linux/fs/gfs2/aops.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#include <linux/sched.h>
  11#include <linux/slab.h>
  12#include <linux/spinlock.h>
  13#include <linux/completion.h>
  14#include <linux/buffer_head.h>
  15#include <linux/pagemap.h>
  16#include <linux/pagevec.h>
  17#include <linux/mpage.h>
  18#include <linux/fs.h>
  19#include <linux/writeback.h>
  20#include <linux/swap.h>
  21#include <linux/gfs2_ondisk.h>
  22#include <linux/backing-dev.h>
  23#include <linux/uio.h>
  24#include <trace/events/writeback.h>
  25
  26#include "gfs2.h"
  27#include "incore.h"
  28#include "bmap.h"
  29#include "glock.h"
  30#include "inode.h"
  31#include "log.h"
  32#include "meta_io.h"
  33#include "quota.h"
  34#include "trans.h"
  35#include "rgrp.h"
  36#include "super.h"
  37#include "util.h"
  38#include "glops.h"
  39
  40
  41static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
  42                                   unsigned int from, unsigned int to)
  43{
  44        struct buffer_head *head = page_buffers(page);
  45        unsigned int bsize = head->b_size;
  46        struct buffer_head *bh;
  47        unsigned int start, end;
  48
  49        for (bh = head, start = 0; bh != head || !start;
  50             bh = bh->b_this_page, start = end) {
  51                end = start + bsize;
  52                if (end <= from || start >= to)
  53                        continue;
  54                if (gfs2_is_jdata(ip))
  55                        set_buffer_uptodate(bh);
  56                gfs2_trans_add_data(ip->i_gl, bh);
  57        }
  58}
  59
  60/**
  61 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
  62 * @inode: The inode
  63 * @lblock: The block number to look up
  64 * @bh_result: The buffer head to return the result in
  65 * @create: Non-zero if we may add block to the file
  66 *
  67 * Returns: errno
  68 */
  69
  70static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
  71                                  struct buffer_head *bh_result, int create)
  72{
  73        int error;
  74
  75        error = gfs2_block_map(inode, lblock, bh_result, 0);
  76        if (error)
  77                return error;
  78        if (!buffer_mapped(bh_result))
  79                return -EIO;
  80        return 0;
  81}
  82
  83static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
  84                                 struct buffer_head *bh_result, int create)
  85{
  86        return gfs2_block_map(inode, lblock, bh_result, 0);
  87}
  88
  89/**
  90 * gfs2_writepage_common - Common bits of writepage
  91 * @page: The page to be written
  92 * @wbc: The writeback control
  93 *
  94 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
  95 */
  96
  97static int gfs2_writepage_common(struct page *page,
  98                                 struct writeback_control *wbc)
  99{
 100        struct inode *inode = page->mapping->host;
 101        struct gfs2_inode *ip = GFS2_I(inode);
 102        struct gfs2_sbd *sdp = GFS2_SB(inode);
 103        loff_t i_size = i_size_read(inode);
 104        pgoff_t end_index = i_size >> PAGE_SHIFT;
 105        unsigned offset;
 106
 107        if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
 108                goto out;
 109        if (current->journal_info)
 110                goto redirty;
 111        /* Is the page fully outside i_size? (truncate in progress) */
 112        offset = i_size & (PAGE_SIZE-1);
 113        if (page->index > end_index || (page->index == end_index && !offset)) {
 114                page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
 115                goto out;
 116        }
 117        return 1;
 118redirty:
 119        redirty_page_for_writepage(wbc, page);
 120out:
 121        unlock_page(page);
 122        return 0;
 123}
 124
 125/**
 126 * gfs2_writepage - Write page for writeback mappings
 127 * @page: The page
 128 * @wbc: The writeback control
 129 *
 130 */
 131
 132static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
 133{
 134        int ret;
 135
 136        ret = gfs2_writepage_common(page, wbc);
 137        if (ret <= 0)
 138                return ret;
 139
 140        return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
 141}
 142
 143/* This is the same as calling block_write_full_page, but it also
 144 * writes pages outside of i_size
 145 */
 146int gfs2_write_full_page(struct page *page, get_block_t *get_block,
 147                         struct writeback_control *wbc)
 148{
 149        struct inode * const inode = page->mapping->host;
 150        loff_t i_size = i_size_read(inode);
 151        const pgoff_t end_index = i_size >> PAGE_SHIFT;
 152        unsigned offset;
 153
 154        /*
 155         * The page straddles i_size.  It must be zeroed out on each and every
 156         * writepage invocation because it may be mmapped.  "A file is mapped
 157         * in multiples of the page size.  For a file that is not a multiple of
 158         * the  page size, the remaining memory is zeroed when mapped, and
 159         * writes to that region are not written out to the file."
 160         */
 161        offset = i_size & (PAGE_SIZE-1);
 162        if (page->index == end_index && offset)
 163                zero_user_segment(page, offset, PAGE_SIZE);
 164
 165        return __block_write_full_page(inode, page, get_block, wbc,
 166                                       end_buffer_async_write);
 167}
 168
 169/**
 170 * __gfs2_jdata_writepage - The core of jdata writepage
 171 * @page: The page to write
 172 * @wbc: The writeback control
 173 *
 174 * This is shared between writepage and writepages and implements the
 175 * core of the writepage operation. If a transaction is required then
 176 * PageChecked will have been set and the transaction will have
 177 * already been started before this is called.
 178 */
 179
 180static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 181{
 182        struct inode *inode = page->mapping->host;
 183        struct gfs2_inode *ip = GFS2_I(inode);
 184        struct gfs2_sbd *sdp = GFS2_SB(inode);
 185
 186        if (PageChecked(page)) {
 187                ClearPageChecked(page);
 188                if (!page_has_buffers(page)) {
 189                        create_empty_buffers(page, inode->i_sb->s_blocksize,
 190                                             BIT(BH_Dirty)|BIT(BH_Uptodate));
 191                }
 192                gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
 193        }
 194        return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
 195}
 196
 197/**
 198 * gfs2_jdata_writepage - Write complete page
 199 * @page: Page to write
 200 * @wbc: The writeback control
 201 *
 202 * Returns: errno
 203 *
 204 */
 205
 206static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 207{
 208        struct inode *inode = page->mapping->host;
 209        struct gfs2_inode *ip = GFS2_I(inode);
 210        struct gfs2_sbd *sdp = GFS2_SB(inode);
 211        int ret;
 212
 213        if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
 214                goto out;
 215        if (PageChecked(page) || current->journal_info)
 216                goto out_ignore;
 217        ret = __gfs2_jdata_writepage(page, wbc);
 218        return ret;
 219
 220out_ignore:
 221        redirty_page_for_writepage(wbc, page);
 222out:
 223        unlock_page(page);
 224        return 0;
 225}
 226
 227/**
 228 * gfs2_writepages - Write a bunch of dirty pages back to disk
 229 * @mapping: The mapping to write
 230 * @wbc: Write-back control
 231 *
 232 * Used for both ordered and writeback modes.
 233 */
 234static int gfs2_writepages(struct address_space *mapping,
 235                           struct writeback_control *wbc)
 236{
 237        return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
 238}
 239
 240/**
 241 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
 242 * @mapping: The mapping
 243 * @wbc: The writeback control
 244 * @pvec: The vector of pages
 245 * @nr_pages: The number of pages to write
 246 * @end: End position
 247 * @done_index: Page index
 248 *
 249 * Returns: non-zero if loop should terminate, zero otherwise
 250 */
 251
 252static int gfs2_write_jdata_pagevec(struct address_space *mapping,
 253                                    struct writeback_control *wbc,
 254                                    struct pagevec *pvec,
 255                                    int nr_pages, pgoff_t end,
 256                                    pgoff_t *done_index)
 257{
 258        struct inode *inode = mapping->host;
 259        struct gfs2_sbd *sdp = GFS2_SB(inode);
 260        unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
 261        int i;
 262        int ret;
 263
 264        ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
 265        if (ret < 0)
 266                return ret;
 267
 268        for(i = 0; i < nr_pages; i++) {
 269                struct page *page = pvec->pages[i];
 270
 271                /*
 272                 * At this point, the page may be truncated or
 273                 * invalidated (changing page->mapping to NULL), or
 274                 * even swizzled back from swapper_space to tmpfs file
 275                 * mapping. However, page->index will not change
 276                 * because we have a reference on the page.
 277                 */
 278                if (page->index > end) {
 279                        /*
 280                         * can't be range_cyclic (1st pass) because
 281                         * end == -1 in that case.
 282                         */
 283                        ret = 1;
 284                        break;
 285                }
 286
 287                *done_index = page->index;
 288
 289                lock_page(page);
 290
 291                if (unlikely(page->mapping != mapping)) {
 292continue_unlock:
 293                        unlock_page(page);
 294                        continue;
 295                }
 296
 297                if (!PageDirty(page)) {
 298                        /* someone wrote it for us */
 299                        goto continue_unlock;
 300                }
 301
 302                if (PageWriteback(page)) {
 303                        if (wbc->sync_mode != WB_SYNC_NONE)
 304                                wait_on_page_writeback(page);
 305                        else
 306                                goto continue_unlock;
 307                }
 308
 309                BUG_ON(PageWriteback(page));
 310                if (!clear_page_dirty_for_io(page))
 311                        goto continue_unlock;
 312
 313                trace_wbc_writepage(wbc, inode_to_bdi(inode));
 314
 315                ret = __gfs2_jdata_writepage(page, wbc);
 316                if (unlikely(ret)) {
 317                        if (ret == AOP_WRITEPAGE_ACTIVATE) {
 318                                unlock_page(page);
 319                                ret = 0;
 320                        } else {
 321
 322                                /*
 323                                 * done_index is set past this page,
 324                                 * so media errors will not choke
 325                                 * background writeout for the entire
 326                                 * file. This has consequences for
 327                                 * range_cyclic semantics (ie. it may
 328                                 * not be suitable for data integrity
 329                                 * writeout).
 330                                 */
 331                                *done_index = page->index + 1;
 332                                ret = 1;
 333                                break;
 334                        }
 335                }
 336
 337                /*
 338                 * We stop writing back only if we are not doing
 339                 * integrity sync. In case of integrity sync we have to
 340                 * keep going until we have written all the pages
 341                 * we tagged for writeback prior to entering this loop.
 342                 */
 343                if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
 344                        ret = 1;
 345                        break;
 346                }
 347
 348        }
 349        gfs2_trans_end(sdp);
 350        return ret;
 351}
 352
 353/**
 354 * gfs2_write_cache_jdata - Like write_cache_pages but different
 355 * @mapping: The mapping to write
 356 * @wbc: The writeback control
 357 *
 358 * The reason that we use our own function here is that we need to
 359 * start transactions before we grab page locks. This allows us
 360 * to get the ordering right.
 361 */
 362
 363static int gfs2_write_cache_jdata(struct address_space *mapping,
 364                                  struct writeback_control *wbc)
 365{
 366        int ret = 0;
 367        int done = 0;
 368        struct pagevec pvec;
 369        int nr_pages;
 370        pgoff_t uninitialized_var(writeback_index);
 371        pgoff_t index;
 372        pgoff_t end;
 373        pgoff_t done_index;
 374        int cycled;
 375        int range_whole = 0;
 376        int tag;
 377
 378        pagevec_init(&pvec, 0);
 379        if (wbc->range_cyclic) {
 380                writeback_index = mapping->writeback_index; /* prev offset */
 381                index = writeback_index;
 382                if (index == 0)
 383                        cycled = 1;
 384                else
 385                        cycled = 0;
 386                end = -1;
 387        } else {
 388                index = wbc->range_start >> PAGE_SHIFT;
 389                end = wbc->range_end >> PAGE_SHIFT;
 390                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 391                        range_whole = 1;
 392                cycled = 1; /* ignore range_cyclic tests */
 393        }
 394        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 395                tag = PAGECACHE_TAG_TOWRITE;
 396        else
 397                tag = PAGECACHE_TAG_DIRTY;
 398
 399retry:
 400        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 401                tag_pages_for_writeback(mapping, index, end);
 402        done_index = index;
 403        while (!done && (index <= end)) {
 404                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
 405                              min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
 406                if (nr_pages == 0)
 407                        break;
 408
 409                ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end, &done_index);
 410                if (ret)
 411                        done = 1;
 412                if (ret > 0)
 413                        ret = 0;
 414                pagevec_release(&pvec);
 415                cond_resched();
 416        }
 417
 418        if (!cycled && !done) {
 419                /*
 420                 * range_cyclic:
 421                 * We hit the last page and there is more work to be done: wrap
 422                 * back to the start of the file
 423                 */
 424                cycled = 1;
 425                index = 0;
 426                end = writeback_index - 1;
 427                goto retry;
 428        }
 429
 430        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
 431                mapping->writeback_index = done_index;
 432
 433        return ret;
 434}
 435
 436
 437/**
 438 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
 439 * @mapping: The mapping to write
 440 * @wbc: The writeback control
 441 * 
 442 */
 443
 444static int gfs2_jdata_writepages(struct address_space *mapping,
 445                                 struct writeback_control *wbc)
 446{
 447        struct gfs2_inode *ip = GFS2_I(mapping->host);
 448        struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 449        int ret;
 450
 451        ret = gfs2_write_cache_jdata(mapping, wbc);
 452        if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
 453                gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
 454                ret = gfs2_write_cache_jdata(mapping, wbc);
 455        }
 456        return ret;
 457}
 458
 459/**
 460 * stuffed_readpage - Fill in a Linux page with stuffed file data
 461 * @ip: the inode
 462 * @page: the page
 463 *
 464 * Returns: errno
 465 */
 466
 467static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
 468{
 469        struct buffer_head *dibh;
 470        u64 dsize = i_size_read(&ip->i_inode);
 471        void *kaddr;
 472        int error;
 473
 474        /*
 475         * Due to the order of unstuffing files and ->fault(), we can be
 476         * asked for a zero page in the case of a stuffed file being extended,
 477         * so we need to supply one here. It doesn't happen often.
 478         */
 479        if (unlikely(page->index)) {
 480                zero_user(page, 0, PAGE_SIZE);
 481                SetPageUptodate(page);
 482                return 0;
 483        }
 484
 485        error = gfs2_meta_inode_buffer(ip, &dibh);
 486        if (error)
 487                return error;
 488
 489        kaddr = kmap_atomic(page);
 490        if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
 491                dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
 492        memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
 493        memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
 494        kunmap_atomic(kaddr);
 495        flush_dcache_page(page);
 496        brelse(dibh);
 497        SetPageUptodate(page);
 498
 499        return 0;
 500}
 501
 502
 503/**
 504 * __gfs2_readpage - readpage
 505 * @file: The file to read a page for
 506 * @page: The page to read
 507 *
 508 * This is the core of gfs2's readpage. Its used by the internal file
 509 * reading code as in that case we already hold the glock. Also its
 510 * called by gfs2_readpage() once the required lock has been granted.
 511 *
 512 */
 513
 514static int __gfs2_readpage(void *file, struct page *page)
 515{
 516        struct gfs2_inode *ip = GFS2_I(page->mapping->host);
 517        struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
 518        int error;
 519
 520        if (gfs2_is_stuffed(ip)) {
 521                error = stuffed_readpage(ip, page);
 522                unlock_page(page);
 523        } else {
 524                error = mpage_readpage(page, gfs2_block_map);
 525        }
 526
 527        if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 528                return -EIO;
 529
 530        return error;
 531}
 532
 533/**
 534 * gfs2_readpage - read a page of a file
 535 * @file: The file to read
 536 * @page: The page of the file
 537 *
 538 * This deals with the locking required. We have to unlock and
 539 * relock the page in order to get the locking in the right
 540 * order.
 541 */
 542
 543static int gfs2_readpage(struct file *file, struct page *page)
 544{
 545        struct address_space *mapping = page->mapping;
 546        struct gfs2_inode *ip = GFS2_I(mapping->host);
 547        struct gfs2_holder gh;
 548        int error;
 549
 550        unlock_page(page);
 551        gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 552        error = gfs2_glock_nq(&gh);
 553        if (unlikely(error))
 554                goto out;
 555        error = AOP_TRUNCATED_PAGE;
 556        lock_page(page);
 557        if (page->mapping == mapping && !PageUptodate(page))
 558                error = __gfs2_readpage(file, page);
 559        else
 560                unlock_page(page);
 561        gfs2_glock_dq(&gh);
 562out:
 563        gfs2_holder_uninit(&gh);
 564        if (error && error != AOP_TRUNCATED_PAGE)
 565                lock_page(page);
 566        return error;
 567}
 568
 569/**
 570 * gfs2_internal_read - read an internal file
 571 * @ip: The gfs2 inode
 572 * @buf: The buffer to fill
 573 * @pos: The file position
 574 * @size: The amount to read
 575 *
 576 */
 577
 578int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
 579                       unsigned size)
 580{
 581        struct address_space *mapping = ip->i_inode.i_mapping;
 582        unsigned long index = *pos / PAGE_SIZE;
 583        unsigned offset = *pos & (PAGE_SIZE - 1);
 584        unsigned copied = 0;
 585        unsigned amt;
 586        struct page *page;
 587        void *p;
 588
 589        do {
 590                amt = size - copied;
 591                if (offset + size > PAGE_SIZE)
 592                        amt = PAGE_SIZE - offset;
 593                page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
 594                if (IS_ERR(page))
 595                        return PTR_ERR(page);
 596                p = kmap_atomic(page);
 597                memcpy(buf + copied, p + offset, amt);
 598                kunmap_atomic(p);
 599                put_page(page);
 600                copied += amt;
 601                index++;
 602                offset = 0;
 603        } while(copied < size);
 604        (*pos) += size;
 605        return size;
 606}
 607
 608/**
 609 * gfs2_readpages - Read a bunch of pages at once
 610 * @file: The file to read from
 611 * @mapping: Address space info
 612 * @pages: List of pages to read
 613 * @nr_pages: Number of pages to read
 614 *
 615 * Some notes:
 616 * 1. This is only for readahead, so we can simply ignore any things
 617 *    which are slightly inconvenient (such as locking conflicts between
 618 *    the page lock and the glock) and return having done no I/O. Its
 619 *    obviously not something we'd want to do on too regular a basis.
 620 *    Any I/O we ignore at this time will be done via readpage later.
 621 * 2. We don't handle stuffed files here we let readpage do the honours.
 622 * 3. mpage_readpages() does most of the heavy lifting in the common case.
 623 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
 624 */
 625
 626static int gfs2_readpages(struct file *file, struct address_space *mapping,
 627                          struct list_head *pages, unsigned nr_pages)
 628{
 629        struct inode *inode = mapping->host;
 630        struct gfs2_inode *ip = GFS2_I(inode);
 631        struct gfs2_sbd *sdp = GFS2_SB(inode);
 632        struct gfs2_holder gh;
 633        int ret;
 634
 635        gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 636        ret = gfs2_glock_nq(&gh);
 637        if (unlikely(ret))
 638                goto out_uninit;
 639        if (!gfs2_is_stuffed(ip))
 640                ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
 641        gfs2_glock_dq(&gh);
 642out_uninit:
 643        gfs2_holder_uninit(&gh);
 644        if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 645                ret = -EIO;
 646        return ret;
 647}
 648
 649/**
 650 * gfs2_write_begin - Begin to write to a file
 651 * @file: The file to write to
 652 * @mapping: The mapping in which to write
 653 * @pos: The file offset at which to start writing
 654 * @len: Length of the write
 655 * @flags: Various flags
 656 * @pagep: Pointer to return the page
 657 * @fsdata: Pointer to return fs data (unused by GFS2)
 658 *
 659 * Returns: errno
 660 */
 661
 662static int gfs2_write_begin(struct file *file, struct address_space *mapping,
 663                            loff_t pos, unsigned len, unsigned flags,
 664                            struct page **pagep, void **fsdata)
 665{
 666        struct gfs2_inode *ip = GFS2_I(mapping->host);
 667        struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 668        struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 669        unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
 670        unsigned requested = 0;
 671        int alloc_required;
 672        int error = 0;
 673        pgoff_t index = pos >> PAGE_SHIFT;
 674        unsigned from = pos & (PAGE_SIZE - 1);
 675        struct page *page;
 676
 677        gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
 678        error = gfs2_glock_nq(&ip->i_gh);
 679        if (unlikely(error))
 680                goto out_uninit;
 681        if (&ip->i_inode == sdp->sd_rindex) {
 682                error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
 683                                           GL_NOCACHE, &m_ip->i_gh);
 684                if (unlikely(error)) {
 685                        gfs2_glock_dq(&ip->i_gh);
 686                        goto out_uninit;
 687                }
 688        }
 689
 690        alloc_required = gfs2_write_alloc_required(ip, pos, len);
 691
 692        if (alloc_required || gfs2_is_jdata(ip))
 693                gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
 694
 695        if (alloc_required) {
 696                struct gfs2_alloc_parms ap = { .aflags = 0, };
 697                requested = data_blocks + ind_blocks;
 698                ap.target = requested;
 699                error = gfs2_quota_lock_check(ip, &ap);
 700                if (error)
 701                        goto out_unlock;
 702
 703                error = gfs2_inplace_reserve(ip, &ap);
 704                if (error)
 705                        goto out_qunlock;
 706        }
 707
 708        rblocks = RES_DINODE + ind_blocks;
 709        if (gfs2_is_jdata(ip))
 710                rblocks += data_blocks ? data_blocks : 1;
 711        if (ind_blocks || data_blocks)
 712                rblocks += RES_STATFS + RES_QUOTA;
 713        if (&ip->i_inode == sdp->sd_rindex)
 714                rblocks += 2 * RES_STATFS;
 715        if (alloc_required)
 716                rblocks += gfs2_rg_blocks(ip, requested);
 717
 718        error = gfs2_trans_begin(sdp, rblocks,
 719                                 PAGE_SIZE/sdp->sd_sb.sb_bsize);
 720        if (error)
 721                goto out_trans_fail;
 722
 723        error = -ENOMEM;
 724        flags |= AOP_FLAG_NOFS;
 725        page = grab_cache_page_write_begin(mapping, index, flags);
 726        *pagep = page;
 727        if (unlikely(!page))
 728                goto out_endtrans;
 729
 730        if (gfs2_is_stuffed(ip)) {
 731                error = 0;
 732                if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
 733                        error = gfs2_unstuff_dinode(ip, page);
 734                        if (error == 0)
 735                                goto prepare_write;
 736                } else if (!PageUptodate(page)) {
 737                        error = stuffed_readpage(ip, page);
 738                }
 739                goto out;
 740        }
 741
 742prepare_write:
 743        error = __block_write_begin(page, from, len, gfs2_block_map);
 744out:
 745        if (error == 0)
 746                return 0;
 747
 748        unlock_page(page);
 749        put_page(page);
 750
 751        gfs2_trans_end(sdp);
 752        if (pos + len > ip->i_inode.i_size)
 753                gfs2_trim_blocks(&ip->i_inode);
 754        goto out_trans_fail;
 755
 756out_endtrans:
 757        gfs2_trans_end(sdp);
 758out_trans_fail:
 759        if (alloc_required) {
 760                gfs2_inplace_release(ip);
 761out_qunlock:
 762                gfs2_quota_unlock(ip);
 763        }
 764out_unlock:
 765        if (&ip->i_inode == sdp->sd_rindex) {
 766                gfs2_glock_dq(&m_ip->i_gh);
 767                gfs2_holder_uninit(&m_ip->i_gh);
 768        }
 769        gfs2_glock_dq(&ip->i_gh);
 770out_uninit:
 771        gfs2_holder_uninit(&ip->i_gh);
 772        return error;
 773}
 774
 775/**
 776 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
 777 * @inode: the rindex inode
 778 */
 779static void adjust_fs_space(struct inode *inode)
 780{
 781        struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
 782        struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 783        struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
 784        struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
 785        struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
 786        struct buffer_head *m_bh, *l_bh;
 787        u64 fs_total, new_free;
 788
 789        /* Total up the file system space, according to the latest rindex. */
 790        fs_total = gfs2_ri_total(sdp);
 791        if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
 792                return;
 793
 794        spin_lock(&sdp->sd_statfs_spin);
 795        gfs2_statfs_change_in(m_sc, m_bh->b_data +
 796                              sizeof(struct gfs2_dinode));
 797        if (fs_total > (m_sc->sc_total + l_sc->sc_total))
 798                new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
 799        else
 800                new_free = 0;
 801        spin_unlock(&sdp->sd_statfs_spin);
 802        fs_warn(sdp, "File system extended by %llu blocks.\n",
 803                (unsigned long long)new_free);
 804        gfs2_statfs_change(sdp, new_free, new_free, 0);
 805
 806        if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
 807                goto out;
 808        update_statfs(sdp, m_bh, l_bh);
 809        brelse(l_bh);
 810out:
 811        brelse(m_bh);
 812}
 813
 814/**
 815 * gfs2_stuffed_write_end - Write end for stuffed files
 816 * @inode: The inode
 817 * @dibh: The buffer_head containing the on-disk inode
 818 * @pos: The file position
 819 * @len: The length of the write
 820 * @copied: How much was actually copied by the VFS
 821 * @page: The page
 822 *
 823 * This copies the data from the page into the inode block after
 824 * the inode data structure itself.
 825 *
 826 * Returns: errno
 827 */
 828static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
 829                                  loff_t pos, unsigned len, unsigned copied,
 830                                  struct page *page)
 831{
 832        struct gfs2_inode *ip = GFS2_I(inode);
 833        struct gfs2_sbd *sdp = GFS2_SB(inode);
 834        struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 835        u64 to = pos + copied;
 836        void *kaddr;
 837        unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
 838
 839        BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
 840        kaddr = kmap_atomic(page);
 841        memcpy(buf + pos, kaddr + pos, copied);
 842        memset(kaddr + pos + copied, 0, len - copied);
 843        flush_dcache_page(page);
 844        kunmap_atomic(kaddr);
 845
 846        if (!PageUptodate(page))
 847                SetPageUptodate(page);
 848        unlock_page(page);
 849        put_page(page);
 850
 851        if (copied) {
 852                if (inode->i_size < to)
 853                        i_size_write(inode, to);
 854                mark_inode_dirty(inode);
 855        }
 856
 857        if (inode == sdp->sd_rindex) {
 858                adjust_fs_space(inode);
 859                sdp->sd_rindex_uptodate = 0;
 860        }
 861
 862        brelse(dibh);
 863        gfs2_trans_end(sdp);
 864        if (inode == sdp->sd_rindex) {
 865                gfs2_glock_dq(&m_ip->i_gh);
 866                gfs2_holder_uninit(&m_ip->i_gh);
 867        }
 868        gfs2_glock_dq(&ip->i_gh);
 869        gfs2_holder_uninit(&ip->i_gh);
 870        return copied;
 871}
 872
 873/**
 874 * gfs2_write_end
 875 * @file: The file to write to
 876 * @mapping: The address space to write to
 877 * @pos: The file position
 878 * @len: The length of the data
 879 * @copied: How much was actually copied by the VFS
 880 * @page: The page that has been written
 881 * @fsdata: The fsdata (unused in GFS2)
 882 *
 883 * The main write_end function for GFS2. We have a separate one for
 884 * stuffed files as they are slightly different, otherwise we just
 885 * put our locking around the VFS provided functions.
 886 *
 887 * Returns: errno
 888 */
 889
 890static int gfs2_write_end(struct file *file, struct address_space *mapping,
 891                          loff_t pos, unsigned len, unsigned copied,
 892                          struct page *page, void *fsdata)
 893{
 894        struct inode *inode = page->mapping->host;
 895        struct gfs2_inode *ip = GFS2_I(inode);
 896        struct gfs2_sbd *sdp = GFS2_SB(inode);
 897        struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 898        struct buffer_head *dibh;
 899        unsigned int from = pos & (PAGE_SIZE - 1);
 900        unsigned int to = from + len;
 901        int ret;
 902        struct gfs2_trans *tr = current->journal_info;
 903        BUG_ON(!tr);
 904
 905        BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
 906
 907        ret = gfs2_meta_inode_buffer(ip, &dibh);
 908        if (unlikely(ret)) {
 909                unlock_page(page);
 910                put_page(page);
 911                goto failed;
 912        }
 913
 914        if (gfs2_is_stuffed(ip))
 915                return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
 916
 917        if (!gfs2_is_writeback(ip))
 918                gfs2_page_add_databufs(ip, page, from, to);
 919
 920        ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 921        if (tr->tr_num_buf_new)
 922                __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
 923        else
 924                gfs2_trans_add_meta(ip->i_gl, dibh);
 925
 926
 927        if (inode == sdp->sd_rindex) {
 928                adjust_fs_space(inode);
 929                sdp->sd_rindex_uptodate = 0;
 930        }
 931
 932        brelse(dibh);
 933failed:
 934        gfs2_trans_end(sdp);
 935        gfs2_inplace_release(ip);
 936        if (ip->i_qadata && ip->i_qadata->qa_qd_num)
 937                gfs2_quota_unlock(ip);
 938        if (inode == sdp->sd_rindex) {
 939                gfs2_glock_dq(&m_ip->i_gh);
 940                gfs2_holder_uninit(&m_ip->i_gh);
 941        }
 942        gfs2_glock_dq(&ip->i_gh);
 943        gfs2_holder_uninit(&ip->i_gh);
 944        return ret;
 945}
 946
 947/**
 948 * gfs2_set_page_dirty - Page dirtying function
 949 * @page: The page to dirty
 950 *
 951 * Returns: 1 if it dirtyed the page, or 0 otherwise
 952 */
 953 
 954static int gfs2_set_page_dirty(struct page *page)
 955{
 956        SetPageChecked(page);
 957        return __set_page_dirty_buffers(page);
 958}
 959
 960/**
 961 * gfs2_bmap - Block map function
 962 * @mapping: Address space info
 963 * @lblock: The block to map
 964 *
 965 * Returns: The disk address for the block or 0 on hole or error
 966 */
 967
 968static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
 969{
 970        struct gfs2_inode *ip = GFS2_I(mapping->host);
 971        struct gfs2_holder i_gh;
 972        sector_t dblock = 0;
 973        int error;
 974
 975        error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
 976        if (error)
 977                return 0;
 978
 979        if (!gfs2_is_stuffed(ip))
 980                dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
 981
 982        gfs2_glock_dq_uninit(&i_gh);
 983
 984        return dblock;
 985}
 986
 987static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
 988{
 989        struct gfs2_bufdata *bd;
 990
 991        lock_buffer(bh);
 992        gfs2_log_lock(sdp);
 993        clear_buffer_dirty(bh);
 994        bd = bh->b_private;
 995        if (bd) {
 996                if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
 997                        list_del_init(&bd->bd_list);
 998                else
 999                        gfs2_remove_from_journal(bh, REMOVE_JDATA);
1000        }
1001        bh->b_bdev = NULL;
1002        clear_buffer_mapped(bh);
1003        clear_buffer_req(bh);
1004        clear_buffer_new(bh);
1005        gfs2_log_unlock(sdp);
1006        unlock_buffer(bh);
1007}
1008
1009static void gfs2_invalidatepage(struct page *page, unsigned int offset,
1010                                unsigned int length)
1011{
1012        struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
1013        unsigned int stop = offset + length;
1014        int partial_page = (offset || length < PAGE_SIZE);
1015        struct buffer_head *bh, *head;
1016        unsigned long pos = 0;
1017
1018        BUG_ON(!PageLocked(page));
1019        if (!partial_page)
1020                ClearPageChecked(page);
1021        if (!page_has_buffers(page))
1022                goto out;
1023
1024        bh = head = page_buffers(page);
1025        do {
1026                if (pos + bh->b_size > stop)
1027                        return;
1028
1029                if (offset <= pos)
1030                        gfs2_discard(sdp, bh);
1031                pos += bh->b_size;
1032                bh = bh->b_this_page;
1033        } while (bh != head);
1034out:
1035        if (!partial_page)
1036                try_to_release_page(page, 0);
1037}
1038
1039/**
1040 * gfs2_ok_for_dio - check that dio is valid on this file
1041 * @ip: The inode
1042 * @offset: The offset at which we are reading or writing
1043 *
1044 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1045 *          1 (to accept the i/o request)
1046 */
1047static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1048{
1049        /*
1050         * Should we return an error here? I can't see that O_DIRECT for
1051         * a stuffed file makes any sense. For now we'll silently fall
1052         * back to buffered I/O
1053         */
1054        if (gfs2_is_stuffed(ip))
1055                return 0;
1056
1057        if (offset >= i_size_read(&ip->i_inode))
1058                return 0;
1059        return 1;
1060}
1061
1062
1063
1064static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1065{
1066        struct file *file = iocb->ki_filp;
1067        struct inode *inode = file->f_mapping->host;
1068        struct address_space *mapping = inode->i_mapping;
1069        struct gfs2_inode *ip = GFS2_I(inode);
1070        loff_t offset = iocb->ki_pos;
1071        struct gfs2_holder gh;
1072        int rv;
1073
1074        /*
1075         * Deferred lock, even if its a write, since we do no allocation
1076         * on this path. All we need change is atime, and this lock mode
1077         * ensures that other nodes have flushed their buffered read caches
1078         * (i.e. their page cache entries for this inode). We do not,
1079         * unfortunately have the option of only flushing a range like
1080         * the VFS does.
1081         */
1082        gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1083        rv = gfs2_glock_nq(&gh);
1084        if (rv)
1085                goto out_uninit;
1086        rv = gfs2_ok_for_dio(ip, offset);
1087        if (rv != 1)
1088                goto out; /* dio not valid, fall back to buffered i/o */
1089
1090        /*
1091         * Now since we are holding a deferred (CW) lock at this point, you
1092         * might be wondering why this is ever needed. There is a case however
1093         * where we've granted a deferred local lock against a cached exclusive
1094         * glock. That is ok provided all granted local locks are deferred, but
1095         * it also means that it is possible to encounter pages which are
1096         * cached and possibly also mapped. So here we check for that and sort
1097         * them out ahead of the dio. The glock state machine will take care of
1098         * everything else.
1099         *
1100         * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1101         * the first place, mapping->nr_pages will always be zero.
1102         */
1103        if (mapping->nrpages) {
1104                loff_t lstart = offset & ~(PAGE_SIZE - 1);
1105                loff_t len = iov_iter_count(iter);
1106                loff_t end = PAGE_ALIGN(offset + len) - 1;
1107
1108                rv = 0;
1109                if (len == 0)
1110                        goto out;
1111                if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1112                        unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1113                rv = filemap_write_and_wait_range(mapping, lstart, end);
1114                if (rv)
1115                        goto out;
1116                if (iov_iter_rw(iter) == WRITE)
1117                        truncate_inode_pages_range(mapping, lstart, end);
1118        }
1119
1120        rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1121                                  gfs2_get_block_direct, NULL, NULL, 0);
1122out:
1123        gfs2_glock_dq(&gh);
1124out_uninit:
1125        gfs2_holder_uninit(&gh);
1126        return rv;
1127}
1128
1129/**
1130 * gfs2_releasepage - free the metadata associated with a page
1131 * @page: the page that's being released
1132 * @gfp_mask: passed from Linux VFS, ignored by us
1133 *
1134 * Call try_to_free_buffers() if the buffers in this page can be
1135 * released.
1136 *
1137 * Returns: 0
1138 */
1139
1140int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1141{
1142        struct address_space *mapping = page->mapping;
1143        struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1144        struct buffer_head *bh, *head;
1145        struct gfs2_bufdata *bd;
1146
1147        if (!page_has_buffers(page))
1148                return 0;
1149
1150        /*
1151         * From xfs_vm_releasepage: mm accommodates an old ext3 case where
1152         * clean pages might not have had the dirty bit cleared.  Thus, it can
1153         * send actual dirty pages to ->releasepage() via shrink_active_list().
1154         *
1155         * As a workaround, we skip pages that contain dirty buffers below.
1156         * Once ->releasepage isn't called on dirty pages anymore, we can warn
1157         * on dirty buffers like we used to here again.
1158         */
1159
1160        gfs2_log_lock(sdp);
1161        spin_lock(&sdp->sd_ail_lock);
1162        head = bh = page_buffers(page);
1163        do {
1164                if (atomic_read(&bh->b_count))
1165                        goto cannot_release;
1166                bd = bh->b_private;
1167                if (bd && bd->bd_tr)
1168                        goto cannot_release;
1169                if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
1170                        goto cannot_release;
1171                bh = bh->b_this_page;
1172        } while(bh != head);
1173        spin_unlock(&sdp->sd_ail_lock);
1174
1175        head = bh = page_buffers(page);
1176        do {
1177                bd = bh->b_private;
1178                if (bd) {
1179                        gfs2_assert_warn(sdp, bd->bd_bh == bh);
1180                        if (!list_empty(&bd->bd_list))
1181                                list_del_init(&bd->bd_list);
1182                        bd->bd_bh = NULL;
1183                        bh->b_private = NULL;
1184                        kmem_cache_free(gfs2_bufdata_cachep, bd);
1185                }
1186
1187                bh = bh->b_this_page;
1188        } while (bh != head);
1189        gfs2_log_unlock(sdp);
1190
1191        return try_to_free_buffers(page);
1192
1193cannot_release:
1194        spin_unlock(&sdp->sd_ail_lock);
1195        gfs2_log_unlock(sdp);
1196        return 0;
1197}
1198
1199static const struct address_space_operations gfs2_writeback_aops = {
1200        .writepage = gfs2_writepage,
1201        .writepages = gfs2_writepages,
1202        .readpage = gfs2_readpage,
1203        .readpages = gfs2_readpages,
1204        .write_begin = gfs2_write_begin,
1205        .write_end = gfs2_write_end,
1206        .bmap = gfs2_bmap,
1207        .invalidatepage = gfs2_invalidatepage,
1208        .releasepage = gfs2_releasepage,
1209        .direct_IO = gfs2_direct_IO,
1210        .migratepage = buffer_migrate_page,
1211        .is_partially_uptodate = block_is_partially_uptodate,
1212        .error_remove_page = generic_error_remove_page,
1213};
1214
1215static const struct address_space_operations gfs2_ordered_aops = {
1216        .writepage = gfs2_writepage,
1217        .writepages = gfs2_writepages,
1218        .readpage = gfs2_readpage,
1219        .readpages = gfs2_readpages,
1220        .write_begin = gfs2_write_begin,
1221        .write_end = gfs2_write_end,
1222        .set_page_dirty = gfs2_set_page_dirty,
1223        .bmap = gfs2_bmap,
1224        .invalidatepage = gfs2_invalidatepage,
1225        .releasepage = gfs2_releasepage,
1226        .direct_IO = gfs2_direct_IO,
1227        .migratepage = buffer_migrate_page,
1228        .is_partially_uptodate = block_is_partially_uptodate,
1229        .error_remove_page = generic_error_remove_page,
1230};
1231
1232static const struct address_space_operations gfs2_jdata_aops = {
1233        .writepage = gfs2_jdata_writepage,
1234        .writepages = gfs2_jdata_writepages,
1235        .readpage = gfs2_readpage,
1236        .readpages = gfs2_readpages,
1237        .write_begin = gfs2_write_begin,
1238        .write_end = gfs2_write_end,
1239        .set_page_dirty = gfs2_set_page_dirty,
1240        .bmap = gfs2_bmap,
1241        .invalidatepage = gfs2_invalidatepage,
1242        .releasepage = gfs2_releasepage,
1243        .is_partially_uptodate = block_is_partially_uptodate,
1244        .error_remove_page = generic_error_remove_page,
1245};
1246
1247void gfs2_set_aops(struct inode *inode)
1248{
1249        struct gfs2_inode *ip = GFS2_I(inode);
1250
1251        if (gfs2_is_writeback(ip))
1252                inode->i_mapping->a_ops = &gfs2_writeback_aops;
1253        else if (gfs2_is_ordered(ip))
1254                inode->i_mapping->a_ops = &gfs2_ordered_aops;
1255        else if (gfs2_is_jdata(ip))
1256                inode->i_mapping->a_ops = &gfs2_jdata_aops;
1257        else
1258                BUG();
1259}
1260
1261