linux/drivers/usb/wusbcore/crypto.c
<<
>>
Prefs
   1/*
   2 * Ultra Wide Band
   3 * AES-128 CCM Encryption
   4 *
   5 * Copyright (C) 2007 Intel Corporation
   6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License version
  10 * 2 as published by the Free Software Foundation.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20 * 02110-1301, USA.
  21 *
  22 *
  23 * We don't do any encryption here; we use the Linux Kernel's AES-128
  24 * crypto modules to construct keys and payload blocks in a way
  25 * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
  26 * there.
  27 *
  28 * Thanks a zillion to John Keys for his help and clarifications over
  29 * the designed-by-a-committee text.
  30 *
  31 * So the idea is that there is this basic Pseudo-Random-Function
  32 * defined in WUSB1.0[6.5] which is the core of everything. It works
  33 * by tweaking some blocks, AES crypting them and then xoring
  34 * something else with them (this seems to be called CBC(AES) -- can
  35 * you tell I know jack about crypto?). So we just funnel it into the
  36 * Linux Crypto API.
  37 *
  38 * We leave a crypto test module so we can verify that vectors match,
  39 * every now and then.
  40 *
  41 * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
  42 *             am learning a lot...
  43 *
  44 *             Conveniently, some data structures that need to be
  45 *             funneled through AES are...16 bytes in size!
  46 */
  47
  48#include <crypto/skcipher.h>
  49#include <linux/crypto.h>
  50#include <linux/module.h>
  51#include <linux/err.h>
  52#include <linux/uwb.h>
  53#include <linux/slab.h>
  54#include <linux/usb/wusb.h>
  55#include <linux/scatterlist.h>
  56
  57static int debug_crypto_verify;
  58
  59module_param(debug_crypto_verify, int, 0);
  60MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
  61
  62static void wusb_key_dump(const void *buf, size_t len)
  63{
  64        print_hex_dump(KERN_ERR, "  ", DUMP_PREFIX_OFFSET, 16, 1,
  65                       buf, len, 0);
  66}
  67
  68/*
  69 * Block of data, as understood by AES-CCM
  70 *
  71 * The code assumes this structure is nothing but a 16 byte array
  72 * (packed in a struct to avoid common mess ups that I usually do with
  73 * arrays and enforcing type checking).
  74 */
  75struct aes_ccm_block {
  76        u8 data[16];
  77} __attribute__((packed));
  78
  79/*
  80 * Counter-mode Blocks (WUSB1.0[6.4])
  81 *
  82 * According to CCM (or so it seems), for the purpose of calculating
  83 * the MIC, the message is broken in N counter-mode blocks, B0, B1,
  84 * ... BN.
  85 *
  86 * B0 contains flags, the CCM nonce and l(m).
  87 *
  88 * B1 contains l(a), the MAC header, the encryption offset and padding.
  89 *
  90 * If EO is nonzero, additional blocks are built from payload bytes
  91 * until EO is exhausted (FIXME: padding to 16 bytes, I guess). The
  92 * padding is not xmitted.
  93 */
  94
  95/* WUSB1.0[T6.4] */
  96struct aes_ccm_b0 {
  97        u8 flags;       /* 0x59, per CCM spec */
  98        struct aes_ccm_nonce ccm_nonce;
  99        __be16 lm;
 100} __attribute__((packed));
 101
 102/* WUSB1.0[T6.5] */
 103struct aes_ccm_b1 {
 104        __be16 la;
 105        u8 mac_header[10];
 106        __le16 eo;
 107        u8 security_reserved;   /* This is always zero */
 108        u8 padding;             /* 0 */
 109} __attribute__((packed));
 110
 111/*
 112 * Encryption Blocks (WUSB1.0[6.4.4])
 113 *
 114 * CCM uses Ax blocks to generate a keystream with which the MIC and
 115 * the message's payload are encoded. A0 always encrypts/decrypts the
 116 * MIC. Ax (x>0) are used for the successive payload blocks.
 117 *
 118 * The x is the counter, and is increased for each block.
 119 */
 120struct aes_ccm_a {
 121        u8 flags;       /* 0x01, per CCM spec */
 122        struct aes_ccm_nonce ccm_nonce;
 123        __be16 counter; /* Value of x */
 124} __attribute__((packed));
 125
 126static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
 127                         size_t size)
 128{
 129        u8 *bo = _bo;
 130        const u8 *bi1 = _bi1, *bi2 = _bi2;
 131        size_t itr;
 132        for (itr = 0; itr < size; itr++)
 133                bo[itr] = bi1[itr] ^ bi2[itr];
 134}
 135
 136/* Scratch space for MAC calculations. */
 137struct wusb_mac_scratch {
 138        struct aes_ccm_b0 b0;
 139        struct aes_ccm_b1 b1;
 140        struct aes_ccm_a ax;
 141};
 142
 143/*
 144 * CC-MAC function WUSB1.0[6.5]
 145 *
 146 * Take a data string and produce the encrypted CBC Counter-mode MIC
 147 *
 148 * Note the names for most function arguments are made to (more or
 149 * less) match those used in the pseudo-function definition given in
 150 * WUSB1.0[6.5].
 151 *
 152 * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
 153 *
 154 * @tfm_aes: AES cipher handle (initialized)
 155 *
 156 * @mic: buffer for placing the computed MIC (Message Integrity
 157 *       Code). This is exactly 8 bytes, and we expect the buffer to
 158 *       be at least eight bytes in length.
 159 *
 160 * @key: 128 bit symmetric key
 161 *
 162 * @n: CCM nonce
 163 *
 164 * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
 165 *     we use exactly 14 bytes).
 166 *
 167 * @b: data stream to be processed; cannot be a global or const local
 168 *     (will confuse the scatterlists)
 169 *
 170 * @blen: size of b...
 171 *
 172 * Still not very clear how this is done, but looks like this: we
 173 * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
 174 * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
 175 * take the payload and divide it in blocks (16 bytes), xor them with
 176 * the previous crypto result (16 bytes) and crypt it, repeat the next
 177 * block with the output of the previous one, rinse wash (I guess this
 178 * is what AES CBC mode means...but I truly have no idea). So we use
 179 * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
 180 * Vector) is 16 bytes and is set to zero, so
 181 *
 182 * See rfc3610. Linux crypto has a CBC implementation, but the
 183 * documentation is scarce, to say the least, and the example code is
 184 * so intricated that is difficult to understand how things work. Most
 185 * of this is guess work -- bite me.
 186 *
 187 * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
 188 *     using the 14 bytes of @a to fill up
 189 *     b1.{mac_header,e0,security_reserved,padding}.
 190 *
 191 * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
 192 *       l(m) is orthogonal, they bear no relationship, so it is not
 193 *       in conflict with the parameter's relation that
 194 *       WUSB1.0[6.4.2]) defines.
 195 *
 196 * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
 197 *       first errata released on 2005/07.
 198 *
 199 * NOTE: we need to clean IV to zero at each invocation to make sure
 200 *       we start with a fresh empty Initial Vector, so that the CBC
 201 *       works ok.
 202 *
 203 * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
 204 *       what sg[4] is for. Maybe there is a smarter way to do this.
 205 */
 206static int wusb_ccm_mac(struct crypto_skcipher *tfm_cbc,
 207                        struct crypto_cipher *tfm_aes,
 208                        struct wusb_mac_scratch *scratch,
 209                        void *mic,
 210                        const struct aes_ccm_nonce *n,
 211                        const struct aes_ccm_label *a, const void *b,
 212                        size_t blen)
 213{
 214        int result = 0;
 215        SKCIPHER_REQUEST_ON_STACK(req, tfm_cbc);
 216        struct scatterlist sg[4], sg_dst;
 217        void *dst_buf;
 218        size_t dst_size;
 219        const u8 bzero[16] = { 0 };
 220        u8 iv[crypto_skcipher_ivsize(tfm_cbc)];
 221        size_t zero_padding;
 222
 223        /*
 224         * These checks should be compile time optimized out
 225         * ensure @a fills b1's mac_header and following fields
 226         */
 227        WARN_ON(sizeof(*a) != sizeof(scratch->b1) - sizeof(scratch->b1.la));
 228        WARN_ON(sizeof(scratch->b0) != sizeof(struct aes_ccm_block));
 229        WARN_ON(sizeof(scratch->b1) != sizeof(struct aes_ccm_block));
 230        WARN_ON(sizeof(scratch->ax) != sizeof(struct aes_ccm_block));
 231
 232        result = -ENOMEM;
 233        zero_padding = blen % sizeof(struct aes_ccm_block);
 234        if (zero_padding)
 235                zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
 236        dst_size = blen + sizeof(scratch->b0) + sizeof(scratch->b1) +
 237                zero_padding;
 238        dst_buf = kzalloc(dst_size, GFP_KERNEL);
 239        if (!dst_buf)
 240                goto error_dst_buf;
 241
 242        memset(iv, 0, sizeof(iv));
 243
 244        /* Setup B0 */
 245        scratch->b0.flags = 0x59;       /* Format B0 */
 246        scratch->b0.ccm_nonce = *n;
 247        scratch->b0.lm = cpu_to_be16(0);        /* WUSB1.0[6.5] sez l(m) is 0 */
 248
 249        /* Setup B1
 250         *
 251         * The WUSB spec is anything but clear! WUSB1.0[6.5]
 252         * says that to initialize B1 from A with 'l(a) = blen +
 253         * 14'--after clarification, it means to use A's contents
 254         * for MAC Header, EO, sec reserved and padding.
 255         */
 256        scratch->b1.la = cpu_to_be16(blen + 14);
 257        memcpy(&scratch->b1.mac_header, a, sizeof(*a));
 258
 259        sg_init_table(sg, ARRAY_SIZE(sg));
 260        sg_set_buf(&sg[0], &scratch->b0, sizeof(scratch->b0));
 261        sg_set_buf(&sg[1], &scratch->b1, sizeof(scratch->b1));
 262        sg_set_buf(&sg[2], b, blen);
 263        /* 0 if well behaved :) */
 264        sg_set_buf(&sg[3], bzero, zero_padding);
 265        sg_init_one(&sg_dst, dst_buf, dst_size);
 266
 267        skcipher_request_set_tfm(req, tfm_cbc);
 268        skcipher_request_set_callback(req, 0, NULL, NULL);
 269        skcipher_request_set_crypt(req, sg, &sg_dst, dst_size, iv);
 270        result = crypto_skcipher_encrypt(req);
 271        skcipher_request_zero(req);
 272        if (result < 0) {
 273                printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
 274                       result);
 275                goto error_cbc_crypt;
 276        }
 277
 278        /* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
 279         * The procedure is to AES crypt the A0 block and XOR the MIC
 280         * Tag against it; we only do the first 8 bytes and place it
 281         * directly in the destination buffer.
 282         *
 283         * POS Crypto API: size is assumed to be AES's block size.
 284         * Thanks for documenting it -- tip taken from airo.c
 285         */
 286        scratch->ax.flags = 0x01;               /* as per WUSB 1.0 spec */
 287        scratch->ax.ccm_nonce = *n;
 288        scratch->ax.counter = 0;
 289        crypto_cipher_encrypt_one(tfm_aes, (void *)&scratch->ax,
 290                                  (void *)&scratch->ax);
 291        bytewise_xor(mic, &scratch->ax, iv, 8);
 292        result = 8;
 293error_cbc_crypt:
 294        kfree(dst_buf);
 295error_dst_buf:
 296        return result;
 297}
 298
 299/*
 300 * WUSB Pseudo Random Function (WUSB1.0[6.5])
 301 *
 302 * @b: buffer to the source data; cannot be a global or const local
 303 *     (will confuse the scatterlists)
 304 */
 305ssize_t wusb_prf(void *out, size_t out_size,
 306                 const u8 key[16], const struct aes_ccm_nonce *_n,
 307                 const struct aes_ccm_label *a,
 308                 const void *b, size_t blen, size_t len)
 309{
 310        ssize_t result, bytes = 0, bitr;
 311        struct aes_ccm_nonce n = *_n;
 312        struct crypto_skcipher *tfm_cbc;
 313        struct crypto_cipher *tfm_aes;
 314        struct wusb_mac_scratch *scratch;
 315        u64 sfn = 0;
 316        __le64 sfn_le;
 317
 318        tfm_cbc = crypto_alloc_skcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
 319        if (IS_ERR(tfm_cbc)) {
 320                result = PTR_ERR(tfm_cbc);
 321                printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
 322                goto error_alloc_cbc;
 323        }
 324        result = crypto_skcipher_setkey(tfm_cbc, key, 16);
 325        if (result < 0) {
 326                printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
 327                goto error_setkey_cbc;
 328        }
 329
 330        tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
 331        if (IS_ERR(tfm_aes)) {
 332                result = PTR_ERR(tfm_aes);
 333                printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
 334                goto error_alloc_aes;
 335        }
 336        result = crypto_cipher_setkey(tfm_aes, key, 16);
 337        if (result < 0) {
 338                printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
 339                goto error_setkey_aes;
 340        }
 341        scratch = kmalloc(sizeof(*scratch), GFP_KERNEL);
 342        if (!scratch) {
 343                result = -ENOMEM;
 344                goto error_alloc_scratch;
 345        }
 346
 347        for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
 348                sfn_le = cpu_to_le64(sfn++);
 349                memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
 350                result = wusb_ccm_mac(tfm_cbc, tfm_aes, scratch, out + bytes,
 351                                      &n, a, b, blen);
 352                if (result < 0)
 353                        goto error_ccm_mac;
 354                bytes += result;
 355        }
 356        result = bytes;
 357
 358        kfree(scratch);
 359error_alloc_scratch:
 360error_ccm_mac:
 361error_setkey_aes:
 362        crypto_free_cipher(tfm_aes);
 363error_alloc_aes:
 364error_setkey_cbc:
 365        crypto_free_skcipher(tfm_cbc);
 366error_alloc_cbc:
 367        return result;
 368}
 369
 370/* WUSB1.0[A.2] test vectors */
 371static const u8 stv_hsmic_key[16] = {
 372        0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
 373        0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
 374};
 375
 376static const struct aes_ccm_nonce stv_hsmic_n = {
 377        .sfn = { 0 },
 378        .tkid = { 0x76, 0x98, 0x01,  },
 379        .dest_addr = { .data = { 0xbe, 0x00 } },
 380                .src_addr = { .data = { 0x76, 0x98 } },
 381};
 382
 383/*
 384 * Out-of-band MIC Generation verification code
 385 *
 386 */
 387static int wusb_oob_mic_verify(void)
 388{
 389        int result;
 390        u8 mic[8];
 391        /* WUSB1.0[A.2] test vectors
 392         *
 393         * Need to keep it in the local stack as GCC 4.1.3something
 394         * messes up and generates noise.
 395         */
 396        struct usb_handshake stv_hsmic_hs = {
 397                .bMessageNumber = 2,
 398                .bStatus        = 00,
 399                .tTKID          = { 0x76, 0x98, 0x01 },
 400                .bReserved      = 00,
 401                .CDID           = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
 402                                    0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
 403                                    0x3c, 0x3d, 0x3e, 0x3f },
 404                .nonce          = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
 405                                    0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
 406                                    0x2c, 0x2d, 0x2e, 0x2f },
 407                .MIC            = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
 408                                    0x14, 0x7b },
 409        };
 410        size_t hs_size;
 411
 412        result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
 413        if (result < 0)
 414                printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
 415        else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
 416                printk(KERN_ERR "E: OOB MIC test: "
 417                       "mismatch between MIC result and WUSB1.0[A2]\n");
 418                hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
 419                printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
 420                wusb_key_dump(&stv_hsmic_hs, hs_size);
 421                printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
 422                       sizeof(stv_hsmic_n));
 423                wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
 424                printk(KERN_ERR "E: MIC out:\n");
 425                wusb_key_dump(mic, sizeof(mic));
 426                printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
 427                wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
 428                result = -EINVAL;
 429        } else
 430                result = 0;
 431        return result;
 432}
 433
 434/*
 435 * Test vectors for Key derivation
 436 *
 437 * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
 438 * (errata corrected in 2005/07).
 439 */
 440static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
 441        0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
 442        0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
 443};
 444
 445static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
 446        .sfn = { 0 },
 447        .tkid = { 0x76, 0x98, 0x01,  },
 448        .dest_addr = { .data = { 0xbe, 0x00 } },
 449        .src_addr = { .data = { 0x76, 0x98 } },
 450};
 451
 452static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
 453        .kck = {
 454                0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
 455                0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
 456        },
 457        .ptk = {
 458                0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
 459                0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
 460        }
 461};
 462
 463/*
 464 * Performa a test to make sure we match the vectors defined in
 465 * WUSB1.0[A.1](Errata2006/12)
 466 */
 467static int wusb_key_derive_verify(void)
 468{
 469        int result = 0;
 470        struct wusb_keydvt_out keydvt_out;
 471        /* These come from WUSB1.0[A.1] + 2006/12 errata
 472         * NOTE: can't make this const or global -- somehow it seems
 473         *       the scatterlists for crypto get confused and we get
 474         *       bad data. There is no doc on this... */
 475        struct wusb_keydvt_in stv_keydvt_in_a1 = {
 476                .hnonce = {
 477                        0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 478                        0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
 479                },
 480                .dnonce = {
 481                        0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
 482                        0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
 483                }
 484        };
 485
 486        result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
 487                                 &stv_keydvt_in_a1);
 488        if (result < 0)
 489                printk(KERN_ERR "E: WUSB key derivation test: "
 490                       "derivation failed: %d\n", result);
 491        if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
 492                printk(KERN_ERR "E: WUSB key derivation test: "
 493                       "mismatch between key derivation result "
 494                       "and WUSB1.0[A1] Errata 2006/12\n");
 495                printk(KERN_ERR "E: keydvt in: key\n");
 496                wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
 497                printk(KERN_ERR "E: keydvt in: nonce\n");
 498                wusb_key_dump(&stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
 499                printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
 500                wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
 501                printk(KERN_ERR "E: keydvt out: KCK\n");
 502                wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
 503                printk(KERN_ERR "E: keydvt out: PTK\n");
 504                wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
 505                result = -EINVAL;
 506        } else
 507                result = 0;
 508        return result;
 509}
 510
 511/*
 512 * Initialize crypto system
 513 *
 514 * FIXME: we do nothing now, other than verifying. Later on we'll
 515 * cache the encryption stuff, so that's why we have a separate init.
 516 */
 517int wusb_crypto_init(void)
 518{
 519        int result;
 520
 521        if (debug_crypto_verify) {
 522                result = wusb_key_derive_verify();
 523                if (result < 0)
 524                        return result;
 525                return wusb_oob_mic_verify();
 526        }
 527        return 0;
 528}
 529
 530void wusb_crypto_exit(void)
 531{
 532        /* FIXME: free cached crypto transforms */
 533}
 534