linux/fs/btrfs/volumes.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18#include <linux/sched.h>
  19#include <linux/bio.h>
  20#include <linux/slab.h>
  21#include <linux/buffer_head.h>
  22#include <linux/blkdev.h>
  23#include <linux/iocontext.h>
  24#include <linux/capability.h>
  25#include <linux/ratelimit.h>
  26#include <linux/kthread.h>
  27#include <linux/raid/pq.h>
  28#include <linux/semaphore.h>
  29#include <linux/uuid.h>
  30#include <asm/div64.h>
  31#include "ctree.h"
  32#include "extent_map.h"
  33#include "disk-io.h"
  34#include "transaction.h"
  35#include "print-tree.h"
  36#include "volumes.h"
  37#include "raid56.h"
  38#include "async-thread.h"
  39#include "check-integrity.h"
  40#include "rcu-string.h"
  41#include "math.h"
  42#include "dev-replace.h"
  43#include "sysfs.h"
  44
  45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
  46        [BTRFS_RAID_RAID10] = {
  47                .sub_stripes    = 2,
  48                .dev_stripes    = 1,
  49                .devs_max       = 0,    /* 0 == as many as possible */
  50                .devs_min       = 4,
  51                .tolerated_failures = 1,
  52                .devs_increment = 2,
  53                .ncopies        = 2,
  54        },
  55        [BTRFS_RAID_RAID1] = {
  56                .sub_stripes    = 1,
  57                .dev_stripes    = 1,
  58                .devs_max       = 2,
  59                .devs_min       = 2,
  60                .tolerated_failures = 1,
  61                .devs_increment = 2,
  62                .ncopies        = 2,
  63        },
  64        [BTRFS_RAID_DUP] = {
  65                .sub_stripes    = 1,
  66                .dev_stripes    = 2,
  67                .devs_max       = 1,
  68                .devs_min       = 1,
  69                .tolerated_failures = 0,
  70                .devs_increment = 1,
  71                .ncopies        = 2,
  72        },
  73        [BTRFS_RAID_RAID0] = {
  74                .sub_stripes    = 1,
  75                .dev_stripes    = 1,
  76                .devs_max       = 0,
  77                .devs_min       = 2,
  78                .tolerated_failures = 0,
  79                .devs_increment = 1,
  80                .ncopies        = 1,
  81        },
  82        [BTRFS_RAID_SINGLE] = {
  83                .sub_stripes    = 1,
  84                .dev_stripes    = 1,
  85                .devs_max       = 1,
  86                .devs_min       = 1,
  87                .tolerated_failures = 0,
  88                .devs_increment = 1,
  89                .ncopies        = 1,
  90        },
  91        [BTRFS_RAID_RAID5] = {
  92                .sub_stripes    = 1,
  93                .dev_stripes    = 1,
  94                .devs_max       = 0,
  95                .devs_min       = 2,
  96                .tolerated_failures = 1,
  97                .devs_increment = 1,
  98                .ncopies        = 2,
  99        },
 100        [BTRFS_RAID_RAID6] = {
 101                .sub_stripes    = 1,
 102                .dev_stripes    = 1,
 103                .devs_max       = 0,
 104                .devs_min       = 3,
 105                .tolerated_failures = 2,
 106                .devs_increment = 1,
 107                .ncopies        = 3,
 108        },
 109};
 110
 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
 112        [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
 113        [BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
 114        [BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
 115        [BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
 116        [BTRFS_RAID_SINGLE] = 0,
 117        [BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
 118        [BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
 119};
 120
 121/*
 122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
 123 * condition is not met. Zero means there's no corresponding
 124 * BTRFS_ERROR_DEV_*_NOT_MET value.
 125 */
 126const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
 127        [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
 128        [BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
 129        [BTRFS_RAID_DUP]    = 0,
 130        [BTRFS_RAID_RAID0]  = 0,
 131        [BTRFS_RAID_SINGLE] = 0,
 132        [BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
 133        [BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
 134};
 135
 136static int init_first_rw_device(struct btrfs_trans_handle *trans,
 137                                struct btrfs_root *root,
 138                                struct btrfs_device *device);
 139static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
 140static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
 141static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
 142static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
 143
 144DEFINE_MUTEX(uuid_mutex);
 145static LIST_HEAD(fs_uuids);
 146struct list_head *btrfs_get_fs_uuids(void)
 147{
 148        return &fs_uuids;
 149}
 150
 151static struct btrfs_fs_devices *__alloc_fs_devices(void)
 152{
 153        struct btrfs_fs_devices *fs_devs;
 154
 155        fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
 156        if (!fs_devs)
 157                return ERR_PTR(-ENOMEM);
 158
 159        mutex_init(&fs_devs->device_list_mutex);
 160
 161        INIT_LIST_HEAD(&fs_devs->devices);
 162        INIT_LIST_HEAD(&fs_devs->resized_devices);
 163        INIT_LIST_HEAD(&fs_devs->alloc_list);
 164        INIT_LIST_HEAD(&fs_devs->list);
 165
 166        return fs_devs;
 167}
 168
 169/**
 170 * alloc_fs_devices - allocate struct btrfs_fs_devices
 171 * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
 172 *              generated.
 173 *
 174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
 175 * ERR_PTR() on error.  Returned struct is not linked onto any lists and
 176 * can be destroyed with kfree() right away.
 177 */
 178static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
 179{
 180        struct btrfs_fs_devices *fs_devs;
 181
 182        fs_devs = __alloc_fs_devices();
 183        if (IS_ERR(fs_devs))
 184                return fs_devs;
 185
 186        if (fsid)
 187                memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 188        else
 189                generate_random_uuid(fs_devs->fsid);
 190
 191        return fs_devs;
 192}
 193
 194static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 195{
 196        struct btrfs_device *device;
 197        WARN_ON(fs_devices->opened);
 198        while (!list_empty(&fs_devices->devices)) {
 199                device = list_entry(fs_devices->devices.next,
 200                                    struct btrfs_device, dev_list);
 201                list_del(&device->dev_list);
 202                rcu_string_free(device->name);
 203                kfree(device);
 204        }
 205        kfree(fs_devices);
 206}
 207
 208static void btrfs_kobject_uevent(struct block_device *bdev,
 209                                 enum kobject_action action)
 210{
 211        int ret;
 212
 213        ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
 214        if (ret)
 215                pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
 216                        action,
 217                        kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
 218                        &disk_to_dev(bdev->bd_disk)->kobj);
 219}
 220
 221void btrfs_cleanup_fs_uuids(void)
 222{
 223        struct btrfs_fs_devices *fs_devices;
 224
 225        while (!list_empty(&fs_uuids)) {
 226                fs_devices = list_entry(fs_uuids.next,
 227                                        struct btrfs_fs_devices, list);
 228                list_del(&fs_devices->list);
 229                free_fs_devices(fs_devices);
 230        }
 231}
 232
 233static struct btrfs_device *__alloc_device(void)
 234{
 235        struct btrfs_device *dev;
 236
 237        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 238        if (!dev)
 239                return ERR_PTR(-ENOMEM);
 240
 241        INIT_LIST_HEAD(&dev->dev_list);
 242        INIT_LIST_HEAD(&dev->dev_alloc_list);
 243        INIT_LIST_HEAD(&dev->resized_list);
 244
 245        spin_lock_init(&dev->io_lock);
 246
 247        spin_lock_init(&dev->reada_lock);
 248        atomic_set(&dev->reada_in_flight, 0);
 249        atomic_set(&dev->dev_stats_ccnt, 0);
 250        btrfs_device_data_ordered_init(dev);
 251        INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 252        INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 253
 254        return dev;
 255}
 256
 257static noinline struct btrfs_device *__find_device(struct list_head *head,
 258                                                   u64 devid, u8 *uuid)
 259{
 260        struct btrfs_device *dev;
 261
 262        list_for_each_entry(dev, head, dev_list) {
 263                if (dev->devid == devid &&
 264                    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
 265                        return dev;
 266                }
 267        }
 268        return NULL;
 269}
 270
 271static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
 272{
 273        struct btrfs_fs_devices *fs_devices;
 274
 275        list_for_each_entry(fs_devices, &fs_uuids, list) {
 276                if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 277                        return fs_devices;
 278        }
 279        return NULL;
 280}
 281
 282static int
 283btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
 284                      int flush, struct block_device **bdev,
 285                      struct buffer_head **bh)
 286{
 287        int ret;
 288
 289        *bdev = blkdev_get_by_path(device_path, flags, holder);
 290
 291        if (IS_ERR(*bdev)) {
 292                ret = PTR_ERR(*bdev);
 293                goto error;
 294        }
 295
 296        if (flush)
 297                filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
 298        ret = set_blocksize(*bdev, 4096);
 299        if (ret) {
 300                blkdev_put(*bdev, flags);
 301                goto error;
 302        }
 303        invalidate_bdev(*bdev);
 304        *bh = btrfs_read_dev_super(*bdev);
 305        if (IS_ERR(*bh)) {
 306                ret = PTR_ERR(*bh);
 307                blkdev_put(*bdev, flags);
 308                goto error;
 309        }
 310
 311        return 0;
 312
 313error:
 314        *bdev = NULL;
 315        *bh = NULL;
 316        return ret;
 317}
 318
 319static void requeue_list(struct btrfs_pending_bios *pending_bios,
 320                        struct bio *head, struct bio *tail)
 321{
 322
 323        struct bio *old_head;
 324
 325        old_head = pending_bios->head;
 326        pending_bios->head = head;
 327        if (pending_bios->tail)
 328                tail->bi_next = old_head;
 329        else
 330                pending_bios->tail = tail;
 331}
 332
 333/*
 334 * we try to collect pending bios for a device so we don't get a large
 335 * number of procs sending bios down to the same device.  This greatly
 336 * improves the schedulers ability to collect and merge the bios.
 337 *
 338 * But, it also turns into a long list of bios to process and that is sure
 339 * to eventually make the worker thread block.  The solution here is to
 340 * make some progress and then put this work struct back at the end of
 341 * the list if the block device is congested.  This way, multiple devices
 342 * can make progress from a single worker thread.
 343 */
 344static noinline void run_scheduled_bios(struct btrfs_device *device)
 345{
 346        struct bio *pending;
 347        struct backing_dev_info *bdi;
 348        struct btrfs_fs_info *fs_info;
 349        struct btrfs_pending_bios *pending_bios;
 350        struct bio *tail;
 351        struct bio *cur;
 352        int again = 0;
 353        unsigned long num_run;
 354        unsigned long batch_run = 0;
 355        unsigned long limit;
 356        unsigned long last_waited = 0;
 357        int force_reg = 0;
 358        int sync_pending = 0;
 359        struct blk_plug plug;
 360
 361        /*
 362         * this function runs all the bios we've collected for
 363         * a particular device.  We don't want to wander off to
 364         * another device without first sending all of these down.
 365         * So, setup a plug here and finish it off before we return
 366         */
 367        blk_start_plug(&plug);
 368
 369        bdi = blk_get_backing_dev_info(device->bdev);
 370        fs_info = device->dev_root->fs_info;
 371        limit = btrfs_async_submit_limit(fs_info);
 372        limit = limit * 2 / 3;
 373
 374loop:
 375        spin_lock(&device->io_lock);
 376
 377loop_lock:
 378        num_run = 0;
 379
 380        /* take all the bios off the list at once and process them
 381         * later on (without the lock held).  But, remember the
 382         * tail and other pointers so the bios can be properly reinserted
 383         * into the list if we hit congestion
 384         */
 385        if (!force_reg && device->pending_sync_bios.head) {
 386                pending_bios = &device->pending_sync_bios;
 387                force_reg = 1;
 388        } else {
 389                pending_bios = &device->pending_bios;
 390                force_reg = 0;
 391        }
 392
 393        pending = pending_bios->head;
 394        tail = pending_bios->tail;
 395        WARN_ON(pending && !tail);
 396
 397        /*
 398         * if pending was null this time around, no bios need processing
 399         * at all and we can stop.  Otherwise it'll loop back up again
 400         * and do an additional check so no bios are missed.
 401         *
 402         * device->running_pending is used to synchronize with the
 403         * schedule_bio code.
 404         */
 405        if (device->pending_sync_bios.head == NULL &&
 406            device->pending_bios.head == NULL) {
 407                again = 0;
 408                device->running_pending = 0;
 409        } else {
 410                again = 1;
 411                device->running_pending = 1;
 412        }
 413
 414        pending_bios->head = NULL;
 415        pending_bios->tail = NULL;
 416
 417        spin_unlock(&device->io_lock);
 418
 419        while (pending) {
 420
 421                rmb();
 422                /* we want to work on both lists, but do more bios on the
 423                 * sync list than the regular list
 424                 */
 425                if ((num_run > 32 &&
 426                    pending_bios != &device->pending_sync_bios &&
 427                    device->pending_sync_bios.head) ||
 428                   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
 429                    device->pending_bios.head)) {
 430                        spin_lock(&device->io_lock);
 431                        requeue_list(pending_bios, pending, tail);
 432                        goto loop_lock;
 433                }
 434
 435                cur = pending;
 436                pending = pending->bi_next;
 437                cur->bi_next = NULL;
 438
 439                /*
 440                 * atomic_dec_return implies a barrier for waitqueue_active
 441                 */
 442                if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
 443                    waitqueue_active(&fs_info->async_submit_wait))
 444                        wake_up(&fs_info->async_submit_wait);
 445
 446                BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
 447
 448                /*
 449                 * if we're doing the sync list, record that our
 450                 * plug has some sync requests on it
 451                 *
 452                 * If we're doing the regular list and there are
 453                 * sync requests sitting around, unplug before
 454                 * we add more
 455                 */
 456                if (pending_bios == &device->pending_sync_bios) {
 457                        sync_pending = 1;
 458                } else if (sync_pending) {
 459                        blk_finish_plug(&plug);
 460                        blk_start_plug(&plug);
 461                        sync_pending = 0;
 462                }
 463
 464                btrfsic_submit_bio(cur);
 465                num_run++;
 466                batch_run++;
 467
 468                cond_resched();
 469
 470                /*
 471                 * we made progress, there is more work to do and the bdi
 472                 * is now congested.  Back off and let other work structs
 473                 * run instead
 474                 */
 475                if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
 476                    fs_info->fs_devices->open_devices > 1) {
 477                        struct io_context *ioc;
 478
 479                        ioc = current->io_context;
 480
 481                        /*
 482                         * the main goal here is that we don't want to
 483                         * block if we're going to be able to submit
 484                         * more requests without blocking.
 485                         *
 486                         * This code does two great things, it pokes into
 487                         * the elevator code from a filesystem _and_
 488                         * it makes assumptions about how batching works.
 489                         */
 490                        if (ioc && ioc->nr_batch_requests > 0 &&
 491                            time_before(jiffies, ioc->last_waited + HZ/50UL) &&
 492                            (last_waited == 0 ||
 493                             ioc->last_waited == last_waited)) {
 494                                /*
 495                                 * we want to go through our batch of
 496                                 * requests and stop.  So, we copy out
 497                                 * the ioc->last_waited time and test
 498                                 * against it before looping
 499                                 */
 500                                last_waited = ioc->last_waited;
 501                                cond_resched();
 502                                continue;
 503                        }
 504                        spin_lock(&device->io_lock);
 505                        requeue_list(pending_bios, pending, tail);
 506                        device->running_pending = 1;
 507
 508                        spin_unlock(&device->io_lock);
 509                        btrfs_queue_work(fs_info->submit_workers,
 510                                         &device->work);
 511                        goto done;
 512                }
 513                /* unplug every 64 requests just for good measure */
 514                if (batch_run % 64 == 0) {
 515                        blk_finish_plug(&plug);
 516                        blk_start_plug(&plug);
 517                        sync_pending = 0;
 518                }
 519        }
 520
 521        cond_resched();
 522        if (again)
 523                goto loop;
 524
 525        spin_lock(&device->io_lock);
 526        if (device->pending_bios.head || device->pending_sync_bios.head)
 527                goto loop_lock;
 528        spin_unlock(&device->io_lock);
 529
 530done:
 531        blk_finish_plug(&plug);
 532}
 533
 534static void pending_bios_fn(struct btrfs_work *work)
 535{
 536        struct btrfs_device *device;
 537
 538        device = container_of(work, struct btrfs_device, work);
 539        run_scheduled_bios(device);
 540}
 541
 542
 543void btrfs_free_stale_device(struct btrfs_device *cur_dev)
 544{
 545        struct btrfs_fs_devices *fs_devs;
 546        struct btrfs_device *dev;
 547
 548        if (!cur_dev->name)
 549                return;
 550
 551        list_for_each_entry(fs_devs, &fs_uuids, list) {
 552                int del = 1;
 553
 554                if (fs_devs->opened)
 555                        continue;
 556                if (fs_devs->seeding)
 557                        continue;
 558
 559                list_for_each_entry(dev, &fs_devs->devices, dev_list) {
 560
 561                        if (dev == cur_dev)
 562                                continue;
 563                        if (!dev->name)
 564                                continue;
 565
 566                        /*
 567                         * Todo: This won't be enough. What if the same device
 568                         * comes back (with new uuid and) with its mapper path?
 569                         * But for now, this does help as mostly an admin will
 570                         * either use mapper or non mapper path throughout.
 571                         */
 572                        rcu_read_lock();
 573                        del = strcmp(rcu_str_deref(dev->name),
 574                                                rcu_str_deref(cur_dev->name));
 575                        rcu_read_unlock();
 576                        if (!del)
 577                                break;
 578                }
 579
 580                if (!del) {
 581                        /* delete the stale device */
 582                        if (fs_devs->num_devices == 1) {
 583                                btrfs_sysfs_remove_fsid(fs_devs);
 584                                list_del(&fs_devs->list);
 585                                free_fs_devices(fs_devs);
 586                        } else {
 587                                fs_devs->num_devices--;
 588                                list_del(&dev->dev_list);
 589                                rcu_string_free(dev->name);
 590                                kfree(dev);
 591                        }
 592                        break;
 593                }
 594        }
 595}
 596
 597/*
 598 * Add new device to list of registered devices
 599 *
 600 * Returns:
 601 * 1   - first time device is seen
 602 * 0   - device already known
 603 * < 0 - error
 604 */
 605static noinline int device_list_add(const char *path,
 606                           struct btrfs_super_block *disk_super,
 607                           u64 devid, struct btrfs_fs_devices **fs_devices_ret)
 608{
 609        struct btrfs_device *device;
 610        struct btrfs_fs_devices *fs_devices;
 611        struct rcu_string *name;
 612        int ret = 0;
 613        u64 found_transid = btrfs_super_generation(disk_super);
 614
 615        fs_devices = find_fsid(disk_super->fsid);
 616        if (!fs_devices) {
 617                fs_devices = alloc_fs_devices(disk_super->fsid);
 618                if (IS_ERR(fs_devices))
 619                        return PTR_ERR(fs_devices);
 620
 621                list_add(&fs_devices->list, &fs_uuids);
 622
 623                device = NULL;
 624        } else {
 625                device = __find_device(&fs_devices->devices, devid,
 626                                       disk_super->dev_item.uuid);
 627        }
 628
 629        if (!device) {
 630                if (fs_devices->opened)
 631                        return -EBUSY;
 632
 633                device = btrfs_alloc_device(NULL, &devid,
 634                                            disk_super->dev_item.uuid);
 635                if (IS_ERR(device)) {
 636                        /* we can safely leave the fs_devices entry around */
 637                        return PTR_ERR(device);
 638                }
 639
 640                name = rcu_string_strdup(path, GFP_NOFS);
 641                if (!name) {
 642                        kfree(device);
 643                        return -ENOMEM;
 644                }
 645                rcu_assign_pointer(device->name, name);
 646
 647                mutex_lock(&fs_devices->device_list_mutex);
 648                list_add_rcu(&device->dev_list, &fs_devices->devices);
 649                fs_devices->num_devices++;
 650                mutex_unlock(&fs_devices->device_list_mutex);
 651
 652                ret = 1;
 653                device->fs_devices = fs_devices;
 654        } else if (!device->name || strcmp(device->name->str, path)) {
 655                /*
 656                 * When FS is already mounted.
 657                 * 1. If you are here and if the device->name is NULL that
 658                 *    means this device was missing at time of FS mount.
 659                 * 2. If you are here and if the device->name is different
 660                 *    from 'path' that means either
 661                 *      a. The same device disappeared and reappeared with
 662                 *         different name. or
 663                 *      b. The missing-disk-which-was-replaced, has
 664                 *         reappeared now.
 665                 *
 666                 * We must allow 1 and 2a above. But 2b would be a spurious
 667                 * and unintentional.
 668                 *
 669                 * Further in case of 1 and 2a above, the disk at 'path'
 670                 * would have missed some transaction when it was away and
 671                 * in case of 2a the stale bdev has to be updated as well.
 672                 * 2b must not be allowed at all time.
 673                 */
 674
 675                /*
 676                 * For now, we do allow update to btrfs_fs_device through the
 677                 * btrfs dev scan cli after FS has been mounted.  We're still
 678                 * tracking a problem where systems fail mount by subvolume id
 679                 * when we reject replacement on a mounted FS.
 680                 */
 681                if (!fs_devices->opened && found_transid < device->generation) {
 682                        /*
 683                         * That is if the FS is _not_ mounted and if you
 684                         * are here, that means there is more than one
 685                         * disk with same uuid and devid.We keep the one
 686                         * with larger generation number or the last-in if
 687                         * generation are equal.
 688                         */
 689                        return -EEXIST;
 690                }
 691
 692                name = rcu_string_strdup(path, GFP_NOFS);
 693                if (!name)
 694                        return -ENOMEM;
 695                rcu_string_free(device->name);
 696                rcu_assign_pointer(device->name, name);
 697                if (device->missing) {
 698                        fs_devices->missing_devices--;
 699                        device->missing = 0;
 700                }
 701        }
 702
 703        /*
 704         * Unmount does not free the btrfs_device struct but would zero
 705         * generation along with most of the other members. So just update
 706         * it back. We need it to pick the disk with largest generation
 707         * (as above).
 708         */
 709        if (!fs_devices->opened)
 710                device->generation = found_transid;
 711
 712        /*
 713         * if there is new btrfs on an already registered device,
 714         * then remove the stale device entry.
 715         */
 716        if (ret > 0)
 717                btrfs_free_stale_device(device);
 718
 719        *fs_devices_ret = fs_devices;
 720
 721        return ret;
 722}
 723
 724static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 725{
 726        struct btrfs_fs_devices *fs_devices;
 727        struct btrfs_device *device;
 728        struct btrfs_device *orig_dev;
 729
 730        fs_devices = alloc_fs_devices(orig->fsid);
 731        if (IS_ERR(fs_devices))
 732                return fs_devices;
 733
 734        mutex_lock(&orig->device_list_mutex);
 735        fs_devices->total_devices = orig->total_devices;
 736
 737        /* We have held the volume lock, it is safe to get the devices. */
 738        list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 739                struct rcu_string *name;
 740
 741                device = btrfs_alloc_device(NULL, &orig_dev->devid,
 742                                            orig_dev->uuid);
 743                if (IS_ERR(device))
 744                        goto error;
 745
 746                /*
 747                 * This is ok to do without rcu read locked because we hold the
 748                 * uuid mutex so nothing we touch in here is going to disappear.
 749                 */
 750                if (orig_dev->name) {
 751                        name = rcu_string_strdup(orig_dev->name->str,
 752                                        GFP_KERNEL);
 753                        if (!name) {
 754                                kfree(device);
 755                                goto error;
 756                        }
 757                        rcu_assign_pointer(device->name, name);
 758                }
 759
 760                list_add(&device->dev_list, &fs_devices->devices);
 761                device->fs_devices = fs_devices;
 762                fs_devices->num_devices++;
 763        }
 764        mutex_unlock(&orig->device_list_mutex);
 765        return fs_devices;
 766error:
 767        mutex_unlock(&orig->device_list_mutex);
 768        free_fs_devices(fs_devices);
 769        return ERR_PTR(-ENOMEM);
 770}
 771
 772void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
 773{
 774        struct btrfs_device *device, *next;
 775        struct btrfs_device *latest_dev = NULL;
 776
 777        mutex_lock(&uuid_mutex);
 778again:
 779        /* This is the initialized path, it is safe to release the devices. */
 780        list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
 781                if (device->in_fs_metadata) {
 782                        if (!device->is_tgtdev_for_dev_replace &&
 783                            (!latest_dev ||
 784                             device->generation > latest_dev->generation)) {
 785                                latest_dev = device;
 786                        }
 787                        continue;
 788                }
 789
 790                if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
 791                        /*
 792                         * In the first step, keep the device which has
 793                         * the correct fsid and the devid that is used
 794                         * for the dev_replace procedure.
 795                         * In the second step, the dev_replace state is
 796                         * read from the device tree and it is known
 797                         * whether the procedure is really active or
 798                         * not, which means whether this device is
 799                         * used or whether it should be removed.
 800                         */
 801                        if (step == 0 || device->is_tgtdev_for_dev_replace) {
 802                                continue;
 803                        }
 804                }
 805                if (device->bdev) {
 806                        blkdev_put(device->bdev, device->mode);
 807                        device->bdev = NULL;
 808                        fs_devices->open_devices--;
 809                }
 810                if (device->writeable) {
 811                        list_del_init(&device->dev_alloc_list);
 812                        device->writeable = 0;
 813                        if (!device->is_tgtdev_for_dev_replace)
 814                                fs_devices->rw_devices--;
 815                }
 816                list_del_init(&device->dev_list);
 817                fs_devices->num_devices--;
 818                rcu_string_free(device->name);
 819                kfree(device);
 820        }
 821
 822        if (fs_devices->seed) {
 823                fs_devices = fs_devices->seed;
 824                goto again;
 825        }
 826
 827        fs_devices->latest_bdev = latest_dev->bdev;
 828
 829        mutex_unlock(&uuid_mutex);
 830}
 831
 832static void __free_device(struct work_struct *work)
 833{
 834        struct btrfs_device *device;
 835
 836        device = container_of(work, struct btrfs_device, rcu_work);
 837        rcu_string_free(device->name);
 838        kfree(device);
 839}
 840
 841static void free_device(struct rcu_head *head)
 842{
 843        struct btrfs_device *device;
 844
 845        device = container_of(head, struct btrfs_device, rcu);
 846
 847        INIT_WORK(&device->rcu_work, __free_device);
 848        schedule_work(&device->rcu_work);
 849}
 850
 851static void btrfs_close_bdev(struct btrfs_device *device)
 852{
 853        if (device->bdev && device->writeable) {
 854                sync_blockdev(device->bdev);
 855                invalidate_bdev(device->bdev);
 856        }
 857
 858        if (device->bdev)
 859                blkdev_put(device->bdev, device->mode);
 860}
 861
 862static void btrfs_prepare_close_one_device(struct btrfs_device *device)
 863{
 864        struct btrfs_fs_devices *fs_devices = device->fs_devices;
 865        struct btrfs_device *new_device;
 866        struct rcu_string *name;
 867
 868        if (device->bdev)
 869                fs_devices->open_devices--;
 870
 871        if (device->writeable &&
 872            device->devid != BTRFS_DEV_REPLACE_DEVID) {
 873                list_del_init(&device->dev_alloc_list);
 874                fs_devices->rw_devices--;
 875        }
 876
 877        if (device->missing)
 878                fs_devices->missing_devices--;
 879
 880        new_device = btrfs_alloc_device(NULL, &device->devid,
 881                                        device->uuid);
 882        BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
 883
 884        /* Safe because we are under uuid_mutex */
 885        if (device->name) {
 886                name = rcu_string_strdup(device->name->str, GFP_NOFS);
 887                BUG_ON(!name); /* -ENOMEM */
 888                rcu_assign_pointer(new_device->name, name);
 889        }
 890
 891        list_replace_rcu(&device->dev_list, &new_device->dev_list);
 892        new_device->fs_devices = device->fs_devices;
 893}
 894
 895static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 896{
 897        struct btrfs_device *device, *tmp;
 898        struct list_head pending_put;
 899
 900        INIT_LIST_HEAD(&pending_put);
 901
 902        if (--fs_devices->opened > 0)
 903                return 0;
 904
 905        mutex_lock(&fs_devices->device_list_mutex);
 906        list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
 907                btrfs_prepare_close_one_device(device);
 908                list_add(&device->dev_list, &pending_put);
 909        }
 910        mutex_unlock(&fs_devices->device_list_mutex);
 911
 912        /*
 913         * btrfs_show_devname() is using the device_list_mutex,
 914         * sometimes call to blkdev_put() leads vfs calling
 915         * into this func. So do put outside of device_list_mutex,
 916         * as of now.
 917         */
 918        while (!list_empty(&pending_put)) {
 919                device = list_first_entry(&pending_put,
 920                                struct btrfs_device, dev_list);
 921                list_del(&device->dev_list);
 922                btrfs_close_bdev(device);
 923                call_rcu(&device->rcu, free_device);
 924        }
 925
 926        WARN_ON(fs_devices->open_devices);
 927        WARN_ON(fs_devices->rw_devices);
 928        fs_devices->opened = 0;
 929        fs_devices->seeding = 0;
 930
 931        return 0;
 932}
 933
 934int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 935{
 936        struct btrfs_fs_devices *seed_devices = NULL;
 937        int ret;
 938
 939        mutex_lock(&uuid_mutex);
 940        ret = __btrfs_close_devices(fs_devices);
 941        if (!fs_devices->opened) {
 942                seed_devices = fs_devices->seed;
 943                fs_devices->seed = NULL;
 944        }
 945        mutex_unlock(&uuid_mutex);
 946
 947        while (seed_devices) {
 948                fs_devices = seed_devices;
 949                seed_devices = fs_devices->seed;
 950                __btrfs_close_devices(fs_devices);
 951                free_fs_devices(fs_devices);
 952        }
 953        /*
 954         * Wait for rcu kworkers under __btrfs_close_devices
 955         * to finish all blkdev_puts so device is really
 956         * free when umount is done.
 957         */
 958        rcu_barrier();
 959        return ret;
 960}
 961
 962static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 963                                fmode_t flags, void *holder)
 964{
 965        struct request_queue *q;
 966        struct block_device *bdev;
 967        struct list_head *head = &fs_devices->devices;
 968        struct btrfs_device *device;
 969        struct btrfs_device *latest_dev = NULL;
 970        struct buffer_head *bh;
 971        struct btrfs_super_block *disk_super;
 972        u64 devid;
 973        int seeding = 1;
 974        int ret = 0;
 975
 976        flags |= FMODE_EXCL;
 977
 978        list_for_each_entry(device, head, dev_list) {
 979                if (device->bdev)
 980                        continue;
 981                if (!device->name)
 982                        continue;
 983
 984                /* Just open everything we can; ignore failures here */
 985                if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 986                                            &bdev, &bh))
 987                        continue;
 988
 989                disk_super = (struct btrfs_super_block *)bh->b_data;
 990                devid = btrfs_stack_device_id(&disk_super->dev_item);
 991                if (devid != device->devid)
 992                        goto error_brelse;
 993
 994                if (memcmp(device->uuid, disk_super->dev_item.uuid,
 995                           BTRFS_UUID_SIZE))
 996                        goto error_brelse;
 997
 998                device->generation = btrfs_super_generation(disk_super);
 999                if (!latest_dev ||
1000                    device->generation > latest_dev->generation)
1001                        latest_dev = device;
1002
1003                if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1004                        device->writeable = 0;
1005                } else {
1006                        device->writeable = !bdev_read_only(bdev);
1007                        seeding = 0;
1008                }
1009
1010                q = bdev_get_queue(bdev);
1011                if (blk_queue_discard(q))
1012                        device->can_discard = 1;
1013
1014                device->bdev = bdev;
1015                device->in_fs_metadata = 0;
1016                device->mode = flags;
1017
1018                if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1019                        fs_devices->rotating = 1;
1020
1021                fs_devices->open_devices++;
1022                if (device->writeable &&
1023                    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1024                        fs_devices->rw_devices++;
1025                        list_add(&device->dev_alloc_list,
1026                                 &fs_devices->alloc_list);
1027                }
1028                brelse(bh);
1029                continue;
1030
1031error_brelse:
1032                brelse(bh);
1033                blkdev_put(bdev, flags);
1034                continue;
1035        }
1036        if (fs_devices->open_devices == 0) {
1037                ret = -EINVAL;
1038                goto out;
1039        }
1040        fs_devices->seeding = seeding;
1041        fs_devices->opened = 1;
1042        fs_devices->latest_bdev = latest_dev->bdev;
1043        fs_devices->total_rw_bytes = 0;
1044out:
1045        return ret;
1046}
1047
1048int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1049                       fmode_t flags, void *holder)
1050{
1051        int ret;
1052
1053        mutex_lock(&uuid_mutex);
1054        if (fs_devices->opened) {
1055                fs_devices->opened++;
1056                ret = 0;
1057        } else {
1058                ret = __btrfs_open_devices(fs_devices, flags, holder);
1059        }
1060        mutex_unlock(&uuid_mutex);
1061        return ret;
1062}
1063
1064void btrfs_release_disk_super(struct page *page)
1065{
1066        kunmap(page);
1067        put_page(page);
1068}
1069
1070int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1071                struct page **page, struct btrfs_super_block **disk_super)
1072{
1073        void *p;
1074        pgoff_t index;
1075
1076        /* make sure our super fits in the device */
1077        if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1078                return 1;
1079
1080        /* make sure our super fits in the page */
1081        if (sizeof(**disk_super) > PAGE_SIZE)
1082                return 1;
1083
1084        /* make sure our super doesn't straddle pages on disk */
1085        index = bytenr >> PAGE_SHIFT;
1086        if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1087                return 1;
1088
1089        /* pull in the page with our super */
1090        *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1091                                   index, GFP_KERNEL);
1092
1093        if (IS_ERR_OR_NULL(*page))
1094                return 1;
1095
1096        p = kmap(*page);
1097
1098        /* align our pointer to the offset of the super block */
1099        *disk_super = p + (bytenr & ~PAGE_MASK);
1100
1101        if (btrfs_super_bytenr(*disk_super) != bytenr ||
1102            btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1103                btrfs_release_disk_super(*page);
1104                return 1;
1105        }
1106
1107        if ((*disk_super)->label[0] &&
1108                (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1109                (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1110
1111        return 0;
1112}
1113
1114/*
1115 * Look for a btrfs signature on a device. This may be called out of the mount path
1116 * and we are not allowed to call set_blocksize during the scan. The superblock
1117 * is read via pagecache
1118 */
1119int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1120                          struct btrfs_fs_devices **fs_devices_ret)
1121{
1122        struct btrfs_super_block *disk_super;
1123        struct block_device *bdev;
1124        struct page *page;
1125        int ret = -EINVAL;
1126        u64 devid;
1127        u64 transid;
1128        u64 total_devices;
1129        u64 bytenr;
1130
1131        /*
1132         * we would like to check all the supers, but that would make
1133         * a btrfs mount succeed after a mkfs from a different FS.
1134         * So, we need to add a special mount option to scan for
1135         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1136         */
1137        bytenr = btrfs_sb_offset(0);
1138        flags |= FMODE_EXCL;
1139        mutex_lock(&uuid_mutex);
1140
1141        bdev = blkdev_get_by_path(path, flags, holder);
1142        if (IS_ERR(bdev)) {
1143                ret = PTR_ERR(bdev);
1144                goto error;
1145        }
1146
1147        if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1148                goto error_bdev_put;
1149
1150        devid = btrfs_stack_device_id(&disk_super->dev_item);
1151        transid = btrfs_super_generation(disk_super);
1152        total_devices = btrfs_super_num_devices(disk_super);
1153
1154        ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1155        if (ret > 0) {
1156                if (disk_super->label[0]) {
1157                        pr_info("BTRFS: device label %s ", disk_super->label);
1158                } else {
1159                        pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1160                }
1161
1162                pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1163                ret = 0;
1164        }
1165        if (!ret && fs_devices_ret)
1166                (*fs_devices_ret)->total_devices = total_devices;
1167
1168        btrfs_release_disk_super(page);
1169
1170error_bdev_put:
1171        blkdev_put(bdev, flags);
1172error:
1173        mutex_unlock(&uuid_mutex);
1174        return ret;
1175}
1176
1177/* helper to account the used device space in the range */
1178int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1179                                   u64 end, u64 *length)
1180{
1181        struct btrfs_key key;
1182        struct btrfs_root *root = device->dev_root;
1183        struct btrfs_dev_extent *dev_extent;
1184        struct btrfs_path *path;
1185        u64 extent_end;
1186        int ret;
1187        int slot;
1188        struct extent_buffer *l;
1189
1190        *length = 0;
1191
1192        if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1193                return 0;
1194
1195        path = btrfs_alloc_path();
1196        if (!path)
1197                return -ENOMEM;
1198        path->reada = READA_FORWARD;
1199
1200        key.objectid = device->devid;
1201        key.offset = start;
1202        key.type = BTRFS_DEV_EXTENT_KEY;
1203
1204        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1205        if (ret < 0)
1206                goto out;
1207        if (ret > 0) {
1208                ret = btrfs_previous_item(root, path, key.objectid, key.type);
1209                if (ret < 0)
1210                        goto out;
1211        }
1212
1213        while (1) {
1214                l = path->nodes[0];
1215                slot = path->slots[0];
1216                if (slot >= btrfs_header_nritems(l)) {
1217                        ret = btrfs_next_leaf(root, path);
1218                        if (ret == 0)
1219                                continue;
1220                        if (ret < 0)
1221                                goto out;
1222
1223                        break;
1224                }
1225                btrfs_item_key_to_cpu(l, &key, slot);
1226
1227                if (key.objectid < device->devid)
1228                        goto next;
1229
1230                if (key.objectid > device->devid)
1231                        break;
1232
1233                if (key.type != BTRFS_DEV_EXTENT_KEY)
1234                        goto next;
1235
1236                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1237                extent_end = key.offset + btrfs_dev_extent_length(l,
1238                                                                  dev_extent);
1239                if (key.offset <= start && extent_end > end) {
1240                        *length = end - start + 1;
1241                        break;
1242                } else if (key.offset <= start && extent_end > start)
1243                        *length += extent_end - start;
1244                else if (key.offset > start && extent_end <= end)
1245                        *length += extent_end - key.offset;
1246                else if (key.offset > start && key.offset <= end) {
1247                        *length += end - key.offset + 1;
1248                        break;
1249                } else if (key.offset > end)
1250                        break;
1251
1252next:
1253                path->slots[0]++;
1254        }
1255        ret = 0;
1256out:
1257        btrfs_free_path(path);
1258        return ret;
1259}
1260
1261static int contains_pending_extent(struct btrfs_transaction *transaction,
1262                                   struct btrfs_device *device,
1263                                   u64 *start, u64 len)
1264{
1265        struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1266        struct extent_map *em;
1267        struct list_head *search_list = &fs_info->pinned_chunks;
1268        int ret = 0;
1269        u64 physical_start = *start;
1270
1271        if (transaction)
1272                search_list = &transaction->pending_chunks;
1273again:
1274        list_for_each_entry(em, search_list, list) {
1275                struct map_lookup *map;
1276                int i;
1277
1278                map = em->map_lookup;
1279                for (i = 0; i < map->num_stripes; i++) {
1280                        u64 end;
1281
1282                        if (map->stripes[i].dev != device)
1283                                continue;
1284                        if (map->stripes[i].physical >= physical_start + len ||
1285                            map->stripes[i].physical + em->orig_block_len <=
1286                            physical_start)
1287                                continue;
1288                        /*
1289                         * Make sure that while processing the pinned list we do
1290                         * not override our *start with a lower value, because
1291                         * we can have pinned chunks that fall within this
1292                         * device hole and that have lower physical addresses
1293                         * than the pending chunks we processed before. If we
1294                         * do not take this special care we can end up getting
1295                         * 2 pending chunks that start at the same physical
1296                         * device offsets because the end offset of a pinned
1297                         * chunk can be equal to the start offset of some
1298                         * pending chunk.
1299                         */
1300                        end = map->stripes[i].physical + em->orig_block_len;
1301                        if (end > *start) {
1302                                *start = end;
1303                                ret = 1;
1304                        }
1305                }
1306        }
1307        if (search_list != &fs_info->pinned_chunks) {
1308                search_list = &fs_info->pinned_chunks;
1309                goto again;
1310        }
1311
1312        return ret;
1313}
1314
1315
1316/*
1317 * find_free_dev_extent_start - find free space in the specified device
1318 * @device:       the device which we search the free space in
1319 * @num_bytes:    the size of the free space that we need
1320 * @search_start: the position from which to begin the search
1321 * @start:        store the start of the free space.
1322 * @len:          the size of the free space. that we find, or the size
1323 *                of the max free space if we don't find suitable free space
1324 *
1325 * this uses a pretty simple search, the expectation is that it is
1326 * called very infrequently and that a given device has a small number
1327 * of extents
1328 *
1329 * @start is used to store the start of the free space if we find. But if we
1330 * don't find suitable free space, it will be used to store the start position
1331 * of the max free space.
1332 *
1333 * @len is used to store the size of the free space that we find.
1334 * But if we don't find suitable free space, it is used to store the size of
1335 * the max free space.
1336 */
1337int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1338                               struct btrfs_device *device, u64 num_bytes,
1339                               u64 search_start, u64 *start, u64 *len)
1340{
1341        struct btrfs_key key;
1342        struct btrfs_root *root = device->dev_root;
1343        struct btrfs_dev_extent *dev_extent;
1344        struct btrfs_path *path;
1345        u64 hole_size;
1346        u64 max_hole_start;
1347        u64 max_hole_size;
1348        u64 extent_end;
1349        u64 search_end = device->total_bytes;
1350        int ret;
1351        int slot;
1352        struct extent_buffer *l;
1353        u64 min_search_start;
1354
1355        /*
1356         * We don't want to overwrite the superblock on the drive nor any area
1357         * used by the boot loader (grub for example), so we make sure to start
1358         * at an offset of at least 1MB.
1359         */
1360        min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1361        search_start = max(search_start, min_search_start);
1362
1363        path = btrfs_alloc_path();
1364        if (!path)
1365                return -ENOMEM;
1366
1367        max_hole_start = search_start;
1368        max_hole_size = 0;
1369
1370again:
1371        if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1372                ret = -ENOSPC;
1373                goto out;
1374        }
1375
1376        path->reada = READA_FORWARD;
1377        path->search_commit_root = 1;
1378        path->skip_locking = 1;
1379
1380        key.objectid = device->devid;
1381        key.offset = search_start;
1382        key.type = BTRFS_DEV_EXTENT_KEY;
1383
1384        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1385        if (ret < 0)
1386                goto out;
1387        if (ret > 0) {
1388                ret = btrfs_previous_item(root, path, key.objectid, key.type);
1389                if (ret < 0)
1390                        goto out;
1391        }
1392
1393        while (1) {
1394                l = path->nodes[0];
1395                slot = path->slots[0];
1396                if (slot >= btrfs_header_nritems(l)) {
1397                        ret = btrfs_next_leaf(root, path);
1398                        if (ret == 0)
1399                                continue;
1400                        if (ret < 0)
1401                                goto out;
1402
1403                        break;
1404                }
1405                btrfs_item_key_to_cpu(l, &key, slot);
1406
1407                if (key.objectid < device->devid)
1408                        goto next;
1409
1410                if (key.objectid > device->devid)
1411                        break;
1412
1413                if (key.type != BTRFS_DEV_EXTENT_KEY)
1414                        goto next;
1415
1416                if (key.offset > search_start) {
1417                        hole_size = key.offset - search_start;
1418
1419                        /*
1420                         * Have to check before we set max_hole_start, otherwise
1421                         * we could end up sending back this offset anyway.
1422                         */
1423                        if (contains_pending_extent(transaction, device,
1424                                                    &search_start,
1425                                                    hole_size)) {
1426                                if (key.offset >= search_start) {
1427                                        hole_size = key.offset - search_start;
1428                                } else {
1429                                        WARN_ON_ONCE(1);
1430                                        hole_size = 0;
1431                                }
1432                        }
1433
1434                        if (hole_size > max_hole_size) {
1435                                max_hole_start = search_start;
1436                                max_hole_size = hole_size;
1437                        }
1438
1439                        /*
1440                         * If this free space is greater than which we need,
1441                         * it must be the max free space that we have found
1442                         * until now, so max_hole_start must point to the start
1443                         * of this free space and the length of this free space
1444                         * is stored in max_hole_size. Thus, we return
1445                         * max_hole_start and max_hole_size and go back to the
1446                         * caller.
1447                         */
1448                        if (hole_size >= num_bytes) {
1449                                ret = 0;
1450                                goto out;
1451                        }
1452                }
1453
1454                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1455                extent_end = key.offset + btrfs_dev_extent_length(l,
1456                                                                  dev_extent);
1457                if (extent_end > search_start)
1458                        search_start = extent_end;
1459next:
1460                path->slots[0]++;
1461                cond_resched();
1462        }
1463
1464        /*
1465         * At this point, search_start should be the end of
1466         * allocated dev extents, and when shrinking the device,
1467         * search_end may be smaller than search_start.
1468         */
1469        if (search_end > search_start) {
1470                hole_size = search_end - search_start;
1471
1472                if (contains_pending_extent(transaction, device, &search_start,
1473                                            hole_size)) {
1474                        btrfs_release_path(path);
1475                        goto again;
1476                }
1477
1478                if (hole_size > max_hole_size) {
1479                        max_hole_start = search_start;
1480                        max_hole_size = hole_size;
1481                }
1482        }
1483
1484        /* See above. */
1485        if (max_hole_size < num_bytes)
1486                ret = -ENOSPC;
1487        else
1488                ret = 0;
1489
1490out:
1491        btrfs_free_path(path);
1492        *start = max_hole_start;
1493        if (len)
1494                *len = max_hole_size;
1495        return ret;
1496}
1497
1498int find_free_dev_extent(struct btrfs_trans_handle *trans,
1499                         struct btrfs_device *device, u64 num_bytes,
1500                         u64 *start, u64 *len)
1501{
1502        /* FIXME use last free of some kind */
1503        return find_free_dev_extent_start(trans->transaction, device,
1504                                          num_bytes, 0, start, len);
1505}
1506
1507static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1508                          struct btrfs_device *device,
1509                          u64 start, u64 *dev_extent_len)
1510{
1511        int ret;
1512        struct btrfs_path *path;
1513        struct btrfs_root *root = device->dev_root;
1514        struct btrfs_key key;
1515        struct btrfs_key found_key;
1516        struct extent_buffer *leaf = NULL;
1517        struct btrfs_dev_extent *extent = NULL;
1518
1519        path = btrfs_alloc_path();
1520        if (!path)
1521                return -ENOMEM;
1522
1523        key.objectid = device->devid;
1524        key.offset = start;
1525        key.type = BTRFS_DEV_EXTENT_KEY;
1526again:
1527        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1528        if (ret > 0) {
1529                ret = btrfs_previous_item(root, path, key.objectid,
1530                                          BTRFS_DEV_EXTENT_KEY);
1531                if (ret)
1532                        goto out;
1533                leaf = path->nodes[0];
1534                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1535                extent = btrfs_item_ptr(leaf, path->slots[0],
1536                                        struct btrfs_dev_extent);
1537                BUG_ON(found_key.offset > start || found_key.offset +
1538                       btrfs_dev_extent_length(leaf, extent) < start);
1539                key = found_key;
1540                btrfs_release_path(path);
1541                goto again;
1542        } else if (ret == 0) {
1543                leaf = path->nodes[0];
1544                extent = btrfs_item_ptr(leaf, path->slots[0],
1545                                        struct btrfs_dev_extent);
1546        } else {
1547                btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
1548                goto out;
1549        }
1550
1551        *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1552
1553        ret = btrfs_del_item(trans, root, path);
1554        if (ret) {
1555                btrfs_handle_fs_error(root->fs_info, ret,
1556                            "Failed to remove dev extent item");
1557        } else {
1558                set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1559        }
1560out:
1561        btrfs_free_path(path);
1562        return ret;
1563}
1564
1565static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1566                                  struct btrfs_device *device,
1567                                  u64 chunk_tree, u64 chunk_objectid,
1568                                  u64 chunk_offset, u64 start, u64 num_bytes)
1569{
1570        int ret;
1571        struct btrfs_path *path;
1572        struct btrfs_root *root = device->dev_root;
1573        struct btrfs_dev_extent *extent;
1574        struct extent_buffer *leaf;
1575        struct btrfs_key key;
1576
1577        WARN_ON(!device->in_fs_metadata);
1578        WARN_ON(device->is_tgtdev_for_dev_replace);
1579        path = btrfs_alloc_path();
1580        if (!path)
1581                return -ENOMEM;
1582
1583        key.objectid = device->devid;
1584        key.offset = start;
1585        key.type = BTRFS_DEV_EXTENT_KEY;
1586        ret = btrfs_insert_empty_item(trans, root, path, &key,
1587                                      sizeof(*extent));
1588        if (ret)
1589                goto out;
1590
1591        leaf = path->nodes[0];
1592        extent = btrfs_item_ptr(leaf, path->slots[0],
1593                                struct btrfs_dev_extent);
1594        btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1595        btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1596        btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1597
1598        write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1599                    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1600
1601        btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1602        btrfs_mark_buffer_dirty(leaf);
1603out:
1604        btrfs_free_path(path);
1605        return ret;
1606}
1607
1608static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1609{
1610        struct extent_map_tree *em_tree;
1611        struct extent_map *em;
1612        struct rb_node *n;
1613        u64 ret = 0;
1614
1615        em_tree = &fs_info->mapping_tree.map_tree;
1616        read_lock(&em_tree->lock);
1617        n = rb_last(&em_tree->map);
1618        if (n) {
1619                em = rb_entry(n, struct extent_map, rb_node);
1620                ret = em->start + em->len;
1621        }
1622        read_unlock(&em_tree->lock);
1623
1624        return ret;
1625}
1626
1627static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1628                                    u64 *devid_ret)
1629{
1630        int ret;
1631        struct btrfs_key key;
1632        struct btrfs_key found_key;
1633        struct btrfs_path *path;
1634
1635        path = btrfs_alloc_path();
1636        if (!path)
1637                return -ENOMEM;
1638
1639        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1640        key.type = BTRFS_DEV_ITEM_KEY;
1641        key.offset = (u64)-1;
1642
1643        ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1644        if (ret < 0)
1645                goto error;
1646
1647        BUG_ON(ret == 0); /* Corruption */
1648
1649        ret = btrfs_previous_item(fs_info->chunk_root, path,
1650                                  BTRFS_DEV_ITEMS_OBJECTID,
1651                                  BTRFS_DEV_ITEM_KEY);
1652        if (ret) {
1653                *devid_ret = 1;
1654        } else {
1655                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1656                                      path->slots[0]);
1657                *devid_ret = found_key.offset + 1;
1658        }
1659        ret = 0;
1660error:
1661        btrfs_free_path(path);
1662        return ret;
1663}
1664
1665/*
1666 * the device information is stored in the chunk root
1667 * the btrfs_device struct should be fully filled in
1668 */
1669static int btrfs_add_device(struct btrfs_trans_handle *trans,
1670                            struct btrfs_root *root,
1671                            struct btrfs_device *device)
1672{
1673        int ret;
1674        struct btrfs_path *path;
1675        struct btrfs_dev_item *dev_item;
1676        struct extent_buffer *leaf;
1677        struct btrfs_key key;
1678        unsigned long ptr;
1679
1680        root = root->fs_info->chunk_root;
1681
1682        path = btrfs_alloc_path();
1683        if (!path)
1684                return -ENOMEM;
1685
1686        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1687        key.type = BTRFS_DEV_ITEM_KEY;
1688        key.offset = device->devid;
1689
1690        ret = btrfs_insert_empty_item(trans, root, path, &key,
1691                                      sizeof(*dev_item));
1692        if (ret)
1693                goto out;
1694
1695        leaf = path->nodes[0];
1696        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1697
1698        btrfs_set_device_id(leaf, dev_item, device->devid);
1699        btrfs_set_device_generation(leaf, dev_item, 0);
1700        btrfs_set_device_type(leaf, dev_item, device->type);
1701        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1702        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1703        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1704        btrfs_set_device_total_bytes(leaf, dev_item,
1705                                     btrfs_device_get_disk_total_bytes(device));
1706        btrfs_set_device_bytes_used(leaf, dev_item,
1707                                    btrfs_device_get_bytes_used(device));
1708        btrfs_set_device_group(leaf, dev_item, 0);
1709        btrfs_set_device_seek_speed(leaf, dev_item, 0);
1710        btrfs_set_device_bandwidth(leaf, dev_item, 0);
1711        btrfs_set_device_start_offset(leaf, dev_item, 0);
1712
1713        ptr = btrfs_device_uuid(dev_item);
1714        write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1715        ptr = btrfs_device_fsid(dev_item);
1716        write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1717        btrfs_mark_buffer_dirty(leaf);
1718
1719        ret = 0;
1720out:
1721        btrfs_free_path(path);
1722        return ret;
1723}
1724
1725/*
1726 * Function to update ctime/mtime for a given device path.
1727 * Mainly used for ctime/mtime based probe like libblkid.
1728 */
1729static void update_dev_time(char *path_name)
1730{
1731        struct file *filp;
1732
1733        filp = filp_open(path_name, O_RDWR, 0);
1734        if (IS_ERR(filp))
1735                return;
1736        file_update_time(filp);
1737        filp_close(filp, NULL);
1738}
1739
1740static int btrfs_rm_dev_item(struct btrfs_root *root,
1741                             struct btrfs_device *device)
1742{
1743        int ret;
1744        struct btrfs_path *path;
1745        struct btrfs_key key;
1746        struct btrfs_trans_handle *trans;
1747
1748        root = root->fs_info->chunk_root;
1749
1750        path = btrfs_alloc_path();
1751        if (!path)
1752                return -ENOMEM;
1753
1754        trans = btrfs_start_transaction(root, 0);
1755        if (IS_ERR(trans)) {
1756                btrfs_free_path(path);
1757                return PTR_ERR(trans);
1758        }
1759        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1760        key.type = BTRFS_DEV_ITEM_KEY;
1761        key.offset = device->devid;
1762
1763        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1764        if (ret < 0)
1765                goto out;
1766
1767        if (ret > 0) {
1768                ret = -ENOENT;
1769                goto out;
1770        }
1771
1772        ret = btrfs_del_item(trans, root, path);
1773        if (ret)
1774                goto out;
1775out:
1776        btrfs_free_path(path);
1777        btrfs_commit_transaction(trans, root);
1778        return ret;
1779}
1780
1781/*
1782 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1783 * filesystem. It's up to the caller to adjust that number regarding eg. device
1784 * replace.
1785 */
1786static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1787                u64 num_devices)
1788{
1789        u64 all_avail;
1790        unsigned seq;
1791        int i;
1792
1793        do {
1794                seq = read_seqbegin(&fs_info->profiles_lock);
1795
1796                all_avail = fs_info->avail_data_alloc_bits |
1797                            fs_info->avail_system_alloc_bits |
1798                            fs_info->avail_metadata_alloc_bits;
1799        } while (read_seqretry(&fs_info->profiles_lock, seq));
1800
1801        for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1802                if (!(all_avail & btrfs_raid_group[i]))
1803                        continue;
1804
1805                if (num_devices < btrfs_raid_array[i].devs_min) {
1806                        int ret = btrfs_raid_mindev_error[i];
1807
1808                        if (ret)
1809                                return ret;
1810                }
1811        }
1812
1813        return 0;
1814}
1815
1816struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1817                                        struct btrfs_device *device)
1818{
1819        struct btrfs_device *next_device;
1820
1821        list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1822                if (next_device != device &&
1823                        !next_device->missing && next_device->bdev)
1824                        return next_device;
1825        }
1826
1827        return NULL;
1828}
1829
1830/*
1831 * Helper function to check if the given device is part of s_bdev / latest_bdev
1832 * and replace it with the provided or the next active device, in the context
1833 * where this function called, there should be always be another device (or
1834 * this_dev) which is active.
1835 */
1836void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1837                struct btrfs_device *device, struct btrfs_device *this_dev)
1838{
1839        struct btrfs_device *next_device;
1840
1841        if (this_dev)
1842                next_device = this_dev;
1843        else
1844                next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1845                                                                device);
1846        ASSERT(next_device);
1847
1848        if (fs_info->sb->s_bdev &&
1849                        (fs_info->sb->s_bdev == device->bdev))
1850                fs_info->sb->s_bdev = next_device->bdev;
1851
1852        if (fs_info->fs_devices->latest_bdev == device->bdev)
1853                fs_info->fs_devices->latest_bdev = next_device->bdev;
1854}
1855
1856int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
1857{
1858        struct btrfs_device *device;
1859        struct btrfs_fs_devices *cur_devices;
1860        u64 num_devices;
1861        int ret = 0;
1862        bool clear_super = false;
1863
1864        mutex_lock(&uuid_mutex);
1865
1866        num_devices = root->fs_info->fs_devices->num_devices;
1867        btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1868        if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1869                WARN_ON(num_devices < 1);
1870                num_devices--;
1871        }
1872        btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1873
1874        ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
1875        if (ret)
1876                goto out;
1877
1878        ret = btrfs_find_device_by_devspec(root, devid, device_path,
1879                                &device);
1880        if (ret)
1881                goto out;
1882
1883        if (device->is_tgtdev_for_dev_replace) {
1884                ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1885                goto out;
1886        }
1887
1888        if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1889                ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1890                goto out;
1891        }
1892
1893        if (device->writeable) {
1894                lock_chunks(root);
1895                list_del_init(&device->dev_alloc_list);
1896                device->fs_devices->rw_devices--;
1897                unlock_chunks(root);
1898                clear_super = true;
1899        }
1900
1901        mutex_unlock(&uuid_mutex);
1902        ret = btrfs_shrink_device(device, 0);
1903        mutex_lock(&uuid_mutex);
1904        if (ret)
1905                goto error_undo;
1906
1907        /*
1908         * TODO: the superblock still includes this device in its num_devices
1909         * counter although write_all_supers() is not locked out. This
1910         * could give a filesystem state which requires a degraded mount.
1911         */
1912        ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1913        if (ret)
1914                goto error_undo;
1915
1916        device->in_fs_metadata = 0;
1917        btrfs_scrub_cancel_dev(root->fs_info, device);
1918
1919        /*
1920         * the device list mutex makes sure that we don't change
1921         * the device list while someone else is writing out all
1922         * the device supers. Whoever is writing all supers, should
1923         * lock the device list mutex before getting the number of
1924         * devices in the super block (super_copy). Conversely,
1925         * whoever updates the number of devices in the super block
1926         * (super_copy) should hold the device list mutex.
1927         */
1928
1929        cur_devices = device->fs_devices;
1930        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1931        list_del_rcu(&device->dev_list);
1932
1933        device->fs_devices->num_devices--;
1934        device->fs_devices->total_devices--;
1935
1936        if (device->missing)
1937                device->fs_devices->missing_devices--;
1938
1939        btrfs_assign_next_active_device(root->fs_info, device, NULL);
1940
1941        if (device->bdev) {
1942                device->fs_devices->open_devices--;
1943                /* remove sysfs entry */
1944                btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1945        }
1946
1947        num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1948        btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1949        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1950
1951        /*
1952         * at this point, the device is zero sized and detached from
1953         * the devices list.  All that's left is to zero out the old
1954         * supers and free the device.
1955         */
1956        if (device->writeable)
1957                btrfs_scratch_superblocks(device->bdev, device->name->str);
1958
1959        btrfs_close_bdev(device);
1960        call_rcu(&device->rcu, free_device);
1961
1962        if (cur_devices->open_devices == 0) {
1963                struct btrfs_fs_devices *fs_devices;
1964                fs_devices = root->fs_info->fs_devices;
1965                while (fs_devices) {
1966                        if (fs_devices->seed == cur_devices) {
1967                                fs_devices->seed = cur_devices->seed;
1968                                break;
1969                        }
1970                        fs_devices = fs_devices->seed;
1971                }
1972                cur_devices->seed = NULL;
1973                __btrfs_close_devices(cur_devices);
1974                free_fs_devices(cur_devices);
1975        }
1976
1977        root->fs_info->num_tolerated_disk_barrier_failures =
1978                btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1979
1980out:
1981        mutex_unlock(&uuid_mutex);
1982        return ret;
1983
1984error_undo:
1985        if (device->writeable) {
1986                lock_chunks(root);
1987                list_add(&device->dev_alloc_list,
1988                         &root->fs_info->fs_devices->alloc_list);
1989                device->fs_devices->rw_devices++;
1990                unlock_chunks(root);
1991        }
1992        goto out;
1993}
1994
1995void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1996                                        struct btrfs_device *srcdev)
1997{
1998        struct btrfs_fs_devices *fs_devices;
1999
2000        WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2001
2002        /*
2003         * in case of fs with no seed, srcdev->fs_devices will point
2004         * to fs_devices of fs_info. However when the dev being replaced is
2005         * a seed dev it will point to the seed's local fs_devices. In short
2006         * srcdev will have its correct fs_devices in both the cases.
2007         */
2008        fs_devices = srcdev->fs_devices;
2009
2010        list_del_rcu(&srcdev->dev_list);
2011        list_del_rcu(&srcdev->dev_alloc_list);
2012        fs_devices->num_devices--;
2013        if (srcdev->missing)
2014                fs_devices->missing_devices--;
2015
2016        if (srcdev->writeable)
2017                fs_devices->rw_devices--;
2018
2019        if (srcdev->bdev)
2020                fs_devices->open_devices--;
2021}
2022
2023void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2024                                      struct btrfs_device *srcdev)
2025{
2026        struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2027
2028        if (srcdev->writeable) {
2029                /* zero out the old super if it is writable */
2030                btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2031        }
2032
2033        btrfs_close_bdev(srcdev);
2034
2035        call_rcu(&srcdev->rcu, free_device);
2036
2037        /*
2038         * unless fs_devices is seed fs, num_devices shouldn't go
2039         * zero
2040         */
2041        BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2042
2043        /* if this is no devs we rather delete the fs_devices */
2044        if (!fs_devices->num_devices) {
2045                struct btrfs_fs_devices *tmp_fs_devices;
2046
2047                tmp_fs_devices = fs_info->fs_devices;
2048                while (tmp_fs_devices) {
2049                        if (tmp_fs_devices->seed == fs_devices) {
2050                                tmp_fs_devices->seed = fs_devices->seed;
2051                                break;
2052                        }
2053                        tmp_fs_devices = tmp_fs_devices->seed;
2054                }
2055                fs_devices->seed = NULL;
2056                __btrfs_close_devices(fs_devices);
2057                free_fs_devices(fs_devices);
2058        }
2059}
2060
2061void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2062                                      struct btrfs_device *tgtdev)
2063{
2064        mutex_lock(&uuid_mutex);
2065        WARN_ON(!tgtdev);
2066        mutex_lock(&fs_info->fs_devices->device_list_mutex);
2067
2068        btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2069
2070        if (tgtdev->bdev)
2071                fs_info->fs_devices->open_devices--;
2072
2073        fs_info->fs_devices->num_devices--;
2074
2075        btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2076
2077        list_del_rcu(&tgtdev->dev_list);
2078
2079        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2080        mutex_unlock(&uuid_mutex);
2081
2082        /*
2083         * The update_dev_time() with in btrfs_scratch_superblocks()
2084         * may lead to a call to btrfs_show_devname() which will try
2085         * to hold device_list_mutex. And here this device
2086         * is already out of device list, so we don't have to hold
2087         * the device_list_mutex lock.
2088         */
2089        btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2090
2091        btrfs_close_bdev(tgtdev);
2092        call_rcu(&tgtdev->rcu, free_device);
2093}
2094
2095static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2096                                     struct btrfs_device **device)
2097{
2098        int ret = 0;
2099        struct btrfs_super_block *disk_super;
2100        u64 devid;
2101        u8 *dev_uuid;
2102        struct block_device *bdev;
2103        struct buffer_head *bh;
2104
2105        *device = NULL;
2106        ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2107                                    root->fs_info->bdev_holder, 0, &bdev, &bh);
2108        if (ret)
2109                return ret;
2110        disk_super = (struct btrfs_super_block *)bh->b_data;
2111        devid = btrfs_stack_device_id(&disk_super->dev_item);
2112        dev_uuid = disk_super->dev_item.uuid;
2113        *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2114                                    disk_super->fsid);
2115        brelse(bh);
2116        if (!*device)
2117                ret = -ENOENT;
2118        blkdev_put(bdev, FMODE_READ);
2119        return ret;
2120}
2121
2122int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2123                                         char *device_path,
2124                                         struct btrfs_device **device)
2125{
2126        *device = NULL;
2127        if (strcmp(device_path, "missing") == 0) {
2128                struct list_head *devices;
2129                struct btrfs_device *tmp;
2130
2131                devices = &root->fs_info->fs_devices->devices;
2132                /*
2133                 * It is safe to read the devices since the volume_mutex
2134                 * is held by the caller.
2135                 */
2136                list_for_each_entry(tmp, devices, dev_list) {
2137                        if (tmp->in_fs_metadata && !tmp->bdev) {
2138                                *device = tmp;
2139                                break;
2140                        }
2141                }
2142
2143                if (!*device)
2144                        return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2145
2146                return 0;
2147        } else {
2148                return btrfs_find_device_by_path(root, device_path, device);
2149        }
2150}
2151
2152/*
2153 * Lookup a device given by device id, or the path if the id is 0.
2154 */
2155int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2156                                         char *devpath,
2157                                         struct btrfs_device **device)
2158{
2159        int ret;
2160
2161        if (devid) {
2162                ret = 0;
2163                *device = btrfs_find_device(root->fs_info, devid, NULL,
2164                                            NULL);
2165                if (!*device)
2166                        ret = -ENOENT;
2167        } else {
2168                if (!devpath || !devpath[0])
2169                        return -EINVAL;
2170
2171                ret = btrfs_find_device_missing_or_by_path(root, devpath,
2172                                                           device);
2173        }
2174        return ret;
2175}
2176
2177/*
2178 * does all the dirty work required for changing file system's UUID.
2179 */
2180static int btrfs_prepare_sprout(struct btrfs_root *root)
2181{
2182        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2183        struct btrfs_fs_devices *old_devices;
2184        struct btrfs_fs_devices *seed_devices;
2185        struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2186        struct btrfs_device *device;
2187        u64 super_flags;
2188
2189        BUG_ON(!mutex_is_locked(&uuid_mutex));
2190        if (!fs_devices->seeding)
2191                return -EINVAL;
2192
2193        seed_devices = __alloc_fs_devices();
2194        if (IS_ERR(seed_devices))
2195                return PTR_ERR(seed_devices);
2196
2197        old_devices = clone_fs_devices(fs_devices);
2198        if (IS_ERR(old_devices)) {
2199                kfree(seed_devices);
2200                return PTR_ERR(old_devices);
2201        }
2202
2203        list_add(&old_devices->list, &fs_uuids);
2204
2205        memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2206        seed_devices->opened = 1;
2207        INIT_LIST_HEAD(&seed_devices->devices);
2208        INIT_LIST_HEAD(&seed_devices->alloc_list);
2209        mutex_init(&seed_devices->device_list_mutex);
2210
2211        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2212        list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2213                              synchronize_rcu);
2214        list_for_each_entry(device, &seed_devices->devices, dev_list)
2215                device->fs_devices = seed_devices;
2216
2217        lock_chunks(root);
2218        list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2219        unlock_chunks(root);
2220
2221        fs_devices->seeding = 0;
2222        fs_devices->num_devices = 0;
2223        fs_devices->open_devices = 0;
2224        fs_devices->missing_devices = 0;
2225        fs_devices->rotating = 0;
2226        fs_devices->seed = seed_devices;
2227
2228        generate_random_uuid(fs_devices->fsid);
2229        memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2230        memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2231        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2232
2233        super_flags = btrfs_super_flags(disk_super) &
2234                      ~BTRFS_SUPER_FLAG_SEEDING;
2235        btrfs_set_super_flags(disk_super, super_flags);
2236
2237        return 0;
2238}
2239
2240/*
2241 * Store the expected generation for seed devices in device items.
2242 */
2243static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2244                               struct btrfs_root *root)
2245{
2246        struct btrfs_path *path;
2247        struct extent_buffer *leaf;
2248        struct btrfs_dev_item *dev_item;
2249        struct btrfs_device *device;
2250        struct btrfs_key key;
2251        u8 fs_uuid[BTRFS_UUID_SIZE];
2252        u8 dev_uuid[BTRFS_UUID_SIZE];
2253        u64 devid;
2254        int ret;
2255
2256        path = btrfs_alloc_path();
2257        if (!path)
2258                return -ENOMEM;
2259
2260        root = root->fs_info->chunk_root;
2261        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2262        key.offset = 0;
2263        key.type = BTRFS_DEV_ITEM_KEY;
2264
2265        while (1) {
2266                ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2267                if (ret < 0)
2268                        goto error;
2269
2270                leaf = path->nodes[0];
2271next_slot:
2272                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2273                        ret = btrfs_next_leaf(root, path);
2274                        if (ret > 0)
2275                                break;
2276                        if (ret < 0)
2277                                goto error;
2278                        leaf = path->nodes[0];
2279                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2280                        btrfs_release_path(path);
2281                        continue;
2282                }
2283
2284                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2285                if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2286                    key.type != BTRFS_DEV_ITEM_KEY)
2287                        break;
2288
2289                dev_item = btrfs_item_ptr(leaf, path->slots[0],
2290                                          struct btrfs_dev_item);
2291                devid = btrfs_device_id(leaf, dev_item);
2292                read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2293                                   BTRFS_UUID_SIZE);
2294                read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2295                                   BTRFS_UUID_SIZE);
2296                device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2297                                           fs_uuid);
2298                BUG_ON(!device); /* Logic error */
2299
2300                if (device->fs_devices->seeding) {
2301                        btrfs_set_device_generation(leaf, dev_item,
2302                                                    device->generation);
2303                        btrfs_mark_buffer_dirty(leaf);
2304                }
2305
2306                path->slots[0]++;
2307                goto next_slot;
2308        }
2309        ret = 0;
2310error:
2311        btrfs_free_path(path);
2312        return ret;
2313}
2314
2315int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2316{
2317        struct request_queue *q;
2318        struct btrfs_trans_handle *trans;
2319        struct btrfs_device *device;
2320        struct block_device *bdev;
2321        struct list_head *devices;
2322        struct super_block *sb = root->fs_info->sb;
2323        struct rcu_string *name;
2324        u64 tmp;
2325        int seeding_dev = 0;
2326        int ret = 0;
2327
2328        if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2329                return -EROFS;
2330
2331        bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2332                                  root->fs_info->bdev_holder);
2333        if (IS_ERR(bdev))
2334                return PTR_ERR(bdev);
2335
2336        if (root->fs_info->fs_devices->seeding) {
2337                seeding_dev = 1;
2338                down_write(&sb->s_umount);
2339                mutex_lock(&uuid_mutex);
2340        }
2341
2342        filemap_write_and_wait(bdev->bd_inode->i_mapping);
2343
2344        devices = &root->fs_info->fs_devices->devices;
2345
2346        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2347        list_for_each_entry(device, devices, dev_list) {
2348                if (device->bdev == bdev) {
2349                        ret = -EEXIST;
2350                        mutex_unlock(
2351                                &root->fs_info->fs_devices->device_list_mutex);
2352                        goto error;
2353                }
2354        }
2355        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2356
2357        device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2358        if (IS_ERR(device)) {
2359                /* we can safely leave the fs_devices entry around */
2360                ret = PTR_ERR(device);
2361                goto error;
2362        }
2363
2364        name = rcu_string_strdup(device_path, GFP_KERNEL);
2365        if (!name) {
2366                kfree(device);
2367                ret = -ENOMEM;
2368                goto error;
2369        }
2370        rcu_assign_pointer(device->name, name);
2371
2372        trans = btrfs_start_transaction(root, 0);
2373        if (IS_ERR(trans)) {
2374                rcu_string_free(device->name);
2375                kfree(device);
2376                ret = PTR_ERR(trans);
2377                goto error;
2378        }
2379
2380        q = bdev_get_queue(bdev);
2381        if (blk_queue_discard(q))
2382                device->can_discard = 1;
2383        device->writeable = 1;
2384        device->generation = trans->transid;
2385        device->io_width = root->sectorsize;
2386        device->io_align = root->sectorsize;
2387        device->sector_size = root->sectorsize;
2388        device->total_bytes = i_size_read(bdev->bd_inode);
2389        device->disk_total_bytes = device->total_bytes;
2390        device->commit_total_bytes = device->total_bytes;
2391        device->dev_root = root->fs_info->dev_root;
2392        device->bdev = bdev;
2393        device->in_fs_metadata = 1;
2394        device->is_tgtdev_for_dev_replace = 0;
2395        device->mode = FMODE_EXCL;
2396        device->dev_stats_valid = 1;
2397        set_blocksize(device->bdev, 4096);
2398
2399        if (seeding_dev) {
2400                sb->s_flags &= ~MS_RDONLY;
2401                ret = btrfs_prepare_sprout(root);
2402                BUG_ON(ret); /* -ENOMEM */
2403        }
2404
2405        device->fs_devices = root->fs_info->fs_devices;
2406
2407        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2408        lock_chunks(root);
2409        list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2410        list_add(&device->dev_alloc_list,
2411                 &root->fs_info->fs_devices->alloc_list);
2412        root->fs_info->fs_devices->num_devices++;
2413        root->fs_info->fs_devices->open_devices++;
2414        root->fs_info->fs_devices->rw_devices++;
2415        root->fs_info->fs_devices->total_devices++;
2416        root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2417
2418        spin_lock(&root->fs_info->free_chunk_lock);
2419        root->fs_info->free_chunk_space += device->total_bytes;
2420        spin_unlock(&root->fs_info->free_chunk_lock);
2421
2422        if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2423                root->fs_info->fs_devices->rotating = 1;
2424
2425        tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2426        btrfs_set_super_total_bytes(root->fs_info->super_copy,
2427                                    tmp + device->total_bytes);
2428
2429        tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2430        btrfs_set_super_num_devices(root->fs_info->super_copy,
2431                                    tmp + 1);
2432
2433        /* add sysfs device entry */
2434        btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2435
2436        /*
2437         * we've got more storage, clear any full flags on the space
2438         * infos
2439         */
2440        btrfs_clear_space_info_full(root->fs_info);
2441
2442        unlock_chunks(root);
2443        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2444
2445        if (seeding_dev) {
2446                lock_chunks(root);
2447                ret = init_first_rw_device(trans, root, device);
2448                unlock_chunks(root);
2449                if (ret) {
2450                        btrfs_abort_transaction(trans, ret);
2451                        goto error_trans;
2452                }
2453        }
2454
2455        ret = btrfs_add_device(trans, root, device);
2456        if (ret) {
2457                btrfs_abort_transaction(trans, ret);
2458                goto error_trans;
2459        }
2460
2461        if (seeding_dev) {
2462                char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2463
2464                ret = btrfs_finish_sprout(trans, root);
2465                if (ret) {
2466                        btrfs_abort_transaction(trans, ret);
2467                        goto error_trans;
2468                }
2469
2470                /* Sprouting would change fsid of the mounted root,
2471                 * so rename the fsid on the sysfs
2472                 */
2473                snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2474                                                root->fs_info->fsid);
2475                if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2476                                                                fsid_buf))
2477                        btrfs_warn(root->fs_info,
2478                                "sysfs: failed to create fsid for sprout");
2479        }
2480
2481        root->fs_info->num_tolerated_disk_barrier_failures =
2482                btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2483        ret = btrfs_commit_transaction(trans, root);
2484
2485        if (seeding_dev) {
2486                mutex_unlock(&uuid_mutex);
2487                up_write(&sb->s_umount);
2488
2489                if (ret) /* transaction commit */
2490                        return ret;
2491
2492                ret = btrfs_relocate_sys_chunks(root);
2493                if (ret < 0)
2494                        btrfs_handle_fs_error(root->fs_info, ret,
2495                                    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2496                trans = btrfs_attach_transaction(root);
2497                if (IS_ERR(trans)) {
2498                        if (PTR_ERR(trans) == -ENOENT)
2499                                return 0;
2500                        return PTR_ERR(trans);
2501                }
2502                ret = btrfs_commit_transaction(trans, root);
2503        }
2504
2505        /* Update ctime/mtime for libblkid */
2506        update_dev_time(device_path);
2507        return ret;
2508
2509error_trans:
2510        btrfs_end_transaction(trans, root);
2511        rcu_string_free(device->name);
2512        btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2513        kfree(device);
2514error:
2515        blkdev_put(bdev, FMODE_EXCL);
2516        if (seeding_dev) {
2517                mutex_unlock(&uuid_mutex);
2518                up_write(&sb->s_umount);
2519        }
2520        return ret;
2521}
2522
2523int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2524                                  struct btrfs_device *srcdev,
2525                                  struct btrfs_device **device_out)
2526{
2527        struct request_queue *q;
2528        struct btrfs_device *device;
2529        struct block_device *bdev;
2530        struct btrfs_fs_info *fs_info = root->fs_info;
2531        struct list_head *devices;
2532        struct rcu_string *name;
2533        u64 devid = BTRFS_DEV_REPLACE_DEVID;
2534        int ret = 0;
2535
2536        *device_out = NULL;
2537        if (fs_info->fs_devices->seeding) {
2538                btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2539                return -EINVAL;
2540        }
2541
2542        bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2543                                  fs_info->bdev_holder);
2544        if (IS_ERR(bdev)) {
2545                btrfs_err(fs_info, "target device %s is invalid!", device_path);
2546                return PTR_ERR(bdev);
2547        }
2548
2549        filemap_write_and_wait(bdev->bd_inode->i_mapping);
2550
2551        devices = &fs_info->fs_devices->devices;
2552        list_for_each_entry(device, devices, dev_list) {
2553                if (device->bdev == bdev) {
2554                        btrfs_err(fs_info,
2555                                  "target device is in the filesystem!");
2556                        ret = -EEXIST;
2557                        goto error;
2558                }
2559        }
2560
2561
2562        if (i_size_read(bdev->bd_inode) <
2563            btrfs_device_get_total_bytes(srcdev)) {
2564                btrfs_err(fs_info,
2565                          "target device is smaller than source device!");
2566                ret = -EINVAL;
2567                goto error;
2568        }
2569
2570
2571        device = btrfs_alloc_device(NULL, &devid, NULL);
2572        if (IS_ERR(device)) {
2573                ret = PTR_ERR(device);
2574                goto error;
2575        }
2576
2577        name = rcu_string_strdup(device_path, GFP_NOFS);
2578        if (!name) {
2579                kfree(device);
2580                ret = -ENOMEM;
2581                goto error;
2582        }
2583        rcu_assign_pointer(device->name, name);
2584
2585        q = bdev_get_queue(bdev);
2586        if (blk_queue_discard(q))
2587                device->can_discard = 1;
2588        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2589        device->writeable = 1;
2590        device->generation = 0;
2591        device->io_width = root->sectorsize;
2592        device->io_align = root->sectorsize;
2593        device->sector_size = root->sectorsize;
2594        device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2595        device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2596        device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2597        ASSERT(list_empty(&srcdev->resized_list));
2598        device->commit_total_bytes = srcdev->commit_total_bytes;
2599        device->commit_bytes_used = device->bytes_used;
2600        device->dev_root = fs_info->dev_root;
2601        device->bdev = bdev;
2602        device->in_fs_metadata = 1;
2603        device->is_tgtdev_for_dev_replace = 1;
2604        device->mode = FMODE_EXCL;
2605        device->dev_stats_valid = 1;
2606        set_blocksize(device->bdev, 4096);
2607        device->fs_devices = fs_info->fs_devices;
2608        list_add(&device->dev_list, &fs_info->fs_devices->devices);
2609        fs_info->fs_devices->num_devices++;
2610        fs_info->fs_devices->open_devices++;
2611        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2612
2613        *device_out = device;
2614        return ret;
2615
2616error:
2617        blkdev_put(bdev, FMODE_EXCL);
2618        return ret;
2619}
2620
2621void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2622                                              struct btrfs_device *tgtdev)
2623{
2624        WARN_ON(fs_info->fs_devices->rw_devices == 0);
2625        tgtdev->io_width = fs_info->dev_root->sectorsize;
2626        tgtdev->io_align = fs_info->dev_root->sectorsize;
2627        tgtdev->sector_size = fs_info->dev_root->sectorsize;
2628        tgtdev->dev_root = fs_info->dev_root;
2629        tgtdev->in_fs_metadata = 1;
2630}
2631
2632static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2633                                        struct btrfs_device *device)
2634{
2635        int ret;
2636        struct btrfs_path *path;
2637        struct btrfs_root *root;
2638        struct btrfs_dev_item *dev_item;
2639        struct extent_buffer *leaf;
2640        struct btrfs_key key;
2641
2642        root = device->dev_root->fs_info->chunk_root;
2643
2644        path = btrfs_alloc_path();
2645        if (!path)
2646                return -ENOMEM;
2647
2648        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2649        key.type = BTRFS_DEV_ITEM_KEY;
2650        key.offset = device->devid;
2651
2652        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2653        if (ret < 0)
2654                goto out;
2655
2656        if (ret > 0) {
2657                ret = -ENOENT;
2658                goto out;
2659        }
2660
2661        leaf = path->nodes[0];
2662        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2663
2664        btrfs_set_device_id(leaf, dev_item, device->devid);
2665        btrfs_set_device_type(leaf, dev_item, device->type);
2666        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2667        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2668        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2669        btrfs_set_device_total_bytes(leaf, dev_item,
2670                                     btrfs_device_get_disk_total_bytes(device));
2671        btrfs_set_device_bytes_used(leaf, dev_item,
2672                                    btrfs_device_get_bytes_used(device));
2673        btrfs_mark_buffer_dirty(leaf);
2674
2675out:
2676        btrfs_free_path(path);
2677        return ret;
2678}
2679
2680int btrfs_grow_device(struct btrfs_trans_handle *trans,
2681                      struct btrfs_device *device, u64 new_size)
2682{
2683        struct btrfs_super_block *super_copy =
2684                device->dev_root->fs_info->super_copy;
2685        struct btrfs_fs_devices *fs_devices;
2686        u64 old_total;
2687        u64 diff;
2688
2689        if (!device->writeable)
2690                return -EACCES;
2691
2692        lock_chunks(device->dev_root);
2693        old_total = btrfs_super_total_bytes(super_copy);
2694        diff = new_size - device->total_bytes;
2695
2696        if (new_size <= device->total_bytes ||
2697            device->is_tgtdev_for_dev_replace) {
2698                unlock_chunks(device->dev_root);
2699                return -EINVAL;
2700        }
2701
2702        fs_devices = device->dev_root->fs_info->fs_devices;
2703
2704        btrfs_set_super_total_bytes(super_copy, old_total + diff);
2705        device->fs_devices->total_rw_bytes += diff;
2706
2707        btrfs_device_set_total_bytes(device, new_size);
2708        btrfs_device_set_disk_total_bytes(device, new_size);
2709        btrfs_clear_space_info_full(device->dev_root->fs_info);
2710        if (list_empty(&device->resized_list))
2711                list_add_tail(&device->resized_list,
2712                              &fs_devices->resized_devices);
2713        unlock_chunks(device->dev_root);
2714
2715        return btrfs_update_device(trans, device);
2716}
2717
2718static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2719                            struct btrfs_root *root, u64 chunk_objectid,
2720                            u64 chunk_offset)
2721{
2722        int ret;
2723        struct btrfs_path *path;
2724        struct btrfs_key key;
2725
2726        root = root->fs_info->chunk_root;
2727        path = btrfs_alloc_path();
2728        if (!path)
2729                return -ENOMEM;
2730
2731        key.objectid = chunk_objectid;
2732        key.offset = chunk_offset;
2733        key.type = BTRFS_CHUNK_ITEM_KEY;
2734
2735        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2736        if (ret < 0)
2737                goto out;
2738        else if (ret > 0) { /* Logic error or corruption */
2739                btrfs_handle_fs_error(root->fs_info, -ENOENT,
2740                            "Failed lookup while freeing chunk.");
2741                ret = -ENOENT;
2742                goto out;
2743        }
2744
2745        ret = btrfs_del_item(trans, root, path);
2746        if (ret < 0)
2747                btrfs_handle_fs_error(root->fs_info, ret,
2748                            "Failed to delete chunk item.");
2749out:
2750        btrfs_free_path(path);
2751        return ret;
2752}
2753
2754static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2755                        chunk_offset)
2756{
2757        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2758        struct btrfs_disk_key *disk_key;
2759        struct btrfs_chunk *chunk;
2760        u8 *ptr;
2761        int ret = 0;
2762        u32 num_stripes;
2763        u32 array_size;
2764        u32 len = 0;
2765        u32 cur;
2766        struct btrfs_key key;
2767
2768        lock_chunks(root);
2769        array_size = btrfs_super_sys_array_size(super_copy);
2770
2771        ptr = super_copy->sys_chunk_array;
2772        cur = 0;
2773
2774        while (cur < array_size) {
2775                disk_key = (struct btrfs_disk_key *)ptr;
2776                btrfs_disk_key_to_cpu(&key, disk_key);
2777
2778                len = sizeof(*disk_key);
2779
2780                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2781                        chunk = (struct btrfs_chunk *)(ptr + len);
2782                        num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2783                        len += btrfs_chunk_item_size(num_stripes);
2784                } else {
2785                        ret = -EIO;
2786                        break;
2787                }
2788                if (key.objectid == chunk_objectid &&
2789                    key.offset == chunk_offset) {
2790                        memmove(ptr, ptr + len, array_size - (cur + len));
2791                        array_size -= len;
2792                        btrfs_set_super_sys_array_size(super_copy, array_size);
2793                } else {
2794                        ptr += len;
2795                        cur += len;
2796                }
2797        }
2798        unlock_chunks(root);
2799        return ret;
2800}
2801
2802int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2803                       struct btrfs_root *root, u64 chunk_offset)
2804{
2805        struct extent_map_tree *em_tree;
2806        struct extent_map *em;
2807        struct btrfs_root *extent_root = root->fs_info->extent_root;
2808        struct map_lookup *map;
2809        u64 dev_extent_len = 0;
2810        u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2811        int i, ret = 0;
2812        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2813
2814        /* Just in case */
2815        root = root->fs_info->chunk_root;
2816        em_tree = &root->fs_info->mapping_tree.map_tree;
2817
2818        read_lock(&em_tree->lock);
2819        em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2820        read_unlock(&em_tree->lock);
2821
2822        if (!em || em->start > chunk_offset ||
2823            em->start + em->len < chunk_offset) {
2824                /*
2825                 * This is a logic error, but we don't want to just rely on the
2826                 * user having built with ASSERT enabled, so if ASSERT doesn't
2827                 * do anything we still error out.
2828                 */
2829                ASSERT(0);
2830                if (em)
2831                        free_extent_map(em);
2832                return -EINVAL;
2833        }
2834        map = em->map_lookup;
2835        lock_chunks(root->fs_info->chunk_root);
2836        check_system_chunk(trans, extent_root, map->type);
2837        unlock_chunks(root->fs_info->chunk_root);
2838
2839        /*
2840         * Take the device list mutex to prevent races with the final phase of
2841         * a device replace operation that replaces the device object associated
2842         * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2843         */
2844        mutex_lock(&fs_devices->device_list_mutex);
2845        for (i = 0; i < map->num_stripes; i++) {
2846                struct btrfs_device *device = map->stripes[i].dev;
2847                ret = btrfs_free_dev_extent(trans, device,
2848                                            map->stripes[i].physical,
2849                                            &dev_extent_len);
2850                if (ret) {
2851                        mutex_unlock(&fs_devices->device_list_mutex);
2852                        btrfs_abort_transaction(trans, ret);
2853                        goto out;
2854                }
2855
2856                if (device->bytes_used > 0) {
2857                        lock_chunks(root);
2858                        btrfs_device_set_bytes_used(device,
2859                                        device->bytes_used - dev_extent_len);
2860                        spin_lock(&root->fs_info->free_chunk_lock);
2861                        root->fs_info->free_chunk_space += dev_extent_len;
2862                        spin_unlock(&root->fs_info->free_chunk_lock);
2863                        btrfs_clear_space_info_full(root->fs_info);
2864                        unlock_chunks(root);
2865                }
2866
2867                if (map->stripes[i].dev) {
2868                        ret = btrfs_update_device(trans, map->stripes[i].dev);
2869                        if (ret) {
2870                                mutex_unlock(&fs_devices->device_list_mutex);
2871                                btrfs_abort_transaction(trans, ret);
2872                                goto out;
2873                        }
2874                }
2875        }
2876        mutex_unlock(&fs_devices->device_list_mutex);
2877
2878        ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2879        if (ret) {
2880                btrfs_abort_transaction(trans, ret);
2881                goto out;
2882        }
2883
2884        trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2885
2886        if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2887                ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2888                if (ret) {
2889                        btrfs_abort_transaction(trans, ret);
2890                        goto out;
2891                }
2892        }
2893
2894        ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2895        if (ret) {
2896                btrfs_abort_transaction(trans, ret);
2897                goto out;
2898        }
2899
2900out:
2901        /* once for us */
2902        free_extent_map(em);
2903        return ret;
2904}
2905
2906static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2907{
2908        struct btrfs_root *extent_root;
2909        struct btrfs_trans_handle *trans;
2910        int ret;
2911
2912        root = root->fs_info->chunk_root;
2913        extent_root = root->fs_info->extent_root;
2914
2915        /*
2916         * Prevent races with automatic removal of unused block groups.
2917         * After we relocate and before we remove the chunk with offset
2918         * chunk_offset, automatic removal of the block group can kick in,
2919         * resulting in a failure when calling btrfs_remove_chunk() below.
2920         *
2921         * Make sure to acquire this mutex before doing a tree search (dev
2922         * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2923         * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2924         * we release the path used to search the chunk/dev tree and before
2925         * the current task acquires this mutex and calls us.
2926         */
2927        ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2928
2929        ret = btrfs_can_relocate(extent_root, chunk_offset);
2930        if (ret)
2931                return -ENOSPC;
2932
2933        /* step one, relocate all the extents inside this chunk */
2934        btrfs_scrub_pause(root);
2935        ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2936        btrfs_scrub_continue(root);
2937        if (ret)
2938                return ret;
2939
2940        trans = btrfs_start_trans_remove_block_group(root->fs_info,
2941                                                     chunk_offset);
2942        if (IS_ERR(trans)) {
2943                ret = PTR_ERR(trans);
2944                btrfs_handle_fs_error(root->fs_info, ret, NULL);
2945                return ret;
2946        }
2947
2948        /*
2949         * step two, delete the device extents and the
2950         * chunk tree entries
2951         */
2952        ret = btrfs_remove_chunk(trans, root, chunk_offset);
2953        btrfs_end_transaction(trans, extent_root);
2954        return ret;
2955}
2956
2957static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2958{
2959        struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2960        struct btrfs_path *path;
2961        struct extent_buffer *leaf;
2962        struct btrfs_chunk *chunk;
2963        struct btrfs_key key;
2964        struct btrfs_key found_key;
2965        u64 chunk_type;
2966        bool retried = false;
2967        int failed = 0;
2968        int ret;
2969
2970        path = btrfs_alloc_path();
2971        if (!path)
2972                return -ENOMEM;
2973
2974again:
2975        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2976        key.offset = (u64)-1;
2977        key.type = BTRFS_CHUNK_ITEM_KEY;
2978
2979        while (1) {
2980                mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2981                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2982                if (ret < 0) {
2983                        mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2984                        goto error;
2985                }
2986                BUG_ON(ret == 0); /* Corruption */
2987
2988                ret = btrfs_previous_item(chunk_root, path, key.objectid,
2989                                          key.type);
2990                if (ret)
2991                        mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2992                if (ret < 0)
2993                        goto error;
2994                if (ret > 0)
2995                        break;
2996
2997                leaf = path->nodes[0];
2998                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2999
3000                chunk = btrfs_item_ptr(leaf, path->slots[0],
3001                                       struct btrfs_chunk);
3002                chunk_type = btrfs_chunk_type(leaf, chunk);
3003                btrfs_release_path(path);
3004
3005                if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3006                        ret = btrfs_relocate_chunk(chunk_root,
3007                                                   found_key.offset);
3008                        if (ret == -ENOSPC)
3009                                failed++;
3010                        else
3011                                BUG_ON(ret);
3012                }
3013                mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
3014
3015                if (found_key.offset == 0)
3016                        break;
3017                key.offset = found_key.offset - 1;
3018        }
3019        ret = 0;
3020        if (failed && !retried) {
3021                failed = 0;
3022                retried = true;
3023                goto again;
3024        } else if (WARN_ON(failed && retried)) {
3025                ret = -ENOSPC;
3026        }
3027error:
3028        btrfs_free_path(path);
3029        return ret;
3030}
3031
3032static int insert_balance_item(struct btrfs_root *root,
3033                               struct btrfs_balance_control *bctl)
3034{
3035        struct btrfs_trans_handle *trans;
3036        struct btrfs_balance_item *item;
3037        struct btrfs_disk_balance_args disk_bargs;
3038        struct btrfs_path *path;
3039        struct extent_buffer *leaf;
3040        struct btrfs_key key;
3041        int ret, err;
3042
3043        path = btrfs_alloc_path();
3044        if (!path)
3045                return -ENOMEM;
3046
3047        trans = btrfs_start_transaction(root, 0);
3048        if (IS_ERR(trans)) {
3049                btrfs_free_path(path);
3050                return PTR_ERR(trans);
3051        }
3052
3053        key.objectid = BTRFS_BALANCE_OBJECTID;
3054        key.type = BTRFS_TEMPORARY_ITEM_KEY;
3055        key.offset = 0;
3056
3057        ret = btrfs_insert_empty_item(trans, root, path, &key,
3058                                      sizeof(*item));
3059        if (ret)
3060                goto out;
3061
3062        leaf = path->nodes[0];
3063        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3064
3065        memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3066
3067        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3068        btrfs_set_balance_data(leaf, item, &disk_bargs);
3069        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3070        btrfs_set_balance_meta(leaf, item, &disk_bargs);
3071        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3072        btrfs_set_balance_sys(leaf, item, &disk_bargs);
3073
3074        btrfs_set_balance_flags(leaf, item, bctl->flags);
3075
3076        btrfs_mark_buffer_dirty(leaf);
3077out:
3078        btrfs_free_path(path);
3079        err = btrfs_commit_transaction(trans, root);
3080        if (err && !ret)
3081                ret = err;
3082        return ret;
3083}
3084
3085static int del_balance_item(struct btrfs_root *root)
3086{
3087        struct btrfs_trans_handle *trans;
3088        struct btrfs_path *path;
3089        struct btrfs_key key;
3090        int ret, err;
3091
3092        path = btrfs_alloc_path();
3093        if (!path)
3094                return -ENOMEM;
3095
3096        trans = btrfs_start_transaction(root, 0);
3097        if (IS_ERR(trans)) {
3098                btrfs_free_path(path);
3099                return PTR_ERR(trans);
3100        }
3101
3102        key.objectid = BTRFS_BALANCE_OBJECTID;
3103        key.type = BTRFS_TEMPORARY_ITEM_KEY;
3104        key.offset = 0;
3105
3106        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3107        if (ret < 0)
3108                goto out;
3109        if (ret > 0) {
3110                ret = -ENOENT;
3111                goto out;
3112        }
3113
3114        ret = btrfs_del_item(trans, root, path);
3115out:
3116        btrfs_free_path(path);
3117        err = btrfs_commit_transaction(trans, root);
3118        if (err && !ret)
3119                ret = err;
3120        return ret;
3121}
3122
3123/*
3124 * This is a heuristic used to reduce the number of chunks balanced on
3125 * resume after balance was interrupted.
3126 */
3127static void update_balance_args(struct btrfs_balance_control *bctl)
3128{
3129        /*
3130         * Turn on soft mode for chunk types that were being converted.
3131         */
3132        if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3133                bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3134        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3135                bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3136        if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3137                bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3138
3139        /*
3140         * Turn on usage filter if is not already used.  The idea is
3141         * that chunks that we have already balanced should be
3142         * reasonably full.  Don't do it for chunks that are being
3143         * converted - that will keep us from relocating unconverted
3144         * (albeit full) chunks.
3145         */
3146        if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3147            !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3148            !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3149                bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3150                bctl->data.usage = 90;
3151        }
3152        if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3153            !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3154            !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3155                bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3156                bctl->sys.usage = 90;
3157        }
3158        if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3159            !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3160            !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3161                bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3162                bctl->meta.usage = 90;
3163        }
3164}
3165
3166/*
3167 * Should be called with both balance and volume mutexes held to
3168 * serialize other volume operations (add_dev/rm_dev/resize) with
3169 * restriper.  Same goes for unset_balance_control.
3170 */
3171static void set_balance_control(struct btrfs_balance_control *bctl)
3172{
3173        struct btrfs_fs_info *fs_info = bctl->fs_info;
3174
3175        BUG_ON(fs_info->balance_ctl);
3176
3177        spin_lock(&fs_info->balance_lock);
3178        fs_info->balance_ctl = bctl;
3179        spin_unlock(&fs_info->balance_lock);
3180}
3181
3182static void unset_balance_control(struct btrfs_fs_info *fs_info)
3183{
3184        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3185
3186        BUG_ON(!fs_info->balance_ctl);
3187
3188        spin_lock(&fs_info->balance_lock);
3189        fs_info->balance_ctl = NULL;
3190        spin_unlock(&fs_info->balance_lock);
3191
3192        kfree(bctl);
3193}
3194
3195/*
3196 * Balance filters.  Return 1 if chunk should be filtered out
3197 * (should not be balanced).
3198 */
3199static int chunk_profiles_filter(u64 chunk_type,
3200                                 struct btrfs_balance_args *bargs)
3201{
3202        chunk_type = chunk_to_extended(chunk_type) &
3203                                BTRFS_EXTENDED_PROFILE_MASK;
3204
3205        if (bargs->profiles & chunk_type)
3206                return 0;
3207
3208        return 1;
3209}
3210
3211static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3212                              struct btrfs_balance_args *bargs)
3213{
3214        struct btrfs_block_group_cache *cache;
3215        u64 chunk_used;
3216        u64 user_thresh_min;
3217        u64 user_thresh_max;
3218        int ret = 1;
3219
3220        cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3221        chunk_used = btrfs_block_group_used(&cache->item);
3222
3223        if (bargs->usage_min == 0)
3224                user_thresh_min = 0;
3225        else
3226                user_thresh_min = div_factor_fine(cache->key.offset,
3227                                        bargs->usage_min);
3228
3229        if (bargs->usage_max == 0)
3230                user_thresh_max = 1;
3231        else if (bargs->usage_max > 100)
3232                user_thresh_max = cache->key.offset;
3233        else
3234                user_thresh_max = div_factor_fine(cache->key.offset,
3235                                        bargs->usage_max);
3236
3237        if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3238                ret = 0;
3239
3240        btrfs_put_block_group(cache);
3241        return ret;
3242}
3243
3244static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3245                u64 chunk_offset, struct btrfs_balance_args *bargs)
3246{
3247        struct btrfs_block_group_cache *cache;
3248        u64 chunk_used, user_thresh;
3249        int ret = 1;
3250
3251        cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3252        chunk_used = btrfs_block_group_used(&cache->item);
3253
3254        if (bargs->usage_min == 0)
3255                user_thresh = 1;
3256        else if (bargs->usage > 100)
3257                user_thresh = cache->key.offset;
3258        else
3259                user_thresh = div_factor_fine(cache->key.offset,
3260                                              bargs->usage);
3261
3262        if (chunk_used < user_thresh)
3263                ret = 0;
3264
3265        btrfs_put_block_group(cache);
3266        return ret;
3267}
3268
3269static int chunk_devid_filter(struct extent_buffer *leaf,
3270                              struct btrfs_chunk *chunk,
3271                              struct btrfs_balance_args *bargs)
3272{
3273        struct btrfs_stripe *stripe;
3274        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3275        int i;
3276
3277        for (i = 0; i < num_stripes; i++) {
3278                stripe = btrfs_stripe_nr(chunk, i);
3279                if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3280                        return 0;
3281        }
3282
3283        return 1;
3284}
3285
3286/* [pstart, pend) */
3287static int chunk_drange_filter(struct extent_buffer *leaf,
3288                               struct btrfs_chunk *chunk,
3289                               u64 chunk_offset,
3290                               struct btrfs_balance_args *bargs)
3291{
3292        struct btrfs_stripe *stripe;
3293        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3294        u64 stripe_offset;
3295        u64 stripe_length;
3296        int factor;
3297        int i;
3298
3299        if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3300                return 0;
3301
3302        if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3303             BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3304                factor = num_stripes / 2;
3305        } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3306                factor = num_stripes - 1;
3307        } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3308                factor = num_stripes - 2;
3309        } else {
3310                factor = num_stripes;
3311        }
3312
3313        for (i = 0; i < num_stripes; i++) {
3314                stripe = btrfs_stripe_nr(chunk, i);
3315                if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3316                        continue;
3317
3318                stripe_offset = btrfs_stripe_offset(leaf, stripe);
3319                stripe_length = btrfs_chunk_length(leaf, chunk);
3320                stripe_length = div_u64(stripe_length, factor);
3321
3322                if (stripe_offset < bargs->pend &&
3323                    stripe_offset + stripe_length > bargs->pstart)
3324                        return 0;
3325        }
3326
3327        return 1;
3328}
3329
3330/* [vstart, vend) */
3331static int chunk_vrange_filter(struct extent_buffer *leaf,
3332                               struct btrfs_chunk *chunk,
3333                               u64 chunk_offset,
3334                               struct btrfs_balance_args *bargs)
3335{
3336        if (chunk_offset < bargs->vend &&
3337            chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3338                /* at least part of the chunk is inside this vrange */
3339                return 0;
3340
3341        return 1;
3342}
3343
3344static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3345                               struct btrfs_chunk *chunk,
3346                               struct btrfs_balance_args *bargs)
3347{
3348        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3349
3350        if (bargs->stripes_min <= num_stripes
3351                        && num_stripes <= bargs->stripes_max)
3352                return 0;
3353
3354        return 1;
3355}
3356
3357static int chunk_soft_convert_filter(u64 chunk_type,
3358                                     struct btrfs_balance_args *bargs)
3359{
3360        if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3361                return 0;
3362
3363        chunk_type = chunk_to_extended(chunk_type) &
3364                                BTRFS_EXTENDED_PROFILE_MASK;
3365
3366        if (bargs->target == chunk_type)
3367                return 1;
3368
3369        return 0;
3370}
3371
3372static int should_balance_chunk(struct btrfs_root *root,
3373                                struct extent_buffer *leaf,
3374                                struct btrfs_chunk *chunk, u64 chunk_offset)
3375{
3376        struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3377        struct btrfs_balance_args *bargs = NULL;
3378        u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3379
3380        /* type filter */
3381        if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3382              (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3383                return 0;
3384        }
3385
3386        if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3387                bargs = &bctl->data;
3388        else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3389                bargs = &bctl->sys;
3390        else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3391                bargs = &bctl->meta;
3392
3393        /* profiles filter */
3394        if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3395            chunk_profiles_filter(chunk_type, bargs)) {
3396                return 0;
3397        }
3398
3399        /* usage filter */
3400        if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3401            chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3402                return 0;
3403        } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3404            chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3405                return 0;
3406        }
3407
3408        /* devid filter */
3409        if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3410            chunk_devid_filter(leaf, chunk, bargs)) {
3411                return 0;
3412        }
3413
3414        /* drange filter, makes sense only with devid filter */
3415        if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3416            chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3417                return 0;
3418        }
3419
3420        /* vrange filter */
3421        if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3422            chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3423                return 0;
3424        }
3425
3426        /* stripes filter */
3427        if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3428            chunk_stripes_range_filter(leaf, chunk, bargs)) {
3429                return 0;
3430        }
3431
3432        /* soft profile changing mode */
3433        if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3434            chunk_soft_convert_filter(chunk_type, bargs)) {
3435                return 0;
3436        }
3437
3438        /*
3439         * limited by count, must be the last filter
3440         */
3441        if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3442                if (bargs->limit == 0)
3443                        return 0;
3444                else
3445                        bargs->limit--;
3446        } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3447                /*
3448                 * Same logic as the 'limit' filter; the minimum cannot be
3449                 * determined here because we do not have the global information
3450                 * about the count of all chunks that satisfy the filters.
3451                 */
3452                if (bargs->limit_max == 0)
3453                        return 0;
3454                else
3455                        bargs->limit_max--;
3456        }
3457
3458        return 1;
3459}
3460
3461static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3462{
3463        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3464        struct btrfs_root *chunk_root = fs_info->chunk_root;
3465        struct btrfs_root *dev_root = fs_info->dev_root;
3466        struct list_head *devices;
3467        struct btrfs_device *device;
3468        u64 old_size;
3469        u64 size_to_free;
3470        u64 chunk_type;
3471        struct btrfs_chunk *chunk;
3472        struct btrfs_path *path = NULL;
3473        struct btrfs_key key;
3474        struct btrfs_key found_key;
3475        struct btrfs_trans_handle *trans;
3476        struct extent_buffer *leaf;
3477        int slot;
3478        int ret;
3479        int enospc_errors = 0;
3480        bool counting = true;
3481        /* The single value limit and min/max limits use the same bytes in the */
3482        u64 limit_data = bctl->data.limit;
3483        u64 limit_meta = bctl->meta.limit;
3484        u64 limit_sys = bctl->sys.limit;
3485        u32 count_data = 0;
3486        u32 count_meta = 0;
3487        u32 count_sys = 0;
3488        int chunk_reserved = 0;
3489        u64 bytes_used = 0;
3490
3491        /* step one make some room on all the devices */
3492        devices = &fs_info->fs_devices->devices;
3493        list_for_each_entry(device, devices, dev_list) {
3494                old_size = btrfs_device_get_total_bytes(device);
3495                size_to_free = div_factor(old_size, 1);
3496                size_to_free = min_t(u64, size_to_free, SZ_1M);
3497                if (!device->writeable ||
3498                    btrfs_device_get_total_bytes(device) -
3499                    btrfs_device_get_bytes_used(device) > size_to_free ||
3500                    device->is_tgtdev_for_dev_replace)
3501                        continue;
3502
3503                ret = btrfs_shrink_device(device, old_size - size_to_free);
3504                if (ret == -ENOSPC)
3505                        break;
3506                if (ret) {
3507                        /* btrfs_shrink_device never returns ret > 0 */
3508                        WARN_ON(ret > 0);
3509                        goto error;
3510                }
3511
3512                trans = btrfs_start_transaction(dev_root, 0);
3513                if (IS_ERR(trans)) {
3514                        ret = PTR_ERR(trans);
3515                        btrfs_info_in_rcu(fs_info,
3516                 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3517                                          rcu_str_deref(device->name), ret,
3518                                          old_size, old_size - size_to_free);
3519                        goto error;
3520                }
3521
3522                ret = btrfs_grow_device(trans, device, old_size);
3523                if (ret) {
3524                        btrfs_end_transaction(trans, dev_root);
3525                        /* btrfs_grow_device never returns ret > 0 */
3526                        WARN_ON(ret > 0);
3527                        btrfs_info_in_rcu(fs_info,
3528                 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3529                                          rcu_str_deref(device->name), ret,
3530                                          old_size, old_size - size_to_free);
3531                        goto error;
3532                }
3533
3534                btrfs_end_transaction(trans, dev_root);
3535        }
3536
3537        /* step two, relocate all the chunks */
3538        path = btrfs_alloc_path();
3539        if (!path) {
3540                ret = -ENOMEM;
3541                goto error;
3542        }
3543
3544        /* zero out stat counters */
3545        spin_lock(&fs_info->balance_lock);
3546        memset(&bctl->stat, 0, sizeof(bctl->stat));
3547        spin_unlock(&fs_info->balance_lock);
3548again:
3549        if (!counting) {
3550                /*
3551                 * The single value limit and min/max limits use the same bytes
3552                 * in the
3553                 */
3554                bctl->data.limit = limit_data;
3555                bctl->meta.limit = limit_meta;
3556                bctl->sys.limit = limit_sys;
3557        }
3558        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3559        key.offset = (u64)-1;
3560        key.type = BTRFS_CHUNK_ITEM_KEY;
3561
3562        while (1) {
3563                if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3564                    atomic_read(&fs_info->balance_cancel_req)) {
3565                        ret = -ECANCELED;
3566                        goto error;
3567                }
3568
3569                mutex_lock(&fs_info->delete_unused_bgs_mutex);
3570                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3571                if (ret < 0) {
3572                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3573                        goto error;
3574                }
3575
3576                /*
3577                 * this shouldn't happen, it means the last relocate
3578                 * failed
3579                 */
3580                if (ret == 0)
3581                        BUG(); /* FIXME break ? */
3582
3583                ret = btrfs_previous_item(chunk_root, path, 0,
3584                                          BTRFS_CHUNK_ITEM_KEY);
3585                if (ret) {
3586                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3587                        ret = 0;
3588                        break;
3589                }
3590
3591                leaf = path->nodes[0];
3592                slot = path->slots[0];
3593                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3594
3595                if (found_key.objectid != key.objectid) {
3596                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3597                        break;
3598                }
3599
3600                chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3601                chunk_type = btrfs_chunk_type(leaf, chunk);
3602
3603                if (!counting) {
3604                        spin_lock(&fs_info->balance_lock);
3605                        bctl->stat.considered++;
3606                        spin_unlock(&fs_info->balance_lock);
3607                }
3608
3609                ret = should_balance_chunk(chunk_root, leaf, chunk,
3610                                           found_key.offset);
3611
3612                btrfs_release_path(path);
3613                if (!ret) {
3614                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3615                        goto loop;
3616                }
3617
3618                if (counting) {
3619                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3620                        spin_lock(&fs_info->balance_lock);
3621                        bctl->stat.expected++;
3622                        spin_unlock(&fs_info->balance_lock);
3623
3624                        if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3625                                count_data++;
3626                        else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3627                                count_sys++;
3628                        else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3629                                count_meta++;
3630
3631                        goto loop;
3632                }
3633
3634                /*
3635                 * Apply limit_min filter, no need to check if the LIMITS
3636                 * filter is used, limit_min is 0 by default
3637                 */
3638                if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3639                                        count_data < bctl->data.limit_min)
3640                                || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3641                                        count_meta < bctl->meta.limit_min)
3642                                || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3643                                        count_sys < bctl->sys.limit_min)) {
3644                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3645                        goto loop;
3646                }
3647
3648                ASSERT(fs_info->data_sinfo);
3649                spin_lock(&fs_info->data_sinfo->lock);
3650                bytes_used = fs_info->data_sinfo->bytes_used;
3651                spin_unlock(&fs_info->data_sinfo->lock);
3652
3653                if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3654                    !chunk_reserved && !bytes_used) {
3655                        trans = btrfs_start_transaction(chunk_root, 0);
3656                        if (IS_ERR(trans)) {
3657                                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3658                                ret = PTR_ERR(trans);
3659                                goto error;
3660                        }
3661
3662                        ret = btrfs_force_chunk_alloc(trans, chunk_root,
3663                                                      BTRFS_BLOCK_GROUP_DATA);
3664                        btrfs_end_transaction(trans, chunk_root);
3665                        if (ret < 0) {
3666                                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3667                                goto error;
3668                        }
3669                        chunk_reserved = 1;
3670                }
3671
3672                ret = btrfs_relocate_chunk(chunk_root,
3673                                           found_key.offset);
3674                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3675                if (ret && ret != -ENOSPC)
3676                        goto error;
3677                if (ret == -ENOSPC) {
3678                        enospc_errors++;
3679                } else {
3680                        spin_lock(&fs_info->balance_lock);
3681                        bctl->stat.completed++;
3682                        spin_unlock(&fs_info->balance_lock);
3683                }
3684loop:
3685                if (found_key.offset == 0)
3686                        break;
3687                key.offset = found_key.offset - 1;
3688        }
3689
3690        if (counting) {
3691                btrfs_release_path(path);
3692                counting = false;
3693                goto again;
3694        }
3695error:
3696        btrfs_free_path(path);
3697        if (enospc_errors) {
3698                btrfs_info(fs_info, "%d enospc errors during balance",
3699                           enospc_errors);
3700                if (!ret)
3701                        ret = -ENOSPC;
3702        }
3703
3704        return ret;
3705}
3706
3707/**
3708 * alloc_profile_is_valid - see if a given profile is valid and reduced
3709 * @flags: profile to validate
3710 * @extended: if true @flags is treated as an extended profile
3711 */
3712static int alloc_profile_is_valid(u64 flags, int extended)
3713{
3714        u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3715                               BTRFS_BLOCK_GROUP_PROFILE_MASK);
3716
3717        flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3718
3719        /* 1) check that all other bits are zeroed */
3720        if (flags & ~mask)
3721                return 0;
3722
3723        /* 2) see if profile is reduced */
3724        if (flags == 0)
3725                return !extended; /* "0" is valid for usual profiles */
3726
3727        /* true if exactly one bit set */
3728        return (flags & (flags - 1)) == 0;
3729}
3730
3731static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3732{
3733        /* cancel requested || normal exit path */
3734        return atomic_read(&fs_info->balance_cancel_req) ||
3735                (atomic_read(&fs_info->balance_pause_req) == 0 &&
3736                 atomic_read(&fs_info->balance_cancel_req) == 0);
3737}
3738
3739static void __cancel_balance(struct btrfs_fs_info *fs_info)
3740{
3741        int ret;
3742
3743        unset_balance_control(fs_info);
3744        ret = del_balance_item(fs_info->tree_root);
3745        if (ret)
3746                btrfs_handle_fs_error(fs_info, ret, NULL);
3747
3748        atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3749}
3750
3751/* Non-zero return value signifies invalidity */
3752static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3753                u64 allowed)
3754{
3755        return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3756                (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3757                 (bctl_arg->target & ~allowed)));
3758}
3759
3760/*
3761 * Should be called with both balance and volume mutexes held
3762 */
3763int btrfs_balance(struct btrfs_balance_control *bctl,
3764                  struct btrfs_ioctl_balance_args *bargs)
3765{
3766        struct btrfs_fs_info *fs_info = bctl->fs_info;
3767        u64 allowed;
3768        int mixed = 0;
3769        int ret;
3770        u64 num_devices;
3771        unsigned seq;
3772
3773        if (btrfs_fs_closing(fs_info) ||
3774            atomic_read(&fs_info->balance_pause_req) ||
3775            atomic_read(&fs_info->balance_cancel_req)) {
3776                ret = -EINVAL;
3777                goto out;
3778        }
3779
3780        allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3781        if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3782                mixed = 1;
3783
3784        /*
3785         * In case of mixed groups both data and meta should be picked,
3786         * and identical options should be given for both of them.
3787         */
3788        allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3789        if (mixed && (bctl->flags & allowed)) {
3790                if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3791                    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3792                    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3793                        btrfs_err(fs_info,
3794                                  "with mixed groups data and metadata balance options must be the same");
3795                        ret = -EINVAL;
3796                        goto out;
3797                }
3798        }
3799
3800        num_devices = fs_info->fs_devices->num_devices;
3801        btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3802        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3803                BUG_ON(num_devices < 1);
3804                num_devices--;
3805        }
3806        btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3807        allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3808        if (num_devices > 1)
3809                allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3810        if (num_devices > 2)
3811                allowed |= BTRFS_BLOCK_GROUP_RAID5;
3812        if (num_devices > 3)
3813                allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3814                            BTRFS_BLOCK_GROUP_RAID6);
3815        if (validate_convert_profile(&bctl->data, allowed)) {
3816                btrfs_err(fs_info,
3817                          "unable to start balance with target data profile %llu",
3818                          bctl->data.target);
3819                ret = -EINVAL;
3820                goto out;
3821        }
3822        if (validate_convert_profile(&bctl->meta, allowed)) {
3823                btrfs_err(fs_info,
3824                          "unable to start balance with target metadata profile %llu",
3825                          bctl->meta.target);
3826                ret = -EINVAL;
3827                goto out;
3828        }
3829        if (validate_convert_profile(&bctl->sys, allowed)) {
3830                btrfs_err(fs_info,
3831                          "unable to start balance with target system profile %llu",
3832                          bctl->sys.target);
3833                ret = -EINVAL;
3834                goto out;
3835        }
3836
3837        /* allow to reduce meta or sys integrity only if force set */
3838        allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3839                        BTRFS_BLOCK_GROUP_RAID10 |
3840                        BTRFS_BLOCK_GROUP_RAID5 |
3841                        BTRFS_BLOCK_GROUP_RAID6;
3842        do {
3843                seq = read_seqbegin(&fs_info->profiles_lock);
3844
3845                if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3846                     (fs_info->avail_system_alloc_bits & allowed) &&
3847                     !(bctl->sys.target & allowed)) ||
3848                    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3849                     (fs_info->avail_metadata_alloc_bits & allowed) &&
3850                     !(bctl->meta.target & allowed))) {
3851                        if (bctl->flags & BTRFS_BALANCE_FORCE) {
3852                                btrfs_info(fs_info,
3853                                           "force reducing metadata integrity");
3854                        } else {
3855                                btrfs_err(fs_info,
3856                                          "balance will reduce metadata integrity, use force if you want this");
3857                                ret = -EINVAL;
3858                                goto out;
3859                        }
3860                }
3861        } while (read_seqretry(&fs_info->profiles_lock, seq));
3862
3863        if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3864                btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3865                btrfs_warn(fs_info,
3866                           "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3867                           bctl->meta.target, bctl->data.target);
3868        }
3869
3870        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3871                fs_info->num_tolerated_disk_barrier_failures = min(
3872                        btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3873                        btrfs_get_num_tolerated_disk_barrier_failures(
3874                                bctl->sys.target));
3875        }
3876
3877        ret = insert_balance_item(fs_info->tree_root, bctl);
3878        if (ret && ret != -EEXIST)
3879                goto out;
3880
3881        if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3882                BUG_ON(ret == -EEXIST);
3883                set_balance_control(bctl);
3884        } else {
3885                BUG_ON(ret != -EEXIST);
3886                spin_lock(&fs_info->balance_lock);
3887                update_balance_args(bctl);
3888                spin_unlock(&fs_info->balance_lock);
3889        }
3890
3891        atomic_inc(&fs_info->balance_running);
3892        mutex_unlock(&fs_info->balance_mutex);
3893
3894        ret = __btrfs_balance(fs_info);
3895
3896        mutex_lock(&fs_info->balance_mutex);
3897        atomic_dec(&fs_info->balance_running);
3898
3899        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3900                fs_info->num_tolerated_disk_barrier_failures =
3901                        btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3902        }
3903
3904        if (bargs) {
3905                memset(bargs, 0, sizeof(*bargs));
3906                update_ioctl_balance_args(fs_info, 0, bargs);
3907        }
3908
3909        if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3910            balance_need_close(fs_info)) {
3911                __cancel_balance(fs_info);
3912        }
3913
3914        wake_up(&fs_info->balance_wait_q);
3915
3916        return ret;
3917out:
3918        if (bctl->flags & BTRFS_BALANCE_RESUME)
3919                __cancel_balance(fs_info);
3920        else {
3921                kfree(bctl);
3922                atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3923        }
3924        return ret;
3925}
3926
3927static int balance_kthread(void *data)
3928{
3929        struct btrfs_fs_info *fs_info = data;
3930        int ret = 0;
3931
3932        mutex_lock(&fs_info->volume_mutex);
3933        mutex_lock(&fs_info->balance_mutex);
3934
3935        if (fs_info->balance_ctl) {
3936                btrfs_info(fs_info, "continuing balance");
3937                ret = btrfs_balance(fs_info->balance_ctl, NULL);
3938        }
3939
3940        mutex_unlock(&fs_info->balance_mutex);
3941        mutex_unlock(&fs_info->volume_mutex);
3942
3943        return ret;
3944}
3945
3946int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3947{
3948        struct task_struct *tsk;
3949
3950        spin_lock(&fs_info->balance_lock);
3951        if (!fs_info->balance_ctl) {
3952                spin_unlock(&fs_info->balance_lock);
3953                return 0;
3954        }
3955        spin_unlock(&fs_info->balance_lock);
3956
3957        if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3958                btrfs_info(fs_info, "force skipping balance");
3959                return 0;
3960        }
3961
3962        tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3963        return PTR_ERR_OR_ZERO(tsk);
3964}
3965
3966int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3967{
3968        struct btrfs_balance_control *bctl;
3969        struct btrfs_balance_item *item;
3970        struct btrfs_disk_balance_args disk_bargs;
3971        struct btrfs_path *path;
3972        struct extent_buffer *leaf;
3973        struct btrfs_key key;
3974        int ret;
3975
3976        path = btrfs_alloc_path();
3977        if (!path)
3978                return -ENOMEM;
3979
3980        key.objectid = BTRFS_BALANCE_OBJECTID;
3981        key.type = BTRFS_TEMPORARY_ITEM_KEY;
3982        key.offset = 0;
3983
3984        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3985        if (ret < 0)
3986                goto out;
3987        if (ret > 0) { /* ret = -ENOENT; */
3988                ret = 0;
3989                goto out;
3990        }
3991
3992        bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3993        if (!bctl) {
3994                ret = -ENOMEM;
3995                goto out;
3996        }
3997
3998        leaf = path->nodes[0];
3999        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4000
4001        bctl->fs_info = fs_info;
4002        bctl->flags = btrfs_balance_flags(leaf, item);
4003        bctl->flags |= BTRFS_BALANCE_RESUME;
4004
4005        btrfs_balance_data(leaf, item, &disk_bargs);
4006        btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4007        btrfs_balance_meta(leaf, item, &disk_bargs);
4008        btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4009        btrfs_balance_sys(leaf, item, &disk_bargs);
4010        btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4011
4012        WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4013
4014        mutex_lock(&fs_info->volume_mutex);
4015        mutex_lock(&fs_info->balance_mutex);
4016
4017        set_balance_control(bctl);
4018
4019        mutex_unlock(&fs_info->balance_mutex);
4020        mutex_unlock(&fs_info->volume_mutex);
4021out:
4022        btrfs_free_path(path);
4023        return ret;
4024}
4025
4026int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4027{
4028        int ret = 0;
4029
4030        mutex_lock(&fs_info->balance_mutex);
4031        if (!fs_info->balance_ctl) {
4032                mutex_unlock(&fs_info->balance_mutex);
4033                return -ENOTCONN;
4034        }
4035
4036        if (atomic_read(&fs_info->balance_running)) {
4037                atomic_inc(&fs_info->balance_pause_req);
4038                mutex_unlock(&fs_info->balance_mutex);
4039
4040                wait_event(fs_info->balance_wait_q,
4041                           atomic_read(&fs_info->balance_running) == 0);
4042
4043                mutex_lock(&fs_info->balance_mutex);
4044                /* we are good with balance_ctl ripped off from under us */
4045                BUG_ON(atomic_read(&fs_info->balance_running));
4046                atomic_dec(&fs_info->balance_pause_req);
4047        } else {
4048                ret = -ENOTCONN;
4049        }
4050
4051        mutex_unlock(&fs_info->balance_mutex);
4052        return ret;
4053}
4054
4055int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4056{
4057        if (fs_info->sb->s_flags & MS_RDONLY)
4058                return -EROFS;
4059
4060        mutex_lock(&fs_info->balance_mutex);
4061        if (!fs_info->balance_ctl) {
4062                mutex_unlock(&fs_info->balance_mutex);
4063                return -ENOTCONN;
4064        }
4065
4066        atomic_inc(&fs_info->balance_cancel_req);
4067        /*
4068         * if we are running just wait and return, balance item is
4069         * deleted in btrfs_balance in this case
4070         */
4071        if (atomic_read(&fs_info->balance_running)) {
4072                mutex_unlock(&fs_info->balance_mutex);
4073                wait_event(fs_info->balance_wait_q,
4074                           atomic_read(&fs_info->balance_running) == 0);
4075                mutex_lock(&fs_info->balance_mutex);
4076        } else {
4077                /* __cancel_balance needs volume_mutex */
4078                mutex_unlock(&fs_info->balance_mutex);
4079                mutex_lock(&fs_info->volume_mutex);
4080                mutex_lock(&fs_info->balance_mutex);
4081
4082                if (fs_info->balance_ctl)
4083                        __cancel_balance(fs_info);
4084
4085                mutex_unlock(&fs_info->volume_mutex);
4086        }
4087
4088        BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4089        atomic_dec(&fs_info->balance_cancel_req);
4090        mutex_unlock(&fs_info->balance_mutex);
4091        return 0;
4092}
4093
4094static int btrfs_uuid_scan_kthread(void *data)
4095{
4096        struct btrfs_fs_info *fs_info = data;
4097        struct btrfs_root *root = fs_info->tree_root;
4098        struct btrfs_key key;
4099        struct btrfs_key max_key;
4100        struct btrfs_path *path = NULL;
4101        int ret = 0;
4102        struct extent_buffer *eb;
4103        int slot;
4104        struct btrfs_root_item root_item;
4105        u32 item_size;
4106        struct btrfs_trans_handle *trans = NULL;
4107
4108        path = btrfs_alloc_path();
4109        if (!path) {
4110                ret = -ENOMEM;
4111                goto out;
4112        }
4113
4114        key.objectid = 0;
4115        key.type = BTRFS_ROOT_ITEM_KEY;
4116        key.offset = 0;
4117
4118        max_key.objectid = (u64)-1;
4119        max_key.type = BTRFS_ROOT_ITEM_KEY;
4120        max_key.offset = (u64)-1;
4121
4122        while (1) {
4123                ret = btrfs_search_forward(root, &key, path, 0);
4124                if (ret) {
4125                        if (ret > 0)
4126                                ret = 0;
4127                        break;
4128                }
4129
4130                if (key.type != BTRFS_ROOT_ITEM_KEY ||
4131                    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4132                     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4133                    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4134                        goto skip;
4135
4136                eb = path->nodes[0];
4137                slot = path->slots[0];
4138                item_size = btrfs_item_size_nr(eb, slot);
4139                if (item_size < sizeof(root_item))
4140                        goto skip;
4141
4142                read_extent_buffer(eb, &root_item,
4143                                   btrfs_item_ptr_offset(eb, slot),
4144                                   (int)sizeof(root_item));
4145                if (btrfs_root_refs(&root_item) == 0)
4146                        goto skip;
4147
4148                if (!btrfs_is_empty_uuid(root_item.uuid) ||
4149                    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4150                        if (trans)
4151                                goto update_tree;
4152
4153                        btrfs_release_path(path);
4154                        /*
4155                         * 1 - subvol uuid item
4156                         * 1 - received_subvol uuid item
4157                         */
4158                        trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4159                        if (IS_ERR(trans)) {
4160                                ret = PTR_ERR(trans);
4161                                break;
4162                        }
4163                        continue;
4164                } else {
4165                        goto skip;
4166                }
4167update_tree:
4168                if (!btrfs_is_empty_uuid(root_item.uuid)) {
4169                        ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4170                                                  root_item.uuid,
4171                                                  BTRFS_UUID_KEY_SUBVOL,
4172                                                  key.objectid);
4173                        if (ret < 0) {
4174                                btrfs_warn(fs_info, "uuid_tree_add failed %d",
4175                                        ret);
4176                                break;
4177                        }
4178                }
4179
4180                if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4181                        ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4182                                                  root_item.received_uuid,
4183                                                 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4184                                                  key.objectid);
4185                        if (ret < 0) {
4186                                btrfs_warn(fs_info, "uuid_tree_add failed %d",
4187                                        ret);
4188                                break;
4189                        }
4190                }
4191
4192skip:
4193                if (trans) {
4194                        ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4195                        trans = NULL;
4196                        if (ret)
4197                                break;
4198                }
4199
4200                btrfs_release_path(path);
4201                if (key.offset < (u64)-1) {
4202                        key.offset++;
4203                } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4204                        key.offset = 0;
4205                        key.type = BTRFS_ROOT_ITEM_KEY;
4206                } else if (key.objectid < (u64)-1) {
4207                        key.offset = 0;
4208                        key.type = BTRFS_ROOT_ITEM_KEY;
4209                        key.objectid++;
4210                } else {
4211                        break;
4212                }
4213                cond_resched();
4214        }
4215
4216out:
4217        btrfs_free_path(path);
4218        if (trans && !IS_ERR(trans))
4219                btrfs_end_transaction(trans, fs_info->uuid_root);
4220        if (ret)
4221                btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4222        else
4223                set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4224        up(&fs_info->uuid_tree_rescan_sem);
4225        return 0;
4226}
4227
4228/*
4229 * Callback for btrfs_uuid_tree_iterate().
4230 * returns:
4231 * 0    check succeeded, the entry is not outdated.
4232 * < 0  if an error occurred.
4233 * > 0  if the check failed, which means the caller shall remove the entry.
4234 */
4235static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4236                                       u8 *uuid, u8 type, u64 subid)
4237{
4238        struct btrfs_key key;
4239        int ret = 0;
4240        struct btrfs_root *subvol_root;
4241
4242        if (type != BTRFS_UUID_KEY_SUBVOL &&
4243            type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4244                goto out;
4245
4246        key.objectid = subid;
4247        key.type = BTRFS_ROOT_ITEM_KEY;
4248        key.offset = (u64)-1;
4249        subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4250        if (IS_ERR(subvol_root)) {
4251                ret = PTR_ERR(subvol_root);
4252                if (ret == -ENOENT)
4253                        ret = 1;
4254                goto out;
4255        }
4256
4257        switch (type) {
4258        case BTRFS_UUID_KEY_SUBVOL:
4259                if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4260                        ret = 1;
4261                break;
4262        case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4263                if (memcmp(uuid, subvol_root->root_item.received_uuid,
4264                           BTRFS_UUID_SIZE))
4265                        ret = 1;
4266                break;
4267        }
4268
4269out:
4270        return ret;
4271}
4272
4273static int btrfs_uuid_rescan_kthread(void *data)
4274{
4275        struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4276        int ret;
4277
4278        /*
4279         * 1st step is to iterate through the existing UUID tree and
4280         * to delete all entries that contain outdated data.
4281         * 2nd step is to add all missing entries to the UUID tree.
4282         */
4283        ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4284        if (ret < 0) {
4285                btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4286                up(&fs_info->uuid_tree_rescan_sem);
4287                return ret;
4288        }
4289        return btrfs_uuid_scan_kthread(data);
4290}
4291
4292int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4293{
4294        struct btrfs_trans_handle *trans;
4295        struct btrfs_root *tree_root = fs_info->tree_root;
4296        struct btrfs_root *uuid_root;
4297        struct task_struct *task;
4298        int ret;
4299
4300        /*
4301         * 1 - root node
4302         * 1 - root item
4303         */
4304        trans = btrfs_start_transaction(tree_root, 2);
4305        if (IS_ERR(trans))
4306                return PTR_ERR(trans);
4307
4308        uuid_root = btrfs_create_tree(trans, fs_info,
4309                                      BTRFS_UUID_TREE_OBJECTID);
4310        if (IS_ERR(uuid_root)) {
4311                ret = PTR_ERR(uuid_root);
4312                btrfs_abort_transaction(trans, ret);
4313                btrfs_end_transaction(trans, tree_root);
4314                return ret;
4315        }
4316
4317        fs_info->uuid_root = uuid_root;
4318
4319        ret = btrfs_commit_transaction(trans, tree_root);
4320        if (ret)
4321                return ret;
4322
4323        down(&fs_info->uuid_tree_rescan_sem);
4324        task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4325        if (IS_ERR(task)) {
4326                /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4327                btrfs_warn(fs_info, "failed to start uuid_scan task");
4328                up(&fs_info->uuid_tree_rescan_sem);
4329                return PTR_ERR(task);
4330        }
4331
4332        return 0;
4333}
4334
4335int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4336{
4337        struct task_struct *task;
4338
4339        down(&fs_info->uuid_tree_rescan_sem);
4340        task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4341        if (IS_ERR(task)) {
4342                /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4343                btrfs_warn(fs_info, "failed to start uuid_rescan task");
4344                up(&fs_info->uuid_tree_rescan_sem);
4345                return PTR_ERR(task);
4346        }
4347
4348        return 0;
4349}
4350
4351/*
4352 * shrinking a device means finding all of the device extents past
4353 * the new size, and then following the back refs to the chunks.
4354 * The chunk relocation code actually frees the device extent
4355 */
4356int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4357{
4358        struct btrfs_trans_handle *trans;
4359        struct btrfs_root *root = device->dev_root;
4360        struct btrfs_dev_extent *dev_extent = NULL;
4361        struct btrfs_path *path;
4362        u64 length;
4363        u64 chunk_offset;
4364        int ret;
4365        int slot;
4366        int failed = 0;
4367        bool retried = false;
4368        bool checked_pending_chunks = false;
4369        struct extent_buffer *l;
4370        struct btrfs_key key;
4371        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4372        u64 old_total = btrfs_super_total_bytes(super_copy);
4373        u64 old_size = btrfs_device_get_total_bytes(device);
4374        u64 diff = old_size - new_size;
4375
4376        if (device->is_tgtdev_for_dev_replace)
4377                return -EINVAL;
4378
4379        path = btrfs_alloc_path();
4380        if (!path)
4381                return -ENOMEM;
4382
4383        path->reada = READA_FORWARD;
4384
4385        lock_chunks(root);
4386
4387        btrfs_device_set_total_bytes(device, new_size);
4388        if (device->writeable) {
4389                device->fs_devices->total_rw_bytes -= diff;
4390                spin_lock(&root->fs_info->free_chunk_lock);
4391                root->fs_info->free_chunk_space -= diff;
4392                spin_unlock(&root->fs_info->free_chunk_lock);
4393        }
4394        unlock_chunks(root);
4395
4396again:
4397        key.objectid = device->devid;
4398        key.offset = (u64)-1;
4399        key.type = BTRFS_DEV_EXTENT_KEY;
4400
4401        do {
4402                mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4403                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4404                if (ret < 0) {
4405                        mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4406                        goto done;
4407                }
4408
4409                ret = btrfs_previous_item(root, path, 0, key.type);
4410                if (ret)
4411                        mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4412                if (ret < 0)
4413                        goto done;
4414                if (ret) {
4415                        ret = 0;
4416                        btrfs_release_path(path);
4417                        break;
4418                }
4419
4420                l = path->nodes[0];
4421                slot = path->slots[0];
4422                btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4423
4424                if (key.objectid != device->devid) {
4425                        mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4426                        btrfs_release_path(path);
4427                        break;
4428                }
4429
4430                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4431                length = btrfs_dev_extent_length(l, dev_extent);
4432
4433                if (key.offset + length <= new_size) {
4434                        mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4435                        btrfs_release_path(path);
4436                        break;
4437                }
4438
4439                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4440                btrfs_release_path(path);
4441
4442                ret = btrfs_relocate_chunk(root, chunk_offset);
4443                mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4444                if (ret && ret != -ENOSPC)
4445                        goto done;
4446                if (ret == -ENOSPC)
4447                        failed++;
4448        } while (key.offset-- > 0);
4449
4450        if (failed && !retried) {
4451                failed = 0;
4452                retried = true;
4453                goto again;
4454        } else if (failed && retried) {
4455                ret = -ENOSPC;
4456                goto done;
4457        }
4458
4459        /* Shrinking succeeded, else we would be at "done". */
4460        trans = btrfs_start_transaction(root, 0);
4461        if (IS_ERR(trans)) {
4462                ret = PTR_ERR(trans);
4463                goto done;
4464        }
4465
4466        lock_chunks(root);
4467
4468        /*
4469         * We checked in the above loop all device extents that were already in
4470         * the device tree. However before we have updated the device's
4471         * total_bytes to the new size, we might have had chunk allocations that
4472         * have not complete yet (new block groups attached to transaction
4473         * handles), and therefore their device extents were not yet in the
4474         * device tree and we missed them in the loop above. So if we have any
4475         * pending chunk using a device extent that overlaps the device range
4476         * that we can not use anymore, commit the current transaction and
4477         * repeat the search on the device tree - this way we guarantee we will
4478         * not have chunks using device extents that end beyond 'new_size'.
4479         */
4480        if (!checked_pending_chunks) {
4481                u64 start = new_size;
4482                u64 len = old_size - new_size;
4483
4484                if (contains_pending_extent(trans->transaction, device,
4485                                            &start, len)) {
4486                        unlock_chunks(root);
4487                        checked_pending_chunks = true;
4488                        failed = 0;
4489                        retried = false;
4490                        ret = btrfs_commit_transaction(trans, root);
4491                        if (ret)
4492                                goto done;
4493                        goto again;
4494                }
4495        }
4496
4497        btrfs_device_set_disk_total_bytes(device, new_size);
4498        if (list_empty(&device->resized_list))
4499                list_add_tail(&device->resized_list,
4500                              &root->fs_info->fs_devices->resized_devices);
4501
4502        WARN_ON(diff > old_total);
4503        btrfs_set_super_total_bytes(super_copy, old_total - diff);
4504        unlock_chunks(root);
4505
4506        /* Now btrfs_update_device() will change the on-disk size. */
4507        ret = btrfs_update_device(trans, device);
4508        btrfs_end_transaction(trans, root);
4509done:
4510        btrfs_free_path(path);
4511        if (ret) {
4512                lock_chunks(root);
4513                btrfs_device_set_total_bytes(device, old_size);
4514                if (device->writeable)
4515                        device->fs_devices->total_rw_bytes += diff;
4516                spin_lock(&root->fs_info->free_chunk_lock);
4517                root->fs_info->free_chunk_space += diff;
4518                spin_unlock(&root->fs_info->free_chunk_lock);
4519                unlock_chunks(root);
4520        }
4521        return ret;
4522}
4523
4524static int btrfs_add_system_chunk(struct btrfs_root *root,
4525                           struct btrfs_key *key,
4526                           struct btrfs_chunk *chunk, int item_size)
4527{
4528        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4529        struct btrfs_disk_key disk_key;
4530        u32 array_size;
4531        u8 *ptr;
4532
4533        lock_chunks(root);
4534        array_size = btrfs_super_sys_array_size(super_copy);
4535        if (array_size + item_size + sizeof(disk_key)
4536                        > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4537                unlock_chunks(root);
4538                return -EFBIG;
4539        }
4540
4541        ptr = super_copy->sys_chunk_array + array_size;
4542        btrfs_cpu_key_to_disk(&disk_key, key);
4543        memcpy(ptr, &disk_key, sizeof(disk_key));
4544        ptr += sizeof(disk_key);
4545        memcpy(ptr, chunk, item_size);
4546        item_size += sizeof(disk_key);
4547        btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4548        unlock_chunks(root);
4549
4550        return 0;
4551}
4552
4553/*
4554 * sort the devices in descending order by max_avail, total_avail
4555 */
4556static int btrfs_cmp_device_info(const void *a, const void *b)
4557{
4558        const struct btrfs_device_info *di_a = a;
4559        const struct btrfs_device_info *di_b = b;
4560
4561        if (di_a->max_avail > di_b->max_avail)
4562                return -1;
4563        if (di_a->max_avail < di_b->max_avail)
4564                return 1;
4565        if (di_a->total_avail > di_b->total_avail)
4566                return -1;
4567        if (di_a->total_avail < di_b->total_avail)
4568                return 1;
4569        return 0;
4570}
4571
4572static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4573{
4574        /* TODO allow them to set a preferred stripe size */
4575        return SZ_64K;
4576}
4577
4578static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4579{
4580        if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4581                return;
4582
4583        btrfs_set_fs_incompat(info, RAID56);
4584}
4585
4586#define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r)              \
4587                        - sizeof(struct btrfs_chunk))           \
4588                        / sizeof(struct btrfs_stripe) + 1)
4589
4590#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4591                                - 2 * sizeof(struct btrfs_disk_key)     \
4592                                - 2 * sizeof(struct btrfs_chunk))       \
4593                                / sizeof(struct btrfs_stripe) + 1)
4594
4595static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4596                               struct btrfs_root *extent_root, u64 start,
4597                               u64 type)
4598{
4599        struct btrfs_fs_info *info = extent_root->fs_info;
4600        struct btrfs_fs_devices *fs_devices = info->fs_devices;
4601        struct list_head *cur;
4602        struct map_lookup *map = NULL;
4603        struct extent_map_tree *em_tree;
4604        struct extent_map *em;
4605        struct btrfs_device_info *devices_info = NULL;
4606        u64 total_avail;
4607        int num_stripes;        /* total number of stripes to allocate */
4608        int data_stripes;       /* number of stripes that count for
4609                                   block group size */
4610        int sub_stripes;        /* sub_stripes info for map */
4611        int dev_stripes;        /* stripes per dev */
4612        int devs_max;           /* max devs to use */
4613        int devs_min;           /* min devs needed */
4614        int devs_increment;     /* ndevs has to be a multiple of this */
4615        int ncopies;            /* how many copies to data has */
4616        int ret;
4617        u64 max_stripe_size;
4618        u64 max_chunk_size;
4619        u64 stripe_size;
4620        u64 num_bytes;
4621        u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4622        int ndevs;
4623        int i;
4624        int j;
4625        int index;
4626
4627        BUG_ON(!alloc_profile_is_valid(type, 0));
4628
4629        if (list_empty(&fs_devices->alloc_list))
4630                return -ENOSPC;
4631
4632        index = __get_raid_index(type);
4633
4634        sub_stripes = btrfs_raid_array[index].sub_stripes;
4635        dev_stripes = btrfs_raid_array[index].dev_stripes;
4636        devs_max = btrfs_raid_array[index].devs_max;
4637        devs_min = btrfs_raid_array[index].devs_min;
4638        devs_increment = btrfs_raid_array[index].devs_increment;
4639        ncopies = btrfs_raid_array[index].ncopies;
4640
4641        if (type & BTRFS_BLOCK_GROUP_DATA) {
4642                max_stripe_size = SZ_1G;
4643                max_chunk_size = 10 * max_stripe_size;
4644                if (!devs_max)
4645                        devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4646        } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4647                /* for larger filesystems, use larger metadata chunks */
4648                if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4649                        max_stripe_size = SZ_1G;
4650                else
4651                        max_stripe_size = SZ_256M;
4652                max_chunk_size = max_stripe_size;
4653                if (!devs_max)
4654                        devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4655        } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4656                max_stripe_size = SZ_32M;
4657                max_chunk_size = 2 * max_stripe_size;
4658                if (!devs_max)
4659                        devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4660        } else {
4661                btrfs_err(info, "invalid chunk type 0x%llx requested",
4662                       type);
4663                BUG_ON(1);
4664        }
4665
4666        /* we don't want a chunk larger than 10% of writeable space */
4667        max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4668                             max_chunk_size);
4669
4670        devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4671                               GFP_NOFS);
4672        if (!devices_info)
4673                return -ENOMEM;
4674
4675        cur = fs_devices->alloc_list.next;
4676
4677        /*
4678         * in the first pass through the devices list, we gather information
4679         * about the available holes on each device.
4680         */
4681        ndevs = 0;
4682        while (cur != &fs_devices->alloc_list) {
4683                struct btrfs_device *device;
4684                u64 max_avail;
4685                u64 dev_offset;
4686
4687                device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4688
4689                cur = cur->next;
4690
4691                if (!device->writeable) {
4692                        WARN(1, KERN_ERR
4693                               "BTRFS: read-only device in alloc_list\n");
4694                        continue;
4695                }
4696
4697                if (!device->in_fs_metadata ||
4698                    device->is_tgtdev_for_dev_replace)
4699                        continue;
4700
4701                if (device->total_bytes > device->bytes_used)
4702                        total_avail = device->total_bytes - device->bytes_used;
4703                else
4704                        total_avail = 0;
4705
4706                /* If there is no space on this device, skip it. */
4707                if (total_avail == 0)
4708                        continue;
4709
4710                ret = find_free_dev_extent(trans, device,
4711                                           max_stripe_size * dev_stripes,
4712                                           &dev_offset, &max_avail);
4713                if (ret && ret != -ENOSPC)
4714                        goto error;
4715
4716                if (ret == 0)
4717                        max_avail = max_stripe_size * dev_stripes;
4718
4719                if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4720                        continue;
4721
4722                if (ndevs == fs_devices->rw_devices) {
4723                        WARN(1, "%s: found more than %llu devices\n",
4724                             __func__, fs_devices->rw_devices);
4725                        break;
4726                }
4727                devices_info[ndevs].dev_offset = dev_offset;
4728                devices_info[ndevs].max_avail = max_avail;
4729                devices_info[ndevs].total_avail = total_avail;
4730                devices_info[ndevs].dev = device;
4731                ++ndevs;
4732        }
4733
4734        /*
4735         * now sort the devices by hole size / available space
4736         */
4737        sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4738             btrfs_cmp_device_info, NULL);
4739
4740        /* round down to number of usable stripes */
4741        ndevs -= ndevs % devs_increment;
4742
4743        if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4744                ret = -ENOSPC;
4745                goto error;
4746        }
4747
4748        if (devs_max && ndevs > devs_max)
4749                ndevs = devs_max;
4750        /*
4751         * the primary goal is to maximize the number of stripes, so use as many
4752         * devices as possible, even if the stripes are not maximum sized.
4753         */
4754        stripe_size = devices_info[ndevs-1].max_avail;
4755        num_stripes = ndevs * dev_stripes;
4756
4757        /*
4758         * this will have to be fixed for RAID1 and RAID10 over
4759         * more drives
4760         */
4761        data_stripes = num_stripes / ncopies;
4762
4763        if (type & BTRFS_BLOCK_GROUP_RAID5) {
4764                raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4765                                                extent_root->stripesize);
4766                data_stripes = num_stripes - 1;
4767        }
4768        if (type & BTRFS_BLOCK_GROUP_RAID6) {
4769                raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4770                                                extent_root->stripesize);
4771                data_stripes = num_stripes - 2;
4772        }
4773
4774        /*
4775         * Use the number of data stripes to figure out how big this chunk
4776         * is really going to be in terms of logical address space,
4777         * and compare that answer with the max chunk size
4778         */
4779        if (stripe_size * data_stripes > max_chunk_size) {
4780                u64 mask = (1ULL << 24) - 1;
4781
4782                stripe_size = div_u64(max_chunk_size, data_stripes);
4783
4784                /* bump the answer up to a 16MB boundary */
4785                stripe_size = (stripe_size + mask) & ~mask;
4786
4787                /* but don't go higher than the limits we found
4788                 * while searching for free extents
4789                 */
4790                if (stripe_size > devices_info[ndevs-1].max_avail)
4791                        stripe_size = devices_info[ndevs-1].max_avail;
4792        }
4793
4794        stripe_size = div_u64(stripe_size, dev_stripes);
4795
4796        /* align to BTRFS_STRIPE_LEN */
4797        stripe_size = div_u64(stripe_size, raid_stripe_len);
4798        stripe_size *= raid_stripe_len;
4799
4800        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4801        if (!map) {
4802                ret = -ENOMEM;
4803                goto error;
4804        }
4805        map->num_stripes = num_stripes;
4806
4807        for (i = 0; i < ndevs; ++i) {
4808                for (j = 0; j < dev_stripes; ++j) {
4809                        int s = i * dev_stripes + j;
4810                        map->stripes[s].dev = devices_info[i].dev;
4811                        map->stripes[s].physical = devices_info[i].dev_offset +
4812                                                   j * stripe_size;
4813                }
4814        }
4815        map->sector_size = extent_root->sectorsize;
4816        map->stripe_len = raid_stripe_len;
4817        map->io_align = raid_stripe_len;
4818        map->io_width = raid_stripe_len;
4819        map->type = type;
4820        map->sub_stripes = sub_stripes;
4821
4822        num_bytes = stripe_size * data_stripes;
4823
4824        trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4825
4826        em = alloc_extent_map();
4827        if (!em) {
4828                kfree(map);
4829                ret = -ENOMEM;
4830                goto error;
4831        }
4832        set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4833        em->map_lookup = map;
4834        em->start = start;
4835        em->len = num_bytes;
4836        em->block_start = 0;
4837        em->block_len = em->len;
4838        em->orig_block_len = stripe_size;
4839
4840        em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4841        write_lock(&em_tree->lock);
4842        ret = add_extent_mapping(em_tree, em, 0);
4843        if (!ret) {
4844                list_add_tail(&em->list, &trans->transaction->pending_chunks);
4845                atomic_inc(&em->refs);
4846        }
4847        write_unlock(&em_tree->lock);
4848        if (ret) {
4849                free_extent_map(em);
4850                goto error;
4851        }
4852
4853        ret = btrfs_make_block_group(trans, extent_root, 0, type,
4854                                     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4855                                     start, num_bytes);
4856        if (ret)
4857                goto error_del_extent;
4858
4859        for (i = 0; i < map->num_stripes; i++) {
4860                num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4861                btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4862        }
4863
4864        spin_lock(&extent_root->fs_info->free_chunk_lock);
4865        extent_root->fs_info->free_chunk_space -= (stripe_size *
4866                                                   map->num_stripes);
4867        spin_unlock(&extent_root->fs_info->free_chunk_lock);
4868
4869        free_extent_map(em);
4870        check_raid56_incompat_flag(extent_root->fs_info, type);
4871
4872        kfree(devices_info);
4873        return 0;
4874
4875error_del_extent:
4876        write_lock(&em_tree->lock);
4877        remove_extent_mapping(em_tree, em);
4878        write_unlock(&em_tree->lock);
4879
4880        /* One for our allocation */
4881        free_extent_map(em);
4882        /* One for the tree reference */
4883        free_extent_map(em);
4884        /* One for the pending_chunks list reference */
4885        free_extent_map(em);
4886error:
4887        kfree(devices_info);
4888        return ret;
4889}
4890
4891int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4892                                struct btrfs_root *extent_root,
4893                                u64 chunk_offset, u64 chunk_size)
4894{
4895        struct btrfs_key key;
4896        struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4897        struct btrfs_device *device;
4898        struct btrfs_chunk *chunk;
4899        struct btrfs_stripe *stripe;
4900        struct extent_map_tree *em_tree;
4901        struct extent_map *em;
4902        struct map_lookup *map;
4903        size_t item_size;
4904        u64 dev_offset;
4905        u64 stripe_size;
4906        int i = 0;
4907        int ret = 0;
4908
4909        em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4910        read_lock(&em_tree->lock);
4911        em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4912        read_unlock(&em_tree->lock);
4913
4914        if (!em) {
4915                btrfs_crit(extent_root->fs_info,
4916                           "unable to find logical %Lu len %Lu",
4917                           chunk_offset, chunk_size);
4918                return -EINVAL;
4919        }
4920
4921        if (em->start != chunk_offset || em->len != chunk_size) {
4922                btrfs_crit(extent_root->fs_info,
4923                           "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4924                            chunk_offset, chunk_size, em->start, em->len);
4925                free_extent_map(em);
4926                return -EINVAL;
4927        }
4928
4929        map = em->map_lookup;
4930        item_size = btrfs_chunk_item_size(map->num_stripes);
4931        stripe_size = em->orig_block_len;
4932
4933        chunk = kzalloc(item_size, GFP_NOFS);
4934        if (!chunk) {
4935                ret = -ENOMEM;
4936                goto out;
4937        }
4938
4939        /*
4940         * Take the device list mutex to prevent races with the final phase of
4941         * a device replace operation that replaces the device object associated
4942         * with the map's stripes, because the device object's id can change
4943         * at any time during that final phase of the device replace operation
4944         * (dev-replace.c:btrfs_dev_replace_finishing()).
4945         */
4946        mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4947        for (i = 0; i < map->num_stripes; i++) {
4948                device = map->stripes[i].dev;
4949                dev_offset = map->stripes[i].physical;
4950
4951                ret = btrfs_update_device(trans, device);
4952                if (ret)
4953                        break;
4954                ret = btrfs_alloc_dev_extent(trans, device,
4955                                             chunk_root->root_key.objectid,
4956                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4957                                             chunk_offset, dev_offset,
4958                                             stripe_size);
4959                if (ret)
4960                        break;
4961        }
4962        if (ret) {
4963                mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4964                goto out;
4965        }
4966
4967        stripe = &chunk->stripe;
4968        for (i = 0; i < map->num_stripes; i++) {
4969                device = map->stripes[i].dev;
4970                dev_offset = map->stripes[i].physical;
4971
4972                btrfs_set_stack_stripe_devid(stripe, device->devid);
4973                btrfs_set_stack_stripe_offset(stripe, dev_offset);
4974                memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4975                stripe++;
4976        }
4977        mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4978
4979        btrfs_set_stack_chunk_length(chunk, chunk_size);
4980        btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4981        btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4982        btrfs_set_stack_chunk_type(chunk, map->type);
4983        btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4984        btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4985        btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4986        btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4987        btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4988
4989        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4990        key.type = BTRFS_CHUNK_ITEM_KEY;
4991        key.offset = chunk_offset;
4992
4993        ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4994        if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4995                /*
4996                 * TODO: Cleanup of inserted chunk root in case of
4997                 * failure.
4998                 */
4999                ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
5000                                             item_size);
5001        }
5002
5003out:
5004        kfree(chunk);
5005        free_extent_map(em);
5006        return ret;
5007}
5008
5009/*
5010 * Chunk allocation falls into two parts. The first part does works
5011 * that make the new allocated chunk useable, but not do any operation
5012 * that modifies the chunk tree. The second part does the works that
5013 * require modifying the chunk tree. This division is important for the
5014 * bootstrap process of adding storage to a seed btrfs.
5015 */
5016int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5017                      struct btrfs_root *extent_root, u64 type)
5018{
5019        u64 chunk_offset;
5020
5021        ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
5022        chunk_offset = find_next_chunk(extent_root->fs_info);
5023        return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
5024}
5025
5026static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5027                                         struct btrfs_root *root,
5028                                         struct btrfs_device *device)
5029{
5030        u64 chunk_offset;
5031        u64 sys_chunk_offset;
5032        u64 alloc_profile;
5033        struct btrfs_fs_info *fs_info = root->fs_info;
5034        struct btrfs_root *extent_root = fs_info->extent_root;
5035        int ret;
5036
5037        chunk_offset = find_next_chunk(fs_info);
5038        alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5039        ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
5040                                  alloc_profile);
5041        if (ret)
5042                return ret;
5043
5044        sys_chunk_offset = find_next_chunk(root->fs_info);
5045        alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5046        ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
5047                                  alloc_profile);
5048        return ret;
5049}
5050
5051static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5052{
5053        int max_errors;
5054
5055        if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5056                         BTRFS_BLOCK_GROUP_RAID10 |
5057                         BTRFS_BLOCK_GROUP_RAID5 |
5058                         BTRFS_BLOCK_GROUP_DUP)) {
5059                max_errors = 1;
5060        } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5061                max_errors = 2;
5062        } else {
5063                max_errors = 0;
5064        }
5065
5066        return max_errors;
5067}
5068
5069int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5070{
5071        struct extent_map *em;
5072        struct map_lookup *map;
5073        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5074        int readonly = 0;
5075        int miss_ndevs = 0;
5076        int i;
5077
5078        read_lock(&map_tree->map_tree.lock);
5079        em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5080        read_unlock(&map_tree->map_tree.lock);
5081        if (!em)
5082                return 1;
5083
5084        map = em->map_lookup;
5085        for (i = 0; i < map->num_stripes; i++) {
5086                if (map->stripes[i].dev->missing) {
5087                        miss_ndevs++;
5088                        continue;
5089                }
5090
5091                if (!map->stripes[i].dev->writeable) {
5092                        readonly = 1;
5093                        goto end;
5094                }
5095        }
5096
5097        /*
5098         * If the number of missing devices is larger than max errors,
5099         * we can not write the data into that chunk successfully, so
5100         * set it readonly.
5101         */
5102        if (miss_ndevs > btrfs_chunk_max_errors(map))
5103                readonly = 1;
5104end:
5105        free_extent_map(em);
5106        return readonly;
5107}
5108
5109void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5110{
5111        extent_map_tree_init(&tree->map_tree);
5112}
5113
5114void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5115{
5116        struct extent_map *em;
5117
5118        while (1) {
5119                write_lock(&tree->map_tree.lock);
5120                em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5121                if (em)
5122                        remove_extent_mapping(&tree->map_tree, em);
5123                write_unlock(&tree->map_tree.lock);
5124                if (!em)
5125                        break;
5126                /* once for us */
5127                free_extent_map(em);
5128                /* once for the tree */
5129                free_extent_map(em);
5130        }
5131}
5132
5133int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5134{
5135        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5136        struct extent_map *em;
5137        struct map_lookup *map;
5138        struct extent_map_tree *em_tree = &map_tree->map_tree;
5139        int ret;
5140
5141        read_lock(&em_tree->lock);
5142        em = lookup_extent_mapping(em_tree, logical, len);
5143        read_unlock(&em_tree->lock);
5144
5145        /*
5146         * We could return errors for these cases, but that could get ugly and
5147         * we'd probably do the same thing which is just not do anything else
5148         * and exit, so return 1 so the callers don't try to use other copies.
5149         */
5150        if (!em) {
5151                btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5152                            logical+len);
5153                return 1;
5154        }
5155
5156        if (em->start > logical || em->start + em->len < logical) {
5157                btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5158                           logical, logical+len, em->start,
5159                           em->start + em->len);
5160                free_extent_map(em);
5161                return 1;
5162        }
5163
5164        map = em->map_lookup;
5165        if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5166                ret = map->num_stripes;
5167        else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5168                ret = map->sub_stripes;
5169        else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5170                ret = 2;
5171        else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5172                ret = 3;
5173        else
5174                ret = 1;
5175        free_extent_map(em);
5176
5177        btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5178        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5179                ret++;
5180        btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5181
5182        return ret;
5183}
5184
5185unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5186                                    struct btrfs_mapping_tree *map_tree,
5187                                    u64 logical)
5188{
5189        struct extent_map *em;
5190        struct map_lookup *map;
5191        struct extent_map_tree *em_tree = &map_tree->map_tree;
5192        unsigned long len = root->sectorsize;
5193
5194        read_lock(&em_tree->lock);
5195        em = lookup_extent_mapping(em_tree, logical, len);
5196        read_unlock(&em_tree->lock);
5197        BUG_ON(!em);
5198
5199        BUG_ON(em->start > logical || em->start + em->len < logical);
5200        map = em->map_lookup;
5201        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5202                len = map->stripe_len * nr_data_stripes(map);
5203        free_extent_map(em);
5204        return len;
5205}
5206
5207int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5208                           u64 logical, u64 len, int mirror_num)
5209{
5210        struct extent_map *em;
5211        struct map_lookup *map;
5212        struct extent_map_tree *em_tree = &map_tree->map_tree;
5213        int ret = 0;
5214
5215        read_lock(&em_tree->lock);
5216        em = lookup_extent_mapping(em_tree, logical, len);
5217        read_unlock(&em_tree->lock);
5218        BUG_ON(!em);
5219
5220        BUG_ON(em->start > logical || em->start + em->len < logical);
5221        map = em->map_lookup;
5222        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5223                ret = 1;
5224        free_extent_map(em);
5225        return ret;
5226}
5227
5228static int find_live_mirror(struct btrfs_fs_info *fs_info,
5229                            struct map_lookup *map, int first, int num,
5230                            int optimal, int dev_replace_is_ongoing)
5231{
5232        int i;
5233        int tolerance;
5234        struct btrfs_device *srcdev;
5235
5236        if (dev_replace_is_ongoing &&
5237            fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5238             BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5239                srcdev = fs_info->dev_replace.srcdev;
5240        else
5241                srcdev = NULL;
5242
5243        /*
5244         * try to avoid the drive that is the source drive for a
5245         * dev-replace procedure, only choose it if no other non-missing
5246         * mirror is available
5247         */
5248        for (tolerance = 0; tolerance < 2; tolerance++) {
5249                if (map->stripes[optimal].dev->bdev &&
5250                    (tolerance || map->stripes[optimal].dev != srcdev))
5251                        return optimal;
5252                for (i = first; i < first + num; i++) {
5253                        if (map->stripes[i].dev->bdev &&
5254                            (tolerance || map->stripes[i].dev != srcdev))
5255                                return i;
5256                }
5257        }
5258
5259        /* we couldn't find one that doesn't fail.  Just return something
5260         * and the io error handling code will clean up eventually
5261         */
5262        return optimal;
5263}
5264
5265static inline int parity_smaller(u64 a, u64 b)
5266{
5267        return a > b;
5268}
5269
5270/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5271static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5272{
5273        struct btrfs_bio_stripe s;
5274        int i;
5275        u64 l;
5276        int again = 1;
5277
5278        while (again) {
5279                again = 0;
5280                for (i = 0; i < num_stripes - 1; i++) {
5281                        if (parity_smaller(bbio->raid_map[i],
5282                                           bbio->raid_map[i+1])) {
5283                                s = bbio->stripes[i];
5284                                l = bbio->raid_map[i];
5285                                bbio->stripes[i] = bbio->stripes[i+1];
5286                                bbio->raid_map[i] = bbio->raid_map[i+1];
5287                                bbio->stripes[i+1] = s;
5288                                bbio->raid_map[i+1] = l;
5289
5290                                again = 1;
5291                        }
5292                }
5293        }
5294}
5295
5296static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5297{
5298        struct btrfs_bio *bbio = kzalloc(
5299                 /* the size of the btrfs_bio */
5300                sizeof(struct btrfs_bio) +
5301                /* plus the variable array for the stripes */
5302                sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5303                /* plus the variable array for the tgt dev */
5304                sizeof(int) * (real_stripes) +
5305                /*
5306                 * plus the raid_map, which includes both the tgt dev
5307                 * and the stripes
5308                 */
5309                sizeof(u64) * (total_stripes),
5310                GFP_NOFS|__GFP_NOFAIL);
5311
5312        atomic_set(&bbio->error, 0);
5313        atomic_set(&bbio->refs, 1);
5314
5315        return bbio;
5316}
5317
5318void btrfs_get_bbio(struct btrfs_bio *bbio)
5319{
5320        WARN_ON(!atomic_read(&bbio->refs));
5321        atomic_inc(&bbio->refs);
5322}
5323
5324void btrfs_put_bbio(struct btrfs_bio *bbio)
5325{
5326        if (!bbio)
5327                return;
5328        if (atomic_dec_and_test(&bbio->refs))
5329                kfree(bbio);
5330}
5331
5332static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5333                             u64 logical, u64 *length,
5334                             struct btrfs_bio **bbio_ret,
5335                             int mirror_num, int need_raid_map)
5336{
5337        struct extent_map *em;
5338        struct map_lookup *map;
5339        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5340        struct extent_map_tree *em_tree = &map_tree->map_tree;
5341        u64 offset;
5342        u64 stripe_offset;
5343        u64 stripe_end_offset;
5344        u64 stripe_nr;
5345        u64 stripe_nr_orig;
5346        u64 stripe_nr_end;
5347        u64 stripe_len;
5348        u32 stripe_index;
5349        int i;
5350        int ret = 0;
5351        int num_stripes;
5352        int max_errors = 0;
5353        int tgtdev_indexes = 0;
5354        struct btrfs_bio *bbio = NULL;
5355        struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5356        int dev_replace_is_ongoing = 0;
5357        int num_alloc_stripes;
5358        int patch_the_first_stripe_for_dev_replace = 0;
5359        u64 physical_to_patch_in_first_stripe = 0;
5360        u64 raid56_full_stripe_start = (u64)-1;
5361
5362        read_lock(&em_tree->lock);
5363        em = lookup_extent_mapping(em_tree, logical, *length);
5364        read_unlock(&em_tree->lock);
5365
5366        if (!em) {
5367                btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5368                        logical, *length);
5369                return -EINVAL;
5370        }
5371
5372        if (em->start > logical || em->start + em->len < logical) {
5373                btrfs_crit(fs_info,
5374                           "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5375                           logical, em->start, em->start + em->len);
5376                free_extent_map(em);
5377                return -EINVAL;
5378        }
5379
5380        map = em->map_lookup;
5381        offset = logical - em->start;
5382
5383        stripe_len = map->stripe_len;
5384        stripe_nr = offset;
5385        /*
5386         * stripe_nr counts the total number of stripes we have to stride
5387         * to get to this block
5388         */
5389        stripe_nr = div64_u64(stripe_nr, stripe_len);
5390
5391        stripe_offset = stripe_nr * stripe_len;
5392        if (offset < stripe_offset) {
5393                btrfs_crit(fs_info,
5394                           "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5395                           stripe_offset, offset, em->start, logical,
5396                           stripe_len);
5397                free_extent_map(em);
5398                return -EINVAL;
5399        }
5400
5401        /* stripe_offset is the offset of this block in its stripe*/
5402        stripe_offset = offset - stripe_offset;
5403
5404        /* if we're here for raid56, we need to know the stripe aligned start */
5405        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5406                unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5407                raid56_full_stripe_start = offset;
5408
5409                /* allow a write of a full stripe, but make sure we don't
5410                 * allow straddling of stripes
5411                 */
5412                raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5413                                full_stripe_len);
5414                raid56_full_stripe_start *= full_stripe_len;
5415        }
5416
5417        if (op == REQ_OP_DISCARD) {
5418                /* we don't discard raid56 yet */
5419                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5420                        ret = -EOPNOTSUPP;
5421                        goto out;
5422                }
5423                *length = min_t(u64, em->len - offset, *length);
5424        } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5425                u64 max_len;
5426                /* For writes to RAID[56], allow a full stripeset across all disks.
5427                   For other RAID types and for RAID[56] reads, just allow a single
5428                   stripe (on a single disk). */
5429                if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5430                    (op == REQ_OP_WRITE)) {
5431                        max_len = stripe_len * nr_data_stripes(map) -
5432                                (offset - raid56_full_stripe_start);
5433                } else {
5434                        /* we limit the length of each bio to what fits in a stripe */
5435                        max_len = stripe_len - stripe_offset;
5436                }
5437                *length = min_t(u64, em->len - offset, max_len);
5438        } else {
5439                *length = em->len - offset;
5440        }
5441
5442        /* This is for when we're called from btrfs_merge_bio_hook() and all
5443           it cares about is the length */
5444        if (!bbio_ret)
5445                goto out;
5446
5447        btrfs_dev_replace_lock(dev_replace, 0);
5448        dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5449        if (!dev_replace_is_ongoing)
5450                btrfs_dev_replace_unlock(dev_replace, 0);
5451        else
5452                btrfs_dev_replace_set_lock_blocking(dev_replace);
5453
5454        if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5455            op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5456            op != REQ_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5457                /*
5458                 * in dev-replace case, for repair case (that's the only
5459                 * case where the mirror is selected explicitly when
5460                 * calling btrfs_map_block), blocks left of the left cursor
5461                 * can also be read from the target drive.
5462                 * For REQ_GET_READ_MIRRORS, the target drive is added as
5463                 * the last one to the array of stripes. For READ, it also
5464                 * needs to be supported using the same mirror number.
5465                 * If the requested block is not left of the left cursor,
5466                 * EIO is returned. This can happen because btrfs_num_copies()
5467                 * returns one more in the dev-replace case.
5468                 */
5469                u64 tmp_length = *length;
5470                struct btrfs_bio *tmp_bbio = NULL;
5471                int tmp_num_stripes;
5472                u64 srcdev_devid = dev_replace->srcdev->devid;
5473                int index_srcdev = 0;
5474                int found = 0;
5475                u64 physical_of_found = 0;
5476
5477                ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5478                             logical, &tmp_length, &tmp_bbio, 0, 0);
5479                if (ret) {
5480                        WARN_ON(tmp_bbio != NULL);
5481                        goto out;
5482                }
5483
5484                tmp_num_stripes = tmp_bbio->num_stripes;
5485                if (mirror_num > tmp_num_stripes) {
5486                        /*
5487                         * REQ_GET_READ_MIRRORS does not contain this
5488                         * mirror, that means that the requested area
5489                         * is not left of the left cursor
5490                         */
5491                        ret = -EIO;
5492                        btrfs_put_bbio(tmp_bbio);
5493                        goto out;
5494                }
5495
5496                /*
5497                 * process the rest of the function using the mirror_num
5498                 * of the source drive. Therefore look it up first.
5499                 * At the end, patch the device pointer to the one of the
5500                 * target drive.
5501                 */
5502                for (i = 0; i < tmp_num_stripes; i++) {
5503                        if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5504                                continue;
5505
5506                        /*
5507                         * In case of DUP, in order to keep it simple, only add
5508                         * the mirror with the lowest physical address
5509                         */
5510                        if (found &&
5511                            physical_of_found <= tmp_bbio->stripes[i].physical)
5512                                continue;
5513
5514                        index_srcdev = i;
5515                        found = 1;
5516                        physical_of_found = tmp_bbio->stripes[i].physical;
5517                }
5518
5519                btrfs_put_bbio(tmp_bbio);
5520
5521                if (!found) {
5522                        WARN_ON(1);
5523                        ret = -EIO;
5524                        goto out;
5525                }
5526
5527                mirror_num = index_srcdev + 1;
5528                patch_the_first_stripe_for_dev_replace = 1;
5529                physical_to_patch_in_first_stripe = physical_of_found;
5530        } else if (mirror_num > map->num_stripes) {
5531                mirror_num = 0;
5532        }
5533
5534        num_stripes = 1;
5535        stripe_index = 0;
5536        stripe_nr_orig = stripe_nr;
5537        stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5538        stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5539        stripe_end_offset = stripe_nr_end * map->stripe_len -
5540                            (offset + *length);
5541
5542        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5543                if (op == REQ_OP_DISCARD)
5544                        num_stripes = min_t(u64, map->num_stripes,
5545                                            stripe_nr_end - stripe_nr_orig);
5546                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5547                                &stripe_index);
5548                if (op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5549                    op != REQ_GET_READ_MIRRORS)
5550                        mirror_num = 1;
5551        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5552                if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5553                    op == REQ_GET_READ_MIRRORS)
5554                        num_stripes = map->num_stripes;
5555                else if (mirror_num)
5556                        stripe_index = mirror_num - 1;
5557                else {
5558                        stripe_index = find_live_mirror(fs_info, map, 0,
5559                                            map->num_stripes,
5560                                            current->pid % map->num_stripes,
5561                                            dev_replace_is_ongoing);
5562                        mirror_num = stripe_index + 1;
5563                }
5564
5565        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5566                if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5567                    op == REQ_GET_READ_MIRRORS) {
5568                        num_stripes = map->num_stripes;
5569                } else if (mirror_num) {
5570                        stripe_index = mirror_num - 1;
5571                } else {
5572                        mirror_num = 1;
5573                }
5574
5575        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5576                u32 factor = map->num_stripes / map->sub_stripes;
5577
5578                stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5579                stripe_index *= map->sub_stripes;
5580
5581                if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5582                        num_stripes = map->sub_stripes;
5583                else if (op == REQ_OP_DISCARD)
5584                        num_stripes = min_t(u64, map->sub_stripes *
5585                                            (stripe_nr_end - stripe_nr_orig),
5586                                            map->num_stripes);
5587                else if (mirror_num)
5588                        stripe_index += mirror_num - 1;
5589                else {
5590                        int old_stripe_index = stripe_index;
5591                        stripe_index = find_live_mirror(fs_info, map,
5592                                              stripe_index,
5593                                              map->sub_stripes, stripe_index +
5594                                              current->pid % map->sub_stripes,
5595                                              dev_replace_is_ongoing);
5596                        mirror_num = stripe_index - old_stripe_index + 1;
5597                }
5598
5599        } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5600                if (need_raid_map &&
5601                    (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS ||
5602                     mirror_num > 1)) {
5603                        /* push stripe_nr back to the start of the full stripe */
5604                        stripe_nr = div_u64(raid56_full_stripe_start,
5605                                        stripe_len * nr_data_stripes(map));
5606
5607                        /* RAID[56] write or recovery. Return all stripes */
5608                        num_stripes = map->num_stripes;
5609                        max_errors = nr_parity_stripes(map);
5610
5611                        *length = map->stripe_len;
5612                        stripe_index = 0;
5613                        stripe_offset = 0;
5614                } else {
5615                        /*
5616                         * Mirror #0 or #1 means the original data block.
5617                         * Mirror #2 is RAID5 parity block.
5618                         * Mirror #3 is RAID6 Q block.
5619                         */
5620                        stripe_nr = div_u64_rem(stripe_nr,
5621                                        nr_data_stripes(map), &stripe_index);
5622                        if (mirror_num > 1)
5623                                stripe_index = nr_data_stripes(map) +
5624                                                mirror_num - 2;
5625
5626                        /* We distribute the parity blocks across stripes */
5627                        div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5628                                        &stripe_index);
5629                        if ((op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5630                            op != REQ_GET_READ_MIRRORS) && mirror_num <= 1)
5631                                mirror_num = 1;
5632                }
5633        } else {
5634                /*
5635                 * after this, stripe_nr is the number of stripes on this
5636                 * device we have to walk to find the data, and stripe_index is
5637                 * the number of our device in the stripe array
5638                 */
5639                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5640                                &stripe_index);
5641                mirror_num = stripe_index + 1;
5642        }
5643        if (stripe_index >= map->num_stripes) {
5644                btrfs_crit(fs_info,
5645                           "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5646                           stripe_index, map->num_stripes);
5647                ret = -EINVAL;
5648                goto out;
5649        }
5650
5651        num_alloc_stripes = num_stripes;
5652        if (dev_replace_is_ongoing) {
5653                if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD)
5654                        num_alloc_stripes <<= 1;
5655                if (op == REQ_GET_READ_MIRRORS)
5656                        num_alloc_stripes++;
5657                tgtdev_indexes = num_stripes;
5658        }
5659
5660        bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5661        if (!bbio) {
5662                ret = -ENOMEM;
5663                goto out;
5664        }
5665        if (dev_replace_is_ongoing)
5666                bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5667
5668        /* build raid_map */
5669        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5670            need_raid_map &&
5671            ((op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS) ||
5672            mirror_num > 1)) {
5673                u64 tmp;
5674                unsigned rot;
5675
5676                bbio->raid_map = (u64 *)((void *)bbio->stripes +
5677                                 sizeof(struct btrfs_bio_stripe) *
5678                                 num_alloc_stripes +
5679                                 sizeof(int) * tgtdev_indexes);
5680
5681                /* Work out the disk rotation on this stripe-set */
5682                div_u64_rem(stripe_nr, num_stripes, &rot);
5683
5684                /* Fill in the logical address of each stripe */
5685                tmp = stripe_nr * nr_data_stripes(map);
5686                for (i = 0; i < nr_data_stripes(map); i++)
5687                        bbio->raid_map[(i+rot) % num_stripes] =
5688                                em->start + (tmp + i) * map->stripe_len;
5689
5690                bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5691                if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5692                        bbio->raid_map[(i+rot+1) % num_stripes] =
5693                                RAID6_Q_STRIPE;
5694        }
5695
5696        if (op == REQ_OP_DISCARD) {
5697                u32 factor = 0;
5698                u32 sub_stripes = 0;
5699                u64 stripes_per_dev = 0;
5700                u32 remaining_stripes = 0;
5701                u32 last_stripe = 0;
5702
5703                if (map->type &
5704                    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5705                        if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5706                                sub_stripes = 1;
5707                        else
5708                                sub_stripes = map->sub_stripes;
5709
5710                        factor = map->num_stripes / sub_stripes;
5711                        stripes_per_dev = div_u64_rem(stripe_nr_end -
5712                                                      stripe_nr_orig,
5713                                                      factor,
5714                                                      &remaining_stripes);
5715                        div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5716                        last_stripe *= sub_stripes;
5717                }
5718
5719                for (i = 0; i < num_stripes; i++) {
5720                        bbio->stripes[i].physical =
5721                                map->stripes[stripe_index].physical +
5722                                stripe_offset + stripe_nr * map->stripe_len;
5723                        bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5724
5725                        if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5726                                         BTRFS_BLOCK_GROUP_RAID10)) {
5727                                bbio->stripes[i].length = stripes_per_dev *
5728                                                          map->stripe_len;
5729
5730                                if (i / sub_stripes < remaining_stripes)
5731                                        bbio->stripes[i].length +=
5732                                                map->stripe_len;
5733
5734                                /*
5735                                 * Special for the first stripe and
5736                                 * the last stripe:
5737                                 *
5738                                 * |-------|...|-------|
5739                                 *     |----------|
5740                                 *    off     end_off
5741                                 */
5742                                if (i < sub_stripes)
5743                                        bbio->stripes[i].length -=
5744                                                stripe_offset;
5745
5746                                if (stripe_index >= last_stripe &&
5747                                    stripe_index <= (last_stripe +
5748                                                     sub_stripes - 1))
5749                                        bbio->stripes[i].length -=
5750                                                stripe_end_offset;
5751
5752                                if (i == sub_stripes - 1)
5753                                        stripe_offset = 0;
5754                        } else
5755                                bbio->stripes[i].length = *length;
5756
5757                        stripe_index++;
5758                        if (stripe_index == map->num_stripes) {
5759                                /* This could only happen for RAID0/10 */
5760                                stripe_index = 0;
5761                                stripe_nr++;
5762                        }
5763                }
5764        } else {
5765                for (i = 0; i < num_stripes; i++) {
5766                        bbio->stripes[i].physical =
5767                                map->stripes[stripe_index].physical +
5768                                stripe_offset +
5769                                stripe_nr * map->stripe_len;
5770                        bbio->stripes[i].dev =
5771                                map->stripes[stripe_index].dev;
5772                        stripe_index++;
5773                }
5774        }
5775
5776        if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5777                max_errors = btrfs_chunk_max_errors(map);
5778
5779        if (bbio->raid_map)
5780                sort_parity_stripes(bbio, num_stripes);
5781
5782        tgtdev_indexes = 0;
5783        if (dev_replace_is_ongoing &&
5784           (op == REQ_OP_WRITE || op == REQ_OP_DISCARD) &&
5785            dev_replace->tgtdev != NULL) {
5786                int index_where_to_add;
5787                u64 srcdev_devid = dev_replace->srcdev->devid;
5788
5789                /*
5790                 * duplicate the write operations while the dev replace
5791                 * procedure is running. Since the copying of the old disk
5792                 * to the new disk takes place at run time while the
5793                 * filesystem is mounted writable, the regular write
5794                 * operations to the old disk have to be duplicated to go
5795                 * to the new disk as well.
5796                 * Note that device->missing is handled by the caller, and
5797                 * that the write to the old disk is already set up in the
5798                 * stripes array.
5799                 */
5800                index_where_to_add = num_stripes;
5801                for (i = 0; i < num_stripes; i++) {
5802                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
5803                                /* write to new disk, too */
5804                                struct btrfs_bio_stripe *new =
5805                                        bbio->stripes + index_where_to_add;
5806                                struct btrfs_bio_stripe *old =
5807                                        bbio->stripes + i;
5808
5809                                new->physical = old->physical;
5810                                new->length = old->length;
5811                                new->dev = dev_replace->tgtdev;
5812                                bbio->tgtdev_map[i] = index_where_to_add;
5813                                index_where_to_add++;
5814                                max_errors++;
5815                                tgtdev_indexes++;
5816                        }
5817                }
5818                num_stripes = index_where_to_add;
5819        } else if (dev_replace_is_ongoing && (op == REQ_GET_READ_MIRRORS) &&
5820                   dev_replace->tgtdev != NULL) {
5821                u64 srcdev_devid = dev_replace->srcdev->devid;
5822                int index_srcdev = 0;
5823                int found = 0;
5824                u64 physical_of_found = 0;
5825
5826                /*
5827                 * During the dev-replace procedure, the target drive can
5828                 * also be used to read data in case it is needed to repair
5829                 * a corrupt block elsewhere. This is possible if the
5830                 * requested area is left of the left cursor. In this area,
5831                 * the target drive is a full copy of the source drive.
5832                 */
5833                for (i = 0; i < num_stripes; i++) {
5834                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
5835                                /*
5836                                 * In case of DUP, in order to keep it
5837                                 * simple, only add the mirror with the
5838                                 * lowest physical address
5839                                 */
5840                                if (found &&
5841                                    physical_of_found <=
5842                                     bbio->stripes[i].physical)
5843                                        continue;
5844                                index_srcdev = i;
5845                                found = 1;
5846                                physical_of_found = bbio->stripes[i].physical;
5847                        }
5848                }
5849                if (found) {
5850                        struct btrfs_bio_stripe *tgtdev_stripe =
5851                                bbio->stripes + num_stripes;
5852
5853                        tgtdev_stripe->physical = physical_of_found;
5854                        tgtdev_stripe->length =
5855                                bbio->stripes[index_srcdev].length;
5856                        tgtdev_stripe->dev = dev_replace->tgtdev;
5857                        bbio->tgtdev_map[index_srcdev] = num_stripes;
5858
5859                        tgtdev_indexes++;
5860                        num_stripes++;
5861                }
5862        }
5863
5864        *bbio_ret = bbio;
5865        bbio->map_type = map->type;
5866        bbio->num_stripes = num_stripes;
5867        bbio->max_errors = max_errors;
5868        bbio->mirror_num = mirror_num;
5869        bbio->num_tgtdevs = tgtdev_indexes;
5870
5871        /*
5872         * this is the case that REQ_READ && dev_replace_is_ongoing &&
5873         * mirror_num == num_stripes + 1 && dev_replace target drive is
5874         * available as a mirror
5875         */
5876        if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5877                WARN_ON(num_stripes > 1);
5878                bbio->stripes[0].dev = dev_replace->tgtdev;
5879                bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5880                bbio->mirror_num = map->num_stripes + 1;
5881        }
5882out:
5883        if (dev_replace_is_ongoing) {
5884                btrfs_dev_replace_clear_lock_blocking(dev_replace);
5885                btrfs_dev_replace_unlock(dev_replace, 0);
5886        }
5887        free_extent_map(em);
5888        return ret;
5889}
5890
5891int btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5892                      u64 logical, u64 *length,
5893                      struct btrfs_bio **bbio_ret, int mirror_num)
5894{
5895        return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5896                                 mirror_num, 0);
5897}
5898
5899/* For Scrub/replace */
5900int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int op,
5901                     u64 logical, u64 *length,
5902                     struct btrfs_bio **bbio_ret, int mirror_num,
5903                     int need_raid_map)
5904{
5905        return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5906                                 mirror_num, need_raid_map);
5907}
5908
5909int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5910                     u64 chunk_start, u64 physical, u64 devid,
5911                     u64 **logical, int *naddrs, int *stripe_len)
5912{
5913        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5914        struct extent_map_tree *em_tree = &map_tree->map_tree;
5915        struct extent_map *em;
5916        struct map_lookup *map;
5917        u64 *buf;
5918        u64 bytenr;
5919        u64 length;
5920        u64 stripe_nr;
5921        u64 rmap_len;
5922        int i, j, nr = 0;
5923
5924        read_lock(&em_tree->lock);
5925        em = lookup_extent_mapping(em_tree, chunk_start, 1);
5926        read_unlock(&em_tree->lock);
5927
5928        if (!em) {
5929                btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5930                        chunk_start);
5931                return -EIO;
5932        }
5933
5934        if (em->start != chunk_start) {
5935                btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
5936                       em->start, chunk_start);
5937                free_extent_map(em);
5938                return -EIO;
5939        }
5940        map = em->map_lookup;
5941
5942        length = em->len;
5943        rmap_len = map->stripe_len;
5944
5945        if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5946                length = div_u64(length, map->num_stripes / map->sub_stripes);
5947        else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5948                length = div_u64(length, map->num_stripes);
5949        else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5950                length = div_u64(length, nr_data_stripes(map));
5951                rmap_len = map->stripe_len * nr_data_stripes(map);
5952        }
5953
5954        buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5955        BUG_ON(!buf); /* -ENOMEM */
5956
5957        for (i = 0; i < map->num_stripes; i++) {
5958                if (devid && map->stripes[i].dev->devid != devid)
5959                        continue;
5960                if (map->stripes[i].physical > physical ||
5961                    map->stripes[i].physical + length <= physical)
5962                        continue;
5963
5964                stripe_nr = physical - map->stripes[i].physical;
5965                stripe_nr = div_u64(stripe_nr, map->stripe_len);
5966
5967                if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5968                        stripe_nr = stripe_nr * map->num_stripes + i;
5969                        stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5970                } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5971                        stripe_nr = stripe_nr * map->num_stripes + i;
5972                } /* else if RAID[56], multiply by nr_data_stripes().
5973                   * Alternatively, just use rmap_len below instead of
5974                   * map->stripe_len */
5975
5976                bytenr = chunk_start + stripe_nr * rmap_len;
5977                WARN_ON(nr >= map->num_stripes);
5978                for (j = 0; j < nr; j++) {
5979                        if (buf[j] == bytenr)
5980                                break;
5981                }
5982                if (j == nr) {
5983                        WARN_ON(nr >= map->num_stripes);
5984                        buf[nr++] = bytenr;
5985                }
5986        }
5987
5988        *logical = buf;
5989        *naddrs = nr;
5990        *stripe_len = rmap_len;
5991
5992        free_extent_map(em);
5993        return 0;
5994}
5995
5996static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5997{
5998        bio->bi_private = bbio->private;
5999        bio->bi_end_io = bbio->end_io;
6000        bio_endio(bio);
6001
6002        btrfs_put_bbio(bbio);
6003}
6004
6005static void btrfs_end_bio(struct bio *bio)
6006{
6007        struct btrfs_bio *bbio = bio->bi_private;
6008        int is_orig_bio = 0;
6009
6010        if (bio->bi_error) {
6011                atomic_inc(&bbio->error);
6012                if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
6013                        unsigned int stripe_index =
6014                                btrfs_io_bio(bio)->stripe_index;
6015                        struct btrfs_device *dev;
6016
6017                        BUG_ON(stripe_index >= bbio->num_stripes);
6018                        dev = bbio->stripes[stripe_index].dev;
6019                        if (dev->bdev) {
6020                                if (bio_op(bio) == REQ_OP_WRITE)
6021                                        btrfs_dev_stat_inc(dev,
6022                                                BTRFS_DEV_STAT_WRITE_ERRS);
6023                                else
6024                                        btrfs_dev_stat_inc(dev,
6025                                                BTRFS_DEV_STAT_READ_ERRS);
6026                                if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH)
6027                                        btrfs_dev_stat_inc(dev,
6028                                                BTRFS_DEV_STAT_FLUSH_ERRS);
6029                                btrfs_dev_stat_print_on_error(dev);
6030                        }
6031                }
6032        }
6033
6034        if (bio == bbio->orig_bio)
6035                is_orig_bio = 1;
6036
6037        btrfs_bio_counter_dec(bbio->fs_info);
6038
6039        if (atomic_dec_and_test(&bbio->stripes_pending)) {
6040                if (!is_orig_bio) {
6041                        bio_put(bio);
6042                        bio = bbio->orig_bio;
6043                }
6044
6045                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6046                /* only send an error to the higher layers if it is
6047                 * beyond the tolerance of the btrfs bio
6048                 */
6049                if (atomic_read(&bbio->error) > bbio->max_errors) {
6050                        bio->bi_error = -EIO;
6051                } else {
6052                        /*
6053                         * this bio is actually up to date, we didn't
6054                         * go over the max number of errors
6055                         */
6056                        bio->bi_error = 0;
6057                }
6058
6059                btrfs_end_bbio(bbio, bio);
6060        } else if (!is_orig_bio) {
6061                bio_put(bio);
6062        }
6063}
6064
6065/*
6066 * see run_scheduled_bios for a description of why bios are collected for
6067 * async submit.
6068 *
6069 * This will add one bio to the pending list for a device and make sure
6070 * the work struct is scheduled.
6071 */
6072static noinline void btrfs_schedule_bio(struct btrfs_root *root,
6073                                        struct btrfs_device *device,
6074                                        struct bio *bio)
6075{
6076        int should_queue = 1;
6077        struct btrfs_pending_bios *pending_bios;
6078
6079        if (device->missing || !device->bdev) {
6080                bio_io_error(bio);
6081                return;
6082        }
6083
6084        /* don't bother with additional async steps for reads, right now */
6085        if (bio_op(bio) == REQ_OP_READ) {
6086                bio_get(bio);
6087                btrfsic_submit_bio(bio);
6088                bio_put(bio);
6089                return;
6090        }
6091
6092        /*
6093         * nr_async_bios allows us to reliably return congestion to the
6094         * higher layers.  Otherwise, the async bio makes it appear we have
6095         * made progress against dirty pages when we've really just put it
6096         * on a queue for later
6097         */
6098        atomic_inc(&root->fs_info->nr_async_bios);
6099        WARN_ON(bio->bi_next);
6100        bio->bi_next = NULL;
6101
6102        spin_lock(&device->io_lock);
6103        if (bio->bi_opf & REQ_SYNC)
6104                pending_bios = &device->pending_sync_bios;
6105        else
6106                pending_bios = &device->pending_bios;
6107
6108        if (pending_bios->tail)
6109                pending_bios->tail->bi_next = bio;
6110
6111        pending_bios->tail = bio;
6112        if (!pending_bios->head)
6113                pending_bios->head = bio;
6114        if (device->running_pending)
6115                should_queue = 0;
6116
6117        spin_unlock(&device->io_lock);
6118
6119        if (should_queue)
6120                btrfs_queue_work(root->fs_info->submit_workers,
6121                                 &device->work);
6122}
6123
6124static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6125                              struct bio *bio, u64 physical, int dev_nr,
6126                              int async)
6127{
6128        struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6129
6130        bio->bi_private = bbio;
6131        btrfs_io_bio(bio)->stripe_index = dev_nr;
6132        bio->bi_end_io = btrfs_end_bio;
6133        bio->bi_iter.bi_sector = physical >> 9;
6134#ifdef DEBUG
6135        {
6136                struct rcu_string *name;
6137
6138                rcu_read_lock();
6139                name = rcu_dereference(dev->name);
6140                btrfs_debug(fs_info,
6141                        "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6142                        bio_op(bio), bio->bi_opf,
6143                        (u64)bio->bi_iter.bi_sector,
6144                        (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6145                        bio->bi_iter.bi_size);
6146                rcu_read_unlock();
6147        }
6148#endif
6149        bio->bi_bdev = dev->bdev;
6150
6151        btrfs_bio_counter_inc_noblocked(root->fs_info);
6152
6153        if (async)
6154                btrfs_schedule_bio(root, dev, bio);
6155        else
6156                btrfsic_submit_bio(bio);
6157}
6158
6159static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6160{
6161        atomic_inc(&bbio->error);
6162        if (atomic_dec_and_test(&bbio->stripes_pending)) {
6163                /* Should be the original bio. */
6164                WARN_ON(bio != bbio->orig_bio);
6165
6166                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6167                bio->bi_iter.bi_sector = logical >> 9;
6168                bio->bi_error = -EIO;
6169                btrfs_end_bbio(bbio, bio);
6170        }
6171}
6172
6173int btrfs_map_bio(struct btrfs_root *root, struct bio *bio,
6174                  int mirror_num, int async_submit)
6175{
6176        struct btrfs_device *dev;
6177        struct bio *first_bio = bio;
6178        u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6179        u64 length = 0;
6180        u64 map_length;
6181        int ret;
6182        int dev_nr;
6183        int total_devs;
6184        struct btrfs_bio *bbio = NULL;
6185
6186        length = bio->bi_iter.bi_size;
6187        map_length = length;
6188
6189        btrfs_bio_counter_inc_blocked(root->fs_info);
6190        ret = __btrfs_map_block(root->fs_info, bio_op(bio), logical,
6191                                &map_length, &bbio, mirror_num, 1);
6192        if (ret) {
6193                btrfs_bio_counter_dec(root->fs_info);
6194                return ret;
6195        }
6196
6197        total_devs = bbio->num_stripes;
6198        bbio->orig_bio = first_bio;
6199        bbio->private = first_bio->bi_private;
6200        bbio->end_io = first_bio->bi_end_io;
6201        bbio->fs_info = root->fs_info;
6202        atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6203
6204        if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6205            ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6206                /* In this case, map_length has been set to the length of
6207                   a single stripe; not the whole write */
6208                if (bio_op(bio) == REQ_OP_WRITE) {
6209                        ret = raid56_parity_write(root, bio, bbio, map_length);
6210                } else {
6211                        ret = raid56_parity_recover(root, bio, bbio, map_length,
6212                                                    mirror_num, 1);
6213                }
6214
6215                btrfs_bio_counter_dec(root->fs_info);
6216                return ret;
6217        }
6218
6219        if (map_length < length) {
6220                btrfs_crit(root->fs_info,
6221                           "mapping failed logical %llu bio len %llu len %llu",
6222                           logical, length, map_length);
6223                BUG();
6224        }
6225
6226        for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6227                dev = bbio->stripes[dev_nr].dev;
6228                if (!dev || !dev->bdev ||
6229                    (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
6230                        bbio_error(bbio, first_bio, logical);
6231                        continue;
6232                }
6233
6234                if (dev_nr < total_devs - 1) {
6235                        bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6236                        BUG_ON(!bio); /* -ENOMEM */
6237                } else
6238                        bio = first_bio;
6239
6240                submit_stripe_bio(root, bbio, bio,
6241                                  bbio->stripes[dev_nr].physical, dev_nr,
6242                                  async_submit);
6243        }
6244        btrfs_bio_counter_dec(root->fs_info);
6245        return 0;
6246}
6247
6248struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6249                                       u8 *uuid, u8 *fsid)
6250{
6251        struct btrfs_device *device;
6252        struct btrfs_fs_devices *cur_devices;
6253
6254        cur_devices = fs_info->fs_devices;
6255        while (cur_devices) {
6256                if (!fsid ||
6257                    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6258                        device = __find_device(&cur_devices->devices,
6259                                               devid, uuid);
6260                        if (device)
6261                                return device;
6262                }
6263                cur_devices = cur_devices->seed;
6264        }
6265        return NULL;
6266}
6267
6268static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6269                                            struct btrfs_fs_devices *fs_devices,
6270                                            u64 devid, u8 *dev_uuid)
6271{
6272        struct btrfs_device *device;
6273
6274        device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6275        if (IS_ERR(device))
6276                return NULL;
6277
6278        list_add(&device->dev_list, &fs_devices->devices);
6279        device->fs_devices = fs_devices;
6280        fs_devices->num_devices++;
6281
6282        device->missing = 1;
6283        fs_devices->missing_devices++;
6284
6285        return device;
6286}
6287
6288/**
6289 * btrfs_alloc_device - allocate struct btrfs_device
6290 * @fs_info:    used only for generating a new devid, can be NULL if
6291 *              devid is provided (i.e. @devid != NULL).
6292 * @devid:      a pointer to devid for this device.  If NULL a new devid
6293 *              is generated.
6294 * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6295 *              is generated.
6296 *
6297 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6298 * on error.  Returned struct is not linked onto any lists and can be
6299 * destroyed with kfree() right away.
6300 */
6301struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6302                                        const u64 *devid,
6303                                        const u8 *uuid)
6304{
6305        struct btrfs_device *dev;
6306        u64 tmp;
6307
6308        if (WARN_ON(!devid && !fs_info))
6309                return ERR_PTR(-EINVAL);
6310
6311        dev = __alloc_device();
6312        if (IS_ERR(dev))
6313                return dev;
6314
6315        if (devid)
6316                tmp = *devid;
6317        else {
6318                int ret;
6319
6320                ret = find_next_devid(fs_info, &tmp);
6321                if (ret) {
6322                        kfree(dev);
6323                        return ERR_PTR(ret);
6324                }
6325        }
6326        dev->devid = tmp;
6327
6328        if (uuid)
6329                memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6330        else
6331                generate_random_uuid(dev->uuid);
6332
6333        btrfs_init_work(&dev->work, btrfs_submit_helper,
6334                        pending_bios_fn, NULL, NULL);
6335
6336        return dev;
6337}
6338
6339/* Return -EIO if any error, otherwise return 0. */
6340static int btrfs_check_chunk_valid(struct btrfs_root *root,
6341                                   struct extent_buffer *leaf,
6342                                   struct btrfs_chunk *chunk, u64 logical)
6343{
6344        u64 length;
6345        u64 stripe_len;
6346        u16 num_stripes;
6347        u16 sub_stripes;
6348        u64 type;
6349
6350        length = btrfs_chunk_length(leaf, chunk);
6351        stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6352        num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6353        sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6354        type = btrfs_chunk_type(leaf, chunk);
6355
6356        if (!num_stripes) {
6357                btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6358                          num_stripes);
6359                return -EIO;
6360        }
6361        if (!IS_ALIGNED(logical, root->sectorsize)) {
6362                btrfs_err(root->fs_info,
6363                          "invalid chunk logical %llu", logical);
6364                return -EIO;
6365        }
6366        if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) {
6367                btrfs_err(root->fs_info, "invalid chunk sectorsize %u",
6368                          btrfs_chunk_sector_size(leaf, chunk));
6369                return -EIO;
6370        }
6371        if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6372                btrfs_err(root->fs_info,
6373                        "invalid chunk length %llu", length);
6374                return -EIO;
6375        }
6376        if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6377                btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6378                          stripe_len);
6379                return -EIO;
6380        }
6381        if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6382            type) {
6383                btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6384                          ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6385                            BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6386                          btrfs_chunk_type(leaf, chunk));
6387                return -EIO;
6388        }
6389        if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6390            (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6391            (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6392            (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6393            (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6394            ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6395             num_stripes != 1)) {
6396                btrfs_err(root->fs_info,
6397                        "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6398                        num_stripes, sub_stripes,
6399                        type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6400                return -EIO;
6401        }
6402
6403        return 0;
6404}
6405
6406static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6407                          struct extent_buffer *leaf,
6408                          struct btrfs_chunk *chunk)
6409{
6410        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6411        struct map_lookup *map;
6412        struct extent_map *em;
6413        u64 logical;
6414        u64 length;
6415        u64 stripe_len;
6416        u64 devid;
6417        u8 uuid[BTRFS_UUID_SIZE];
6418        int num_stripes;
6419        int ret;
6420        int i;
6421
6422        logical = key->offset;
6423        length = btrfs_chunk_length(leaf, chunk);
6424        stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6425        num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6426
6427        ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6428        if (ret)
6429                return ret;
6430
6431        read_lock(&map_tree->map_tree.lock);
6432        em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6433        read_unlock(&map_tree->map_tree.lock);
6434
6435        /* already mapped? */
6436        if (em && em->start <= logical && em->start + em->len > logical) {
6437                free_extent_map(em);
6438                return 0;
6439        } else if (em) {
6440                free_extent_map(em);
6441        }
6442
6443        em = alloc_extent_map();
6444        if (!em)
6445                return -ENOMEM;
6446        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6447        if (!map) {
6448                free_extent_map(em);
6449                return -ENOMEM;
6450        }
6451
6452        set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6453        em->map_lookup = map;
6454        em->start = logical;
6455        em->len = length;
6456        em->orig_start = 0;
6457        em->block_start = 0;
6458        em->block_len = em->len;
6459
6460        map->num_stripes = num_stripes;
6461        map->io_width = btrfs_chunk_io_width(leaf, chunk);
6462        map->io_align = btrfs_chunk_io_align(leaf, chunk);
6463        map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6464        map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6465        map->type = btrfs_chunk_type(leaf, chunk);
6466        map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6467        for (i = 0; i < num_stripes; i++) {
6468                map->stripes[i].physical =
6469                        btrfs_stripe_offset_nr(leaf, chunk, i);
6470                devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6471                read_extent_buffer(leaf, uuid, (unsigned long)
6472                                   btrfs_stripe_dev_uuid_nr(chunk, i),
6473                                   BTRFS_UUID_SIZE);
6474                map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6475                                                        uuid, NULL);
6476                if (!map->stripes[i].dev &&
6477                    !btrfs_test_opt(root->fs_info, DEGRADED)) {
6478                        free_extent_map(em);
6479                        return -EIO;
6480                }
6481                if (!map->stripes[i].dev) {
6482                        map->stripes[i].dev =
6483                                add_missing_dev(root, root->fs_info->fs_devices,
6484                                                devid, uuid);
6485                        if (!map->stripes[i].dev) {
6486                                free_extent_map(em);
6487                                return -EIO;
6488                        }
6489                        btrfs_warn(root->fs_info,
6490                                   "devid %llu uuid %pU is missing",
6491                                   devid, uuid);
6492                }
6493                map->stripes[i].dev->in_fs_metadata = 1;
6494        }
6495
6496        write_lock(&map_tree->map_tree.lock);
6497        ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6498        write_unlock(&map_tree->map_tree.lock);
6499        BUG_ON(ret); /* Tree corruption */
6500        free_extent_map(em);
6501
6502        return 0;
6503}
6504
6505static void fill_device_from_item(struct extent_buffer *leaf,
6506                                 struct btrfs_dev_item *dev_item,
6507                                 struct btrfs_device *device)
6508{
6509        unsigned long ptr;
6510
6511        device->devid = btrfs_device_id(leaf, dev_item);
6512        device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6513        device->total_bytes = device->disk_total_bytes;
6514        device->commit_total_bytes = device->disk_total_bytes;
6515        device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6516        device->commit_bytes_used = device->bytes_used;
6517        device->type = btrfs_device_type(leaf, dev_item);
6518        device->io_align = btrfs_device_io_align(leaf, dev_item);
6519        device->io_width = btrfs_device_io_width(leaf, dev_item);
6520        device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6521        WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6522        device->is_tgtdev_for_dev_replace = 0;
6523
6524        ptr = btrfs_device_uuid(dev_item);
6525        read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6526}
6527
6528static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6529                                                  u8 *fsid)
6530{
6531        struct btrfs_fs_devices *fs_devices;
6532        int ret;
6533
6534        BUG_ON(!mutex_is_locked(&uuid_mutex));
6535
6536        fs_devices = root->fs_info->fs_devices->seed;
6537        while (fs_devices) {
6538                if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6539                        return fs_devices;
6540
6541                fs_devices = fs_devices->seed;
6542        }
6543
6544        fs_devices = find_fsid(fsid);
6545        if (!fs_devices) {
6546                if (!btrfs_test_opt(root->fs_info, DEGRADED))
6547                        return ERR_PTR(-ENOENT);
6548
6549                fs_devices = alloc_fs_devices(fsid);
6550                if (IS_ERR(fs_devices))
6551                        return fs_devices;
6552
6553                fs_devices->seeding = 1;
6554                fs_devices->opened = 1;
6555                return fs_devices;
6556        }
6557
6558        fs_devices = clone_fs_devices(fs_devices);
6559        if (IS_ERR(fs_devices))
6560                return fs_devices;
6561
6562        ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6563                                   root->fs_info->bdev_holder);
6564        if (ret) {
6565                free_fs_devices(fs_devices);
6566                fs_devices = ERR_PTR(ret);
6567                goto out;
6568        }
6569
6570        if (!fs_devices->seeding) {
6571                __btrfs_close_devices(fs_devices);
6572                free_fs_devices(fs_devices);
6573                fs_devices = ERR_PTR(-EINVAL);
6574                goto out;
6575        }
6576
6577        fs_devices->seed = root->fs_info->fs_devices->seed;
6578        root->fs_info->fs_devices->seed = fs_devices;
6579out:
6580        return fs_devices;
6581}
6582
6583static int read_one_dev(struct btrfs_root *root,
6584                        struct extent_buffer *leaf,
6585                        struct btrfs_dev_item *dev_item)
6586{
6587        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6588        struct btrfs_device *device;
6589        u64 devid;
6590        int ret;
6591        u8 fs_uuid[BTRFS_UUID_SIZE];
6592        u8 dev_uuid[BTRFS_UUID_SIZE];
6593
6594        devid = btrfs_device_id(leaf, dev_item);
6595        read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6596                           BTRFS_UUID_SIZE);
6597        read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6598                           BTRFS_UUID_SIZE);
6599
6600        if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6601                fs_devices = open_seed_devices(root, fs_uuid);
6602                if (IS_ERR(fs_devices))
6603                        return PTR_ERR(fs_devices);
6604        }
6605
6606        device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6607        if (!device) {
6608                if (!btrfs_test_opt(root->fs_info, DEGRADED))
6609                        return -EIO;
6610
6611                device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6612                if (!device)
6613                        return -ENOMEM;
6614                btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6615                                devid, dev_uuid);
6616        } else {
6617                if (!device->bdev && !btrfs_test_opt(root->fs_info, DEGRADED))
6618                        return -EIO;
6619
6620                if(!device->bdev && !device->missing) {
6621                        /*
6622                         * this happens when a device that was properly setup
6623                         * in the device info lists suddenly goes bad.
6624                         * device->bdev is NULL, and so we have to set
6625                         * device->missing to one here
6626                         */
6627                        device->fs_devices->missing_devices++;
6628                        device->missing = 1;
6629                }
6630
6631                /* Move the device to its own fs_devices */
6632                if (device->fs_devices != fs_devices) {
6633                        ASSERT(device->missing);
6634
6635                        list_move(&device->dev_list, &fs_devices->devices);
6636                        device->fs_devices->num_devices--;
6637                        fs_devices->num_devices++;
6638
6639                        device->fs_devices->missing_devices--;
6640                        fs_devices->missing_devices++;
6641
6642                        device->fs_devices = fs_devices;
6643                }
6644        }
6645
6646        if (device->fs_devices != root->fs_info->fs_devices) {
6647                BUG_ON(device->writeable);
6648                if (device->generation !=
6649                    btrfs_device_generation(leaf, dev_item))
6650                        return -EINVAL;
6651        }
6652
6653        fill_device_from_item(leaf, dev_item, device);
6654        device->in_fs_metadata = 1;
6655        if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6656                device->fs_devices->total_rw_bytes += device->total_bytes;
6657                spin_lock(&root->fs_info->free_chunk_lock);
6658                root->fs_info->free_chunk_space += device->total_bytes -
6659                        device->bytes_used;
6660                spin_unlock(&root->fs_info->free_chunk_lock);
6661        }
6662        ret = 0;
6663        return ret;
6664}
6665
6666int btrfs_read_sys_array(struct btrfs_root *root)
6667{
6668        struct btrfs_fs_info *fs_info = root->fs_info;
6669        struct btrfs_super_block *super_copy = fs_info->super_copy;
6670        struct extent_buffer *sb;
6671        struct btrfs_disk_key *disk_key;
6672        struct btrfs_chunk *chunk;
6673        u8 *array_ptr;
6674        unsigned long sb_array_offset;
6675        int ret = 0;
6676        u32 num_stripes;
6677        u32 array_size;
6678        u32 len = 0;
6679        u32 cur_offset;
6680        u64 type;
6681        struct btrfs_key key;
6682
6683        ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6684        /*
6685         * This will create extent buffer of nodesize, superblock size is
6686         * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6687         * overallocate but we can keep it as-is, only the first page is used.
6688         */
6689        sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6690        if (IS_ERR(sb))
6691                return PTR_ERR(sb);
6692        set_extent_buffer_uptodate(sb);
6693        btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6694        /*
6695         * The sb extent buffer is artificial and just used to read the system array.
6696         * set_extent_buffer_uptodate() call does not properly mark all it's
6697         * pages up-to-date when the page is larger: extent does not cover the
6698         * whole page and consequently check_page_uptodate does not find all
6699         * the page's extents up-to-date (the hole beyond sb),
6700         * write_extent_buffer then triggers a WARN_ON.
6701         *
6702         * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6703         * but sb spans only this function. Add an explicit SetPageUptodate call
6704         * to silence the warning eg. on PowerPC 64.
6705         */
6706        if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6707                SetPageUptodate(sb->pages[0]);
6708
6709        write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6710        array_size = btrfs_super_sys_array_size(super_copy);
6711
6712        array_ptr = super_copy->sys_chunk_array;
6713        sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6714        cur_offset = 0;
6715
6716        while (cur_offset < array_size) {
6717                disk_key = (struct btrfs_disk_key *)array_ptr;
6718                len = sizeof(*disk_key);
6719                if (cur_offset + len > array_size)
6720                        goto out_short_read;
6721
6722                btrfs_disk_key_to_cpu(&key, disk_key);
6723
6724                array_ptr += len;
6725                sb_array_offset += len;
6726                cur_offset += len;
6727
6728                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6729                        chunk = (struct btrfs_chunk *)sb_array_offset;
6730                        /*
6731                         * At least one btrfs_chunk with one stripe must be
6732                         * present, exact stripe count check comes afterwards
6733                         */
6734                        len = btrfs_chunk_item_size(1);
6735                        if (cur_offset + len > array_size)
6736                                goto out_short_read;
6737
6738                        num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6739                        if (!num_stripes) {
6740                                btrfs_err(fs_info,
6741                                        "invalid number of stripes %u in sys_array at offset %u",
6742                                        num_stripes, cur_offset);
6743                                ret = -EIO;
6744                                break;
6745                        }
6746
6747                        type = btrfs_chunk_type(sb, chunk);
6748                        if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6749                                btrfs_err(fs_info,
6750                            "invalid chunk type %llu in sys_array at offset %u",
6751                                        type, cur_offset);
6752                                ret = -EIO;
6753                                break;
6754                        }
6755
6756                        len = btrfs_chunk_item_size(num_stripes);
6757                        if (cur_offset + len > array_size)
6758                                goto out_short_read;
6759
6760                        ret = read_one_chunk(root, &key, sb, chunk);
6761                        if (ret)
6762                                break;
6763                } else {
6764                        btrfs_err(fs_info,
6765                            "unexpected item type %u in sys_array at offset %u",
6766                                  (u32)key.type, cur_offset);
6767                        ret = -EIO;
6768                        break;
6769                }
6770                array_ptr += len;
6771                sb_array_offset += len;
6772                cur_offset += len;
6773        }
6774        clear_extent_buffer_uptodate(sb);
6775        free_extent_buffer_stale(sb);
6776        return ret;
6777
6778out_short_read:
6779        btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6780                        len, cur_offset);
6781        clear_extent_buffer_uptodate(sb);
6782        free_extent_buffer_stale(sb);
6783        return -EIO;
6784}
6785
6786int btrfs_read_chunk_tree(struct btrfs_root *root)
6787{
6788        struct btrfs_path *path;
6789        struct extent_buffer *leaf;
6790        struct btrfs_key key;
6791        struct btrfs_key found_key;
6792        int ret;
6793        int slot;
6794        u64 total_dev = 0;
6795
6796        root = root->fs_info->chunk_root;
6797
6798        path = btrfs_alloc_path();
6799        if (!path)
6800                return -ENOMEM;
6801
6802        mutex_lock(&uuid_mutex);
6803        lock_chunks(root);
6804
6805        /*
6806         * Read all device items, and then all the chunk items. All
6807         * device items are found before any chunk item (their object id
6808         * is smaller than the lowest possible object id for a chunk
6809         * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6810         */
6811        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6812        key.offset = 0;
6813        key.type = 0;
6814        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6815        if (ret < 0)
6816                goto error;
6817        while (1) {
6818                leaf = path->nodes[0];
6819                slot = path->slots[0];
6820                if (slot >= btrfs_header_nritems(leaf)) {
6821                        ret = btrfs_next_leaf(root, path);
6822                        if (ret == 0)
6823                                continue;
6824                        if (ret < 0)
6825                                goto error;
6826                        break;
6827                }
6828                btrfs_item_key_to_cpu(leaf, &found_key, slot);
6829                if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6830                        struct btrfs_dev_item *dev_item;
6831                        dev_item = btrfs_item_ptr(leaf, slot,
6832                                                  struct btrfs_dev_item);
6833                        ret = read_one_dev(root, leaf, dev_item);
6834                        if (ret)
6835                                goto error;
6836                        total_dev++;
6837                } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6838                        struct btrfs_chunk *chunk;
6839                        chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6840                        ret = read_one_chunk(root, &found_key, leaf, chunk);
6841                        if (ret)
6842                                goto error;
6843                }
6844                path->slots[0]++;
6845        }
6846
6847        /*
6848         * After loading chunk tree, we've got all device information,
6849         * do another round of validation checks.
6850         */
6851        if (total_dev != root->fs_info->fs_devices->total_devices) {
6852                btrfs_err(root->fs_info,
6853           "super_num_devices %llu mismatch with num_devices %llu found here",
6854                          btrfs_super_num_devices(root->fs_info->super_copy),
6855                          total_dev);
6856                ret = -EINVAL;
6857                goto error;
6858        }
6859        if (btrfs_super_total_bytes(root->fs_info->super_copy) <
6860            root->fs_info->fs_devices->total_rw_bytes) {
6861                btrfs_err(root->fs_info,
6862        "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6863                          btrfs_super_total_bytes(root->fs_info->super_copy),
6864                          root->fs_info->fs_devices->total_rw_bytes);
6865                ret = -EINVAL;
6866                goto error;
6867        }
6868        ret = 0;
6869error:
6870        unlock_chunks(root);
6871        mutex_unlock(&uuid_mutex);
6872
6873        btrfs_free_path(path);
6874        return ret;
6875}
6876
6877void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6878{
6879        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6880        struct btrfs_device *device;
6881
6882        while (fs_devices) {
6883                mutex_lock(&fs_devices->device_list_mutex);
6884                list_for_each_entry(device, &fs_devices->devices, dev_list)
6885                        device->dev_root = fs_info->dev_root;
6886                mutex_unlock(&fs_devices->device_list_mutex);
6887
6888                fs_devices = fs_devices->seed;
6889        }
6890}
6891
6892static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6893{
6894        int i;
6895
6896        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6897                btrfs_dev_stat_reset(dev, i);
6898}
6899
6900int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6901{
6902        struct btrfs_key key;
6903        struct btrfs_key found_key;
6904        struct btrfs_root *dev_root = fs_info->dev_root;
6905        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6906        struct extent_buffer *eb;
6907        int slot;
6908        int ret = 0;
6909        struct btrfs_device *device;
6910        struct btrfs_path *path = NULL;
6911        int i;
6912
6913        path = btrfs_alloc_path();
6914        if (!path) {
6915                ret = -ENOMEM;
6916                goto out;
6917        }
6918
6919        mutex_lock(&fs_devices->device_list_mutex);
6920        list_for_each_entry(device, &fs_devices->devices, dev_list) {
6921                int item_size;
6922                struct btrfs_dev_stats_item *ptr;
6923
6924                key.objectid = BTRFS_DEV_STATS_OBJECTID;
6925                key.type = BTRFS_PERSISTENT_ITEM_KEY;
6926                key.offset = device->devid;
6927                ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6928                if (ret) {
6929                        __btrfs_reset_dev_stats(device);
6930                        device->dev_stats_valid = 1;
6931                        btrfs_release_path(path);
6932                        continue;
6933                }
6934                slot = path->slots[0];
6935                eb = path->nodes[0];
6936                btrfs_item_key_to_cpu(eb, &found_key, slot);
6937                item_size = btrfs_item_size_nr(eb, slot);
6938
6939                ptr = btrfs_item_ptr(eb, slot,
6940                                     struct btrfs_dev_stats_item);
6941
6942                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6943                        if (item_size >= (1 + i) * sizeof(__le64))
6944                                btrfs_dev_stat_set(device, i,
6945                                        btrfs_dev_stats_value(eb, ptr, i));
6946                        else
6947                                btrfs_dev_stat_reset(device, i);
6948                }
6949
6950                device->dev_stats_valid = 1;
6951                btrfs_dev_stat_print_on_load(device);
6952                btrfs_release_path(path);
6953        }
6954        mutex_unlock(&fs_devices->device_list_mutex);
6955
6956out:
6957        btrfs_free_path(path);
6958        return ret < 0 ? ret : 0;
6959}
6960
6961static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6962                                struct btrfs_root *dev_root,
6963                                struct btrfs_device *device)
6964{
6965        struct btrfs_path *path;
6966        struct btrfs_key key;
6967        struct extent_buffer *eb;
6968        struct btrfs_dev_stats_item *ptr;
6969        int ret;
6970        int i;
6971
6972        key.objectid = BTRFS_DEV_STATS_OBJECTID;
6973        key.type = BTRFS_PERSISTENT_ITEM_KEY;
6974        key.offset = device->devid;
6975
6976        path = btrfs_alloc_path();
6977        BUG_ON(!path);
6978        ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6979        if (ret < 0) {
6980                btrfs_warn_in_rcu(dev_root->fs_info,
6981                        "error %d while searching for dev_stats item for device %s",
6982                              ret, rcu_str_deref(device->name));
6983                goto out;
6984        }
6985
6986        if (ret == 0 &&
6987            btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6988                /* need to delete old one and insert a new one */
6989                ret = btrfs_del_item(trans, dev_root, path);
6990                if (ret != 0) {
6991                        btrfs_warn_in_rcu(dev_root->fs_info,
6992                                "delete too small dev_stats item for device %s failed %d",
6993                                      rcu_str_deref(device->name), ret);
6994                        goto out;
6995                }
6996                ret = 1;
6997        }
6998
6999        if (ret == 1) {
7000                /* need to insert a new item */
7001                btrfs_release_path(path);
7002                ret = btrfs_insert_empty_item(trans, dev_root, path,
7003                                              &key, sizeof(*ptr));
7004                if (ret < 0) {
7005                        btrfs_warn_in_rcu(dev_root->fs_info,
7006                                "insert dev_stats item for device %s failed %d",
7007                                rcu_str_deref(device->name), ret);
7008                        goto out;
7009                }
7010        }
7011
7012        eb = path->nodes[0];
7013        ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7014        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7015                btrfs_set_dev_stats_value(eb, ptr, i,
7016                                          btrfs_dev_stat_read(device, i));
7017        btrfs_mark_buffer_dirty(eb);
7018
7019out:
7020        btrfs_free_path(path);
7021        return ret;
7022}
7023
7024/*
7025 * called from commit_transaction. Writes all changed device stats to disk.
7026 */
7027int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7028                        struct btrfs_fs_info *fs_info)
7029{
7030        struct btrfs_root *dev_root = fs_info->dev_root;
7031        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7032        struct btrfs_device *device;
7033        int stats_cnt;
7034        int ret = 0;
7035
7036        mutex_lock(&fs_devices->device_list_mutex);
7037        list_for_each_entry(device, &fs_devices->devices, dev_list) {
7038                if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7039                        continue;
7040
7041                stats_cnt = atomic_read(&device->dev_stats_ccnt);
7042                ret = update_dev_stat_item(trans, dev_root, device);
7043                if (!ret)
7044                        atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7045        }
7046        mutex_unlock(&fs_devices->device_list_mutex);
7047
7048        return ret;
7049}
7050
7051void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7052{
7053        btrfs_dev_stat_inc(dev, index);
7054        btrfs_dev_stat_print_on_error(dev);
7055}
7056
7057static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7058{
7059        if (!dev->dev_stats_valid)
7060                return;
7061        btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
7062                "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7063                           rcu_str_deref(dev->name),
7064                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7065                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7066                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7067                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7068                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7069}
7070
7071static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7072{
7073        int i;
7074
7075        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7076                if (btrfs_dev_stat_read(dev, i) != 0)
7077                        break;
7078        if (i == BTRFS_DEV_STAT_VALUES_MAX)
7079                return; /* all values == 0, suppress message */
7080
7081        btrfs_info_in_rcu(dev->dev_root->fs_info,
7082                "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7083               rcu_str_deref(dev->name),
7084               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7085               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7086               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7087               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7088               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7089}
7090
7091int btrfs_get_dev_stats(struct btrfs_root *root,
7092                        struct btrfs_ioctl_get_dev_stats *stats)
7093{
7094        struct btrfs_device *dev;
7095        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7096        int i;
7097
7098        mutex_lock(&fs_devices->device_list_mutex);
7099        dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
7100        mutex_unlock(&fs_devices->device_list_mutex);
7101
7102        if (!dev) {
7103                btrfs_warn(root->fs_info,
7104                           "get dev_stats failed, device not found");
7105                return -ENODEV;
7106        } else if (!dev->dev_stats_valid) {
7107                btrfs_warn(root->fs_info,
7108                           "get dev_stats failed, not yet valid");
7109                return -ENODEV;
7110        } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7111                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7112                        if (stats->nr_items > i)
7113                                stats->values[i] =
7114                                        btrfs_dev_stat_read_and_reset(dev, i);
7115                        else
7116                                btrfs_dev_stat_reset(dev, i);
7117                }
7118        } else {
7119                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7120                        if (stats->nr_items > i)
7121                                stats->values[i] = btrfs_dev_stat_read(dev, i);
7122        }
7123        if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7124                stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7125        return 0;
7126}
7127
7128void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7129{
7130        struct buffer_head *bh;
7131        struct btrfs_super_block *disk_super;
7132        int copy_num;
7133
7134        if (!bdev)
7135                return;
7136
7137        for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7138                copy_num++) {
7139
7140                if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7141                        continue;
7142
7143                disk_super = (struct btrfs_super_block *)bh->b_data;
7144
7145                memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7146                set_buffer_dirty(bh);
7147                sync_dirty_buffer(bh);
7148                brelse(bh);
7149        }
7150
7151        /* Notify udev that device has changed */
7152        btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7153
7154        /* Update ctime/mtime for device path for libblkid */
7155        update_dev_time(device_path);
7156}
7157
7158/*
7159 * Update the size of all devices, which is used for writing out the
7160 * super blocks.
7161 */
7162void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7163{
7164        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7165        struct btrfs_device *curr, *next;
7166
7167        if (list_empty(&fs_devices->resized_devices))
7168                return;
7169
7170        mutex_lock(&fs_devices->device_list_mutex);
7171        lock_chunks(fs_info->dev_root);
7172        list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7173                                 resized_list) {
7174                list_del_init(&curr->resized_list);
7175                curr->commit_total_bytes = curr->disk_total_bytes;
7176        }
7177        unlock_chunks(fs_info->dev_root);
7178        mutex_unlock(&fs_devices->device_list_mutex);
7179}
7180
7181/* Must be invoked during the transaction commit */
7182void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7183                                        struct btrfs_transaction *transaction)
7184{
7185        struct extent_map *em;
7186        struct map_lookup *map;
7187        struct btrfs_device *dev;
7188        int i;
7189
7190        if (list_empty(&transaction->pending_chunks))
7191                return;
7192
7193        /* In order to kick the device replace finish process */
7194        lock_chunks(root);
7195        list_for_each_entry(em, &transaction->pending_chunks, list) {
7196                map = em->map_lookup;
7197
7198                for (i = 0; i < map->num_stripes; i++) {
7199                        dev = map->stripes[i].dev;
7200                        dev->commit_bytes_used = dev->bytes_used;
7201                }
7202        }
7203        unlock_chunks(root);
7204}
7205
7206void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7207{
7208        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7209        while (fs_devices) {
7210                fs_devices->fs_info = fs_info;
7211                fs_devices = fs_devices->seed;
7212        }
7213}
7214
7215void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7216{
7217        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7218        while (fs_devices) {
7219                fs_devices->fs_info = NULL;
7220                fs_devices = fs_devices->seed;
7221        }
7222}
7223