linux/fs/f2fs/node.c
<<
>>
Prefs
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
  22#include "trace.h"
  23#include <trace/events/f2fs.h>
  24
  25#define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  26
  27static struct kmem_cache *nat_entry_slab;
  28static struct kmem_cache *free_nid_slab;
  29static struct kmem_cache *nat_entry_set_slab;
  30
  31bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  32{
  33        struct f2fs_nm_info *nm_i = NM_I(sbi);
  34        struct sysinfo val;
  35        unsigned long avail_ram;
  36        unsigned long mem_size = 0;
  37        bool res = false;
  38
  39        si_meminfo(&val);
  40
  41        /* only uses low memory */
  42        avail_ram = val.totalram - val.totalhigh;
  43
  44        /*
  45         * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  46         */
  47        if (type == FREE_NIDS) {
  48                mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
  49                                                        PAGE_SHIFT;
  50                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  51        } else if (type == NAT_ENTRIES) {
  52                mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  53                                                        PAGE_SHIFT;
  54                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  55                if (excess_cached_nats(sbi))
  56                        res = false;
  57        } else if (type == DIRTY_DENTS) {
  58                if (sbi->sb->s_bdi->wb.dirty_exceeded)
  59                        return false;
  60                mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  61                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  62        } else if (type == INO_ENTRIES) {
  63                int i;
  64
  65                for (i = 0; i <= UPDATE_INO; i++)
  66                        mem_size += (sbi->im[i].ino_num *
  67                                sizeof(struct ino_entry)) >> PAGE_SHIFT;
  68                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  69        } else if (type == EXTENT_CACHE) {
  70                mem_size = (atomic_read(&sbi->total_ext_tree) *
  71                                sizeof(struct extent_tree) +
  72                                atomic_read(&sbi->total_ext_node) *
  73                                sizeof(struct extent_node)) >> PAGE_SHIFT;
  74                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  75        } else {
  76                if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  77                        return true;
  78        }
  79        return res;
  80}
  81
  82static void clear_node_page_dirty(struct page *page)
  83{
  84        struct address_space *mapping = page->mapping;
  85        unsigned int long flags;
  86
  87        if (PageDirty(page)) {
  88                spin_lock_irqsave(&mapping->tree_lock, flags);
  89                radix_tree_tag_clear(&mapping->page_tree,
  90                                page_index(page),
  91                                PAGECACHE_TAG_DIRTY);
  92                spin_unlock_irqrestore(&mapping->tree_lock, flags);
  93
  94                clear_page_dirty_for_io(page);
  95                dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  96        }
  97        ClearPageUptodate(page);
  98}
  99
 100static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 101{
 102        pgoff_t index = current_nat_addr(sbi, nid);
 103        return get_meta_page(sbi, index);
 104}
 105
 106static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 107{
 108        struct page *src_page;
 109        struct page *dst_page;
 110        pgoff_t src_off;
 111        pgoff_t dst_off;
 112        void *src_addr;
 113        void *dst_addr;
 114        struct f2fs_nm_info *nm_i = NM_I(sbi);
 115
 116        src_off = current_nat_addr(sbi, nid);
 117        dst_off = next_nat_addr(sbi, src_off);
 118
 119        /* get current nat block page with lock */
 120        src_page = get_meta_page(sbi, src_off);
 121        dst_page = grab_meta_page(sbi, dst_off);
 122        f2fs_bug_on(sbi, PageDirty(src_page));
 123
 124        src_addr = page_address(src_page);
 125        dst_addr = page_address(dst_page);
 126        memcpy(dst_addr, src_addr, PAGE_SIZE);
 127        set_page_dirty(dst_page);
 128        f2fs_put_page(src_page, 1);
 129
 130        set_to_next_nat(nm_i, nid);
 131
 132        return dst_page;
 133}
 134
 135static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 136{
 137        return radix_tree_lookup(&nm_i->nat_root, n);
 138}
 139
 140static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 141                nid_t start, unsigned int nr, struct nat_entry **ep)
 142{
 143        return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 144}
 145
 146static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 147{
 148        list_del(&e->list);
 149        radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 150        nm_i->nat_cnt--;
 151        kmem_cache_free(nat_entry_slab, e);
 152}
 153
 154static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 155                                                struct nat_entry *ne)
 156{
 157        nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 158        struct nat_entry_set *head;
 159
 160        if (get_nat_flag(ne, IS_DIRTY))
 161                return;
 162
 163        head = radix_tree_lookup(&nm_i->nat_set_root, set);
 164        if (!head) {
 165                head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 166
 167                INIT_LIST_HEAD(&head->entry_list);
 168                INIT_LIST_HEAD(&head->set_list);
 169                head->set = set;
 170                head->entry_cnt = 0;
 171                f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 172        }
 173        list_move_tail(&ne->list, &head->entry_list);
 174        nm_i->dirty_nat_cnt++;
 175        head->entry_cnt++;
 176        set_nat_flag(ne, IS_DIRTY, true);
 177}
 178
 179static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 180                                                struct nat_entry *ne)
 181{
 182        nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 183        struct nat_entry_set *head;
 184
 185        head = radix_tree_lookup(&nm_i->nat_set_root, set);
 186        if (head) {
 187                list_move_tail(&ne->list, &nm_i->nat_entries);
 188                set_nat_flag(ne, IS_DIRTY, false);
 189                head->entry_cnt--;
 190                nm_i->dirty_nat_cnt--;
 191        }
 192}
 193
 194static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 195                nid_t start, unsigned int nr, struct nat_entry_set **ep)
 196{
 197        return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 198                                                        start, nr);
 199}
 200
 201int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 202{
 203        struct f2fs_nm_info *nm_i = NM_I(sbi);
 204        struct nat_entry *e;
 205        bool need = false;
 206
 207        down_read(&nm_i->nat_tree_lock);
 208        e = __lookup_nat_cache(nm_i, nid);
 209        if (e) {
 210                if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 211                                !get_nat_flag(e, HAS_FSYNCED_INODE))
 212                        need = true;
 213        }
 214        up_read(&nm_i->nat_tree_lock);
 215        return need;
 216}
 217
 218bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 219{
 220        struct f2fs_nm_info *nm_i = NM_I(sbi);
 221        struct nat_entry *e;
 222        bool is_cp = true;
 223
 224        down_read(&nm_i->nat_tree_lock);
 225        e = __lookup_nat_cache(nm_i, nid);
 226        if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 227                is_cp = false;
 228        up_read(&nm_i->nat_tree_lock);
 229        return is_cp;
 230}
 231
 232bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 233{
 234        struct f2fs_nm_info *nm_i = NM_I(sbi);
 235        struct nat_entry *e;
 236        bool need_update = true;
 237
 238        down_read(&nm_i->nat_tree_lock);
 239        e = __lookup_nat_cache(nm_i, ino);
 240        if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 241                        (get_nat_flag(e, IS_CHECKPOINTED) ||
 242                         get_nat_flag(e, HAS_FSYNCED_INODE)))
 243                need_update = false;
 244        up_read(&nm_i->nat_tree_lock);
 245        return need_update;
 246}
 247
 248static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
 249{
 250        struct nat_entry *new;
 251
 252        new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
 253        f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
 254        memset(new, 0, sizeof(struct nat_entry));
 255        nat_set_nid(new, nid);
 256        nat_reset_flag(new);
 257        list_add_tail(&new->list, &nm_i->nat_entries);
 258        nm_i->nat_cnt++;
 259        return new;
 260}
 261
 262static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 263                                                struct f2fs_nat_entry *ne)
 264{
 265        struct f2fs_nm_info *nm_i = NM_I(sbi);
 266        struct nat_entry *e;
 267
 268        e = __lookup_nat_cache(nm_i, nid);
 269        if (!e) {
 270                e = grab_nat_entry(nm_i, nid);
 271                node_info_from_raw_nat(&e->ni, ne);
 272        } else {
 273                f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
 274                                nat_get_blkaddr(e) != ne->block_addr ||
 275                                nat_get_version(e) != ne->version);
 276        }
 277}
 278
 279static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 280                        block_t new_blkaddr, bool fsync_done)
 281{
 282        struct f2fs_nm_info *nm_i = NM_I(sbi);
 283        struct nat_entry *e;
 284
 285        down_write(&nm_i->nat_tree_lock);
 286        e = __lookup_nat_cache(nm_i, ni->nid);
 287        if (!e) {
 288                e = grab_nat_entry(nm_i, ni->nid);
 289                copy_node_info(&e->ni, ni);
 290                f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 291        } else if (new_blkaddr == NEW_ADDR) {
 292                /*
 293                 * when nid is reallocated,
 294                 * previous nat entry can be remained in nat cache.
 295                 * So, reinitialize it with new information.
 296                 */
 297                copy_node_info(&e->ni, ni);
 298                f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 299        }
 300
 301        /* sanity check */
 302        f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 303        f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 304                        new_blkaddr == NULL_ADDR);
 305        f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 306                        new_blkaddr == NEW_ADDR);
 307        f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
 308                        nat_get_blkaddr(e) != NULL_ADDR &&
 309                        new_blkaddr == NEW_ADDR);
 310
 311        /* increment version no as node is removed */
 312        if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 313                unsigned char version = nat_get_version(e);
 314                nat_set_version(e, inc_node_version(version));
 315
 316                /* in order to reuse the nid */
 317                if (nm_i->next_scan_nid > ni->nid)
 318                        nm_i->next_scan_nid = ni->nid;
 319        }
 320
 321        /* change address */
 322        nat_set_blkaddr(e, new_blkaddr);
 323        if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
 324                set_nat_flag(e, IS_CHECKPOINTED, false);
 325        __set_nat_cache_dirty(nm_i, e);
 326
 327        /* update fsync_mark if its inode nat entry is still alive */
 328        if (ni->nid != ni->ino)
 329                e = __lookup_nat_cache(nm_i, ni->ino);
 330        if (e) {
 331                if (fsync_done && ni->nid == ni->ino)
 332                        set_nat_flag(e, HAS_FSYNCED_INODE, true);
 333                set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 334        }
 335        up_write(&nm_i->nat_tree_lock);
 336}
 337
 338int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 339{
 340        struct f2fs_nm_info *nm_i = NM_I(sbi);
 341        int nr = nr_shrink;
 342
 343        if (!down_write_trylock(&nm_i->nat_tree_lock))
 344                return 0;
 345
 346        while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 347                struct nat_entry *ne;
 348                ne = list_first_entry(&nm_i->nat_entries,
 349                                        struct nat_entry, list);
 350                __del_from_nat_cache(nm_i, ne);
 351                nr_shrink--;
 352        }
 353        up_write(&nm_i->nat_tree_lock);
 354        return nr - nr_shrink;
 355}
 356
 357/*
 358 * This function always returns success
 359 */
 360void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 361{
 362        struct f2fs_nm_info *nm_i = NM_I(sbi);
 363        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 364        struct f2fs_journal *journal = curseg->journal;
 365        nid_t start_nid = START_NID(nid);
 366        struct f2fs_nat_block *nat_blk;
 367        struct page *page = NULL;
 368        struct f2fs_nat_entry ne;
 369        struct nat_entry *e;
 370        int i;
 371
 372        ni->nid = nid;
 373
 374        /* Check nat cache */
 375        down_read(&nm_i->nat_tree_lock);
 376        e = __lookup_nat_cache(nm_i, nid);
 377        if (e) {
 378                ni->ino = nat_get_ino(e);
 379                ni->blk_addr = nat_get_blkaddr(e);
 380                ni->version = nat_get_version(e);
 381                up_read(&nm_i->nat_tree_lock);
 382                return;
 383        }
 384
 385        memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 386
 387        /* Check current segment summary */
 388        down_read(&curseg->journal_rwsem);
 389        i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 390        if (i >= 0) {
 391                ne = nat_in_journal(journal, i);
 392                node_info_from_raw_nat(ni, &ne);
 393        }
 394        up_read(&curseg->journal_rwsem);
 395        if (i >= 0)
 396                goto cache;
 397
 398        /* Fill node_info from nat page */
 399        page = get_current_nat_page(sbi, start_nid);
 400        nat_blk = (struct f2fs_nat_block *)page_address(page);
 401        ne = nat_blk->entries[nid - start_nid];
 402        node_info_from_raw_nat(ni, &ne);
 403        f2fs_put_page(page, 1);
 404cache:
 405        up_read(&nm_i->nat_tree_lock);
 406        /* cache nat entry */
 407        down_write(&nm_i->nat_tree_lock);
 408        cache_nat_entry(sbi, nid, &ne);
 409        up_write(&nm_i->nat_tree_lock);
 410}
 411
 412/*
 413 * readahead MAX_RA_NODE number of node pages.
 414 */
 415static void ra_node_pages(struct page *parent, int start, int n)
 416{
 417        struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 418        struct blk_plug plug;
 419        int i, end;
 420        nid_t nid;
 421
 422        blk_start_plug(&plug);
 423
 424        /* Then, try readahead for siblings of the desired node */
 425        end = start + n;
 426        end = min(end, NIDS_PER_BLOCK);
 427        for (i = start; i < end; i++) {
 428                nid = get_nid(parent, i, false);
 429                ra_node_page(sbi, nid);
 430        }
 431
 432        blk_finish_plug(&plug);
 433}
 434
 435pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 436{
 437        const long direct_index = ADDRS_PER_INODE(dn->inode);
 438        const long direct_blks = ADDRS_PER_BLOCK;
 439        const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 440        unsigned int skipped_unit = ADDRS_PER_BLOCK;
 441        int cur_level = dn->cur_level;
 442        int max_level = dn->max_level;
 443        pgoff_t base = 0;
 444
 445        if (!dn->max_level)
 446                return pgofs + 1;
 447
 448        while (max_level-- > cur_level)
 449                skipped_unit *= NIDS_PER_BLOCK;
 450
 451        switch (dn->max_level) {
 452        case 3:
 453                base += 2 * indirect_blks;
 454        case 2:
 455                base += 2 * direct_blks;
 456        case 1:
 457                base += direct_index;
 458                break;
 459        default:
 460                f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 461        }
 462
 463        return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 464}
 465
 466/*
 467 * The maximum depth is four.
 468 * Offset[0] will have raw inode offset.
 469 */
 470static int get_node_path(struct inode *inode, long block,
 471                                int offset[4], unsigned int noffset[4])
 472{
 473        const long direct_index = ADDRS_PER_INODE(inode);
 474        const long direct_blks = ADDRS_PER_BLOCK;
 475        const long dptrs_per_blk = NIDS_PER_BLOCK;
 476        const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 477        const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 478        int n = 0;
 479        int level = 0;
 480
 481        noffset[0] = 0;
 482
 483        if (block < direct_index) {
 484                offset[n] = block;
 485                goto got;
 486        }
 487        block -= direct_index;
 488        if (block < direct_blks) {
 489                offset[n++] = NODE_DIR1_BLOCK;
 490                noffset[n] = 1;
 491                offset[n] = block;
 492                level = 1;
 493                goto got;
 494        }
 495        block -= direct_blks;
 496        if (block < direct_blks) {
 497                offset[n++] = NODE_DIR2_BLOCK;
 498                noffset[n] = 2;
 499                offset[n] = block;
 500                level = 1;
 501                goto got;
 502        }
 503        block -= direct_blks;
 504        if (block < indirect_blks) {
 505                offset[n++] = NODE_IND1_BLOCK;
 506                noffset[n] = 3;
 507                offset[n++] = block / direct_blks;
 508                noffset[n] = 4 + offset[n - 1];
 509                offset[n] = block % direct_blks;
 510                level = 2;
 511                goto got;
 512        }
 513        block -= indirect_blks;
 514        if (block < indirect_blks) {
 515                offset[n++] = NODE_IND2_BLOCK;
 516                noffset[n] = 4 + dptrs_per_blk;
 517                offset[n++] = block / direct_blks;
 518                noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 519                offset[n] = block % direct_blks;
 520                level = 2;
 521                goto got;
 522        }
 523        block -= indirect_blks;
 524        if (block < dindirect_blks) {
 525                offset[n++] = NODE_DIND_BLOCK;
 526                noffset[n] = 5 + (dptrs_per_blk * 2);
 527                offset[n++] = block / indirect_blks;
 528                noffset[n] = 6 + (dptrs_per_blk * 2) +
 529                              offset[n - 1] * (dptrs_per_blk + 1);
 530                offset[n++] = (block / direct_blks) % dptrs_per_blk;
 531                noffset[n] = 7 + (dptrs_per_blk * 2) +
 532                              offset[n - 2] * (dptrs_per_blk + 1) +
 533                              offset[n - 1];
 534                offset[n] = block % direct_blks;
 535                level = 3;
 536                goto got;
 537        } else {
 538                BUG();
 539        }
 540got:
 541        return level;
 542}
 543
 544/*
 545 * Caller should call f2fs_put_dnode(dn).
 546 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 547 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 548 * In the case of RDONLY_NODE, we don't need to care about mutex.
 549 */
 550int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 551{
 552        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 553        struct page *npage[4];
 554        struct page *parent = NULL;
 555        int offset[4];
 556        unsigned int noffset[4];
 557        nid_t nids[4];
 558        int level, i = 0;
 559        int err = 0;
 560
 561        level = get_node_path(dn->inode, index, offset, noffset);
 562
 563        nids[0] = dn->inode->i_ino;
 564        npage[0] = dn->inode_page;
 565
 566        if (!npage[0]) {
 567                npage[0] = get_node_page(sbi, nids[0]);
 568                if (IS_ERR(npage[0]))
 569                        return PTR_ERR(npage[0]);
 570        }
 571
 572        /* if inline_data is set, should not report any block indices */
 573        if (f2fs_has_inline_data(dn->inode) && index) {
 574                err = -ENOENT;
 575                f2fs_put_page(npage[0], 1);
 576                goto release_out;
 577        }
 578
 579        parent = npage[0];
 580        if (level != 0)
 581                nids[1] = get_nid(parent, offset[0], true);
 582        dn->inode_page = npage[0];
 583        dn->inode_page_locked = true;
 584
 585        /* get indirect or direct nodes */
 586        for (i = 1; i <= level; i++) {
 587                bool done = false;
 588
 589                if (!nids[i] && mode == ALLOC_NODE) {
 590                        /* alloc new node */
 591                        if (!alloc_nid(sbi, &(nids[i]))) {
 592                                err = -ENOSPC;
 593                                goto release_pages;
 594                        }
 595
 596                        dn->nid = nids[i];
 597                        npage[i] = new_node_page(dn, noffset[i], NULL);
 598                        if (IS_ERR(npage[i])) {
 599                                alloc_nid_failed(sbi, nids[i]);
 600                                err = PTR_ERR(npage[i]);
 601                                goto release_pages;
 602                        }
 603
 604                        set_nid(parent, offset[i - 1], nids[i], i == 1);
 605                        alloc_nid_done(sbi, nids[i]);
 606                        done = true;
 607                } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 608                        npage[i] = get_node_page_ra(parent, offset[i - 1]);
 609                        if (IS_ERR(npage[i])) {
 610                                err = PTR_ERR(npage[i]);
 611                                goto release_pages;
 612                        }
 613                        done = true;
 614                }
 615                if (i == 1) {
 616                        dn->inode_page_locked = false;
 617                        unlock_page(parent);
 618                } else {
 619                        f2fs_put_page(parent, 1);
 620                }
 621
 622                if (!done) {
 623                        npage[i] = get_node_page(sbi, nids[i]);
 624                        if (IS_ERR(npage[i])) {
 625                                err = PTR_ERR(npage[i]);
 626                                f2fs_put_page(npage[0], 0);
 627                                goto release_out;
 628                        }
 629                }
 630                if (i < level) {
 631                        parent = npage[i];
 632                        nids[i + 1] = get_nid(parent, offset[i], false);
 633                }
 634        }
 635        dn->nid = nids[level];
 636        dn->ofs_in_node = offset[level];
 637        dn->node_page = npage[level];
 638        dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
 639        return 0;
 640
 641release_pages:
 642        f2fs_put_page(parent, 1);
 643        if (i > 1)
 644                f2fs_put_page(npage[0], 0);
 645release_out:
 646        dn->inode_page = NULL;
 647        dn->node_page = NULL;
 648        if (err == -ENOENT) {
 649                dn->cur_level = i;
 650                dn->max_level = level;
 651                dn->ofs_in_node = offset[level];
 652        }
 653        return err;
 654}
 655
 656static void truncate_node(struct dnode_of_data *dn)
 657{
 658        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 659        struct node_info ni;
 660
 661        get_node_info(sbi, dn->nid, &ni);
 662        if (dn->inode->i_blocks == 0) {
 663                f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
 664                goto invalidate;
 665        }
 666        f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
 667
 668        /* Deallocate node address */
 669        invalidate_blocks(sbi, ni.blk_addr);
 670        dec_valid_node_count(sbi, dn->inode);
 671        set_node_addr(sbi, &ni, NULL_ADDR, false);
 672
 673        if (dn->nid == dn->inode->i_ino) {
 674                remove_orphan_inode(sbi, dn->nid);
 675                dec_valid_inode_count(sbi);
 676                f2fs_inode_synced(dn->inode);
 677        }
 678invalidate:
 679        clear_node_page_dirty(dn->node_page);
 680        set_sbi_flag(sbi, SBI_IS_DIRTY);
 681
 682        f2fs_put_page(dn->node_page, 1);
 683
 684        invalidate_mapping_pages(NODE_MAPPING(sbi),
 685                        dn->node_page->index, dn->node_page->index);
 686
 687        dn->node_page = NULL;
 688        trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 689}
 690
 691static int truncate_dnode(struct dnode_of_data *dn)
 692{
 693        struct page *page;
 694
 695        if (dn->nid == 0)
 696                return 1;
 697
 698        /* get direct node */
 699        page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 700        if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 701                return 1;
 702        else if (IS_ERR(page))
 703                return PTR_ERR(page);
 704
 705        /* Make dnode_of_data for parameter */
 706        dn->node_page = page;
 707        dn->ofs_in_node = 0;
 708        truncate_data_blocks(dn);
 709        truncate_node(dn);
 710        return 1;
 711}
 712
 713static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 714                                                int ofs, int depth)
 715{
 716        struct dnode_of_data rdn = *dn;
 717        struct page *page;
 718        struct f2fs_node *rn;
 719        nid_t child_nid;
 720        unsigned int child_nofs;
 721        int freed = 0;
 722        int i, ret;
 723
 724        if (dn->nid == 0)
 725                return NIDS_PER_BLOCK + 1;
 726
 727        trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 728
 729        page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 730        if (IS_ERR(page)) {
 731                trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 732                return PTR_ERR(page);
 733        }
 734
 735        ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 736
 737        rn = F2FS_NODE(page);
 738        if (depth < 3) {
 739                for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 740                        child_nid = le32_to_cpu(rn->in.nid[i]);
 741                        if (child_nid == 0)
 742                                continue;
 743                        rdn.nid = child_nid;
 744                        ret = truncate_dnode(&rdn);
 745                        if (ret < 0)
 746                                goto out_err;
 747                        if (set_nid(page, i, 0, false))
 748                                dn->node_changed = true;
 749                }
 750        } else {
 751                child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 752                for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 753                        child_nid = le32_to_cpu(rn->in.nid[i]);
 754                        if (child_nid == 0) {
 755                                child_nofs += NIDS_PER_BLOCK + 1;
 756                                continue;
 757                        }
 758                        rdn.nid = child_nid;
 759                        ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 760                        if (ret == (NIDS_PER_BLOCK + 1)) {
 761                                if (set_nid(page, i, 0, false))
 762                                        dn->node_changed = true;
 763                                child_nofs += ret;
 764                        } else if (ret < 0 && ret != -ENOENT) {
 765                                goto out_err;
 766                        }
 767                }
 768                freed = child_nofs;
 769        }
 770
 771        if (!ofs) {
 772                /* remove current indirect node */
 773                dn->node_page = page;
 774                truncate_node(dn);
 775                freed++;
 776        } else {
 777                f2fs_put_page(page, 1);
 778        }
 779        trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 780        return freed;
 781
 782out_err:
 783        f2fs_put_page(page, 1);
 784        trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 785        return ret;
 786}
 787
 788static int truncate_partial_nodes(struct dnode_of_data *dn,
 789                        struct f2fs_inode *ri, int *offset, int depth)
 790{
 791        struct page *pages[2];
 792        nid_t nid[3];
 793        nid_t child_nid;
 794        int err = 0;
 795        int i;
 796        int idx = depth - 2;
 797
 798        nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 799        if (!nid[0])
 800                return 0;
 801
 802        /* get indirect nodes in the path */
 803        for (i = 0; i < idx + 1; i++) {
 804                /* reference count'll be increased */
 805                pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 806                if (IS_ERR(pages[i])) {
 807                        err = PTR_ERR(pages[i]);
 808                        idx = i - 1;
 809                        goto fail;
 810                }
 811                nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 812        }
 813
 814        ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
 815
 816        /* free direct nodes linked to a partial indirect node */
 817        for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 818                child_nid = get_nid(pages[idx], i, false);
 819                if (!child_nid)
 820                        continue;
 821                dn->nid = child_nid;
 822                err = truncate_dnode(dn);
 823                if (err < 0)
 824                        goto fail;
 825                if (set_nid(pages[idx], i, 0, false))
 826                        dn->node_changed = true;
 827        }
 828
 829        if (offset[idx + 1] == 0) {
 830                dn->node_page = pages[idx];
 831                dn->nid = nid[idx];
 832                truncate_node(dn);
 833        } else {
 834                f2fs_put_page(pages[idx], 1);
 835        }
 836        offset[idx]++;
 837        offset[idx + 1] = 0;
 838        idx--;
 839fail:
 840        for (i = idx; i >= 0; i--)
 841                f2fs_put_page(pages[i], 1);
 842
 843        trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 844
 845        return err;
 846}
 847
 848/*
 849 * All the block addresses of data and nodes should be nullified.
 850 */
 851int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 852{
 853        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 854        int err = 0, cont = 1;
 855        int level, offset[4], noffset[4];
 856        unsigned int nofs = 0;
 857        struct f2fs_inode *ri;
 858        struct dnode_of_data dn;
 859        struct page *page;
 860
 861        trace_f2fs_truncate_inode_blocks_enter(inode, from);
 862
 863        level = get_node_path(inode, from, offset, noffset);
 864
 865        page = get_node_page(sbi, inode->i_ino);
 866        if (IS_ERR(page)) {
 867                trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 868                return PTR_ERR(page);
 869        }
 870
 871        set_new_dnode(&dn, inode, page, NULL, 0);
 872        unlock_page(page);
 873
 874        ri = F2FS_INODE(page);
 875        switch (level) {
 876        case 0:
 877        case 1:
 878                nofs = noffset[1];
 879                break;
 880        case 2:
 881                nofs = noffset[1];
 882                if (!offset[level - 1])
 883                        goto skip_partial;
 884                err = truncate_partial_nodes(&dn, ri, offset, level);
 885                if (err < 0 && err != -ENOENT)
 886                        goto fail;
 887                nofs += 1 + NIDS_PER_BLOCK;
 888                break;
 889        case 3:
 890                nofs = 5 + 2 * NIDS_PER_BLOCK;
 891                if (!offset[level - 1])
 892                        goto skip_partial;
 893                err = truncate_partial_nodes(&dn, ri, offset, level);
 894                if (err < 0 && err != -ENOENT)
 895                        goto fail;
 896                break;
 897        default:
 898                BUG();
 899        }
 900
 901skip_partial:
 902        while (cont) {
 903                dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 904                switch (offset[0]) {
 905                case NODE_DIR1_BLOCK:
 906                case NODE_DIR2_BLOCK:
 907                        err = truncate_dnode(&dn);
 908                        break;
 909
 910                case NODE_IND1_BLOCK:
 911                case NODE_IND2_BLOCK:
 912                        err = truncate_nodes(&dn, nofs, offset[1], 2);
 913                        break;
 914
 915                case NODE_DIND_BLOCK:
 916                        err = truncate_nodes(&dn, nofs, offset[1], 3);
 917                        cont = 0;
 918                        break;
 919
 920                default:
 921                        BUG();
 922                }
 923                if (err < 0 && err != -ENOENT)
 924                        goto fail;
 925                if (offset[1] == 0 &&
 926                                ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 927                        lock_page(page);
 928                        BUG_ON(page->mapping != NODE_MAPPING(sbi));
 929                        f2fs_wait_on_page_writeback(page, NODE, true);
 930                        ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 931                        set_page_dirty(page);
 932                        unlock_page(page);
 933                }
 934                offset[1] = 0;
 935                offset[0]++;
 936                nofs += err;
 937        }
 938fail:
 939        f2fs_put_page(page, 0);
 940        trace_f2fs_truncate_inode_blocks_exit(inode, err);
 941        return err > 0 ? 0 : err;
 942}
 943
 944int truncate_xattr_node(struct inode *inode, struct page *page)
 945{
 946        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 947        nid_t nid = F2FS_I(inode)->i_xattr_nid;
 948        struct dnode_of_data dn;
 949        struct page *npage;
 950
 951        if (!nid)
 952                return 0;
 953
 954        npage = get_node_page(sbi, nid);
 955        if (IS_ERR(npage))
 956                return PTR_ERR(npage);
 957
 958        f2fs_i_xnid_write(inode, 0);
 959
 960        /* need to do checkpoint during fsync */
 961        F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
 962
 963        set_new_dnode(&dn, inode, page, npage, nid);
 964
 965        if (page)
 966                dn.inode_page_locked = true;
 967        truncate_node(&dn);
 968        return 0;
 969}
 970
 971/*
 972 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
 973 * f2fs_unlock_op().
 974 */
 975int remove_inode_page(struct inode *inode)
 976{
 977        struct dnode_of_data dn;
 978        int err;
 979
 980        set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 981        err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
 982        if (err)
 983                return err;
 984
 985        err = truncate_xattr_node(inode, dn.inode_page);
 986        if (err) {
 987                f2fs_put_dnode(&dn);
 988                return err;
 989        }
 990
 991        /* remove potential inline_data blocks */
 992        if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 993                                S_ISLNK(inode->i_mode))
 994                truncate_data_blocks_range(&dn, 1);
 995
 996        /* 0 is possible, after f2fs_new_inode() has failed */
 997        f2fs_bug_on(F2FS_I_SB(inode),
 998                        inode->i_blocks != 0 && inode->i_blocks != 1);
 999
1000        /* will put inode & node pages */
1001        truncate_node(&dn);
1002        return 0;
1003}
1004
1005struct page *new_inode_page(struct inode *inode)
1006{
1007        struct dnode_of_data dn;
1008
1009        /* allocate inode page for new inode */
1010        set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1011
1012        /* caller should f2fs_put_page(page, 1); */
1013        return new_node_page(&dn, 0, NULL);
1014}
1015
1016struct page *new_node_page(struct dnode_of_data *dn,
1017                                unsigned int ofs, struct page *ipage)
1018{
1019        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1020        struct node_info old_ni, new_ni;
1021        struct page *page;
1022        int err;
1023
1024        if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1025                return ERR_PTR(-EPERM);
1026
1027        page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1028        if (!page)
1029                return ERR_PTR(-ENOMEM);
1030
1031        if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1032                err = -ENOSPC;
1033                goto fail;
1034        }
1035
1036        get_node_info(sbi, dn->nid, &old_ni);
1037
1038        /* Reinitialize old_ni with new node page */
1039        f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1040        new_ni = old_ni;
1041        new_ni.ino = dn->inode->i_ino;
1042        set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1043
1044        f2fs_wait_on_page_writeback(page, NODE, true);
1045        fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1046        set_cold_node(dn->inode, page);
1047        if (!PageUptodate(page))
1048                SetPageUptodate(page);
1049        if (set_page_dirty(page))
1050                dn->node_changed = true;
1051
1052        if (f2fs_has_xattr_block(ofs))
1053                f2fs_i_xnid_write(dn->inode, dn->nid);
1054
1055        if (ofs == 0)
1056                inc_valid_inode_count(sbi);
1057        return page;
1058
1059fail:
1060        clear_node_page_dirty(page);
1061        f2fs_put_page(page, 1);
1062        return ERR_PTR(err);
1063}
1064
1065/*
1066 * Caller should do after getting the following values.
1067 * 0: f2fs_put_page(page, 0)
1068 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1069 */
1070static int read_node_page(struct page *page, int op_flags)
1071{
1072        struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1073        struct node_info ni;
1074        struct f2fs_io_info fio = {
1075                .sbi = sbi,
1076                .type = NODE,
1077                .op = REQ_OP_READ,
1078                .op_flags = op_flags,
1079                .page = page,
1080                .encrypted_page = NULL,
1081        };
1082
1083        if (PageUptodate(page))
1084                return LOCKED_PAGE;
1085
1086        get_node_info(sbi, page->index, &ni);
1087
1088        if (unlikely(ni.blk_addr == NULL_ADDR)) {
1089                ClearPageUptodate(page);
1090                return -ENOENT;
1091        }
1092
1093        fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1094        return f2fs_submit_page_bio(&fio);
1095}
1096
1097/*
1098 * Readahead a node page
1099 */
1100void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1101{
1102        struct page *apage;
1103        int err;
1104
1105        if (!nid)
1106                return;
1107        f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1108
1109        rcu_read_lock();
1110        apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1111        rcu_read_unlock();
1112        if (apage)
1113                return;
1114
1115        apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1116        if (!apage)
1117                return;
1118
1119        err = read_node_page(apage, REQ_RAHEAD);
1120        f2fs_put_page(apage, err ? 1 : 0);
1121}
1122
1123static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1124                                        struct page *parent, int start)
1125{
1126        struct page *page;
1127        int err;
1128
1129        if (!nid)
1130                return ERR_PTR(-ENOENT);
1131        f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1132repeat:
1133        page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1134        if (!page)
1135                return ERR_PTR(-ENOMEM);
1136
1137        err = read_node_page(page, READ_SYNC);
1138        if (err < 0) {
1139                f2fs_put_page(page, 1);
1140                return ERR_PTR(err);
1141        } else if (err == LOCKED_PAGE) {
1142                goto page_hit;
1143        }
1144
1145        if (parent)
1146                ra_node_pages(parent, start + 1, MAX_RA_NODE);
1147
1148        lock_page(page);
1149
1150        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1151                f2fs_put_page(page, 1);
1152                goto repeat;
1153        }
1154
1155        if (unlikely(!PageUptodate(page)))
1156                goto out_err;
1157page_hit:
1158        if(unlikely(nid != nid_of_node(page))) {
1159                f2fs_bug_on(sbi, 1);
1160                ClearPageUptodate(page);
1161out_err:
1162                f2fs_put_page(page, 1);
1163                return ERR_PTR(-EIO);
1164        }
1165        return page;
1166}
1167
1168struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1169{
1170        return __get_node_page(sbi, nid, NULL, 0);
1171}
1172
1173struct page *get_node_page_ra(struct page *parent, int start)
1174{
1175        struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1176        nid_t nid = get_nid(parent, start, false);
1177
1178        return __get_node_page(sbi, nid, parent, start);
1179}
1180
1181static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1182{
1183        struct inode *inode;
1184        struct page *page;
1185        int ret;
1186
1187        /* should flush inline_data before evict_inode */
1188        inode = ilookup(sbi->sb, ino);
1189        if (!inode)
1190                return;
1191
1192        page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1193        if (!page)
1194                goto iput_out;
1195
1196        if (!PageUptodate(page))
1197                goto page_out;
1198
1199        if (!PageDirty(page))
1200                goto page_out;
1201
1202        if (!clear_page_dirty_for_io(page))
1203                goto page_out;
1204
1205        ret = f2fs_write_inline_data(inode, page);
1206        inode_dec_dirty_pages(inode);
1207        if (ret)
1208                set_page_dirty(page);
1209page_out:
1210        f2fs_put_page(page, 1);
1211iput_out:
1212        iput(inode);
1213}
1214
1215void move_node_page(struct page *node_page, int gc_type)
1216{
1217        if (gc_type == FG_GC) {
1218                struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1219                struct writeback_control wbc = {
1220                        .sync_mode = WB_SYNC_ALL,
1221                        .nr_to_write = 1,
1222                        .for_reclaim = 0,
1223                };
1224
1225                set_page_dirty(node_page);
1226                f2fs_wait_on_page_writeback(node_page, NODE, true);
1227
1228                f2fs_bug_on(sbi, PageWriteback(node_page));
1229                if (!clear_page_dirty_for_io(node_page))
1230                        goto out_page;
1231
1232                if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1233                        unlock_page(node_page);
1234                goto release_page;
1235        } else {
1236                /* set page dirty and write it */
1237                if (!PageWriteback(node_page))
1238                        set_page_dirty(node_page);
1239        }
1240out_page:
1241        unlock_page(node_page);
1242release_page:
1243        f2fs_put_page(node_page, 0);
1244}
1245
1246static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1247{
1248        pgoff_t index, end;
1249        struct pagevec pvec;
1250        struct page *last_page = NULL;
1251
1252        pagevec_init(&pvec, 0);
1253        index = 0;
1254        end = ULONG_MAX;
1255
1256        while (index <= end) {
1257                int i, nr_pages;
1258                nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1259                                PAGECACHE_TAG_DIRTY,
1260                                min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1261                if (nr_pages == 0)
1262                        break;
1263
1264                for (i = 0; i < nr_pages; i++) {
1265                        struct page *page = pvec.pages[i];
1266
1267                        if (unlikely(f2fs_cp_error(sbi))) {
1268                                f2fs_put_page(last_page, 0);
1269                                pagevec_release(&pvec);
1270                                return ERR_PTR(-EIO);
1271                        }
1272
1273                        if (!IS_DNODE(page) || !is_cold_node(page))
1274                                continue;
1275                        if (ino_of_node(page) != ino)
1276                                continue;
1277
1278                        lock_page(page);
1279
1280                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1281continue_unlock:
1282                                unlock_page(page);
1283                                continue;
1284                        }
1285                        if (ino_of_node(page) != ino)
1286                                goto continue_unlock;
1287
1288                        if (!PageDirty(page)) {
1289                                /* someone wrote it for us */
1290                                goto continue_unlock;
1291                        }
1292
1293                        if (last_page)
1294                                f2fs_put_page(last_page, 0);
1295
1296                        get_page(page);
1297                        last_page = page;
1298                        unlock_page(page);
1299                }
1300                pagevec_release(&pvec);
1301                cond_resched();
1302        }
1303        return last_page;
1304}
1305
1306int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1307                        struct writeback_control *wbc, bool atomic)
1308{
1309        pgoff_t index, end;
1310        struct pagevec pvec;
1311        int ret = 0;
1312        struct page *last_page = NULL;
1313        bool marked = false;
1314        nid_t ino = inode->i_ino;
1315        int nwritten = 0;
1316
1317        if (atomic) {
1318                last_page = last_fsync_dnode(sbi, ino);
1319                if (IS_ERR_OR_NULL(last_page))
1320                        return PTR_ERR_OR_ZERO(last_page);
1321        }
1322retry:
1323        pagevec_init(&pvec, 0);
1324        index = 0;
1325        end = ULONG_MAX;
1326
1327        while (index <= end) {
1328                int i, nr_pages;
1329                nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1330                                PAGECACHE_TAG_DIRTY,
1331                                min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1332                if (nr_pages == 0)
1333                        break;
1334
1335                for (i = 0; i < nr_pages; i++) {
1336                        struct page *page = pvec.pages[i];
1337
1338                        if (unlikely(f2fs_cp_error(sbi))) {
1339                                f2fs_put_page(last_page, 0);
1340                                pagevec_release(&pvec);
1341                                return -EIO;
1342                        }
1343
1344                        if (!IS_DNODE(page) || !is_cold_node(page))
1345                                continue;
1346                        if (ino_of_node(page) != ino)
1347                                continue;
1348
1349                        lock_page(page);
1350
1351                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1352continue_unlock:
1353                                unlock_page(page);
1354                                continue;
1355                        }
1356                        if (ino_of_node(page) != ino)
1357                                goto continue_unlock;
1358
1359                        if (!PageDirty(page) && page != last_page) {
1360                                /* someone wrote it for us */
1361                                goto continue_unlock;
1362                        }
1363
1364                        f2fs_wait_on_page_writeback(page, NODE, true);
1365                        BUG_ON(PageWriteback(page));
1366
1367                        if (!atomic || page == last_page) {
1368                                set_fsync_mark(page, 1);
1369                                if (IS_INODE(page)) {
1370                                        if (is_inode_flag_set(inode,
1371                                                                FI_DIRTY_INODE))
1372                                                update_inode(inode, page);
1373                                        set_dentry_mark(page,
1374                                                need_dentry_mark(sbi, ino));
1375                                }
1376                                /*  may be written by other thread */
1377                                if (!PageDirty(page))
1378                                        set_page_dirty(page);
1379                        }
1380
1381                        if (!clear_page_dirty_for_io(page))
1382                                goto continue_unlock;
1383
1384                        ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1385                        if (ret) {
1386                                unlock_page(page);
1387                                f2fs_put_page(last_page, 0);
1388                                break;
1389                        } else {
1390                                nwritten++;
1391                        }
1392
1393                        if (page == last_page) {
1394                                f2fs_put_page(page, 0);
1395                                marked = true;
1396                                break;
1397                        }
1398                }
1399                pagevec_release(&pvec);
1400                cond_resched();
1401
1402                if (ret || marked)
1403                        break;
1404        }
1405        if (!ret && atomic && !marked) {
1406                f2fs_msg(sbi->sb, KERN_DEBUG,
1407                        "Retry to write fsync mark: ino=%u, idx=%lx",
1408                                        ino, last_page->index);
1409                lock_page(last_page);
1410                set_page_dirty(last_page);
1411                unlock_page(last_page);
1412                goto retry;
1413        }
1414
1415        if (nwritten)
1416                f2fs_submit_merged_bio_cond(sbi, NULL, NULL, ino, NODE, WRITE);
1417        return ret ? -EIO: 0;
1418}
1419
1420int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1421{
1422        pgoff_t index, end;
1423        struct pagevec pvec;
1424        int step = 0;
1425        int nwritten = 0;
1426        int ret = 0;
1427
1428        pagevec_init(&pvec, 0);
1429
1430next_step:
1431        index = 0;
1432        end = ULONG_MAX;
1433
1434        while (index <= end) {
1435                int i, nr_pages;
1436                nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1437                                PAGECACHE_TAG_DIRTY,
1438                                min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1439                if (nr_pages == 0)
1440                        break;
1441
1442                for (i = 0; i < nr_pages; i++) {
1443                        struct page *page = pvec.pages[i];
1444
1445                        if (unlikely(f2fs_cp_error(sbi))) {
1446                                pagevec_release(&pvec);
1447                                ret = -EIO;
1448                                goto out;
1449                        }
1450
1451                        /*
1452                         * flushing sequence with step:
1453                         * 0. indirect nodes
1454                         * 1. dentry dnodes
1455                         * 2. file dnodes
1456                         */
1457                        if (step == 0 && IS_DNODE(page))
1458                                continue;
1459                        if (step == 1 && (!IS_DNODE(page) ||
1460                                                is_cold_node(page)))
1461                                continue;
1462                        if (step == 2 && (!IS_DNODE(page) ||
1463                                                !is_cold_node(page)))
1464                                continue;
1465lock_node:
1466                        if (!trylock_page(page))
1467                                continue;
1468
1469                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1470continue_unlock:
1471                                unlock_page(page);
1472                                continue;
1473                        }
1474
1475                        if (!PageDirty(page)) {
1476                                /* someone wrote it for us */
1477                                goto continue_unlock;
1478                        }
1479
1480                        /* flush inline_data */
1481                        if (is_inline_node(page)) {
1482                                clear_inline_node(page);
1483                                unlock_page(page);
1484                                flush_inline_data(sbi, ino_of_node(page));
1485                                goto lock_node;
1486                        }
1487
1488                        f2fs_wait_on_page_writeback(page, NODE, true);
1489
1490                        BUG_ON(PageWriteback(page));
1491                        if (!clear_page_dirty_for_io(page))
1492                                goto continue_unlock;
1493
1494                        set_fsync_mark(page, 0);
1495                        set_dentry_mark(page, 0);
1496
1497                        if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1498                                unlock_page(page);
1499                        else
1500                                nwritten++;
1501
1502                        if (--wbc->nr_to_write == 0)
1503                                break;
1504                }
1505                pagevec_release(&pvec);
1506                cond_resched();
1507
1508                if (wbc->nr_to_write == 0) {
1509                        step = 2;
1510                        break;
1511                }
1512        }
1513
1514        if (step < 2) {
1515                step++;
1516                goto next_step;
1517        }
1518out:
1519        if (nwritten)
1520                f2fs_submit_merged_bio(sbi, NODE, WRITE);
1521        return ret;
1522}
1523
1524int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1525{
1526        pgoff_t index = 0, end = ULONG_MAX;
1527        struct pagevec pvec;
1528        int ret2, ret = 0;
1529
1530        pagevec_init(&pvec, 0);
1531
1532        while (index <= end) {
1533                int i, nr_pages;
1534                nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1535                                PAGECACHE_TAG_WRITEBACK,
1536                                min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1537                if (nr_pages == 0)
1538                        break;
1539
1540                for (i = 0; i < nr_pages; i++) {
1541                        struct page *page = pvec.pages[i];
1542
1543                        /* until radix tree lookup accepts end_index */
1544                        if (unlikely(page->index > end))
1545                                continue;
1546
1547                        if (ino && ino_of_node(page) == ino) {
1548                                f2fs_wait_on_page_writeback(page, NODE, true);
1549                                if (TestClearPageError(page))
1550                                        ret = -EIO;
1551                        }
1552                }
1553                pagevec_release(&pvec);
1554                cond_resched();
1555        }
1556
1557        ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1558        if (!ret)
1559                ret = ret2;
1560        return ret;
1561}
1562
1563static int f2fs_write_node_page(struct page *page,
1564                                struct writeback_control *wbc)
1565{
1566        struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1567        nid_t nid;
1568        struct node_info ni;
1569        struct f2fs_io_info fio = {
1570                .sbi = sbi,
1571                .type = NODE,
1572                .op = REQ_OP_WRITE,
1573                .op_flags = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0,
1574                .page = page,
1575                .encrypted_page = NULL,
1576        };
1577
1578        trace_f2fs_writepage(page, NODE);
1579
1580        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1581                goto redirty_out;
1582        if (unlikely(f2fs_cp_error(sbi)))
1583                goto redirty_out;
1584
1585        /* get old block addr of this node page */
1586        nid = nid_of_node(page);
1587        f2fs_bug_on(sbi, page->index != nid);
1588
1589        if (wbc->for_reclaim) {
1590                if (!down_read_trylock(&sbi->node_write))
1591                        goto redirty_out;
1592        } else {
1593                down_read(&sbi->node_write);
1594        }
1595
1596        get_node_info(sbi, nid, &ni);
1597
1598        /* This page is already truncated */
1599        if (unlikely(ni.blk_addr == NULL_ADDR)) {
1600                ClearPageUptodate(page);
1601                dec_page_count(sbi, F2FS_DIRTY_NODES);
1602                up_read(&sbi->node_write);
1603                unlock_page(page);
1604                return 0;
1605        }
1606
1607        set_page_writeback(page);
1608        fio.old_blkaddr = ni.blk_addr;
1609        write_node_page(nid, &fio);
1610        set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1611        dec_page_count(sbi, F2FS_DIRTY_NODES);
1612        up_read(&sbi->node_write);
1613
1614        if (wbc->for_reclaim)
1615                f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1616
1617        unlock_page(page);
1618
1619        if (unlikely(f2fs_cp_error(sbi)))
1620                f2fs_submit_merged_bio(sbi, NODE, WRITE);
1621
1622        return 0;
1623
1624redirty_out:
1625        redirty_page_for_writepage(wbc, page);
1626        return AOP_WRITEPAGE_ACTIVATE;
1627}
1628
1629static int f2fs_write_node_pages(struct address_space *mapping,
1630                            struct writeback_control *wbc)
1631{
1632        struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1633        struct blk_plug plug;
1634        long diff;
1635
1636        /* balancing f2fs's metadata in background */
1637        f2fs_balance_fs_bg(sbi);
1638
1639        /* collect a number of dirty node pages and write together */
1640        if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1641                goto skip_write;
1642
1643        trace_f2fs_writepages(mapping->host, wbc, NODE);
1644
1645        diff = nr_pages_to_write(sbi, NODE, wbc);
1646        wbc->sync_mode = WB_SYNC_NONE;
1647        blk_start_plug(&plug);
1648        sync_node_pages(sbi, wbc);
1649        blk_finish_plug(&plug);
1650        wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1651        return 0;
1652
1653skip_write:
1654        wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1655        trace_f2fs_writepages(mapping->host, wbc, NODE);
1656        return 0;
1657}
1658
1659static int f2fs_set_node_page_dirty(struct page *page)
1660{
1661        trace_f2fs_set_page_dirty(page, NODE);
1662
1663        if (!PageUptodate(page))
1664                SetPageUptodate(page);
1665        if (!PageDirty(page)) {
1666                f2fs_set_page_dirty_nobuffers(page);
1667                inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1668                SetPagePrivate(page);
1669                f2fs_trace_pid(page);
1670                return 1;
1671        }
1672        return 0;
1673}
1674
1675/*
1676 * Structure of the f2fs node operations
1677 */
1678const struct address_space_operations f2fs_node_aops = {
1679        .writepage      = f2fs_write_node_page,
1680        .writepages     = f2fs_write_node_pages,
1681        .set_page_dirty = f2fs_set_node_page_dirty,
1682        .invalidatepage = f2fs_invalidate_page,
1683        .releasepage    = f2fs_release_page,
1684#ifdef CONFIG_MIGRATION
1685        .migratepage    = f2fs_migrate_page,
1686#endif
1687};
1688
1689static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1690                                                nid_t n)
1691{
1692        return radix_tree_lookup(&nm_i->free_nid_root, n);
1693}
1694
1695static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1696                                                struct free_nid *i)
1697{
1698        list_del(&i->list);
1699        radix_tree_delete(&nm_i->free_nid_root, i->nid);
1700}
1701
1702static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1703{
1704        struct f2fs_nm_info *nm_i = NM_I(sbi);
1705        struct free_nid *i;
1706        struct nat_entry *ne;
1707
1708        if (!available_free_memory(sbi, FREE_NIDS))
1709                return -1;
1710
1711        /* 0 nid should not be used */
1712        if (unlikely(nid == 0))
1713                return 0;
1714
1715        if (build) {
1716                /* do not add allocated nids */
1717                ne = __lookup_nat_cache(nm_i, nid);
1718                if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1719                                nat_get_blkaddr(ne) != NULL_ADDR))
1720                        return 0;
1721        }
1722
1723        i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1724        i->nid = nid;
1725        i->state = NID_NEW;
1726
1727        if (radix_tree_preload(GFP_NOFS)) {
1728                kmem_cache_free(free_nid_slab, i);
1729                return 0;
1730        }
1731
1732        spin_lock(&nm_i->free_nid_list_lock);
1733        if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1734                spin_unlock(&nm_i->free_nid_list_lock);
1735                radix_tree_preload_end();
1736                kmem_cache_free(free_nid_slab, i);
1737                return 0;
1738        }
1739        list_add_tail(&i->list, &nm_i->free_nid_list);
1740        nm_i->fcnt++;
1741        spin_unlock(&nm_i->free_nid_list_lock);
1742        radix_tree_preload_end();
1743        return 1;
1744}
1745
1746static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1747{
1748        struct free_nid *i;
1749        bool need_free = false;
1750
1751        spin_lock(&nm_i->free_nid_list_lock);
1752        i = __lookup_free_nid_list(nm_i, nid);
1753        if (i && i->state == NID_NEW) {
1754                __del_from_free_nid_list(nm_i, i);
1755                nm_i->fcnt--;
1756                need_free = true;
1757        }
1758        spin_unlock(&nm_i->free_nid_list_lock);
1759
1760        if (need_free)
1761                kmem_cache_free(free_nid_slab, i);
1762}
1763
1764static void scan_nat_page(struct f2fs_sb_info *sbi,
1765                        struct page *nat_page, nid_t start_nid)
1766{
1767        struct f2fs_nm_info *nm_i = NM_I(sbi);
1768        struct f2fs_nat_block *nat_blk = page_address(nat_page);
1769        block_t blk_addr;
1770        int i;
1771
1772        i = start_nid % NAT_ENTRY_PER_BLOCK;
1773
1774        for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1775
1776                if (unlikely(start_nid >= nm_i->max_nid))
1777                        break;
1778
1779                blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1780                f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1781                if (blk_addr == NULL_ADDR) {
1782                        if (add_free_nid(sbi, start_nid, true) < 0)
1783                                break;
1784                }
1785        }
1786}
1787
1788void build_free_nids(struct f2fs_sb_info *sbi)
1789{
1790        struct f2fs_nm_info *nm_i = NM_I(sbi);
1791        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1792        struct f2fs_journal *journal = curseg->journal;
1793        int i = 0;
1794        nid_t nid = nm_i->next_scan_nid;
1795
1796        /* Enough entries */
1797        if (nm_i->fcnt >= NAT_ENTRY_PER_BLOCK)
1798                return;
1799
1800        /* readahead nat pages to be scanned */
1801        ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1802                                                        META_NAT, true);
1803
1804        down_read(&nm_i->nat_tree_lock);
1805
1806        while (1) {
1807                struct page *page = get_current_nat_page(sbi, nid);
1808
1809                scan_nat_page(sbi, page, nid);
1810                f2fs_put_page(page, 1);
1811
1812                nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1813                if (unlikely(nid >= nm_i->max_nid))
1814                        nid = 0;
1815
1816                if (++i >= FREE_NID_PAGES)
1817                        break;
1818        }
1819
1820        /* go to the next free nat pages to find free nids abundantly */
1821        nm_i->next_scan_nid = nid;
1822
1823        /* find free nids from current sum_pages */
1824        down_read(&curseg->journal_rwsem);
1825        for (i = 0; i < nats_in_cursum(journal); i++) {
1826                block_t addr;
1827
1828                addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1829                nid = le32_to_cpu(nid_in_journal(journal, i));
1830                if (addr == NULL_ADDR)
1831                        add_free_nid(sbi, nid, true);
1832                else
1833                        remove_free_nid(nm_i, nid);
1834        }
1835        up_read(&curseg->journal_rwsem);
1836        up_read(&nm_i->nat_tree_lock);
1837
1838        ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1839                                        nm_i->ra_nid_pages, META_NAT, false);
1840}
1841
1842/*
1843 * If this function returns success, caller can obtain a new nid
1844 * from second parameter of this function.
1845 * The returned nid could be used ino as well as nid when inode is created.
1846 */
1847bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1848{
1849        struct f2fs_nm_info *nm_i = NM_I(sbi);
1850        struct free_nid *i = NULL;
1851retry:
1852#ifdef CONFIG_F2FS_FAULT_INJECTION
1853        if (time_to_inject(sbi, FAULT_ALLOC_NID))
1854                return false;
1855#endif
1856        if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1857                return false;
1858
1859        spin_lock(&nm_i->free_nid_list_lock);
1860
1861        /* We should not use stale free nids created by build_free_nids */
1862        if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1863                f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1864                list_for_each_entry(i, &nm_i->free_nid_list, list)
1865                        if (i->state == NID_NEW)
1866                                break;
1867
1868                f2fs_bug_on(sbi, i->state != NID_NEW);
1869                *nid = i->nid;
1870                i->state = NID_ALLOC;
1871                nm_i->fcnt--;
1872                spin_unlock(&nm_i->free_nid_list_lock);
1873                return true;
1874        }
1875        spin_unlock(&nm_i->free_nid_list_lock);
1876
1877        /* Let's scan nat pages and its caches to get free nids */
1878        mutex_lock(&nm_i->build_lock);
1879        build_free_nids(sbi);
1880        mutex_unlock(&nm_i->build_lock);
1881        goto retry;
1882}
1883
1884/*
1885 * alloc_nid() should be called prior to this function.
1886 */
1887void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1888{
1889        struct f2fs_nm_info *nm_i = NM_I(sbi);
1890        struct free_nid *i;
1891
1892        spin_lock(&nm_i->free_nid_list_lock);
1893        i = __lookup_free_nid_list(nm_i, nid);
1894        f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1895        __del_from_free_nid_list(nm_i, i);
1896        spin_unlock(&nm_i->free_nid_list_lock);
1897
1898        kmem_cache_free(free_nid_slab, i);
1899}
1900
1901/*
1902 * alloc_nid() should be called prior to this function.
1903 */
1904void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1905{
1906        struct f2fs_nm_info *nm_i = NM_I(sbi);
1907        struct free_nid *i;
1908        bool need_free = false;
1909
1910        if (!nid)
1911                return;
1912
1913        spin_lock(&nm_i->free_nid_list_lock);
1914        i = __lookup_free_nid_list(nm_i, nid);
1915        f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1916        if (!available_free_memory(sbi, FREE_NIDS)) {
1917                __del_from_free_nid_list(nm_i, i);
1918                need_free = true;
1919        } else {
1920                i->state = NID_NEW;
1921                nm_i->fcnt++;
1922        }
1923        spin_unlock(&nm_i->free_nid_list_lock);
1924
1925        if (need_free)
1926                kmem_cache_free(free_nid_slab, i);
1927}
1928
1929int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1930{
1931        struct f2fs_nm_info *nm_i = NM_I(sbi);
1932        struct free_nid *i, *next;
1933        int nr = nr_shrink;
1934
1935        if (nm_i->fcnt <= MAX_FREE_NIDS)
1936                return 0;
1937
1938        if (!mutex_trylock(&nm_i->build_lock))
1939                return 0;
1940
1941        spin_lock(&nm_i->free_nid_list_lock);
1942        list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1943                if (nr_shrink <= 0 || nm_i->fcnt <= MAX_FREE_NIDS)
1944                        break;
1945                if (i->state == NID_ALLOC)
1946                        continue;
1947                __del_from_free_nid_list(nm_i, i);
1948                kmem_cache_free(free_nid_slab, i);
1949                nm_i->fcnt--;
1950                nr_shrink--;
1951        }
1952        spin_unlock(&nm_i->free_nid_list_lock);
1953        mutex_unlock(&nm_i->build_lock);
1954
1955        return nr - nr_shrink;
1956}
1957
1958void recover_inline_xattr(struct inode *inode, struct page *page)
1959{
1960        void *src_addr, *dst_addr;
1961        size_t inline_size;
1962        struct page *ipage;
1963        struct f2fs_inode *ri;
1964
1965        ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1966        f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1967
1968        ri = F2FS_INODE(page);
1969        if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1970                clear_inode_flag(inode, FI_INLINE_XATTR);
1971                goto update_inode;
1972        }
1973
1974        dst_addr = inline_xattr_addr(ipage);
1975        src_addr = inline_xattr_addr(page);
1976        inline_size = inline_xattr_size(inode);
1977
1978        f2fs_wait_on_page_writeback(ipage, NODE, true);
1979        memcpy(dst_addr, src_addr, inline_size);
1980update_inode:
1981        update_inode(inode, ipage);
1982        f2fs_put_page(ipage, 1);
1983}
1984
1985void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1986{
1987        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1988        nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1989        nid_t new_xnid = nid_of_node(page);
1990        struct node_info ni;
1991
1992        /* 1: invalidate the previous xattr nid */
1993        if (!prev_xnid)
1994                goto recover_xnid;
1995
1996        /* Deallocate node address */
1997        get_node_info(sbi, prev_xnid, &ni);
1998        f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1999        invalidate_blocks(sbi, ni.blk_addr);
2000        dec_valid_node_count(sbi, inode);
2001        set_node_addr(sbi, &ni, NULL_ADDR, false);
2002
2003recover_xnid:
2004        /* 2: allocate new xattr nid */
2005        if (unlikely(!inc_valid_node_count(sbi, inode)))
2006                f2fs_bug_on(sbi, 1);
2007
2008        remove_free_nid(NM_I(sbi), new_xnid);
2009        get_node_info(sbi, new_xnid, &ni);
2010        ni.ino = inode->i_ino;
2011        set_node_addr(sbi, &ni, NEW_ADDR, false);
2012        f2fs_i_xnid_write(inode, new_xnid);
2013
2014        /* 3: update xattr blkaddr */
2015        refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
2016        set_node_addr(sbi, &ni, blkaddr, false);
2017}
2018
2019int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2020{
2021        struct f2fs_inode *src, *dst;
2022        nid_t ino = ino_of_node(page);
2023        struct node_info old_ni, new_ni;
2024        struct page *ipage;
2025
2026        get_node_info(sbi, ino, &old_ni);
2027
2028        if (unlikely(old_ni.blk_addr != NULL_ADDR))
2029                return -EINVAL;
2030retry:
2031        ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2032        if (!ipage) {
2033                congestion_wait(BLK_RW_ASYNC, HZ/50);
2034                goto retry;
2035        }
2036
2037        /* Should not use this inode from free nid list */
2038        remove_free_nid(NM_I(sbi), ino);
2039
2040        if (!PageUptodate(ipage))
2041                SetPageUptodate(ipage);
2042        fill_node_footer(ipage, ino, ino, 0, true);
2043
2044        src = F2FS_INODE(page);
2045        dst = F2FS_INODE(ipage);
2046
2047        memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2048        dst->i_size = 0;
2049        dst->i_blocks = cpu_to_le64(1);
2050        dst->i_links = cpu_to_le32(1);
2051        dst->i_xattr_nid = 0;
2052        dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2053
2054        new_ni = old_ni;
2055        new_ni.ino = ino;
2056
2057        if (unlikely(!inc_valid_node_count(sbi, NULL)))
2058                WARN_ON(1);
2059        set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2060        inc_valid_inode_count(sbi);
2061        set_page_dirty(ipage);
2062        f2fs_put_page(ipage, 1);
2063        return 0;
2064}
2065
2066int restore_node_summary(struct f2fs_sb_info *sbi,
2067                        unsigned int segno, struct f2fs_summary_block *sum)
2068{
2069        struct f2fs_node *rn;
2070        struct f2fs_summary *sum_entry;
2071        block_t addr;
2072        int bio_blocks = MAX_BIO_BLOCKS(sbi);
2073        int i, idx, last_offset, nrpages;
2074
2075        /* scan the node segment */
2076        last_offset = sbi->blocks_per_seg;
2077        addr = START_BLOCK(sbi, segno);
2078        sum_entry = &sum->entries[0];
2079
2080        for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2081                nrpages = min(last_offset - i, bio_blocks);
2082
2083                /* readahead node pages */
2084                ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2085
2086                for (idx = addr; idx < addr + nrpages; idx++) {
2087                        struct page *page = get_tmp_page(sbi, idx);
2088
2089                        rn = F2FS_NODE(page);
2090                        sum_entry->nid = rn->footer.nid;
2091                        sum_entry->version = 0;
2092                        sum_entry->ofs_in_node = 0;
2093                        sum_entry++;
2094                        f2fs_put_page(page, 1);
2095                }
2096
2097                invalidate_mapping_pages(META_MAPPING(sbi), addr,
2098                                                        addr + nrpages);
2099        }
2100        return 0;
2101}
2102
2103static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2104{
2105        struct f2fs_nm_info *nm_i = NM_I(sbi);
2106        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2107        struct f2fs_journal *journal = curseg->journal;
2108        int i;
2109
2110        down_write(&curseg->journal_rwsem);
2111        for (i = 0; i < nats_in_cursum(journal); i++) {
2112                struct nat_entry *ne;
2113                struct f2fs_nat_entry raw_ne;
2114                nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2115
2116                raw_ne = nat_in_journal(journal, i);
2117
2118                ne = __lookup_nat_cache(nm_i, nid);
2119                if (!ne) {
2120                        ne = grab_nat_entry(nm_i, nid);
2121                        node_info_from_raw_nat(&ne->ni, &raw_ne);
2122                }
2123                __set_nat_cache_dirty(nm_i, ne);
2124        }
2125        update_nats_in_cursum(journal, -i);
2126        up_write(&curseg->journal_rwsem);
2127}
2128
2129static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2130                                                struct list_head *head, int max)
2131{
2132        struct nat_entry_set *cur;
2133
2134        if (nes->entry_cnt >= max)
2135                goto add_out;
2136
2137        list_for_each_entry(cur, head, set_list) {
2138                if (cur->entry_cnt >= nes->entry_cnt) {
2139                        list_add(&nes->set_list, cur->set_list.prev);
2140                        return;
2141                }
2142        }
2143add_out:
2144        list_add_tail(&nes->set_list, head);
2145}
2146
2147static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2148                                        struct nat_entry_set *set)
2149{
2150        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2151        struct f2fs_journal *journal = curseg->journal;
2152        nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2153        bool to_journal = true;
2154        struct f2fs_nat_block *nat_blk;
2155        struct nat_entry *ne, *cur;
2156        struct page *page = NULL;
2157
2158        /*
2159         * there are two steps to flush nat entries:
2160         * #1, flush nat entries to journal in current hot data summary block.
2161         * #2, flush nat entries to nat page.
2162         */
2163        if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2164                to_journal = false;
2165
2166        if (to_journal) {
2167                down_write(&curseg->journal_rwsem);
2168        } else {
2169                page = get_next_nat_page(sbi, start_nid);
2170                nat_blk = page_address(page);
2171                f2fs_bug_on(sbi, !nat_blk);
2172        }
2173
2174        /* flush dirty nats in nat entry set */
2175        list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2176                struct f2fs_nat_entry *raw_ne;
2177                nid_t nid = nat_get_nid(ne);
2178                int offset;
2179
2180                if (nat_get_blkaddr(ne) == NEW_ADDR)
2181                        continue;
2182
2183                if (to_journal) {
2184                        offset = lookup_journal_in_cursum(journal,
2185                                                        NAT_JOURNAL, nid, 1);
2186                        f2fs_bug_on(sbi, offset < 0);
2187                        raw_ne = &nat_in_journal(journal, offset);
2188                        nid_in_journal(journal, offset) = cpu_to_le32(nid);
2189                } else {
2190                        raw_ne = &nat_blk->entries[nid - start_nid];
2191                }
2192                raw_nat_from_node_info(raw_ne, &ne->ni);
2193                nat_reset_flag(ne);
2194                __clear_nat_cache_dirty(NM_I(sbi), ne);
2195                if (nat_get_blkaddr(ne) == NULL_ADDR)
2196                        add_free_nid(sbi, nid, false);
2197        }
2198
2199        if (to_journal)
2200                up_write(&curseg->journal_rwsem);
2201        else
2202                f2fs_put_page(page, 1);
2203
2204        f2fs_bug_on(sbi, set->entry_cnt);
2205
2206        radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2207        kmem_cache_free(nat_entry_set_slab, set);
2208}
2209
2210/*
2211 * This function is called during the checkpointing process.
2212 */
2213void flush_nat_entries(struct f2fs_sb_info *sbi)
2214{
2215        struct f2fs_nm_info *nm_i = NM_I(sbi);
2216        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2217        struct f2fs_journal *journal = curseg->journal;
2218        struct nat_entry_set *setvec[SETVEC_SIZE];
2219        struct nat_entry_set *set, *tmp;
2220        unsigned int found;
2221        nid_t set_idx = 0;
2222        LIST_HEAD(sets);
2223
2224        if (!nm_i->dirty_nat_cnt)
2225                return;
2226
2227        down_write(&nm_i->nat_tree_lock);
2228
2229        /*
2230         * if there are no enough space in journal to store dirty nat
2231         * entries, remove all entries from journal and merge them
2232         * into nat entry set.
2233         */
2234        if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2235                remove_nats_in_journal(sbi);
2236
2237        while ((found = __gang_lookup_nat_set(nm_i,
2238                                        set_idx, SETVEC_SIZE, setvec))) {
2239                unsigned idx;
2240                set_idx = setvec[found - 1]->set + 1;
2241                for (idx = 0; idx < found; idx++)
2242                        __adjust_nat_entry_set(setvec[idx], &sets,
2243                                                MAX_NAT_JENTRIES(journal));
2244        }
2245
2246        /* flush dirty nats in nat entry set */
2247        list_for_each_entry_safe(set, tmp, &sets, set_list)
2248                __flush_nat_entry_set(sbi, set);
2249
2250        up_write(&nm_i->nat_tree_lock);
2251
2252        f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2253}
2254
2255static int init_node_manager(struct f2fs_sb_info *sbi)
2256{
2257        struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2258        struct f2fs_nm_info *nm_i = NM_I(sbi);
2259        unsigned char *version_bitmap;
2260        unsigned int nat_segs, nat_blocks;
2261
2262        nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2263
2264        /* segment_count_nat includes pair segment so divide to 2. */
2265        nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2266        nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2267
2268        nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2269
2270        /* not used nids: 0, node, meta, (and root counted as valid node) */
2271        nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2272        nm_i->fcnt = 0;
2273        nm_i->nat_cnt = 0;
2274        nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2275        nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2276        nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2277
2278        INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2279        INIT_LIST_HEAD(&nm_i->free_nid_list);
2280        INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2281        INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2282        INIT_LIST_HEAD(&nm_i->nat_entries);
2283
2284        mutex_init(&nm_i->build_lock);
2285        spin_lock_init(&nm_i->free_nid_list_lock);
2286        init_rwsem(&nm_i->nat_tree_lock);
2287
2288        nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2289        nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2290        version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2291        if (!version_bitmap)
2292                return -EFAULT;
2293
2294        nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2295                                        GFP_KERNEL);
2296        if (!nm_i->nat_bitmap)
2297                return -ENOMEM;
2298        return 0;
2299}
2300
2301int build_node_manager(struct f2fs_sb_info *sbi)
2302{
2303        int err;
2304
2305        sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2306        if (!sbi->nm_info)
2307                return -ENOMEM;
2308
2309        err = init_node_manager(sbi);
2310        if (err)
2311                return err;
2312
2313        build_free_nids(sbi);
2314        return 0;
2315}
2316
2317void destroy_node_manager(struct f2fs_sb_info *sbi)
2318{
2319        struct f2fs_nm_info *nm_i = NM_I(sbi);
2320        struct free_nid *i, *next_i;
2321        struct nat_entry *natvec[NATVEC_SIZE];
2322        struct nat_entry_set *setvec[SETVEC_SIZE];
2323        nid_t nid = 0;
2324        unsigned int found;
2325
2326        if (!nm_i)
2327                return;
2328
2329        /* destroy free nid list */
2330        spin_lock(&nm_i->free_nid_list_lock);
2331        list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2332                f2fs_bug_on(sbi, i->state == NID_ALLOC);
2333                __del_from_free_nid_list(nm_i, i);
2334                nm_i->fcnt--;
2335                spin_unlock(&nm_i->free_nid_list_lock);
2336                kmem_cache_free(free_nid_slab, i);
2337                spin_lock(&nm_i->free_nid_list_lock);
2338        }
2339        f2fs_bug_on(sbi, nm_i->fcnt);
2340        spin_unlock(&nm_i->free_nid_list_lock);
2341
2342        /* destroy nat cache */
2343        down_write(&nm_i->nat_tree_lock);
2344        while ((found = __gang_lookup_nat_cache(nm_i,
2345                                        nid, NATVEC_SIZE, natvec))) {
2346                unsigned idx;
2347
2348                nid = nat_get_nid(natvec[found - 1]) + 1;
2349                for (idx = 0; idx < found; idx++)
2350                        __del_from_nat_cache(nm_i, natvec[idx]);
2351        }
2352        f2fs_bug_on(sbi, nm_i->nat_cnt);
2353
2354        /* destroy nat set cache */
2355        nid = 0;
2356        while ((found = __gang_lookup_nat_set(nm_i,
2357                                        nid, SETVEC_SIZE, setvec))) {
2358                unsigned idx;
2359
2360                nid = setvec[found - 1]->set + 1;
2361                for (idx = 0; idx < found; idx++) {
2362                        /* entry_cnt is not zero, when cp_error was occurred */
2363                        f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2364                        radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2365                        kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2366                }
2367        }
2368        up_write(&nm_i->nat_tree_lock);
2369
2370        kfree(nm_i->nat_bitmap);
2371        sbi->nm_info = NULL;
2372        kfree(nm_i);
2373}
2374
2375int __init create_node_manager_caches(void)
2376{
2377        nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2378                        sizeof(struct nat_entry));
2379        if (!nat_entry_slab)
2380                goto fail;
2381
2382        free_nid_slab = f2fs_kmem_cache_create("free_nid",
2383                        sizeof(struct free_nid));
2384        if (!free_nid_slab)
2385                goto destroy_nat_entry;
2386
2387        nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2388                        sizeof(struct nat_entry_set));
2389        if (!nat_entry_set_slab)
2390                goto destroy_free_nid;
2391        return 0;
2392
2393destroy_free_nid:
2394        kmem_cache_destroy(free_nid_slab);
2395destroy_nat_entry:
2396        kmem_cache_destroy(nat_entry_slab);
2397fail:
2398        return -ENOMEM;
2399}
2400
2401void destroy_node_manager_caches(void)
2402{
2403        kmem_cache_destroy(nat_entry_set_slab);
2404        kmem_cache_destroy(free_nid_slab);
2405        kmem_cache_destroy(nat_entry_slab);
2406}
2407