer ownership of
 938 * XXX the buffer from device to cpu or vice verse, and thusly use the
 939 * XXX appropriate _for_{cpu,device}() method.  -DaveM
 940 */
 941#if 0
 942
 943/**
 944 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
 945 * @dev: device to which the scatterlist will be mapped
 946 * @is_in: mapping transfer direction
 947 * @sg: the scatterlist to synchronize
 948 * @n_hw_ents: the positive return value from usb_buffer_map_sg
 949 *
 950 * Use this when you are re-using a scatterlist's data buffers for
 951 * another USB request.
 952 */
 953void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
 954                           struct scatterlist *sg, int n_hw_ents)
 955{
 956        struct usb_bus          *bus;
 957        struct device           *controller;
 958
 959        if (!dev
 960                        || !(bus = dev->bus)
 961                        || !(controller = bus->controller)
 962                        || !controller->dma_mask)
 963                return;
 964
 965        dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
 966                            is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 967}
 968EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
 969#endif
 970
 971#if 0
 972/**
 973 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
 974 * @dev: device to which the scatterlist will be mapped
 975 * @is_in: mapping transfer direction
 976 * @sg: the scatterlist to unmap
 977 * @n_hw_ents: the positive return value from usb_buffer_map_sg
 978 *
 979 * Reverses the effect of usb_buffer_map_sg().
 980 */
 981void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
 982                         struct scatterlist *sg, int n_hw_ents)
 983{
 984        struct usb_bus          *bus;
 985        struct device           *controller;
 986
 987        if (!dev
 988                        || !(bus = dev->bus)
 989                        || !(controller = bus->controller)
 990                        || !controller->dma_mask)
 991                return;
 992
 993        dma_unmap_sg(controller, sg, n_hw_ents,
 994                        is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 995}
 996EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
 997#endif
 998
 999/*
1000 * Notifications of device and interface registration
1001 */
1002static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1003                void *data)
1004{
1005        struct device *dev = data;
1006
1007        switch (action) {
1008        case BUS_NOTIFY_ADD_DEVICE:
1009                if (dev->type == &usb_device_type)
1010                        (void) usb_create_sysfs_dev_files(to_usb_device(dev));
1011                else if (dev->type == &usb_if_device_type)
1012                        usb_create_sysfs_intf_files(to_usb_interface(dev));
1013                break;
1014
1015        case BUS_NOTIFY_DEL_DEVICE:
1016                if (dev->type == &usb_device_type)
1017                        usb_remove_sysfs_dev_files(to_usb_device(dev));
1018                else if (dev->type == &usb_if_device_type)
1019                        usb_remove_sysfs_intf_files(to_usb_interface(dev));
1020                break;
1021        }
1022        return 0;
1023}
1024
1025static struct notifier_block usb_bus_nb = {
1026        .notifier_call = usb_bus_notify,
1027};
1028
1029struct dentry *usb_debug_root;
1030EXPORT_SYMBOL_GPL(usb_debug_root);
1031
1032static struct dentry *usb_debug_devices;
1033
1034static int usb_debugfs_init(void)
1035{
1036        usb_debug_root = debugfs_create_dir("usb", NULL);
1037        if (!usb_debug_root)
1038                return -ENOENT;
1039
1040        usb_debug_devices = debugfs_create_file("devices", 0444,
1041                                                usb_debug_root, NULL,
1042                                                &usbfs_devices_fops);
1043        if (!usb_debug_devices) {
1044                debugfs_remove(usb_debug_root);
1045                usb_debug_root = NULL;
1046                return -ENOENT;
1047        }
1048
1049        return 0;
1050}
1051
1052static void usb_debugfs_cleanup(void)
1053{
1054        debugfs_remove(usb_debug_devices);
1055        debugfs_remove(usb_debug_root);
1056}
1057
1058/*
1059 * Init
1060 */
1061static int __init usb_init(void)
1062{
1063        int retval;
1064        if (usb_disabled()) {
1065                pr_info("%s: USB support disabled\n", usbcore_name);
1066                return 0;
1067        }
1068        usb_init_pool_max();
1069
1070        retval = usb_debugfs_init();
1071        if (retval)
1072                goto out;
1073
1074        usb_acpi_register();
1075        retval = bus_register(&usb_bus_type);
1076        if (retval)
1077                goto bus_register_failed;
1078        retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1079        if (retval)
1080                goto bus_notifier_failed;
1081        retval = usb_major_init();
1082        if (retval)
1083                goto major_init_failed;
1084        retval = usb_register(&usbfs_driver);
1085        if (retval)
1086                goto driver_register_failed;
1087        retval = usb_devio_init();
1088        if (retval)
1089                goto usb_devio_init_failed;
1090        retval = usb_hub_init();
1091        if (retval)
1092                goto hub_init_failed;
1093        retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1094        if (!retval)
1095                goto out;
1096
1097        usb_hub_cleanup();
1098hub_init_failed:
1099        usb_devio_cleanup();
1100usb_devio_init_failed:
1101        usb_deregister(&usbfs_driver);
1102driver_register_failed:
1103        usb_major_cleanup();
1104major_init_failed:
1105        bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1106bus_notifier_failed:
1107        bus_unregister(&usb_bus_type);
1108bus_register_failed:
1109        usb_acpi_unregister();
1110        usb_debugfs_cleanup();
1111out:
1112        return retval;
1113}
1114
1115/*
1116 * Cleanup
1117 */
1118static void __exit usb_exit(void)
1119{
1120        /* This will matter if shutdown/reboot does exitcalls. */
1121        if (usb_disabled())
1122                return;
1123
1124        usb_deregister_device_driver(&usb_generic_driver);
1125        usb_major_cleanup();
1126        usb_deregister(&usbfs_driver);
1127        usb_devio_cleanup();
1128        usb_hub_cleanup();
1129        bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1130        bus_unregister(&usb_bus_type);
1131        usb_acpi_unregister();
1132        usb_debugfs_cleanup();
1133        idr_destroy(&usb_bus_idr);
1134}
1135
1136subsys_initcall(usb_init);
1137module_exit(usb_exit);
1138MODULE_LICENSE("GPL");
1139