linux/fs/fs-writeback.c
<<
>>
Prefs
   1/*
   2 * fs/fs-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * Contains all the functions related to writing back and waiting
   7 * upon dirty inodes against superblocks, and writing back dirty
   8 * pages against inodes.  ie: data writeback.  Writeout of the
   9 * inode itself is not handled here.
  10 *
  11 * 10Apr2002    Andrew Morton
  12 *              Split out of fs/inode.c
  13 *              Additions for address_space-based writeback
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/spinlock.h>
  19#include <linux/slab.h>
  20#include <linux/sched.h>
  21#include <linux/fs.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kthread.h>
  25#include <linux/writeback.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
  28#include <linux/tracepoint.h>
  29#include <linux/device.h>
  30#include <linux/memcontrol.h>
  31#include "internal.h"
  32
  33/*
  34 * 4MB minimal write chunk size
  35 */
  36#define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
  37
  38struct wb_completion {
  39        atomic_t                cnt;
  40};
  41
  42/*
  43 * Passed into wb_writeback(), essentially a subset of writeback_control
  44 */
  45struct wb_writeback_work {
  46        long nr_pages;
  47        struct super_block *sb;
  48        unsigned long *older_than_this;
  49        enum writeback_sync_modes sync_mode;
  50        unsigned int tagged_writepages:1;
  51        unsigned int for_kupdate:1;
  52        unsigned int range_cyclic:1;
  53        unsigned int for_background:1;
  54        unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
  55        unsigned int auto_free:1;       /* free on completion */
  56        enum wb_reason reason;          /* why was writeback initiated? */
  57
  58        struct list_head list;          /* pending work list */
  59        struct wb_completion *done;     /* set if the caller waits */
  60};
  61
  62/*
  63 * If one wants to wait for one or more wb_writeback_works, each work's
  64 * ->done should be set to a wb_completion defined using the following
  65 * macro.  Once all work items are issued with wb_queue_work(), the caller
  66 * can wait for the completion of all using wb_wait_for_completion().  Work
  67 * items which are waited upon aren't freed automatically on completion.
  68 */
  69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
  70        struct wb_completion cmpl = {                                   \
  71                .cnt            = ATOMIC_INIT(1),                       \
  72        }
  73
  74
  75/*
  76 * If an inode is constantly having its pages dirtied, but then the
  77 * updates stop dirtytime_expire_interval seconds in the past, it's
  78 * possible for the worst case time between when an inode has its
  79 * timestamps updated and when they finally get written out to be two
  80 * dirtytime_expire_intervals.  We set the default to 12 hours (in
  81 * seconds), which means most of the time inodes will have their
  82 * timestamps written to disk after 12 hours, but in the worst case a
  83 * few inodes might not their timestamps updated for 24 hours.
  84 */
  85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
  86
  87static inline struct inode *wb_inode(struct list_head *head)
  88{
  89        return list_entry(head, struct inode, i_io_list);
  90}
  91
  92/*
  93 * Include the creation of the trace points after defining the
  94 * wb_writeback_work structure and inline functions so that the definition
  95 * remains local to this file.
  96 */
  97#define CREATE_TRACE_POINTS
  98#include <trace/events/writeback.h>
  99
 100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
 101
 102static bool wb_io_lists_populated(struct bdi_writeback *wb)
 103{
 104        if (wb_has_dirty_io(wb)) {
 105                return false;
 106        } else {
 107                set_bit(WB_has_dirty_io, &wb->state);
 108                WARN_ON_ONCE(!wb->avg_write_bandwidth);
 109                atomic_long_add(wb->avg_write_bandwidth,
 110                                &wb->bdi->tot_write_bandwidth);
 111                return true;
 112        }
 113}
 114
 115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
 116{
 117        if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
 118            list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
 119                clear_bit(WB_has_dirty_io, &wb->state);
 120                WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
 121                                        &wb->bdi->tot_write_bandwidth) < 0);
 122        }
 123}
 124
 125/**
 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
 127 * @inode: inode to be moved
 128 * @wb: target bdi_writeback
 129 * @head: one of @wb->b_{dirty|io|more_io}
 130 *
 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
 132 * Returns %true if @inode is the first occupant of the !dirty_time IO
 133 * lists; otherwise, %false.
 134 */
 135static bool inode_io_list_move_locked(struct inode *inode,
 136                                      struct bdi_writeback *wb,
 137                                      struct list_head *head)
 138{
 139        assert_spin_locked(&wb->list_lock);
 140
 141        list_move(&inode->i_io_list, head);
 142
 143        /* dirty_time doesn't count as dirty_io until expiration */
 144        if (head != &wb->b_dirty_time)
 145                return wb_io_lists_populated(wb);
 146
 147        wb_io_lists_depopulated(wb);
 148        return false;
 149}
 150
 151/**
 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
 153 * @inode: inode to be removed
 154 * @wb: bdi_writeback @inode is being removed from
 155 *
 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 157 * clear %WB_has_dirty_io if all are empty afterwards.
 158 */
 159static void inode_io_list_del_locked(struct inode *inode,
 160                                     struct bdi_writeback *wb)
 161{
 162        assert_spin_locked(&wb->list_lock);
 163
 164        list_del_init(&inode->i_io_list);
 165        wb_io_lists_depopulated(wb);
 166}
 167
 168static void wb_wakeup(struct bdi_writeback *wb)
 169{
 170        spin_lock_bh(&wb->work_lock);
 171        if (test_bit(WB_registered, &wb->state))
 172                mod_delayed_work(bdi_wq, &wb->dwork, 0);
 173        spin_unlock_bh(&wb->work_lock);
 174}
 175
 176static void wb_queue_work(struct bdi_writeback *wb,
 177                          struct wb_writeback_work *work)
 178{
 179        trace_writeback_queue(wb, work);
 180
 181        spin_lock_bh(&wb->work_lock);
 182        if (!test_bit(WB_registered, &wb->state))
 183                goto out_unlock;
 184        if (work->done)
 185                atomic_inc(&work->done->cnt);
 186        list_add_tail(&work->list, &wb->work_list);
 187        mod_delayed_work(bdi_wq, &wb->dwork, 0);
 188out_unlock:
 189        spin_unlock_bh(&wb->work_lock);
 190}
 191
 192/**
 193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 194 * @bdi: bdi work items were issued to
 195 * @done: target wb_completion
 196 *
 197 * Wait for one or more work items issued to @bdi with their ->done field
 198 * set to @done, which should have been defined with
 199 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 200 * work items are completed.  Work items which are waited upon aren't freed
 201 * automatically on completion.
 202 */
 203static void wb_wait_for_completion(struct backing_dev_info *bdi,
 204                                   struct wb_completion *done)
 205{
 206        atomic_dec(&done->cnt);         /* put down the initial count */
 207        wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
 208}
 209
 210#ifdef CONFIG_CGROUP_WRITEBACK
 211
 212/* parameters for foreign inode detection, see wb_detach_inode() */
 213#define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
 214#define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
 215#define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
 216#define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
 217
 218#define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
 219#define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
 220                                        /* each slot's duration is 2s / 16 */
 221#define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
 222                                        /* if foreign slots >= 8, switch */
 223#define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
 224                                        /* one round can affect upto 5 slots */
 225
 226static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
 227static struct workqueue_struct *isw_wq;
 228
 229void __inode_attach_wb(struct inode *inode, struct page *page)
 230{
 231        struct backing_dev_info *bdi = inode_to_bdi(inode);
 232        struct bdi_writeback *wb = NULL;
 233
 234        if (inode_cgwb_enabled(inode)) {
 235                struct cgroup_subsys_state *memcg_css;
 236
 237                if (page) {
 238                        memcg_css = mem_cgroup_css_from_page(page);
 239                        wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 240                } else {
 241                        /* must pin memcg_css, see wb_get_create() */
 242                        memcg_css = task_get_css(current, memory_cgrp_id);
 243                        wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 244                        css_put(memcg_css);
 245                }
 246        }
 247
 248        if (!wb)
 249                wb = &bdi->wb;
 250
 251        /*
 252         * There may be multiple instances of this function racing to
 253         * update the same inode.  Use cmpxchg() to tell the winner.
 254         */
 255        if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
 256                wb_put(wb);
 257}
 258
 259/**
 260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 261 * @inode: inode of interest with i_lock held
 262 *
 263 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 264 * held on entry and is released on return.  The returned wb is guaranteed
 265 * to stay @inode's associated wb until its list_lock is released.
 266 */
 267static struct bdi_writeback *
 268locked_inode_to_wb_and_lock_list(struct inode *inode)
 269        __releases(&inode->i_lock)
 270        __acquires(&wb->list_lock)
 271{
 272        while (true) {
 273                struct bdi_writeback *wb = inode_to_wb(inode);
 274
 275                /*
 276                 * inode_to_wb() association is protected by both
 277                 * @inode->i_lock and @wb->list_lock but list_lock nests
 278                 * outside i_lock.  Drop i_lock and verify that the
 279                 * association hasn't changed after acquiring list_lock.
 280                 */
 281                wb_get(wb);
 282                spin_unlock(&inode->i_lock);
 283                spin_lock(&wb->list_lock);
 284
 285                /* i_wb may have changed inbetween, can't use inode_to_wb() */
 286                if (likely(wb == inode->i_wb)) {
 287                        wb_put(wb);     /* @inode already has ref */
 288                        return wb;
 289                }
 290
 291                spin_unlock(&wb->list_lock);
 292                wb_put(wb);
 293                cpu_relax();
 294                spin_lock(&inode->i_lock);
 295        }
 296}
 297
 298/**
 299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 300 * @inode: inode of interest
 301 *
 302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 303 * on entry.
 304 */
 305static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 306        __acquires(&wb->list_lock)
 307{
 308        spin_lock(&inode->i_lock);
 309        return locked_inode_to_wb_and_lock_list(inode);
 310}
 311
 312struct inode_switch_wbs_context {
 313        struct inode            *inode;
 314        struct bdi_writeback    *new_wb;
 315
 316        struct rcu_head         rcu_head;
 317        struct work_struct      work;
 318};
 319
 320static void inode_switch_wbs_work_fn(struct work_struct *work)
 321{
 322        struct inode_switch_wbs_context *isw =
 323                container_of(work, struct inode_switch_wbs_context, work);
 324        struct inode *inode = isw->inode;
 325        struct address_space *mapping = inode->i_mapping;
 326        struct bdi_writeback *old_wb = inode->i_wb;
 327        struct bdi_writeback *new_wb = isw->new_wb;
 328        struct radix_tree_iter iter;
 329        bool switched = false;
 330        void **slot;
 331
 332        /*
 333         * By the time control reaches here, RCU grace period has passed
 334         * since I_WB_SWITCH assertion and all wb stat update transactions
 335         * between unlocked_inode_to_wb_begin/end() are guaranteed to be
 336         * synchronizing against mapping->tree_lock.
 337         *
 338         * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
 339         * gives us exclusion against all wb related operations on @inode
 340         * including IO list manipulations and stat updates.
 341         */
 342        if (old_wb < new_wb) {
 343                spin_lock(&old_wb->list_lock);
 344                spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
 345        } else {
 346                spin_lock(&new_wb->list_lock);
 347                spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
 348        }
 349        spin_lock(&inode->i_lock);
 350        spin_lock_irq(&mapping->tree_lock);
 351
 352        /*
 353         * Once I_FREEING is visible under i_lock, the eviction path owns
 354         * the inode and we shouldn't modify ->i_io_list.
 355         */
 356        if (unlikely(inode->i_state & I_FREEING))
 357                goto skip_switch;
 358
 359        /*
 360         * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
 361         * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
 362         * pages actually under underwriteback.
 363         */
 364        radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
 365                                   PAGECACHE_TAG_DIRTY) {
 366                struct page *page = radix_tree_deref_slot_protected(slot,
 367                                                        &mapping->tree_lock);
 368                if (likely(page) && PageDirty(page)) {
 369                        __dec_wb_stat(old_wb, WB_RECLAIMABLE);
 370                        __inc_wb_stat(new_wb, WB_RECLAIMABLE);
 371                }
 372        }
 373
 374        radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
 375                                   PAGECACHE_TAG_WRITEBACK) {
 376                struct page *page = radix_tree_deref_slot_protected(slot,
 377                                                        &mapping->tree_lock);
 378                if (likely(page)) {
 379                        WARN_ON_ONCE(!PageWriteback(page));
 380                        __dec_wb_stat(old_wb, WB_WRITEBACK);
 381                        __inc_wb_stat(new_wb, WB_WRITEBACK);
 382                }
 383        }
 384
 385        wb_get(new_wb);
 386
 387        /*
 388         * Transfer to @new_wb's IO list if necessary.  The specific list
 389         * @inode was on is ignored and the inode is put on ->b_dirty which
 390         * is always correct including from ->b_dirty_time.  The transfer
 391         * preserves @inode->dirtied_when ordering.
 392         */
 393        if (!list_empty(&inode->i_io_list)) {
 394                struct inode *pos;
 395
 396                inode_io_list_del_locked(inode, old_wb);
 397                inode->i_wb = new_wb;
 398                list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
 399                        if (time_after_eq(inode->dirtied_when,
 400                                          pos->dirtied_when))
 401                                break;
 402                inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
 403        } else {
 404                inode->i_wb = new_wb;
 405        }
 406
 407        /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
 408        inode->i_wb_frn_winner = 0;
 409        inode->i_wb_frn_avg_time = 0;
 410        inode->i_wb_frn_history = 0;
 411        switched = true;
 412skip_switch:
 413        /*
 414         * Paired with load_acquire in unlocked_inode_to_wb_begin() and
 415         * ensures that the new wb is visible if they see !I_WB_SWITCH.
 416         */
 417        smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
 418
 419        spin_unlock_irq(&mapping->tree_lock);
 420        spin_unlock(&inode->i_lock);
 421        spin_unlock(&new_wb->list_lock);
 422        spin_unlock(&old_wb->list_lock);
 423
 424        if (switched) {
 425                wb_wakeup(new_wb);
 426                wb_put(old_wb);
 427        }
 428        wb_put(new_wb);
 429
 430        iput(inode);
 431        kfree(isw);
 432
 433        atomic_dec(&isw_nr_in_flight);
 434}
 435
 436static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
 437{
 438        struct inode_switch_wbs_context *isw = container_of(rcu_head,
 439                                struct inode_switch_wbs_context, rcu_head);
 440
 441        /* needs to grab bh-unsafe locks, bounce to work item */
 442        INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
 443        queue_work(isw_wq, &isw->work);
 444}
 445
 446/**
 447 * inode_switch_wbs - change the wb association of an inode
 448 * @inode: target inode
 449 * @new_wb_id: ID of the new wb
 450 *
 451 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 452 * switching is performed asynchronously and may fail silently.
 453 */
 454static void inode_switch_wbs(struct inode *inode, int new_wb_id)
 455{
 456        struct backing_dev_info *bdi = inode_to_bdi(inode);
 457        struct cgroup_subsys_state *memcg_css;
 458        struct inode_switch_wbs_context *isw;
 459
 460        /* noop if seems to be already in progress */
 461        if (inode->i_state & I_WB_SWITCH)
 462                return;
 463
 464        isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
 465        if (!isw)
 466                return;
 467
 468        /* find and pin the new wb */
 469        rcu_read_lock();
 470        memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
 471        if (memcg_css)
 472                isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 473        rcu_read_unlock();
 474        if (!isw->new_wb)
 475                goto out_free;
 476
 477        /* while holding I_WB_SWITCH, no one else can update the association */
 478        spin_lock(&inode->i_lock);
 479        if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
 480            inode->i_state & (I_WB_SWITCH | I_FREEING) ||
 481            inode_to_wb(inode) == isw->new_wb) {
 482                spin_unlock(&inode->i_lock);
 483                goto out_free;
 484        }
 485        inode->i_state |= I_WB_SWITCH;
 486        __iget(inode);
 487        spin_unlock(&inode->i_lock);
 488
 489        isw->inode = inode;
 490
 491        atomic_inc(&isw_nr_in_flight);
 492
 493        /*
 494         * In addition to synchronizing among switchers, I_WB_SWITCH tells
 495         * the RCU protected stat update paths to grab the mapping's
 496         * tree_lock so that stat transfer can synchronize against them.
 497         * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 498         */
 499        call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
 500        return;
 501
 502out_free:
 503        if (isw->new_wb)
 504                wb_put(isw->new_wb);
 505        kfree(isw);
 506}
 507
 508/**
 509 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 510 * @wbc: writeback_control of interest
 511 * @inode: target inode
 512 *
 513 * @inode is locked and about to be written back under the control of @wbc.
 514 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 515 * writeback completion, wbc_detach_inode() should be called.  This is used
 516 * to track the cgroup writeback context.
 517 */
 518void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 519                                 struct inode *inode)
 520{
 521        if (!inode_cgwb_enabled(inode)) {
 522                spin_unlock(&inode->i_lock);
 523                return;
 524        }
 525
 526        wbc->wb = inode_to_wb(inode);
 527        wbc->inode = inode;
 528
 529        wbc->wb_id = wbc->wb->memcg_css->id;
 530        wbc->wb_lcand_id = inode->i_wb_frn_winner;
 531        wbc->wb_tcand_id = 0;
 532        wbc->wb_bytes = 0;
 533        wbc->wb_lcand_bytes = 0;
 534        wbc->wb_tcand_bytes = 0;
 535
 536        wb_get(wbc->wb);
 537        spin_unlock(&inode->i_lock);
 538
 539        /*
 540         * A dying wb indicates that the memcg-blkcg mapping has changed
 541         * and a new wb is already serving the memcg.  Switch immediately.
 542         */
 543        if (unlikely(wb_dying(wbc->wb)))
 544                inode_switch_wbs(inode, wbc->wb_id);
 545}
 546
 547/**
 548 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 549 * @wbc: writeback_control of the just finished writeback
 550 *
 551 * To be called after a writeback attempt of an inode finishes and undoes
 552 * wbc_attach_and_unlock_inode().  Can be called under any context.
 553 *
 554 * As concurrent write sharing of an inode is expected to be very rare and
 555 * memcg only tracks page ownership on first-use basis severely confining
 556 * the usefulness of such sharing, cgroup writeback tracks ownership
 557 * per-inode.  While the support for concurrent write sharing of an inode
 558 * is deemed unnecessary, an inode being written to by different cgroups at
 559 * different points in time is a lot more common, and, more importantly,
 560 * charging only by first-use can too readily lead to grossly incorrect
 561 * behaviors (single foreign page can lead to gigabytes of writeback to be
 562 * incorrectly attributed).
 563 *
 564 * To resolve this issue, cgroup writeback detects the majority dirtier of
 565 * an inode and transfers the ownership to it.  To avoid unnnecessary
 566 * oscillation, the detection mechanism keeps track of history and gives
 567 * out the switch verdict only if the foreign usage pattern is stable over
 568 * a certain amount of time and/or writeback attempts.
 569 *
 570 * On each writeback attempt, @wbc tries to detect the majority writer
 571 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 572 * count from the majority voting, it also counts the bytes written for the
 573 * current wb and the last round's winner wb (max of last round's current
 574 * wb, the winner from two rounds ago, and the last round's majority
 575 * candidate).  Keeping track of the historical winner helps the algorithm
 576 * to semi-reliably detect the most active writer even when it's not the
 577 * absolute majority.
 578 *
 579 * Once the winner of the round is determined, whether the winner is
 580 * foreign or not and how much IO time the round consumed is recorded in
 581 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 582 * over a certain threshold, the switch verdict is given.
 583 */
 584void wbc_detach_inode(struct writeback_control *wbc)
 585{
 586        struct bdi_writeback *wb = wbc->wb;
 587        struct inode *inode = wbc->inode;
 588        unsigned long avg_time, max_bytes, max_time;
 589        u16 history;
 590        int max_id;
 591
 592        if (!wb)
 593                return;
 594
 595        history = inode->i_wb_frn_history;
 596        avg_time = inode->i_wb_frn_avg_time;
 597
 598        /* pick the winner of this round */
 599        if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
 600            wbc->wb_bytes >= wbc->wb_tcand_bytes) {
 601                max_id = wbc->wb_id;
 602                max_bytes = wbc->wb_bytes;
 603        } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
 604                max_id = wbc->wb_lcand_id;
 605                max_bytes = wbc->wb_lcand_bytes;
 606        } else {
 607                max_id = wbc->wb_tcand_id;
 608                max_bytes = wbc->wb_tcand_bytes;
 609        }
 610
 611        /*
 612         * Calculate the amount of IO time the winner consumed and fold it
 613         * into the running average kept per inode.  If the consumed IO
 614         * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
 615         * deciding whether to switch or not.  This is to prevent one-off
 616         * small dirtiers from skewing the verdict.
 617         */
 618        max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
 619                                wb->avg_write_bandwidth);
 620        if (avg_time)
 621                avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
 622                            (avg_time >> WB_FRN_TIME_AVG_SHIFT);
 623        else
 624                avg_time = max_time;    /* immediate catch up on first run */
 625
 626        if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
 627                int slots;
 628
 629                /*
 630                 * The switch verdict is reached if foreign wb's consume
 631                 * more than a certain proportion of IO time in a
 632                 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
 633                 * history mask where each bit represents one sixteenth of
 634                 * the period.  Determine the number of slots to shift into
 635                 * history from @max_time.
 636                 */
 637                slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
 638                            (unsigned long)WB_FRN_HIST_MAX_SLOTS);
 639                history <<= slots;
 640                if (wbc->wb_id != max_id)
 641                        history |= (1U << slots) - 1;
 642
 643                /*
 644                 * Switch if the current wb isn't the consistent winner.
 645                 * If there are multiple closely competing dirtiers, the
 646                 * inode may switch across them repeatedly over time, which
 647                 * is okay.  The main goal is avoiding keeping an inode on
 648                 * the wrong wb for an extended period of time.
 649                 */
 650                if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
 651                        inode_switch_wbs(inode, max_id);
 652        }
 653
 654        /*
 655         * Multiple instances of this function may race to update the
 656         * following fields but we don't mind occassional inaccuracies.
 657         */
 658        inode->i_wb_frn_winner = max_id;
 659        inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
 660        inode->i_wb_frn_history = history;
 661
 662        wb_put(wbc->wb);
 663        wbc->wb = NULL;
 664}
 665
 666/**
 667 * wbc_account_io - account IO issued during writeback
 668 * @wbc: writeback_control of the writeback in progress
 669 * @page: page being written out
 670 * @bytes: number of bytes being written out
 671 *
 672 * @bytes from @page are about to written out during the writeback
 673 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 674 * wbc_detach_inode().
 675 */
 676void wbc_account_io(struct writeback_control *wbc, struct page *page,
 677                    size_t bytes)
 678{
 679        int id;
 680
 681        /*
 682         * pageout() path doesn't attach @wbc to the inode being written
 683         * out.  This is intentional as we don't want the function to block
 684         * behind a slow cgroup.  Ultimately, we want pageout() to kick off
 685         * regular writeback instead of writing things out itself.
 686         */
 687        if (!wbc->wb)
 688                return;
 689
 690        id = mem_cgroup_css_from_page(page)->id;
 691
 692        if (id == wbc->wb_id) {
 693                wbc->wb_bytes += bytes;
 694                return;
 695        }
 696
 697        if (id == wbc->wb_lcand_id)
 698                wbc->wb_lcand_bytes += bytes;
 699
 700        /* Boyer-Moore majority vote algorithm */
 701        if (!wbc->wb_tcand_bytes)
 702                wbc->wb_tcand_id = id;
 703        if (id == wbc->wb_tcand_id)
 704                wbc->wb_tcand_bytes += bytes;
 705        else
 706                wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
 707}
 708EXPORT_SYMBOL_GPL(wbc_account_io);
 709
 710/**
 711 * inode_congested - test whether an inode is congested
 712 * @inode: inode to test for congestion (may be NULL)
 713 * @cong_bits: mask of WB_[a]sync_congested bits to test
 714 *
 715 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 716 * bits to test and the return value is the mask of set bits.
 717 *
 718 * If cgroup writeback is enabled for @inode, the congestion state is
 719 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 720 * associated with @inode is congested; otherwise, the root wb's congestion
 721 * state is used.
 722 *
 723 * @inode is allowed to be NULL as this function is often called on
 724 * mapping->host which is NULL for the swapper space.
 725 */
 726int inode_congested(struct inode *inode, int cong_bits)
 727{
 728        /*
 729         * Once set, ->i_wb never becomes NULL while the inode is alive.
 730         * Start transaction iff ->i_wb is visible.
 731         */
 732        if (inode && inode_to_wb_is_valid(inode)) {
 733                struct bdi_writeback *wb;
 734                bool locked, congested;
 735
 736                wb = unlocked_inode_to_wb_begin(inode, &locked);
 737                congested = wb_congested(wb, cong_bits);
 738                unlocked_inode_to_wb_end(inode, locked);
 739                return congested;
 740        }
 741
 742        return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
 743}
 744EXPORT_SYMBOL_GPL(inode_congested);
 745
 746/**
 747 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 748 * @wb: target bdi_writeback to split @nr_pages to
 749 * @nr_pages: number of pages to write for the whole bdi
 750 *
 751 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 752 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 753 * @wb->bdi.
 754 */
 755static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 756{
 757        unsigned long this_bw = wb->avg_write_bandwidth;
 758        unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 759
 760        if (nr_pages == LONG_MAX)
 761                return LONG_MAX;
 762
 763        /*
 764         * This may be called on clean wb's and proportional distribution
 765         * may not make sense, just use the original @nr_pages in those
 766         * cases.  In general, we wanna err on the side of writing more.
 767         */
 768        if (!tot_bw || this_bw >= tot_bw)
 769                return nr_pages;
 770        else
 771                return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
 772}
 773
 774/**
 775 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 776 * @bdi: target backing_dev_info
 777 * @base_work: wb_writeback_work to issue
 778 * @skip_if_busy: skip wb's which already have writeback in progress
 779 *
 780 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 781 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 782 * distributed to the busy wbs according to each wb's proportion in the
 783 * total active write bandwidth of @bdi.
 784 */
 785static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 786                                  struct wb_writeback_work *base_work,
 787                                  bool skip_if_busy)
 788{
 789        struct bdi_writeback *last_wb = NULL;
 790        struct bdi_writeback *wb = list_entry(&bdi->wb_list,
 791                                              struct bdi_writeback, bdi_node);
 792
 793        might_sleep();
 794restart:
 795        rcu_read_lock();
 796        list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
 797                DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
 798                struct wb_writeback_work fallback_work;
 799                struct wb_writeback_work *work;
 800                long nr_pages;
 801
 802                if (last_wb) {
 803                        wb_put(last_wb);
 804                        last_wb = NULL;
 805                }
 806
 807                /* SYNC_ALL writes out I_DIRTY_TIME too */
 808                if (!wb_has_dirty_io(wb) &&
 809                    (base_work->sync_mode == WB_SYNC_NONE ||
 810                     list_empty(&wb->b_dirty_time)))
 811                        continue;
 812                if (skip_if_busy && writeback_in_progress(wb))
 813                        continue;
 814
 815                nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
 816
 817                work = kmalloc(sizeof(*work), GFP_ATOMIC);
 818                if (work) {
 819                        *work = *base_work;
 820                        work->nr_pages = nr_pages;
 821                        work->auto_free = 1;
 822                        wb_queue_work(wb, work);
 823                        continue;
 824                }
 825
 826                /* alloc failed, execute synchronously using on-stack fallback */
 827                work = &fallback_work;
 828                *work = *base_work;
 829                work->nr_pages = nr_pages;
 830                work->auto_free = 0;
 831                work->done = &fallback_work_done;
 832
 833                wb_queue_work(wb, work);
 834
 835                /*
 836                 * Pin @wb so that it stays on @bdi->wb_list.  This allows
 837                 * continuing iteration from @wb after dropping and
 838                 * regrabbing rcu read lock.
 839                 */
 840                wb_get(wb);
 841                last_wb = wb;
 842
 843                rcu_read_unlock();
 844                wb_wait_for_completion(bdi, &fallback_work_done);
 845                goto restart;
 846        }
 847        rcu_read_unlock();
 848
 849        if (last_wb)
 850                wb_put(last_wb);
 851}
 852
 853/**
 854 * cgroup_writeback_umount - flush inode wb switches for umount
 855 *
 856 * This function is called when a super_block is about to be destroyed and
 857 * flushes in-flight inode wb switches.  An inode wb switch goes through
 858 * RCU and then workqueue, so the two need to be flushed in order to ensure
 859 * that all previously scheduled switches are finished.  As wb switches are
 860 * rare occurrences and synchronize_rcu() can take a while, perform
 861 * flushing iff wb switches are in flight.
 862 */
 863void cgroup_writeback_umount(void)
 864{
 865        if (atomic_read(&isw_nr_in_flight)) {
 866                synchronize_rcu();
 867                flush_workqueue(isw_wq);
 868        }
 869}
 870
 871static int __init cgroup_writeback_init(void)
 872{
 873        isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
 874        if (!isw_wq)
 875                return -ENOMEM;
 876        return 0;
 877}
 878fs_initcall(cgroup_writeback_init);
 879
 880#else   /* CONFIG_CGROUP_WRITEBACK */
 881
 882static struct bdi_writeback *
 883locked_inode_to_wb_and_lock_list(struct inode *inode)
 884        __releases(&inode->i_lock)
 885        __acquires(&wb->list_lock)
 886{
 887        struct bdi_writeback *wb = inode_to_wb(inode);
 888
 889        spin_unlock(&inode->i_lock);
 890        spin_lock(&wb->list_lock);
 891        return wb;
 892}
 893
 894static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 895        __acquires(&wb->list_lock)
 896{
 897        struct bdi_writeback *wb = inode_to_wb(inode);
 898
 899        spin_lock(&wb->list_lock);
 900        return wb;
 901}
 902
 903static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 904{
 905        return nr_pages;
 906}
 907
 908static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 909                                  struct wb_writeback_work *base_work,
 910                                  bool skip_if_busy)
 911{
 912        might_sleep();
 913
 914        if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
 915                base_work->auto_free = 0;
 916                wb_queue_work(&bdi->wb, base_work);
 917        }
 918}
 919
 920#endif  /* CONFIG_CGROUP_WRITEBACK */
 921
 922void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
 923                        bool range_cyclic, enum wb_reason reason)
 924{
 925        struct wb_writeback_work *work;
 926
 927        if (!wb_has_dirty_io(wb))
 928                return;
 929
 930        /*
 931         * This is WB_SYNC_NONE writeback, so if allocation fails just
 932         * wakeup the thread for old dirty data writeback
 933         */
 934        work = kzalloc(sizeof(*work),
 935                       GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 936        if (!work) {
 937                trace_writeback_nowork(wb);
 938                wb_wakeup(wb);
 939                return;
 940        }
 941
 942        work->sync_mode = WB_SYNC_NONE;
 943        work->nr_pages  = nr_pages;
 944        work->range_cyclic = range_cyclic;
 945        work->reason    = reason;
 946        work->auto_free = 1;
 947
 948        wb_queue_work(wb, work);
 949}
 950
 951/**
 952 * wb_start_background_writeback - start background writeback
 953 * @wb: bdi_writback to write from
 954 *
 955 * Description:
 956 *   This makes sure WB_SYNC_NONE background writeback happens. When
 957 *   this function returns, it is only guaranteed that for given wb
 958 *   some IO is happening if we are over background dirty threshold.
 959 *   Caller need not hold sb s_umount semaphore.
 960 */
 961void wb_start_background_writeback(struct bdi_writeback *wb)
 962{
 963        /*
 964         * We just wake up the flusher thread. It will perform background
 965         * writeback as soon as there is no other work to do.
 966         */
 967        trace_writeback_wake_background(wb);
 968        wb_wakeup(wb);
 969}
 970
 971/*
 972 * Remove the inode from the writeback list it is on.
 973 */
 974void inode_io_list_del(struct inode *inode)
 975{
 976        struct bdi_writeback *wb;
 977
 978        wb = inode_to_wb_and_lock_list(inode);
 979        inode_io_list_del_locked(inode, wb);
 980        spin_unlock(&wb->list_lock);
 981}
 982
 983/*
 984 * mark an inode as under writeback on the sb
 985 */
 986void sb_mark_inode_writeback(struct inode *inode)
 987{
 988        struct super_block *sb = inode->i_sb;
 989        unsigned long flags;
 990
 991        if (list_empty(&inode->i_wb_list)) {
 992                spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
 993                if (list_empty(&inode->i_wb_list)) {
 994                        list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
 995                        trace_sb_mark_inode_writeback(inode);
 996                }
 997                spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
 998        }
 999}
1000
1001/*
1002 * clear an inode as under writeback on the sb
1003 */
1004void sb_clear_inode_writeback(struct inode *inode)
1005{
1006        struct super_block *sb = inode->i_sb;
1007        unsigned long flags;
1008
1009        if (!list_empty(&inode->i_wb_list)) {
1010                spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1011                if (!list_empty(&inode->i_wb_list)) {
1012                        list_del_init(&inode->i_wb_list);
1013                        trace_sb_clear_inode_writeback(inode);
1014                }
1015                spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1016        }
1017}
1018
1019/*
1020 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1021 * furthest end of its superblock's dirty-inode list.
1022 *
1023 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1024 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1025 * the case then the inode must have been redirtied while it was being written
1026 * out and we don't reset its dirtied_when.
1027 */
1028static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1029{
1030        if (!list_empty(&wb->b_dirty)) {
1031                struct inode *tail;
1032
1033                tail = wb_inode(wb->b_dirty.next);
1034                if (time_before(inode->dirtied_when, tail->dirtied_when))
1035                        inode->dirtied_when = jiffies;
1036        }
1037        inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1038}
1039
1040/*
1041 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1042 */
1043static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1044{
1045        inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1046}
1047
1048static void inode_sync_complete(struct inode *inode)
1049{
1050        inode->i_state &= ~I_SYNC;
1051        /* If inode is clean an unused, put it into LRU now... */
1052        inode_add_lru(inode);
1053        /* Waiters must see I_SYNC cleared before being woken up */
1054        smp_mb();
1055        wake_up_bit(&inode->i_state, __I_SYNC);
1056}
1057
1058static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1059{
1060        bool ret = time_after(inode->dirtied_when, t);
1061#ifndef CONFIG_64BIT
1062        /*
1063         * For inodes being constantly redirtied, dirtied_when can get stuck.
1064         * It _appears_ to be in the future, but is actually in distant past.
1065         * This test is necessary to prevent such wrapped-around relative times
1066         * from permanently stopping the whole bdi writeback.
1067         */
1068        ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1069#endif
1070        return ret;
1071}
1072
1073#define EXPIRE_DIRTY_ATIME 0x0001
1074
1075/*
1076 * Move expired (dirtied before work->older_than_this) dirty inodes from
1077 * @delaying_queue to @dispatch_queue.
1078 */
1079static int move_expired_inodes(struct list_head *delaying_queue,
1080                               struct list_head *dispatch_queue,
1081                               int flags,
1082                               struct wb_writeback_work *work)
1083{
1084        unsigned long *older_than_this = NULL;
1085        unsigned long expire_time;
1086        LIST_HEAD(tmp);
1087        struct list_head *pos, *node;
1088        struct super_block *sb = NULL;
1089        struct inode *inode;
1090        int do_sb_sort = 0;
1091        int moved = 0;
1092
1093        if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1094                older_than_this = work->older_than_this;
1095        else if (!work->for_sync) {
1096                expire_time = jiffies - (dirtytime_expire_interval * HZ);
1097                older_than_this = &expire_time;
1098        }
1099        while (!list_empty(delaying_queue)) {
1100                inode = wb_inode(delaying_queue->prev);
1101                if (older_than_this &&
1102                    inode_dirtied_after(inode, *older_than_this))
1103                        break;
1104                list_move(&inode->i_io_list, &tmp);
1105                moved++;
1106                if (flags & EXPIRE_DIRTY_ATIME)
1107                        set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1108                if (sb_is_blkdev_sb(inode->i_sb))
1109                        continue;
1110                if (sb && sb != inode->i_sb)
1111                        do_sb_sort = 1;
1112                sb = inode->i_sb;
1113        }
1114
1115        /* just one sb in list, splice to dispatch_queue and we're done */
1116        if (!do_sb_sort) {
1117                list_splice(&tmp, dispatch_queue);
1118                goto out;
1119        }
1120
1121        /* Move inodes from one superblock together */
1122        while (!list_empty(&tmp)) {
1123                sb = wb_inode(tmp.prev)->i_sb;
1124                list_for_each_prev_safe(pos, node, &tmp) {
1125                        inode = wb_inode(pos);
1126                        if (inode->i_sb == sb)
1127                                list_move(&inode->i_io_list, dispatch_queue);
1128                }
1129        }
1130out:
1131        return moved;
1132}
1133
1134/*
1135 * Queue all expired dirty inodes for io, eldest first.
1136 * Before
1137 *         newly dirtied     b_dirty    b_io    b_more_io
1138 *         =============>    gf         edc     BA
1139 * After
1140 *         newly dirtied     b_dirty    b_io    b_more_io
1141 *         =============>    g          fBAedc
1142 *                                           |
1143 *                                           +--> dequeue for IO
1144 */
1145static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1146{
1147        int moved;
1148
1149        assert_spin_locked(&wb->list_lock);
1150        list_splice_init(&wb->b_more_io, &wb->b_io);
1151        moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1152        moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1153                                     EXPIRE_DIRTY_ATIME, work);
1154        if (moved)
1155                wb_io_lists_populated(wb);
1156        trace_writeback_queue_io(wb, work, moved);
1157}
1158
1159static int write_inode(struct inode *inode, struct writeback_control *wbc)
1160{
1161        int ret;
1162
1163        if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1164                trace_writeback_write_inode_start(inode, wbc);
1165                ret = inode->i_sb->s_op->write_inode(inode, wbc);
1166                trace_writeback_write_inode(inode, wbc);
1167                return ret;
1168        }
1169        return 0;
1170}
1171
1172/*
1173 * Wait for writeback on an inode to complete. Called with i_lock held.
1174 * Caller must make sure inode cannot go away when we drop i_lock.
1175 */
1176static void __inode_wait_for_writeback(struct inode *inode)
1177        __releases(inode->i_lock)
1178        __acquires(inode->i_lock)
1179{
1180        DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1181        wait_queue_head_t *wqh;
1182
1183        wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1184        while (inode->i_state & I_SYNC) {
1185                spin_unlock(&inode->i_lock);
1186                __wait_on_bit(wqh, &wq, bit_wait,
1187                              TASK_UNINTERRUPTIBLE);
1188                spin_lock(&inode->i_lock);
1189        }
1190}
1191
1192/*
1193 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1194 */
1195void inode_wait_for_writeback(struct inode *inode)
1196{
1197        spin_lock(&inode->i_lock);
1198        __inode_wait_for_writeback(inode);
1199        spin_unlock(&inode->i_lock);
1200}
1201
1202/*
1203 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1204 * held and drops it. It is aimed for callers not holding any inode reference
1205 * so once i_lock is dropped, inode can go away.
1206 */
1207static void inode_sleep_on_writeback(struct inode *inode)
1208        __releases(inode->i_lock)
1209{
1210        DEFINE_WAIT(wait);
1211        wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1212        int sleep;
1213
1214        prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1215        sleep = inode->i_state & I_SYNC;
1216        spin_unlock(&inode->i_lock);
1217        if (sleep)
1218                schedule();
1219        finish_wait(wqh, &wait);
1220}
1221
1222/*
1223 * Find proper writeback list for the inode depending on its current state and
1224 * possibly also change of its state while we were doing writeback.  Here we
1225 * handle things such as livelock prevention or fairness of writeback among
1226 * inodes. This function can be called only by flusher thread - noone else
1227 * processes all inodes in writeback lists and requeueing inodes behind flusher
1228 * thread's back can have unexpected consequences.
1229 */
1230static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1231                          struct writeback_control *wbc)
1232{
1233        if (inode->i_state & I_FREEING)
1234                return;
1235
1236        /*
1237         * Sync livelock prevention. Each inode is tagged and synced in one
1238         * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1239         * the dirty time to prevent enqueue and sync it again.
1240         */
1241        if ((inode->i_state & I_DIRTY) &&
1242            (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1243                inode->dirtied_when = jiffies;
1244
1245        if (wbc->pages_skipped) {
1246                /*
1247                 * writeback is not making progress due to locked
1248                 * buffers. Skip this inode for now.
1249                 */
1250                redirty_tail(inode, wb);
1251                return;
1252        }
1253
1254        if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1255                /*
1256                 * We didn't write back all the pages.  nfs_writepages()
1257                 * sometimes bales out without doing anything.
1258                 */
1259                if (wbc->nr_to_write <= 0) {
1260                        /* Slice used up. Queue for next turn. */
1261                        requeue_io(inode, wb);
1262                } else {
1263                        /*
1264                         * Writeback blocked by something other than
1265                         * congestion. Delay the inode for some time to
1266                         * avoid spinning on the CPU (100% iowait)
1267                         * retrying writeback of the dirty page/inode
1268                         * that cannot be performed immediately.
1269                         */
1270                        redirty_tail(inode, wb);
1271                }
1272        } else if (inode->i_state & I_DIRTY) {
1273                /*
1274                 * Filesystems can dirty the inode during writeback operations,
1275                 * such as delayed allocation during submission or metadata
1276                 * updates after data IO completion.
1277                 */
1278                redirty_tail(inode, wb);
1279        } else if (inode->i_state & I_DIRTY_TIME) {
1280                inode->dirtied_when = jiffies;
1281                inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1282        } else {
1283                /* The inode is clean. Remove from writeback lists. */
1284                inode_io_list_del_locked(inode, wb);
1285        }
1286}
1287
1288/*
1289 * Write out an inode and its dirty pages. Do not update the writeback list
1290 * linkage. That is left to the caller. The caller is also responsible for
1291 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1292 */
1293static int
1294__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1295{
1296        struct address_space *mapping = inode->i_mapping;
1297        long nr_to_write = wbc->nr_to_write;
1298        unsigned dirty;
1299        int ret;
1300
1301        WARN_ON(!(inode->i_state & I_SYNC));
1302
1303        trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1304
1305        ret = do_writepages(mapping, wbc);
1306
1307        /*
1308         * Make sure to wait on the data before writing out the metadata.
1309         * This is important for filesystems that modify metadata on data
1310         * I/O completion. We don't do it for sync(2) writeback because it has a
1311         * separate, external IO completion path and ->sync_fs for guaranteeing
1312         * inode metadata is written back correctly.
1313         */
1314        if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1315                int err = filemap_fdatawait(mapping);
1316                if (ret == 0)
1317                        ret = err;
1318        }
1319
1320        /*
1321         * Some filesystems may redirty the inode during the writeback
1322         * due to delalloc, clear dirty metadata flags right before
1323         * write_inode()
1324         */
1325        spin_lock(&inode->i_lock);
1326
1327        dirty = inode->i_state & I_DIRTY;
1328        if (inode->i_state & I_DIRTY_TIME) {
1329                if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1330                    wbc->sync_mode == WB_SYNC_ALL ||
1331                    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1332                    unlikely(time_after(jiffies,
1333                                        (inode->dirtied_time_when +
1334                                         dirtytime_expire_interval * HZ)))) {
1335                        dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1336                        trace_writeback_lazytime(inode);
1337                }
1338        } else
1339                inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1340        inode->i_state &= ~dirty;
1341
1342        /*
1343         * Paired with smp_mb() in __mark_inode_dirty().  This allows
1344         * __mark_inode_dirty() to test i_state without grabbing i_lock -
1345         * either they see the I_DIRTY bits cleared or we see the dirtied
1346         * inode.
1347         *
1348         * I_DIRTY_PAGES is always cleared together above even if @mapping
1349         * still has dirty pages.  The flag is reinstated after smp_mb() if
1350         * necessary.  This guarantees that either __mark_inode_dirty()
1351         * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1352         */
1353        smp_mb();
1354
1355        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1356                inode->i_state |= I_DIRTY_PAGES;
1357
1358        spin_unlock(&inode->i_lock);
1359
1360        if (dirty & I_DIRTY_TIME)
1361                mark_inode_dirty_sync(inode);
1362        /* Don't write the inode if only I_DIRTY_PAGES was set */
1363        if (dirty & ~I_DIRTY_PAGES) {
1364                int err = write_inode(inode, wbc);
1365                if (ret == 0)
1366                        ret = err;
1367        }
1368        trace_writeback_single_inode(inode, wbc, nr_to_write);
1369        return ret;
1370}
1371
1372/*
1373 * Write out an inode's dirty pages. Either the caller has an active reference
1374 * on the inode or the inode has I_WILL_FREE set.
1375 *
1376 * This function is designed to be called for writing back one inode which
1377 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1378 * and does more profound writeback list handling in writeback_sb_inodes().
1379 */
1380static int writeback_single_inode(struct inode *inode,
1381                                  struct writeback_control *wbc)
1382{
1383        struct bdi_writeback *wb;
1384        int ret = 0;
1385
1386        spin_lock(&inode->i_lock);
1387        if (!atomic_read(&inode->i_count))
1388                WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1389        else
1390                WARN_ON(inode->i_state & I_WILL_FREE);
1391
1392        if (inode->i_state & I_SYNC) {
1393                if (wbc->sync_mode != WB_SYNC_ALL)
1394                        goto out;
1395                /*
1396                 * It's a data-integrity sync. We must wait. Since callers hold
1397                 * inode reference or inode has I_WILL_FREE set, it cannot go
1398                 * away under us.
1399                 */
1400                __inode_wait_for_writeback(inode);
1401        }
1402        WARN_ON(inode->i_state & I_SYNC);
1403        /*
1404         * Skip inode if it is clean and we have no outstanding writeback in
1405         * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1406         * function since flusher thread may be doing for example sync in
1407         * parallel and if we move the inode, it could get skipped. So here we
1408         * make sure inode is on some writeback list and leave it there unless
1409         * we have completely cleaned the inode.
1410         */
1411        if (!(inode->i_state & I_DIRTY_ALL) &&
1412            (wbc->sync_mode != WB_SYNC_ALL ||
1413             !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1414                goto out;
1415        inode->i_state |= I_SYNC;
1416        wbc_attach_and_unlock_inode(wbc, inode);
1417
1418        ret = __writeback_single_inode(inode, wbc);
1419
1420        wbc_detach_inode(wbc);
1421
1422        wb = inode_to_wb_and_lock_list(inode);
1423        spin_lock(&inode->i_lock);
1424        /*
1425         * If inode is clean, remove it from writeback lists. Otherwise don't
1426         * touch it. See comment above for explanation.
1427         */
1428        if (!(inode->i_state & I_DIRTY_ALL))
1429                inode_io_list_del_locked(inode, wb);
1430        spin_unlock(&wb->list_lock);
1431        inode_sync_complete(inode);
1432out:
1433        spin_unlock(&inode->i_lock);
1434        return ret;
1435}
1436
1437static long writeback_chunk_size(struct bdi_writeback *wb,
1438                                 struct wb_writeback_work *work)
1439{
1440        long pages;
1441
1442        /*
1443         * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1444         * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1445         * here avoids calling into writeback_inodes_wb() more than once.
1446         *
1447         * The intended call sequence for WB_SYNC_ALL writeback is:
1448         *
1449         *      wb_writeback()
1450         *          writeback_sb_inodes()       <== called only once
1451         *              write_cache_pages()     <== called once for each inode
1452         *                   (quickly) tag currently dirty pages
1453         *                   (maybe slowly) sync all tagged pages
1454         */
1455        if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1456                pages = LONG_MAX;
1457        else {
1458                pages = min(wb->avg_write_bandwidth / 2,
1459                            global_wb_domain.dirty_limit / DIRTY_SCOPE);
1460                pages = min(pages, work->nr_pages);
1461                pages = round_down(pages + MIN_WRITEBACK_PAGES,
1462                                   MIN_WRITEBACK_PAGES);
1463        }
1464
1465        return pages;
1466}
1467
1468/*
1469 * Write a portion of b_io inodes which belong to @sb.
1470 *
1471 * Return the number of pages and/or inodes written.
1472 *
1473 * NOTE! This is called with wb->list_lock held, and will
1474 * unlock and relock that for each inode it ends up doing
1475 * IO for.
1476 */
1477static long writeback_sb_inodes(struct super_block *sb,
1478                                struct bdi_writeback *wb,
1479                                struct wb_writeback_work *work)
1480{
1481        struct writeback_control wbc = {
1482                .sync_mode              = work->sync_mode,
1483                .tagged_writepages      = work->tagged_writepages,
1484                .for_kupdate            = work->for_kupdate,
1485                .for_background         = work->for_background,
1486                .for_sync               = work->for_sync,
1487                .range_cyclic           = work->range_cyclic,
1488                .range_start            = 0,
1489                .range_end              = LLONG_MAX,
1490        };
1491        unsigned long start_time = jiffies;
1492        long write_chunk;
1493        long wrote = 0;  /* count both pages and inodes */
1494
1495        while (!list_empty(&wb->b_io)) {
1496                struct inode *inode = wb_inode(wb->b_io.prev);
1497                struct bdi_writeback *tmp_wb;
1498
1499                if (inode->i_sb != sb) {
1500                        if (work->sb) {
1501                                /*
1502                                 * We only want to write back data for this
1503                                 * superblock, move all inodes not belonging
1504                                 * to it back onto the dirty list.
1505                                 */
1506                                redirty_tail(inode, wb);
1507                                continue;
1508                        }
1509
1510                        /*
1511                         * The inode belongs to a different superblock.
1512                         * Bounce back to the caller to unpin this and
1513                         * pin the next superblock.
1514                         */
1515                        break;
1516                }
1517
1518                /*
1519                 * Don't bother with new inodes or inodes being freed, first
1520                 * kind does not need periodic writeout yet, and for the latter
1521                 * kind writeout is handled by the freer.
1522                 */
1523                spin_lock(&inode->i_lock);
1524                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1525                        spin_unlock(&inode->i_lock);
1526                        redirty_tail(inode, wb);
1527                        continue;
1528                }
1529                if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1530                        /*
1531                         * If this inode is locked for writeback and we are not
1532                         * doing writeback-for-data-integrity, move it to
1533                         * b_more_io so that writeback can proceed with the
1534                         * other inodes on s_io.
1535                         *
1536                         * We'll have another go at writing back this inode
1537                         * when we completed a full scan of b_io.
1538                         */
1539                        spin_unlock(&inode->i_lock);
1540                        requeue_io(inode, wb);
1541                        trace_writeback_sb_inodes_requeue(inode);
1542                        continue;
1543                }
1544                spin_unlock(&wb->list_lock);
1545
1546                /*
1547                 * We already requeued the inode if it had I_SYNC set and we
1548                 * are doing WB_SYNC_NONE writeback. So this catches only the
1549                 * WB_SYNC_ALL case.
1550                 */
1551                if (inode->i_state & I_SYNC) {
1552                        /* Wait for I_SYNC. This function drops i_lock... */
1553                        inode_sleep_on_writeback(inode);
1554                        /* Inode may be gone, start again */
1555                        spin_lock(&wb->list_lock);
1556                        continue;
1557                }
1558                inode->i_state |= I_SYNC;
1559                wbc_attach_and_unlock_inode(&wbc, inode);
1560
1561                write_chunk = writeback_chunk_size(wb, work);
1562                wbc.nr_to_write = write_chunk;
1563                wbc.pages_skipped = 0;
1564
1565                /*
1566                 * We use I_SYNC to pin the inode in memory. While it is set
1567                 * evict_inode() will wait so the inode cannot be freed.
1568                 */
1569                __writeback_single_inode(inode, &wbc);
1570
1571                wbc_detach_inode(&wbc);
1572                work->nr_pages -= write_chunk - wbc.nr_to_write;
1573                wrote += write_chunk - wbc.nr_to_write;
1574
1575                if (need_resched()) {
1576                        /*
1577                         * We're trying to balance between building up a nice
1578                         * long list of IOs to improve our merge rate, and
1579                         * getting those IOs out quickly for anyone throttling
1580                         * in balance_dirty_pages().  cond_resched() doesn't
1581                         * unplug, so get our IOs out the door before we
1582                         * give up the CPU.
1583                         */
1584                        blk_flush_plug(current);
1585                        cond_resched();
1586                }
1587
1588                /*
1589                 * Requeue @inode if still dirty.  Be careful as @inode may
1590                 * have been switched to another wb in the meantime.
1591                 */
1592                tmp_wb = inode_to_wb_and_lock_list(inode);
1593                spin_lock(&inode->i_lock);
1594                if (!(inode->i_state & I_DIRTY_ALL))
1595                        wrote++;
1596                requeue_inode(inode, tmp_wb, &wbc);
1597                inode_sync_complete(inode);
1598                spin_unlock(&inode->i_lock);
1599
1600                if (unlikely(tmp_wb != wb)) {
1601                        spin_unlock(&tmp_wb->list_lock);
1602                        spin_lock(&wb->list_lock);
1603                }
1604
1605                /*
1606                 * bail out to wb_writeback() often enough to check
1607                 * background threshold and other termination conditions.
1608                 */
1609                if (wrote) {
1610                        if (time_is_before_jiffies(start_time + HZ / 10UL))
1611                                break;
1612                        if (work->nr_pages <= 0)
1613                                break;
1614                }
1615        }
1616        return wrote;
1617}
1618
1619static long __writeback_inodes_wb(struct bdi_writeback *wb,
1620                                  struct wb_writeback_work *work)
1621{
1622        unsigned long start_time = jiffies;
1623        long wrote = 0;
1624
1625        while (!list_empty(&wb->b_io)) {
1626                struct inode *inode = wb_inode(wb->b_io.prev);
1627                struct super_block *sb = inode->i_sb;
1628
1629                if (!trylock_super(sb)) {
1630                        /*
1631                         * trylock_super() may fail consistently due to
1632                         * s_umount being grabbed by someone else. Don't use
1633                         * requeue_io() to avoid busy retrying the inode/sb.
1634                         */
1635                        redirty_tail(inode, wb);
1636                        continue;
1637                }
1638                wrote += writeback_sb_inodes(sb, wb, work);
1639                up_read(&sb->s_umount);
1640
1641                /* refer to the same tests at the end of writeback_sb_inodes */
1642                if (wrote) {
1643                        if (time_is_before_jiffies(start_time + HZ / 10UL))
1644                                break;
1645                        if (work->nr_pages <= 0)
1646                                break;
1647                }
1648        }
1649        /* Leave any unwritten inodes on b_io */
1650        return wrote;
1651}
1652
1653static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1654                                enum wb_reason reason)
1655{
1656        struct wb_writeback_work work = {
1657                .nr_pages       = nr_pages,
1658                .sync_mode      = WB_SYNC_NONE,
1659                .range_cyclic   = 1,
1660                .reason         = reason,
1661        };
1662        struct blk_plug plug;
1663
1664        blk_start_plug(&plug);
1665        spin_lock(&wb->list_lock);
1666        if (list_empty(&wb->b_io))
1667                queue_io(wb, &work);
1668        __writeback_inodes_wb(wb, &work);
1669        spin_unlock(&wb->list_lock);
1670        blk_finish_plug(&plug);
1671
1672        return nr_pages - work.nr_pages;
1673}
1674
1675/*
1676 * Explicit flushing or periodic writeback of "old" data.
1677 *
1678 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1679 * dirtying-time in the inode's address_space.  So this periodic writeback code
1680 * just walks the superblock inode list, writing back any inodes which are
1681 * older than a specific point in time.
1682 *
1683 * Try to run once per dirty_writeback_interval.  But if a writeback event
1684 * takes longer than a dirty_writeback_interval interval, then leave a
1685 * one-second gap.
1686 *
1687 * older_than_this takes precedence over nr_to_write.  So we'll only write back
1688 * all dirty pages if they are all attached to "old" mappings.
1689 */
1690static long wb_writeback(struct bdi_writeback *wb,
1691                         struct wb_writeback_work *work)
1692{
1693        unsigned long wb_start = jiffies;
1694        long nr_pages = work->nr_pages;
1695        unsigned long oldest_jif;
1696        struct inode *inode;
1697        long progress;
1698        struct blk_plug plug;
1699
1700        oldest_jif = jiffies;
1701        work->older_than_this = &oldest_jif;
1702
1703        blk_start_plug(&plug);
1704        spin_lock(&wb->list_lock);
1705        for (;;) {
1706                /*
1707                 * Stop writeback when nr_pages has been consumed
1708                 */
1709                if (work->nr_pages <= 0)
1710                        break;
1711
1712                /*
1713                 * Background writeout and kupdate-style writeback may
1714                 * run forever. Stop them if there is other work to do
1715                 * so that e.g. sync can proceed. They'll be restarted
1716                 * after the other works are all done.
1717                 */
1718                if ((work->for_background || work->for_kupdate) &&
1719                    !list_empty(&wb->work_list))
1720                        break;
1721
1722                /*
1723                 * For background writeout, stop when we are below the
1724                 * background dirty threshold
1725                 */
1726                if (work->for_background && !wb_over_bg_thresh(wb))
1727                        break;
1728
1729                /*
1730                 * Kupdate and background works are special and we want to
1731                 * include all inodes that need writing. Livelock avoidance is
1732                 * handled by these works yielding to any other work so we are
1733                 * safe.
1734                 */
1735                if (work->for_kupdate) {
1736                        oldest_jif = jiffies -
1737                                msecs_to_jiffies(dirty_expire_interval * 10);
1738                } else if (work->for_background)
1739                        oldest_jif = jiffies;
1740
1741                trace_writeback_start(wb, work);
1742                if (list_empty(&wb->b_io))
1743                        queue_io(wb, work);
1744                if (work->sb)
1745                        progress = writeback_sb_inodes(work->sb, wb, work);
1746                else
1747                        progress = __writeback_inodes_wb(wb, work);
1748                trace_writeback_written(wb, work);
1749
1750                wb_update_bandwidth(wb, wb_start);
1751
1752                /*
1753                 * Did we write something? Try for more
1754                 *
1755                 * Dirty inodes are moved to b_io for writeback in batches.
1756                 * The completion of the current batch does not necessarily
1757                 * mean the overall work is done. So we keep looping as long
1758                 * as made some progress on cleaning pages or inodes.
1759                 */
1760                if (progress)
1761                        continue;
1762                /*
1763                 * No more inodes for IO, bail
1764                 */
1765                if (list_empty(&wb->b_more_io))
1766                        break;
1767                /*
1768                 * Nothing written. Wait for some inode to
1769                 * become available for writeback. Otherwise
1770                 * we'll just busyloop.
1771                 */
1772                if (!list_empty(&wb->b_more_io))  {
1773                        trace_writeback_wait(wb, work);
1774                        inode = wb_inode(wb->b_more_io.prev);
1775                        spin_lock(&inode->i_lock);
1776                        spin_unlock(&wb->list_lock);
1777                        /* This function drops i_lock... */
1778                        inode_sleep_on_writeback(inode);
1779                        spin_lock(&wb->list_lock);
1780                }
1781        }
1782        spin_unlock(&wb->list_lock);
1783        blk_finish_plug(&plug);
1784
1785        return nr_pages - work->nr_pages;
1786}
1787
1788/*
1789 * Return the next wb_writeback_work struct that hasn't been processed yet.
1790 */
1791static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1792{
1793        struct wb_writeback_work *work = NULL;
1794
1795        spin_lock_bh(&wb->work_lock);
1796        if (!list_empty(&wb->work_list)) {
1797                work = list_entry(wb->work_list.next,
1798                                  struct wb_writeback_work, list);
1799                list_del_init(&work->list);
1800        }
1801        spin_unlock_bh(&wb->work_lock);
1802        return work;
1803}
1804
1805/*
1806 * Add in the number of potentially dirty inodes, because each inode
1807 * write can dirty pagecache in the underlying blockdev.
1808 */
1809static unsigned long get_nr_dirty_pages(void)
1810{
1811        return global_node_page_state(NR_FILE_DIRTY) +
1812                global_node_page_state(NR_UNSTABLE_NFS) +
1813                get_nr_dirty_inodes();
1814}
1815
1816static long wb_check_background_flush(struct bdi_writeback *wb)
1817{
1818        if (wb_over_bg_thresh(wb)) {
1819
1820                struct wb_writeback_work work = {
1821                        .nr_pages       = LONG_MAX,
1822                        .sync_mode      = WB_SYNC_NONE,
1823                        .for_background = 1,
1824                        .range_cyclic   = 1,
1825                        .reason         = WB_REASON_BACKGROUND,
1826                };
1827
1828                return wb_writeback(wb, &work);
1829        }
1830
1831        return 0;
1832}
1833
1834static long wb_check_old_data_flush(struct bdi_writeback *wb)
1835{
1836        unsigned long expired;
1837        long nr_pages;
1838
1839        /*
1840         * When set to zero, disable periodic writeback
1841         */
1842        if (!dirty_writeback_interval)
1843                return 0;
1844
1845        expired = wb->last_old_flush +
1846                        msecs_to_jiffies(dirty_writeback_interval * 10);
1847        if (time_before(jiffies, expired))
1848                return 0;
1849
1850        wb->last_old_flush = jiffies;
1851        nr_pages = get_nr_dirty_pages();
1852
1853        if (nr_pages) {
1854                struct wb_writeback_work work = {
1855                        .nr_pages       = nr_pages,
1856                        .sync_mode      = WB_SYNC_NONE,
1857                        .for_kupdate    = 1,
1858                        .range_cyclic   = 1,
1859                        .reason         = WB_REASON_PERIODIC,
1860                };
1861
1862                return wb_writeback(wb, &work);
1863        }
1864
1865        return 0;
1866}
1867
1868/*
1869 * Retrieve work items and do the writeback they describe
1870 */
1871static long wb_do_writeback(struct bdi_writeback *wb)
1872{
1873        struct wb_writeback_work *work;
1874        long wrote = 0;
1875
1876        set_bit(WB_writeback_running, &wb->state);
1877        while ((work = get_next_work_item(wb)) != NULL) {
1878                struct wb_completion *done = work->done;
1879
1880                trace_writeback_exec(wb, work);
1881
1882                wrote += wb_writeback(wb, work);
1883
1884                if (work->auto_free)
1885                        kfree(work);
1886                if (done && atomic_dec_and_test(&done->cnt))
1887                        wake_up_all(&wb->bdi->wb_waitq);
1888        }
1889
1890        /*
1891         * Check for periodic writeback, kupdated() style
1892         */
1893        wrote += wb_check_old_data_flush(wb);
1894        wrote += wb_check_background_flush(wb);
1895        clear_bit(WB_writeback_running, &wb->state);
1896
1897        return wrote;
1898}
1899
1900/*
1901 * Handle writeback of dirty data for the device backed by this bdi. Also
1902 * reschedules periodically and does kupdated style flushing.
1903 */
1904void wb_workfn(struct work_struct *work)
1905{
1906        struct bdi_writeback *wb = container_of(to_delayed_work(work),
1907                                                struct bdi_writeback, dwork);
1908        long pages_written;
1909
1910        set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1911        current->flags |= PF_SWAPWRITE;
1912
1913        if (likely(!current_is_workqueue_rescuer() ||
1914                   !test_bit(WB_registered, &wb->state))) {
1915                /*
1916                 * The normal path.  Keep writing back @wb until its
1917                 * work_list is empty.  Note that this path is also taken
1918                 * if @wb is shutting down even when we're running off the
1919                 * rescuer as work_list needs to be drained.
1920                 */
1921                do {
1922                        pages_written = wb_do_writeback(wb);
1923                        trace_writeback_pages_written(pages_written);
1924                } while (!list_empty(&wb->work_list));
1925        } else {
1926                /*
1927                 * bdi_wq can't get enough workers and we're running off
1928                 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1929                 * enough for efficient IO.
1930                 */
1931                pages_written = writeback_inodes_wb(wb, 1024,
1932                                                    WB_REASON_FORKER_THREAD);
1933                trace_writeback_pages_written(pages_written);
1934        }
1935
1936        if (!list_empty(&wb->work_list))
1937                mod_delayed_work(bdi_wq, &wb->dwork, 0);
1938        else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1939                wb_wakeup_delayed(wb);
1940
1941        current->flags &= ~PF_SWAPWRITE;
1942}
1943
1944/*
1945 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1946 * the whole world.
1947 */
1948void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1949{
1950        struct backing_dev_info *bdi;
1951
1952        /*
1953         * If we are expecting writeback progress we must submit plugged IO.
1954         */
1955        if (blk_needs_flush_plug(current))
1956                blk_schedule_flush_plug(current);
1957
1958        if (!nr_pages)
1959                nr_pages = get_nr_dirty_pages();
1960
1961        rcu_read_lock();
1962        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1963                struct bdi_writeback *wb;
1964
1965                if (!bdi_has_dirty_io(bdi))
1966                        continue;
1967
1968                list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1969                        wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1970                                           false, reason);
1971        }
1972        rcu_read_unlock();
1973}
1974
1975/*
1976 * Wake up bdi's periodically to make sure dirtytime inodes gets
1977 * written back periodically.  We deliberately do *not* check the
1978 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1979 * kernel to be constantly waking up once there are any dirtytime
1980 * inodes on the system.  So instead we define a separate delayed work
1981 * function which gets called much more rarely.  (By default, only
1982 * once every 12 hours.)
1983 *
1984 * If there is any other write activity going on in the file system,
1985 * this function won't be necessary.  But if the only thing that has
1986 * happened on the file system is a dirtytime inode caused by an atime
1987 * update, we need this infrastructure below to make sure that inode
1988 * eventually gets pushed out to disk.
1989 */
1990static void wakeup_dirtytime_writeback(struct work_struct *w);
1991static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1992
1993static void wakeup_dirtytime_writeback(struct work_struct *w)
1994{
1995        struct backing_dev_info *bdi;
1996
1997        rcu_read_lock();
1998        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1999                struct bdi_writeback *wb;
2000
2001                list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2002                        if (!list_empty(&wb->b_dirty_time))
2003                                wb_wakeup(wb);
2004        }
2005        rcu_read_unlock();
2006        schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2007}
2008
2009static int __init start_dirtytime_writeback(void)
2010{
2011        schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2012        return 0;
2013}
2014__initcall(start_dirtytime_writeback);
2015
2016int dirtytime_interval_handler(struct ctl_table *table, int write,
2017                               void __user *buffer, size_t *lenp, loff_t *ppos)
2018{
2019        int ret;
2020
2021        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2022        if (ret == 0 && write)
2023                mod_delayed_work(system_wq, &dirtytime_work, 0);
2024        return ret;
2025}
2026
2027static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2028{
2029        if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2030                struct dentry *dentry;
2031                const char *name = "?";
2032
2033                dentry = d_find_alias(inode);
2034                if (dentry) {
2035                        spin_lock(&dentry->d_lock);
2036                        name = (const char *) dentry->d_name.name;
2037                }
2038                printk(KERN_DEBUG
2039                       "%s(%d): dirtied inode %lu (%s) on %s\n",
2040                       current->comm, task_pid_nr(current), inode->i_ino,
2041                       name, inode->i_sb->s_id);
2042                if (dentry) {
2043                        spin_unlock(&dentry->d_lock);
2044                        dput(dentry);
2045                }
2046        }
2047}
2048
2049/**
2050 *      __mark_inode_dirty -    internal function
2051 *      @inode: inode to mark
2052 *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2053 *      Mark an inode as dirty. Callers should use mark_inode_dirty or
2054 *      mark_inode_dirty_sync.
2055 *
2056 * Put the inode on the super block's dirty list.
2057 *
2058 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2059 * dirty list only if it is hashed or if it refers to a blockdev.
2060 * If it was not hashed, it will never be added to the dirty list
2061 * even if it is later hashed, as it will have been marked dirty already.
2062 *
2063 * In short, make sure you hash any inodes _before_ you start marking
2064 * them dirty.
2065 *
2066 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2067 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2068 * the kernel-internal blockdev inode represents the dirtying time of the
2069 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2070 * page->mapping->host, so the page-dirtying time is recorded in the internal
2071 * blockdev inode.
2072 */
2073void __mark_inode_dirty(struct inode *inode, int flags)
2074{
2075#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2076        struct super_block *sb = inode->i_sb;
2077        int dirtytime;
2078
2079        trace_writeback_mark_inode_dirty(inode, flags);
2080
2081        /*
2082         * Don't do this for I_DIRTY_PAGES - that doesn't actually
2083         * dirty the inode itself
2084         */
2085        if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2086                trace_writeback_dirty_inode_start(inode, flags);
2087
2088                if (sb->s_op->dirty_inode)
2089                        sb->s_op->dirty_inode(inode, flags);
2090
2091                trace_writeback_dirty_inode(inode, flags);
2092        }
2093        if (flags & I_DIRTY_INODE)
2094                flags &= ~I_DIRTY_TIME;
2095        dirtytime = flags & I_DIRTY_TIME;
2096
2097        /*
2098         * Paired with smp_mb() in __writeback_single_inode() for the
2099         * following lockless i_state test.  See there for details.
2100         */
2101        smp_mb();
2102
2103        if (((inode->i_state & flags) == flags) ||
2104            (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2105                return;
2106
2107        if (unlikely(block_dump))
2108                block_dump___mark_inode_dirty(inode);
2109
2110        spin_lock(&inode->i_lock);
2111        if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2112                goto out_unlock_inode;
2113        if ((inode->i_state & flags) != flags) {
2114                const int was_dirty = inode->i_state & I_DIRTY;
2115
2116                inode_attach_wb(inode, NULL);
2117
2118                if (flags & I_DIRTY_INODE)
2119                        inode->i_state &= ~I_DIRTY_TIME;
2120                inode->i_state |= flags;
2121
2122                /*
2123                 * If the inode is being synced, just update its dirty state.
2124                 * The unlocker will place the inode on the appropriate
2125                 * superblock list, based upon its state.
2126                 */
2127                if (inode->i_state & I_SYNC)
2128                        goto out_unlock_inode;
2129
2130                /*
2131                 * Only add valid (hashed) inodes to the superblock's
2132                 * dirty list.  Add blockdev inodes as well.
2133                 */
2134                if (!S_ISBLK(inode->i_mode)) {
2135                        if (inode_unhashed(inode))
2136                                goto out_unlock_inode;
2137                }
2138                if (inode->i_state & I_FREEING)
2139                        goto out_unlock_inode;
2140
2141                /*
2142                 * If the inode was already on b_dirty/b_io/b_more_io, don't
2143                 * reposition it (that would break b_dirty time-ordering).
2144                 */
2145                if (!was_dirty) {
2146                        struct bdi_writeback *wb;
2147                        struct list_head *dirty_list;
2148                        bool wakeup_bdi = false;
2149
2150                        wb = locked_inode_to_wb_and_lock_list(inode);
2151
2152                        WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2153                             !test_bit(WB_registered, &wb->state),
2154                             "bdi-%s not registered\n", wb->bdi->name);
2155
2156                        inode->dirtied_when = jiffies;
2157                        if (dirtytime)
2158                                inode->dirtied_time_when = jiffies;
2159
2160                        if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2161                                dirty_list = &wb->b_dirty;
2162                        else
2163                                dirty_list = &wb->b_dirty_time;
2164
2165                        wakeup_bdi = inode_io_list_move_locked(inode, wb,
2166                                                               dirty_list);
2167
2168                        spin_unlock(&wb->list_lock);
2169                        trace_writeback_dirty_inode_enqueue(inode);
2170
2171                        /*
2172                         * If this is the first dirty inode for this bdi,
2173                         * we have to wake-up the corresponding bdi thread
2174                         * to make sure background write-back happens
2175                         * later.
2176                         */
2177                        if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2178                                wb_wakeup_delayed(wb);
2179                        return;
2180                }
2181        }
2182out_unlock_inode:
2183        spin_unlock(&inode->i_lock);
2184
2185#undef I_DIRTY_INODE
2186}
2187EXPORT_SYMBOL(__mark_inode_dirty);
2188
2189/*
2190 * The @s_sync_lock is used to serialise concurrent sync operations
2191 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2192 * Concurrent callers will block on the s_sync_lock rather than doing contending
2193 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2194 * has been issued up to the time this function is enter is guaranteed to be
2195 * completed by the time we have gained the lock and waited for all IO that is
2196 * in progress regardless of the order callers are granted the lock.
2197 */
2198static void wait_sb_inodes(struct super_block *sb)
2199{
2200        LIST_HEAD(sync_list);
2201
2202        /*
2203         * We need to be protected against the filesystem going from
2204         * r/o to r/w or vice versa.
2205         */
2206        WARN_ON(!rwsem_is_locked(&sb->s_umount));
2207
2208        mutex_lock(&sb->s_sync_lock);
2209
2210        /*
2211         * Splice the writeback list onto a temporary list to avoid waiting on
2212         * inodes that have started writeback after this point.
2213         *
2214         * Use rcu_read_lock() to keep the inodes around until we have a
2215         * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2216         * the local list because inodes can be dropped from either by writeback
2217         * completion.
2218         */
2219        rcu_read_lock();
2220        spin_lock_irq(&sb->s_inode_wblist_lock);
2221        list_splice_init(&sb->s_inodes_wb, &sync_list);
2222
2223        /*
2224         * Data integrity sync. Must wait for all pages under writeback, because
2225         * there may have been pages dirtied before our sync call, but which had
2226         * writeout started before we write it out.  In which case, the inode
2227         * may not be on the dirty list, but we still have to wait for that
2228         * writeout.
2229         */
2230        while (!list_empty(&sync_list)) {
2231                struct inode *inode = list_first_entry(&sync_list, struct inode,
2232                                                       i_wb_list);
2233                struct address_space *mapping = inode->i_mapping;
2234
2235                /*
2236                 * Move each inode back to the wb list before we drop the lock
2237                 * to preserve consistency between i_wb_list and the mapping
2238                 * writeback tag. Writeback completion is responsible to remove
2239                 * the inode from either list once the writeback tag is cleared.
2240                 */
2241                list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2242
2243                /*
2244                 * The mapping can appear untagged while still on-list since we
2245                 * do not have the mapping lock. Skip it here, wb completion
2246                 * will remove it.
2247                 */
2248                if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2249                        continue;
2250
2251                spin_unlock_irq(&sb->s_inode_wblist_lock);
2252
2253                spin_lock(&inode->i_lock);
2254                if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2255                        spin_unlock(&inode->i_lock);
2256
2257                        spin_lock_irq(&sb->s_inode_wblist_lock);
2258                        continue;
2259                }
2260                __iget(inode);
2261                spin_unlock(&inode->i_lock);
2262                rcu_read_unlock();
2263
2264                /*
2265                 * We keep the error status of individual mapping so that
2266                 * applications can catch the writeback error using fsync(2).
2267                 * See filemap_fdatawait_keep_errors() for details.
2268                 */
2269                filemap_fdatawait_keep_errors(mapping);
2270
2271                cond_resched();
2272
2273                iput(inode);
2274
2275                rcu_read_lock();
2276                spin_lock_irq(&sb->s_inode_wblist_lock);
2277        }
2278        spin_unlock_irq(&sb->s_inode_wblist_lock);
2279        rcu_read_unlock();
2280        mutex_unlock(&sb->s_sync_lock);
2281}
2282
2283static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2284                                     enum wb_reason reason, bool skip_if_busy)
2285{
2286        DEFINE_WB_COMPLETION_ONSTACK(done);
2287        struct wb_writeback_work work = {
2288                .sb                     = sb,
2289                .sync_mode              = WB_SYNC_NONE,
2290                .tagged_writepages      = 1,
2291                .done                   = &done,
2292                .nr_pages               = nr,
2293                .reason                 = reason,
2294        };
2295        struct backing_dev_info *bdi = sb->s_bdi;
2296
2297        if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2298                return;
2299        WARN_ON(!rwsem_is_locked(&sb->s_umount));
2300
2301        bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2302        wb_wait_for_completion(bdi, &done);
2303}
2304
2305/**
2306 * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2307 * @sb: the superblock
2308 * @nr: the number of pages to write
2309 * @reason: reason why some writeback work initiated
2310 *
2311 * Start writeback on some inodes on this super_block. No guarantees are made
2312 * on how many (if any) will be written, and this function does not wait
2313 * for IO completion of submitted IO.
2314 */
2315void writeback_inodes_sb_nr(struct super_block *sb,
2316                            unsigned long nr,
2317                            enum wb_reason reason)
2318{
2319        __writeback_inodes_sb_nr(sb, nr, reason, false);
2320}
2321EXPORT_SYMBOL(writeback_inodes_sb_nr);
2322
2323/**
2324 * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2325 * @sb: the superblock
2326 * @reason: reason why some writeback work was initiated
2327 *
2328 * Start writeback on some inodes on this super_block. No guarantees are made
2329 * on how many (if any) will be written, and this function does not wait
2330 * for IO completion of submitted IO.
2331 */
2332void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2333{
2334        return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2335}
2336EXPORT_SYMBOL(writeback_inodes_sb);
2337
2338/**
2339 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2340 * @sb: the superblock
2341 * @nr: the number of pages to write
2342 * @reason: the reason of writeback
2343 *
2344 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2345 * Returns 1 if writeback was started, 0 if not.
2346 */
2347bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2348                                   enum wb_reason reason)
2349{
2350        if (!down_read_trylock(&sb->s_umount))
2351                return false;
2352
2353        __writeback_inodes_sb_nr(sb, nr, reason, true);
2354        up_read(&sb->s_umount);
2355        return true;
2356}
2357EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2358
2359/**
2360 * try_to_writeback_inodes_sb - try to start writeback if none underway
2361 * @sb: the superblock
2362 * @reason: reason why some writeback work was initiated
2363 *
2364 * Implement by try_to_writeback_inodes_sb_nr()
2365 * Returns 1 if writeback was started, 0 if not.
2366 */
2367bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2368{
2369        return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2370}
2371EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2372
2373/**
2374 * sync_inodes_sb       -       sync sb inode pages
2375 * @sb: the superblock
2376 *
2377 * This function writes and waits on any dirty inode belonging to this
2378 * super_block.
2379 */
2380void sync_inodes_sb(struct super_block *sb)
2381{
2382        DEFINE_WB_COMPLETION_ONSTACK(done);
2383        struct wb_writeback_work work = {
2384                .sb             = sb,
2385                .sync_mode      = WB_SYNC_ALL,
2386                .nr_pages       = LONG_MAX,
2387                .range_cyclic   = 0,
2388                .done           = &done,
2389                .reason         = WB_REASON_SYNC,
2390                .for_sync       = 1,
2391        };
2392        struct backing_dev_info *bdi = sb->s_bdi;
2393
2394        /*
2395         * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2396         * inodes under writeback and I_DIRTY_TIME inodes ignored by
2397         * bdi_has_dirty() need to be written out too.
2398         */
2399        if (bdi == &noop_backing_dev_info)
2400                return;
2401        WARN_ON(!rwsem_is_locked(&sb->s_umount));
2402
2403        bdi_split_work_to_wbs(bdi, &work, false);
2404        wb_wait_for_completion(bdi, &done);
2405
2406        wait_sb_inodes(sb);
2407}
2408EXPORT_SYMBOL(sync_inodes_sb);
2409
2410/**
2411 * write_inode_now      -       write an inode to disk
2412 * @inode: inode to write to disk
2413 * @sync: whether the write should be synchronous or not
2414 *
2415 * This function commits an inode to disk immediately if it is dirty. This is
2416 * primarily needed by knfsd.
2417 *
2418 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2419 */
2420int write_inode_now(struct inode *inode, int sync)
2421{
2422        struct writeback_control wbc = {
2423                .nr_to_write = LONG_MAX,
2424                .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2425                .range_start = 0,
2426                .range_end = LLONG_MAX,
2427        };
2428
2429        if (!mapping_cap_writeback_dirty(inode->i_mapping))
2430                wbc.nr_to_write = 0;
2431
2432        might_sleep();
2433        return writeback_single_inode(inode, &wbc);
2434}
2435EXPORT_SYMBOL(write_inode_now);
2436
2437/**
2438 * sync_inode - write an inode and its pages to disk.
2439 * @inode: the inode to sync
2440 * @wbc: controls the writeback mode
2441 *
2442 * sync_inode() will write an inode and its pages to disk.  It will also
2443 * correctly update the inode on its superblock's dirty inode lists and will
2444 * update inode->i_state.
2445 *
2446 * The caller must have a ref on the inode.
2447 */
2448int sync_inode(struct inode *inode, struct writeback_control *wbc)
2449{
2450        return writeback_single_inode(inode, wbc);
2451}
2452EXPORT_SYMBOL(sync_inode);
2453
2454/**
2455 * sync_inode_metadata - write an inode to disk
2456 * @inode: the inode to sync
2457 * @wait: wait for I/O to complete.
2458 *
2459 * Write an inode to disk and adjust its dirty state after completion.
2460 *
2461 * Note: only writes the actual inode, no associated data or other metadata.
2462 */
2463int sync_inode_metadata(struct inode *inode, int wait)
2464{
2465        struct writeback_control wbc = {
2466                .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2467                .nr_to_write = 0, /* metadata-only */
2468        };
2469
2470        return sync_inode(inode, &wbc);
2471}
2472EXPORT_SYMBOL(sync_inode_metadata);
2473