linux/include/linux/usb.h
<<
>>
Prefs
   1#ifndef __LINUX_USB_H
   2#define __LINUX_USB_H
   3
   4#include <linux/mod_devicetable.h>
   5#include <linux/usb/ch9.h>
   6
   7#define USB_MAJOR                       180
   8#define USB_DEVICE_MAJOR                189
   9
  10
  11#ifdef __KERNEL__
  12
  13#include <linux/errno.h>        /* for -ENODEV */
  14#include <linux/delay.h>        /* for mdelay() */
  15#include <linux/interrupt.h>    /* for in_interrupt() */
  16#include <linux/list.h>         /* for struct list_head */
  17#include <linux/kref.h>         /* for struct kref */
  18#include <linux/device.h>       /* for struct device */
  19#include <linux/fs.h>           /* for struct file_operations */
  20#include <linux/completion.h>   /* for struct completion */
  21#include <linux/sched.h>        /* for current && schedule_timeout */
  22#include <linux/mutex.h>        /* for struct mutex */
  23#include <linux/pm_runtime.h>   /* for runtime PM */
  24
  25struct usb_device;
  26struct usb_driver;
  27struct wusb_dev;
  28
  29/*-------------------------------------------------------------------------*/
  30
  31/*
  32 * Host-side wrappers for standard USB descriptors ... these are parsed
  33 * from the data provided by devices.  Parsing turns them from a flat
  34 * sequence of descriptors into a hierarchy:
  35 *
  36 *  - devices have one (usually) or more configs;
  37 *  - configs have one (often) or more interfaces;
  38 *  - interfaces have one (usually) or more settings;
  39 *  - each interface setting has zero or (usually) more endpoints.
  40 *  - a SuperSpeed endpoint has a companion descriptor
  41 *
  42 * And there might be other descriptors mixed in with those.
  43 *
  44 * Devices may also have class-specific or vendor-specific descriptors.
  45 */
  46
  47struct ep_device;
  48
  49/**
  50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
  51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
  52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
  53 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
  54 * @urb_list: urbs queued to this endpoint; maintained by usbcore
  55 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
  56 *      with one or more transfer descriptors (TDs) per urb
  57 * @ep_dev: ep_device for sysfs info
  58 * @extra: descriptors following this endpoint in the configuration
  59 * @extralen: how many bytes of "extra" are valid
  60 * @enabled: URBs may be submitted to this endpoint
  61 * @streams: number of USB-3 streams allocated on the endpoint
  62 *
  63 * USB requests are always queued to a given endpoint, identified by a
  64 * descriptor within an active interface in a given USB configuration.
  65 */
  66struct usb_host_endpoint {
  67        struct usb_endpoint_descriptor          desc;
  68        struct usb_ss_ep_comp_descriptor        ss_ep_comp;
  69        struct usb_ssp_isoc_ep_comp_descriptor  ssp_isoc_ep_comp;
  70        struct list_head                urb_list;
  71        void                            *hcpriv;
  72        struct ep_device                *ep_dev;        /* For sysfs info */
  73
  74        unsigned char *extra;   /* Extra descriptors */
  75        int extralen;
  76        int enabled;
  77        int streams;
  78};
  79
  80/* host-side wrapper for one interface setting's parsed descriptors */
  81struct usb_host_interface {
  82        struct usb_interface_descriptor desc;
  83
  84        int extralen;
  85        unsigned char *extra;   /* Extra descriptors */
  86
  87        /* array of desc.bNumEndpoints endpoints associated with this
  88         * interface setting.  these will be in no particular order.
  89         */
  90        struct usb_host_endpoint *endpoint;
  91
  92        char *string;           /* iInterface string, if present */
  93};
  94
  95enum usb_interface_condition {
  96        USB_INTERFACE_UNBOUND = 0,
  97        USB_INTERFACE_BINDING,
  98        USB_INTERFACE_BOUND,
  99        USB_INTERFACE_UNBINDING,
 100};
 101
 102/**
 103 * struct usb_interface - what usb device drivers talk to
 104 * @altsetting: array of interface structures, one for each alternate
 105 *      setting that may be selected.  Each one includes a set of
 106 *      endpoint configurations.  They will be in no particular order.
 107 * @cur_altsetting: the current altsetting.
 108 * @num_altsetting: number of altsettings defined.
 109 * @intf_assoc: interface association descriptor
 110 * @minor: the minor number assigned to this interface, if this
 111 *      interface is bound to a driver that uses the USB major number.
 112 *      If this interface does not use the USB major, this field should
 113 *      be unused.  The driver should set this value in the probe()
 114 *      function of the driver, after it has been assigned a minor
 115 *      number from the USB core by calling usb_register_dev().
 116 * @condition: binding state of the interface: not bound, binding
 117 *      (in probe()), bound to a driver, or unbinding (in disconnect())
 118 * @sysfs_files_created: sysfs attributes exist
 119 * @ep_devs_created: endpoint child pseudo-devices exist
 120 * @unregistering: flag set when the interface is being unregistered
 121 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
 122 *      capability during autosuspend.
 123 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
 124 *      has been deferred.
 125 * @needs_binding: flag set when the driver should be re-probed or unbound
 126 *      following a reset or suspend operation it doesn't support.
 127 * @authorized: This allows to (de)authorize individual interfaces instead
 128 *      a whole device in contrast to the device authorization.
 129 * @dev: driver model's view of this device
 130 * @usb_dev: if an interface is bound to the USB major, this will point
 131 *      to the sysfs representation for that device.
 132 * @pm_usage_cnt: PM usage counter for this interface
 133 * @reset_ws: Used for scheduling resets from atomic context.
 134 * @resetting_device: USB core reset the device, so use alt setting 0 as
 135 *      current; needs bandwidth alloc after reset.
 136 *
 137 * USB device drivers attach to interfaces on a physical device.  Each
 138 * interface encapsulates a single high level function, such as feeding
 139 * an audio stream to a speaker or reporting a change in a volume control.
 140 * Many USB devices only have one interface.  The protocol used to talk to
 141 * an interface's endpoints can be defined in a usb "class" specification,
 142 * or by a product's vendor.  The (default) control endpoint is part of
 143 * every interface, but is never listed among the interface's descriptors.
 144 *
 145 * The driver that is bound to the interface can use standard driver model
 146 * calls such as dev_get_drvdata() on the dev member of this structure.
 147 *
 148 * Each interface may have alternate settings.  The initial configuration
 149 * of a device sets altsetting 0, but the device driver can change
 150 * that setting using usb_set_interface().  Alternate settings are often
 151 * used to control the use of periodic endpoints, such as by having
 152 * different endpoints use different amounts of reserved USB bandwidth.
 153 * All standards-conformant USB devices that use isochronous endpoints
 154 * will use them in non-default settings.
 155 *
 156 * The USB specification says that alternate setting numbers must run from
 157 * 0 to one less than the total number of alternate settings.  But some
 158 * devices manage to mess this up, and the structures aren't necessarily
 159 * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
 160 * look up an alternate setting in the altsetting array based on its number.
 161 */
 162struct usb_interface {
 163        /* array of alternate settings for this interface,
 164         * stored in no particular order */
 165        struct usb_host_interface *altsetting;
 166
 167        struct usb_host_interface *cur_altsetting;      /* the currently
 168                                         * active alternate setting */
 169        unsigned num_altsetting;        /* number of alternate settings */
 170
 171        /* If there is an interface association descriptor then it will list
 172         * the associated interfaces */
 173        struct usb_interface_assoc_descriptor *intf_assoc;
 174
 175        int minor;                      /* minor number this interface is
 176                                         * bound to */
 177        enum usb_interface_condition condition;         /* state of binding */
 178        unsigned sysfs_files_created:1; /* the sysfs attributes exist */
 179        unsigned ep_devs_created:1;     /* endpoint "devices" exist */
 180        unsigned unregistering:1;       /* unregistration is in progress */
 181        unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
 182        unsigned needs_altsetting0:1;   /* switch to altsetting 0 is pending */
 183        unsigned needs_binding:1;       /* needs delayed unbind/rebind */
 184        unsigned resetting_device:1;    /* true: bandwidth alloc after reset */
 185        unsigned authorized:1;          /* used for interface authorization */
 186
 187        struct device dev;              /* interface specific device info */
 188        struct device *usb_dev;
 189        atomic_t pm_usage_cnt;          /* usage counter for autosuspend */
 190        struct work_struct reset_ws;    /* for resets in atomic context */
 191};
 192#define to_usb_interface(d) container_of(d, struct usb_interface, dev)
 193
 194static inline void *usb_get_intfdata(struct usb_interface *intf)
 195{
 196        return dev_get_drvdata(&intf->dev);
 197}
 198
 199static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
 200{
 201        dev_set_drvdata(&intf->dev, data);
 202}
 203
 204struct usb_interface *usb_get_intf(struct usb_interface *intf);
 205void usb_put_intf(struct usb_interface *intf);
 206
 207/* Hard limit */
 208#define USB_MAXENDPOINTS        30
 209/* this maximum is arbitrary */
 210#define USB_MAXINTERFACES       32
 211#define USB_MAXIADS             (USB_MAXINTERFACES/2)
 212
 213/*
 214 * USB Resume Timer: Every Host controller driver should drive the resume
 215 * signalling on the bus for the amount of time defined by this macro.
 216 *
 217 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
 218 *
 219 * Note that the USB Specification states we should drive resume for *at least*
 220 * 20 ms, but it doesn't give an upper bound. This creates two possible
 221 * situations which we want to avoid:
 222 *
 223 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
 224 * us to fail USB Electrical Tests, thus failing Certification
 225 *
 226 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
 227 * and while we can argue that's against the USB Specification, we don't have
 228 * control over which devices a certification laboratory will be using for
 229 * certification. If CertLab uses a device which was tested against Windows and
 230 * that happens to have relaxed resume signalling rules, we might fall into
 231 * situations where we fail interoperability and electrical tests.
 232 *
 233 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
 234 * should cope with both LPJ calibration errors and devices not following every
 235 * detail of the USB Specification.
 236 */
 237#define USB_RESUME_TIMEOUT      40 /* ms */
 238
 239/**
 240 * struct usb_interface_cache - long-term representation of a device interface
 241 * @num_altsetting: number of altsettings defined.
 242 * @ref: reference counter.
 243 * @altsetting: variable-length array of interface structures, one for
 244 *      each alternate setting that may be selected.  Each one includes a
 245 *      set of endpoint configurations.  They will be in no particular order.
 246 *
 247 * These structures persist for the lifetime of a usb_device, unlike
 248 * struct usb_interface (which persists only as long as its configuration
 249 * is installed).  The altsetting arrays can be accessed through these
 250 * structures at any time, permitting comparison of configurations and
 251 * providing support for the /proc/bus/usb/devices pseudo-file.
 252 */
 253struct usb_interface_cache {
 254        unsigned num_altsetting;        /* number of alternate settings */
 255        struct kref ref;                /* reference counter */
 256
 257        /* variable-length array of alternate settings for this interface,
 258         * stored in no particular order */
 259        struct usb_host_interface altsetting[0];
 260};
 261#define ref_to_usb_interface_cache(r) \
 262                container_of(r, struct usb_interface_cache, ref)
 263#define altsetting_to_usb_interface_cache(a) \
 264                container_of(a, struct usb_interface_cache, altsetting[0])
 265
 266/**
 267 * struct usb_host_config - representation of a device's configuration
 268 * @desc: the device's configuration descriptor.
 269 * @string: pointer to the cached version of the iConfiguration string, if
 270 *      present for this configuration.
 271 * @intf_assoc: list of any interface association descriptors in this config
 272 * @interface: array of pointers to usb_interface structures, one for each
 273 *      interface in the configuration.  The number of interfaces is stored
 274 *      in desc.bNumInterfaces.  These pointers are valid only while the
 275 *      the configuration is active.
 276 * @intf_cache: array of pointers to usb_interface_cache structures, one
 277 *      for each interface in the configuration.  These structures exist
 278 *      for the entire life of the device.
 279 * @extra: pointer to buffer containing all extra descriptors associated
 280 *      with this configuration (those preceding the first interface
 281 *      descriptor).
 282 * @extralen: length of the extra descriptors buffer.
 283 *
 284 * USB devices may have multiple configurations, but only one can be active
 285 * at any time.  Each encapsulates a different operational environment;
 286 * for example, a dual-speed device would have separate configurations for
 287 * full-speed and high-speed operation.  The number of configurations
 288 * available is stored in the device descriptor as bNumConfigurations.
 289 *
 290 * A configuration can contain multiple interfaces.  Each corresponds to
 291 * a different function of the USB device, and all are available whenever
 292 * the configuration is active.  The USB standard says that interfaces
 293 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
 294 * of devices get this wrong.  In addition, the interface array is not
 295 * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
 296 * look up an interface entry based on its number.
 297 *
 298 * Device drivers should not attempt to activate configurations.  The choice
 299 * of which configuration to install is a policy decision based on such
 300 * considerations as available power, functionality provided, and the user's
 301 * desires (expressed through userspace tools).  However, drivers can call
 302 * usb_reset_configuration() to reinitialize the current configuration and
 303 * all its interfaces.
 304 */
 305struct usb_host_config {
 306        struct usb_config_descriptor    desc;
 307
 308        char *string;           /* iConfiguration string, if present */
 309
 310        /* List of any Interface Association Descriptors in this
 311         * configuration. */
 312        struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
 313
 314        /* the interfaces associated with this configuration,
 315         * stored in no particular order */
 316        struct usb_interface *interface[USB_MAXINTERFACES];
 317
 318        /* Interface information available even when this is not the
 319         * active configuration */
 320        struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
 321
 322        unsigned char *extra;   /* Extra descriptors */
 323        int extralen;
 324};
 325
 326/* USB2.0 and USB3.0 device BOS descriptor set */
 327struct usb_host_bos {
 328        struct usb_bos_descriptor       *desc;
 329
 330        /* wireless cap descriptor is handled by wusb */
 331        struct usb_ext_cap_descriptor   *ext_cap;
 332        struct usb_ss_cap_descriptor    *ss_cap;
 333        struct usb_ssp_cap_descriptor   *ssp_cap;
 334        struct usb_ss_container_id_descriptor   *ss_id;
 335        struct usb_ptm_cap_descriptor   *ptm_cap;
 336};
 337
 338int __usb_get_extra_descriptor(char *buffer, unsigned size,
 339        unsigned char type, void **ptr);
 340#define usb_get_extra_descriptor(ifpoint, type, ptr) \
 341                                __usb_get_extra_descriptor((ifpoint)->extra, \
 342                                (ifpoint)->extralen, \
 343                                type, (void **)ptr)
 344
 345/* ----------------------------------------------------------------------- */
 346
 347/* USB device number allocation bitmap */
 348struct usb_devmap {
 349        unsigned long devicemap[128 / (8*sizeof(unsigned long))];
 350};
 351
 352/*
 353 * Allocated per bus (tree of devices) we have:
 354 */
 355struct usb_bus {
 356        struct device *controller;      /* host/master side hardware */
 357        int busnum;                     /* Bus number (in order of reg) */
 358        const char *bus_name;           /* stable id (PCI slot_name etc) */
 359        u8 uses_dma;                    /* Does the host controller use DMA? */
 360        u8 uses_pio_for_control;        /*
 361                                         * Does the host controller use PIO
 362                                         * for control transfers?
 363                                         */
 364        u8 otg_port;                    /* 0, or number of OTG/HNP port */
 365        unsigned is_b_host:1;           /* true during some HNP roleswitches */
 366        unsigned b_hnp_enable:1;        /* OTG: did A-Host enable HNP? */
 367        unsigned no_stop_on_short:1;    /*
 368                                         * Quirk: some controllers don't stop
 369                                         * the ep queue on a short transfer
 370                                         * with the URB_SHORT_NOT_OK flag set.
 371                                         */
 372        unsigned no_sg_constraint:1;    /* no sg constraint */
 373        unsigned sg_tablesize;          /* 0 or largest number of sg list entries */
 374
 375        int devnum_next;                /* Next open device number in
 376                                         * round-robin allocation */
 377        struct mutex devnum_next_mutex; /* devnum_next mutex */
 378
 379        struct usb_devmap devmap;       /* device address allocation map */
 380        struct usb_device *root_hub;    /* Root hub */
 381        struct usb_bus *hs_companion;   /* Companion EHCI bus, if any */
 382
 383        int bandwidth_allocated;        /* on this bus: how much of the time
 384                                         * reserved for periodic (intr/iso)
 385                                         * requests is used, on average?
 386                                         * Units: microseconds/frame.
 387                                         * Limits: Full/low speed reserve 90%,
 388                                         * while high speed reserves 80%.
 389                                         */
 390        int bandwidth_int_reqs;         /* number of Interrupt requests */
 391        int bandwidth_isoc_reqs;        /* number of Isoc. requests */
 392
 393        unsigned resuming_ports;        /* bit array: resuming root-hub ports */
 394
 395#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
 396        struct mon_bus *mon_bus;        /* non-null when associated */
 397        int monitored;                  /* non-zero when monitored */
 398#endif
 399};
 400
 401struct usb_dev_state;
 402
 403/* ----------------------------------------------------------------------- */
 404
 405struct usb_tt;
 406
 407enum usb_device_removable {
 408        USB_DEVICE_REMOVABLE_UNKNOWN = 0,
 409        USB_DEVICE_REMOVABLE,
 410        USB_DEVICE_FIXED,
 411};
 412
 413enum usb_port_connect_type {
 414        USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
 415        USB_PORT_CONNECT_TYPE_HOT_PLUG,
 416        USB_PORT_CONNECT_TYPE_HARD_WIRED,
 417        USB_PORT_NOT_USED,
 418};
 419
 420/*
 421 * USB 2.0 Link Power Management (LPM) parameters.
 422 */
 423struct usb2_lpm_parameters {
 424        /* Best effort service latency indicate how long the host will drive
 425         * resume on an exit from L1.
 426         */
 427        unsigned int besl;
 428
 429        /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
 430         * When the timer counts to zero, the parent hub will initiate a LPM
 431         * transition to L1.
 432         */
 433        int timeout;
 434};
 435
 436/*
 437 * USB 3.0 Link Power Management (LPM) parameters.
 438 *
 439 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
 440 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
 441 * All three are stored in nanoseconds.
 442 */
 443struct usb3_lpm_parameters {
 444        /*
 445         * Maximum exit latency (MEL) for the host to send a packet to the
 446         * device (either a Ping for isoc endpoints, or a data packet for
 447         * interrupt endpoints), the hubs to decode the packet, and for all hubs
 448         * in the path to transition the links to U0.
 449         */
 450        unsigned int mel;
 451        /*
 452         * Maximum exit latency for a device-initiated LPM transition to bring
 453         * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
 454         * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
 455         */
 456        unsigned int pel;
 457
 458        /*
 459         * The System Exit Latency (SEL) includes PEL, and three other
 460         * latencies.  After a device initiates a U0 transition, it will take
 461         * some time from when the device sends the ERDY to when it will finally
 462         * receive the data packet.  Basically, SEL should be the worse-case
 463         * latency from when a device starts initiating a U0 transition to when
 464         * it will get data.
 465         */
 466        unsigned int sel;
 467        /*
 468         * The idle timeout value that is currently programmed into the parent
 469         * hub for this device.  When the timer counts to zero, the parent hub
 470         * will initiate an LPM transition to either U1 or U2.
 471         */
 472        int timeout;
 473};
 474
 475/**
 476 * struct usb_device - kernel's representation of a USB device
 477 * @devnum: device number; address on a USB bus
 478 * @devpath: device ID string for use in messages (e.g., /port/...)
 479 * @route: tree topology hex string for use with xHCI
 480 * @state: device state: configured, not attached, etc.
 481 * @speed: device speed: high/full/low (or error)
 482 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
 483 * @ttport: device port on that tt hub
 484 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
 485 * @parent: our hub, unless we're the root
 486 * @bus: bus we're part of
 487 * @ep0: endpoint 0 data (default control pipe)
 488 * @dev: generic device interface
 489 * @descriptor: USB device descriptor
 490 * @bos: USB device BOS descriptor set
 491 * @config: all of the device's configs
 492 * @actconfig: the active configuration
 493 * @ep_in: array of IN endpoints
 494 * @ep_out: array of OUT endpoints
 495 * @rawdescriptors: raw descriptors for each config
 496 * @bus_mA: Current available from the bus
 497 * @portnum: parent port number (origin 1)
 498 * @level: number of USB hub ancestors
 499 * @can_submit: URBs may be submitted
 500 * @persist_enabled:  USB_PERSIST enabled for this device
 501 * @have_langid: whether string_langid is valid
 502 * @authorized: policy has said we can use it;
 503 *      (user space) policy determines if we authorize this device to be
 504 *      used or not. By default, wired USB devices are authorized.
 505 *      WUSB devices are not, until we authorize them from user space.
 506 *      FIXME -- complete doc
 507 * @authenticated: Crypto authentication passed
 508 * @wusb: device is Wireless USB
 509 * @lpm_capable: device supports LPM
 510 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
 511 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
 512 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
 513 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
 514 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
 515 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
 516 * @string_langid: language ID for strings
 517 * @product: iProduct string, if present (static)
 518 * @manufacturer: iManufacturer string, if present (static)
 519 * @serial: iSerialNumber string, if present (static)
 520 * @filelist: usbfs files that are open to this device
 521 * @maxchild: number of ports if hub
 522 * @quirks: quirks of the whole device
 523 * @urbnum: number of URBs submitted for the whole device
 524 * @active_duration: total time device is not suspended
 525 * @connect_time: time device was first connected
 526 * @do_remote_wakeup:  remote wakeup should be enabled
 527 * @reset_resume: needs reset instead of resume
 528 * @port_is_suspended: the upstream port is suspended (L2 or U3)
 529 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
 530 *      specific data for the device.
 531 * @slot_id: Slot ID assigned by xHCI
 532 * @removable: Device can be physically removed from this port
 533 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
 534 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
 535 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
 536 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
 537 *      to keep track of the number of functions that require USB 3.0 Link Power
 538 *      Management to be disabled for this usb_device.  This count should only
 539 *      be manipulated by those functions, with the bandwidth_mutex is held.
 540 *
 541 * Notes:
 542 * Usbcore drivers should not set usbdev->state directly.  Instead use
 543 * usb_set_device_state().
 544 */
 545struct usb_device {
 546        int             devnum;
 547        char            devpath[16];
 548        u32             route;
 549        enum usb_device_state   state;
 550        enum usb_device_speed   speed;
 551
 552        struct usb_tt   *tt;
 553        int             ttport;
 554
 555        unsigned int toggle[2];
 556
 557        struct usb_device *parent;
 558        struct usb_bus *bus;
 559        struct usb_host_endpoint ep0;
 560
 561        struct device dev;
 562
 563        struct usb_device_descriptor descriptor;
 564        struct usb_host_bos *bos;
 565        struct usb_host_config *config;
 566
 567        struct usb_host_config *actconfig;
 568        struct usb_host_endpoint *ep_in[16];
 569        struct usb_host_endpoint *ep_out[16];
 570
 571        char **rawdescriptors;
 572
 573        unsigned short bus_mA;
 574        u8 portnum;
 575        u8 level;
 576
 577        unsigned can_submit:1;
 578        unsigned persist_enabled:1;
 579        unsigned have_langid:1;
 580        unsigned authorized:1;
 581        unsigned authenticated:1;
 582        unsigned wusb:1;
 583        unsigned lpm_capable:1;
 584        unsigned usb2_hw_lpm_capable:1;
 585        unsigned usb2_hw_lpm_besl_capable:1;
 586        unsigned usb2_hw_lpm_enabled:1;
 587        unsigned usb2_hw_lpm_allowed:1;
 588        unsigned usb3_lpm_u1_enabled:1;
 589        unsigned usb3_lpm_u2_enabled:1;
 590        int string_langid;
 591
 592        /* static strings from the device */
 593        char *product;
 594        char *manufacturer;
 595        char *serial;
 596
 597        struct list_head filelist;
 598
 599        int maxchild;
 600
 601        u32 quirks;
 602        atomic_t urbnum;
 603
 604        unsigned long active_duration;
 605
 606#ifdef CONFIG_PM
 607        unsigned long connect_time;
 608
 609        unsigned do_remote_wakeup:1;
 610        unsigned reset_resume:1;
 611        unsigned port_is_suspended:1;
 612#endif
 613        struct wusb_dev *wusb_dev;
 614        int slot_id;
 615        enum usb_device_removable removable;
 616        struct usb2_lpm_parameters l1_params;
 617        struct usb3_lpm_parameters u1_params;
 618        struct usb3_lpm_parameters u2_params;
 619        unsigned lpm_disable_count;
 620};
 621#define to_usb_device(d) container_of(d, struct usb_device, dev)
 622
 623static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
 624{
 625        return to_usb_device(intf->dev.parent);
 626}
 627
 628extern struct usb_device *usb_get_dev(struct usb_device *dev);
 629extern void usb_put_dev(struct usb_device *dev);
 630extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
 631        int port1);
 632
 633/**
 634 * usb_hub_for_each_child - iterate over all child devices on the hub
 635 * @hdev:  USB device belonging to the usb hub
 636 * @port1: portnum associated with child device
 637 * @child: child device pointer
 638 */
 639#define usb_hub_for_each_child(hdev, port1, child) \
 640        for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
 641                        port1 <= hdev->maxchild; \
 642                        child = usb_hub_find_child(hdev, ++port1)) \
 643                if (!child) continue; else
 644
 645/* USB device locking */
 646#define usb_lock_device(udev)                   device_lock(&(udev)->dev)
 647#define usb_unlock_device(udev)                 device_unlock(&(udev)->dev)
 648#define usb_lock_device_interruptible(udev)     device_lock_interruptible(&(udev)->dev)
 649#define usb_trylock_device(udev)                device_trylock(&(udev)->dev)
 650extern int usb_lock_device_for_reset(struct usb_device *udev,
 651                                     const struct usb_interface *iface);
 652
 653/* USB port reset for device reinitialization */
 654extern int usb_reset_device(struct usb_device *dev);
 655extern void usb_queue_reset_device(struct usb_interface *dev);
 656
 657#ifdef CONFIG_ACPI
 658extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 659        bool enable);
 660extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
 661#else
 662static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 663        bool enable) { return 0; }
 664static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
 665        { return true; }
 666#endif
 667
 668/* USB autosuspend and autoresume */
 669#ifdef CONFIG_PM
 670extern void usb_enable_autosuspend(struct usb_device *udev);
 671extern void usb_disable_autosuspend(struct usb_device *udev);
 672
 673extern int usb_autopm_get_interface(struct usb_interface *intf);
 674extern void usb_autopm_put_interface(struct usb_interface *intf);
 675extern int usb_autopm_get_interface_async(struct usb_interface *intf);
 676extern void usb_autopm_put_interface_async(struct usb_interface *intf);
 677extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
 678extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
 679
 680static inline void usb_mark_last_busy(struct usb_device *udev)
 681{
 682        pm_runtime_mark_last_busy(&udev->dev);
 683}
 684
 685#else
 686
 687static inline int usb_enable_autosuspend(struct usb_device *udev)
 688{ return 0; }
 689static inline int usb_disable_autosuspend(struct usb_device *udev)
 690{ return 0; }
 691
 692static inline int usb_autopm_get_interface(struct usb_interface *intf)
 693{ return 0; }
 694static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
 695{ return 0; }
 696
 697static inline void usb_autopm_put_interface(struct usb_interface *intf)
 698{ }
 699static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
 700{ }
 701static inline void usb_autopm_get_interface_no_resume(
 702                struct usb_interface *intf)
 703{ }
 704static inline void usb_autopm_put_interface_no_suspend(
 705                struct usb_interface *intf)
 706{ }
 707static inline void usb_mark_last_busy(struct usb_device *udev)
 708{ }
 709#endif
 710
 711extern int usb_disable_lpm(struct usb_device *udev);
 712extern void usb_enable_lpm(struct usb_device *udev);
 713/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
 714extern int usb_unlocked_disable_lpm(struct usb_device *udev);
 715extern void usb_unlocked_enable_lpm(struct usb_device *udev);
 716
 717extern int usb_disable_ltm(struct usb_device *udev);
 718extern void usb_enable_ltm(struct usb_device *udev);
 719
 720static inline bool usb_device_supports_ltm(struct usb_device *udev)
 721{
 722        if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
 723                return false;
 724        return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
 725}
 726
 727static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
 728{
 729        return udev && udev->bus && udev->bus->no_sg_constraint;
 730}
 731
 732
 733/*-------------------------------------------------------------------------*/
 734
 735/* for drivers using iso endpoints */
 736extern int usb_get_current_frame_number(struct usb_device *usb_dev);
 737
 738/* Sets up a group of bulk endpoints to support multiple stream IDs. */
 739extern int usb_alloc_streams(struct usb_interface *interface,
 740                struct usb_host_endpoint **eps, unsigned int num_eps,
 741                unsigned int num_streams, gfp_t mem_flags);
 742
 743/* Reverts a group of bulk endpoints back to not using stream IDs. */
 744extern int usb_free_streams(struct usb_interface *interface,
 745                struct usb_host_endpoint **eps, unsigned int num_eps,
 746                gfp_t mem_flags);
 747
 748/* used these for multi-interface device registration */
 749extern int usb_driver_claim_interface(struct usb_driver *driver,
 750                        struct usb_interface *iface, void *priv);
 751
 752/**
 753 * usb_interface_claimed - returns true iff an interface is claimed
 754 * @iface: the interface being checked
 755 *
 756 * Return: %true (nonzero) iff the interface is claimed, else %false
 757 * (zero).
 758 *
 759 * Note:
 760 * Callers must own the driver model's usb bus readlock.  So driver
 761 * probe() entries don't need extra locking, but other call contexts
 762 * may need to explicitly claim that lock.
 763 *
 764 */
 765static inline int usb_interface_claimed(struct usb_interface *iface)
 766{
 767        return (iface->dev.driver != NULL);
 768}
 769
 770extern void usb_driver_release_interface(struct usb_driver *driver,
 771                        struct usb_interface *iface);
 772const struct usb_device_id *usb_match_id(struct usb_interface *interface,
 773                                         const struct usb_device_id *id);
 774extern int usb_match_one_id(struct usb_interface *interface,
 775                            const struct usb_device_id *id);
 776
 777extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
 778extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
 779                int minor);
 780extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 781                unsigned ifnum);
 782extern struct usb_host_interface *usb_altnum_to_altsetting(
 783                const struct usb_interface *intf, unsigned int altnum);
 784extern struct usb_host_interface *usb_find_alt_setting(
 785                struct usb_host_config *config,
 786                unsigned int iface_num,
 787                unsigned int alt_num);
 788
 789/* port claiming functions */
 790int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
 791                struct usb_dev_state *owner);
 792int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
 793                struct usb_dev_state *owner);
 794
 795/**
 796 * usb_make_path - returns stable device path in the usb tree
 797 * @dev: the device whose path is being constructed
 798 * @buf: where to put the string
 799 * @size: how big is "buf"?
 800 *
 801 * Return: Length of the string (> 0) or negative if size was too small.
 802 *
 803 * Note:
 804 * This identifier is intended to be "stable", reflecting physical paths in
 805 * hardware such as physical bus addresses for host controllers or ports on
 806 * USB hubs.  That makes it stay the same until systems are physically
 807 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
 808 * controllers.  Adding and removing devices, including virtual root hubs
 809 * in host controller driver modules, does not change these path identifiers;
 810 * neither does rebooting or re-enumerating.  These are more useful identifiers
 811 * than changeable ("unstable") ones like bus numbers or device addresses.
 812 *
 813 * With a partial exception for devices connected to USB 2.0 root hubs, these
 814 * identifiers are also predictable.  So long as the device tree isn't changed,
 815 * plugging any USB device into a given hub port always gives it the same path.
 816 * Because of the use of "companion" controllers, devices connected to ports on
 817 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
 818 * high speed, and a different one if they are full or low speed.
 819 */
 820static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
 821{
 822        int actual;
 823        actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
 824                          dev->devpath);
 825        return (actual >= (int)size) ? -1 : actual;
 826}
 827
 828/*-------------------------------------------------------------------------*/
 829
 830#define USB_DEVICE_ID_MATCH_DEVICE \
 831                (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
 832#define USB_DEVICE_ID_MATCH_DEV_RANGE \
 833                (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
 834#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
 835                (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
 836#define USB_DEVICE_ID_MATCH_DEV_INFO \
 837                (USB_DEVICE_ID_MATCH_DEV_CLASS | \
 838                USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
 839                USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
 840#define USB_DEVICE_ID_MATCH_INT_INFO \
 841                (USB_DEVICE_ID_MATCH_INT_CLASS | \
 842                USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
 843                USB_DEVICE_ID_MATCH_INT_PROTOCOL)
 844
 845/**
 846 * USB_DEVICE - macro used to describe a specific usb device
 847 * @vend: the 16 bit USB Vendor ID
 848 * @prod: the 16 bit USB Product ID
 849 *
 850 * This macro is used to create a struct usb_device_id that matches a
 851 * specific device.
 852 */
 853#define USB_DEVICE(vend, prod) \
 854        .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
 855        .idVendor = (vend), \
 856        .idProduct = (prod)
 857/**
 858 * USB_DEVICE_VER - describe a specific usb device with a version range
 859 * @vend: the 16 bit USB Vendor ID
 860 * @prod: the 16 bit USB Product ID
 861 * @lo: the bcdDevice_lo value
 862 * @hi: the bcdDevice_hi value
 863 *
 864 * This macro is used to create a struct usb_device_id that matches a
 865 * specific device, with a version range.
 866 */
 867#define USB_DEVICE_VER(vend, prod, lo, hi) \
 868        .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
 869        .idVendor = (vend), \
 870        .idProduct = (prod), \
 871        .bcdDevice_lo = (lo), \
 872        .bcdDevice_hi = (hi)
 873
 874/**
 875 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
 876 * @vend: the 16 bit USB Vendor ID
 877 * @prod: the 16 bit USB Product ID
 878 * @cl: bInterfaceClass value
 879 *
 880 * This macro is used to create a struct usb_device_id that matches a
 881 * specific interface class of devices.
 882 */
 883#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
 884        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 885                       USB_DEVICE_ID_MATCH_INT_CLASS, \
 886        .idVendor = (vend), \
 887        .idProduct = (prod), \
 888        .bInterfaceClass = (cl)
 889
 890/**
 891 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
 892 * @vend: the 16 bit USB Vendor ID
 893 * @prod: the 16 bit USB Product ID
 894 * @pr: bInterfaceProtocol value
 895 *
 896 * This macro is used to create a struct usb_device_id that matches a
 897 * specific interface protocol of devices.
 898 */
 899#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
 900        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 901                       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
 902        .idVendor = (vend), \
 903        .idProduct = (prod), \
 904        .bInterfaceProtocol = (pr)
 905
 906/**
 907 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
 908 * @vend: the 16 bit USB Vendor ID
 909 * @prod: the 16 bit USB Product ID
 910 * @num: bInterfaceNumber value
 911 *
 912 * This macro is used to create a struct usb_device_id that matches a
 913 * specific interface number of devices.
 914 */
 915#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
 916        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 917                       USB_DEVICE_ID_MATCH_INT_NUMBER, \
 918        .idVendor = (vend), \
 919        .idProduct = (prod), \
 920        .bInterfaceNumber = (num)
 921
 922/**
 923 * USB_DEVICE_INFO - macro used to describe a class of usb devices
 924 * @cl: bDeviceClass value
 925 * @sc: bDeviceSubClass value
 926 * @pr: bDeviceProtocol value
 927 *
 928 * This macro is used to create a struct usb_device_id that matches a
 929 * specific class of devices.
 930 */
 931#define USB_DEVICE_INFO(cl, sc, pr) \
 932        .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
 933        .bDeviceClass = (cl), \
 934        .bDeviceSubClass = (sc), \
 935        .bDeviceProtocol = (pr)
 936
 937/**
 938 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
 939 * @cl: bInterfaceClass value
 940 * @sc: bInterfaceSubClass value
 941 * @pr: bInterfaceProtocol value
 942 *
 943 * This macro is used to create a struct usb_device_id that matches a
 944 * specific class of interfaces.
 945 */
 946#define USB_INTERFACE_INFO(cl, sc, pr) \
 947        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
 948        .bInterfaceClass = (cl), \
 949        .bInterfaceSubClass = (sc), \
 950        .bInterfaceProtocol = (pr)
 951
 952/**
 953 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
 954 * @vend: the 16 bit USB Vendor ID
 955 * @prod: the 16 bit USB Product ID
 956 * @cl: bInterfaceClass value
 957 * @sc: bInterfaceSubClass value
 958 * @pr: bInterfaceProtocol value
 959 *
 960 * This macro is used to create a struct usb_device_id that matches a
 961 * specific device with a specific class of interfaces.
 962 *
 963 * This is especially useful when explicitly matching devices that have
 964 * vendor specific bDeviceClass values, but standards-compliant interfaces.
 965 */
 966#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
 967        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
 968                | USB_DEVICE_ID_MATCH_DEVICE, \
 969        .idVendor = (vend), \
 970        .idProduct = (prod), \
 971        .bInterfaceClass = (cl), \
 972        .bInterfaceSubClass = (sc), \
 973        .bInterfaceProtocol = (pr)
 974
 975/**
 976 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
 977 * @vend: the 16 bit USB Vendor ID
 978 * @cl: bInterfaceClass value
 979 * @sc: bInterfaceSubClass value
 980 * @pr: bInterfaceProtocol value
 981 *
 982 * This macro is used to create a struct usb_device_id that matches a
 983 * specific vendor with a specific class of interfaces.
 984 *
 985 * This is especially useful when explicitly matching devices that have
 986 * vendor specific bDeviceClass values, but standards-compliant interfaces.
 987 */
 988#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
 989        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
 990                | USB_DEVICE_ID_MATCH_VENDOR, \
 991        .idVendor = (vend), \
 992        .bInterfaceClass = (cl), \
 993        .bInterfaceSubClass = (sc), \
 994        .bInterfaceProtocol = (pr)
 995
 996/* ----------------------------------------------------------------------- */
 997
 998/* Stuff for dynamic usb ids */
 999struct usb_dynids {
1000        spinlock_t lock;
1001        struct list_head list;
1002};
1003
1004struct usb_dynid {
1005        struct list_head node;
1006        struct usb_device_id id;
1007};
1008
1009extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1010                                const struct usb_device_id *id_table,
1011                                struct device_driver *driver,
1012                                const char *buf, size_t count);
1013
1014extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1015
1016/**
1017 * struct usbdrv_wrap - wrapper for driver-model structure
1018 * @driver: The driver-model core driver structure.
1019 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1020 */
1021struct usbdrv_wrap {
1022        struct device_driver driver;
1023        int for_devices;
1024};
1025
1026/**
1027 * struct usb_driver - identifies USB interface driver to usbcore
1028 * @name: The driver name should be unique among USB drivers,
1029 *      and should normally be the same as the module name.
1030 * @probe: Called to see if the driver is willing to manage a particular
1031 *      interface on a device.  If it is, probe returns zero and uses
1032 *      usb_set_intfdata() to associate driver-specific data with the
1033 *      interface.  It may also use usb_set_interface() to specify the
1034 *      appropriate altsetting.  If unwilling to manage the interface,
1035 *      return -ENODEV, if genuine IO errors occurred, an appropriate
1036 *      negative errno value.
1037 * @disconnect: Called when the interface is no longer accessible, usually
1038 *      because its device has been (or is being) disconnected or the
1039 *      driver module is being unloaded.
1040 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1041 *      the "usbfs" filesystem.  This lets devices provide ways to
1042 *      expose information to user space regardless of where they
1043 *      do (or don't) show up otherwise in the filesystem.
1044 * @suspend: Called when the device is going to be suspended by the
1045 *      system either from system sleep or runtime suspend context. The
1046 *      return value will be ignored in system sleep context, so do NOT
1047 *      try to continue using the device if suspend fails in this case.
1048 *      Instead, let the resume or reset-resume routine recover from
1049 *      the failure.
1050 * @resume: Called when the device is being resumed by the system.
1051 * @reset_resume: Called when the suspended device has been reset instead
1052 *      of being resumed.
1053 * @pre_reset: Called by usb_reset_device() when the device is about to be
1054 *      reset.  This routine must not return until the driver has no active
1055 *      URBs for the device, and no more URBs may be submitted until the
1056 *      post_reset method is called.
1057 * @post_reset: Called by usb_reset_device() after the device
1058 *      has been reset
1059 * @id_table: USB drivers use ID table to support hotplugging.
1060 *      Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1061 *      or your driver's probe function will never get called.
1062 * @dynids: used internally to hold the list of dynamically added device
1063 *      ids for this driver.
1064 * @drvwrap: Driver-model core structure wrapper.
1065 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1066 *      added to this driver by preventing the sysfs file from being created.
1067 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1068 *      for interfaces bound to this driver.
1069 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1070 *      endpoints before calling the driver's disconnect method.
1071 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1072 *      to initiate lower power link state transitions when an idle timeout
1073 *      occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1074 *
1075 * USB interface drivers must provide a name, probe() and disconnect()
1076 * methods, and an id_table.  Other driver fields are optional.
1077 *
1078 * The id_table is used in hotplugging.  It holds a set of descriptors,
1079 * and specialized data may be associated with each entry.  That table
1080 * is used by both user and kernel mode hotplugging support.
1081 *
1082 * The probe() and disconnect() methods are called in a context where
1083 * they can sleep, but they should avoid abusing the privilege.  Most
1084 * work to connect to a device should be done when the device is opened,
1085 * and undone at the last close.  The disconnect code needs to address
1086 * concurrency issues with respect to open() and close() methods, as
1087 * well as forcing all pending I/O requests to complete (by unlinking
1088 * them as necessary, and blocking until the unlinks complete).
1089 */
1090struct usb_driver {
1091        const char *name;
1092
1093        int (*probe) (struct usb_interface *intf,
1094                      const struct usb_device_id *id);
1095
1096        void (*disconnect) (struct usb_interface *intf);
1097
1098        int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1099                        void *buf);
1100
1101        int (*suspend) (struct usb_interface *intf, pm_message_t message);
1102        int (*resume) (struct usb_interface *intf);
1103        int (*reset_resume)(struct usb_interface *intf);
1104
1105        int (*pre_reset)(struct usb_interface *intf);
1106        int (*post_reset)(struct usb_interface *intf);
1107
1108        const struct usb_device_id *id_table;
1109
1110        struct usb_dynids dynids;
1111        struct usbdrv_wrap drvwrap;
1112        unsigned int no_dynamic_id:1;
1113        unsigned int supports_autosuspend:1;
1114        unsigned int disable_hub_initiated_lpm:1;
1115        unsigned int soft_unbind:1;
1116};
1117#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1118
1119/**
1120 * struct usb_device_driver - identifies USB device driver to usbcore
1121 * @name: The driver name should be unique among USB drivers,
1122 *      and should normally be the same as the module name.
1123 * @probe: Called to see if the driver is willing to manage a particular
1124 *      device.  If it is, probe returns zero and uses dev_set_drvdata()
1125 *      to associate driver-specific data with the device.  If unwilling
1126 *      to manage the device, return a negative errno value.
1127 * @disconnect: Called when the device is no longer accessible, usually
1128 *      because it has been (or is being) disconnected or the driver's
1129 *      module is being unloaded.
1130 * @suspend: Called when the device is going to be suspended by the system.
1131 * @resume: Called when the device is being resumed by the system.
1132 * @drvwrap: Driver-model core structure wrapper.
1133 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1134 *      for devices bound to this driver.
1135 *
1136 * USB drivers must provide all the fields listed above except drvwrap.
1137 */
1138struct usb_device_driver {
1139        const char *name;
1140
1141        int (*probe) (struct usb_device *udev);
1142        void (*disconnect) (struct usb_device *udev);
1143
1144        int (*suspend) (struct usb_device *udev, pm_message_t message);
1145        int (*resume) (struct usb_device *udev, pm_message_t message);
1146        struct usbdrv_wrap drvwrap;
1147        unsigned int supports_autosuspend:1;
1148};
1149#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1150                drvwrap.driver)
1151
1152extern struct bus_type usb_bus_type;
1153
1154/**
1155 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1156 * @name: the usb class device name for this driver.  Will show up in sysfs.
1157 * @devnode: Callback to provide a naming hint for a possible
1158 *      device node to create.
1159 * @fops: pointer to the struct file_operations of this driver.
1160 * @minor_base: the start of the minor range for this driver.
1161 *
1162 * This structure is used for the usb_register_dev() and
1163 * usb_unregister_dev() functions, to consolidate a number of the
1164 * parameters used for them.
1165 */
1166struct usb_class_driver {
1167        char *name;
1168        char *(*devnode)(struct device *dev, umode_t *mode);
1169        const struct file_operations *fops;
1170        int minor_base;
1171};
1172
1173/*
1174 * use these in module_init()/module_exit()
1175 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1176 */
1177extern int usb_register_driver(struct usb_driver *, struct module *,
1178                               const char *);
1179
1180/* use a define to avoid include chaining to get THIS_MODULE & friends */
1181#define usb_register(driver) \
1182        usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1183
1184extern void usb_deregister(struct usb_driver *);
1185
1186/**
1187 * module_usb_driver() - Helper macro for registering a USB driver
1188 * @__usb_driver: usb_driver struct
1189 *
1190 * Helper macro for USB drivers which do not do anything special in module
1191 * init/exit. This eliminates a lot of boilerplate. Each module may only
1192 * use this macro once, and calling it replaces module_init() and module_exit()
1193 */
1194#define module_usb_driver(__usb_driver) \
1195        module_driver(__usb_driver, usb_register, \
1196                       usb_deregister)
1197
1198extern int usb_register_device_driver(struct usb_device_driver *,
1199                        struct module *);
1200extern void usb_deregister_device_driver(struct usb_device_driver *);
1201
1202extern int usb_register_dev(struct usb_interface *intf,
1203                            struct usb_class_driver *class_driver);
1204extern void usb_deregister_dev(struct usb_interface *intf,
1205                               struct usb_class_driver *class_driver);
1206
1207extern int usb_disabled(void);
1208
1209/* ----------------------------------------------------------------------- */
1210
1211/*
1212 * URB support, for asynchronous request completions
1213 */
1214
1215/*
1216 * urb->transfer_flags:
1217 *
1218 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1219 */
1220#define URB_SHORT_NOT_OK        0x0001  /* report short reads as errors */
1221#define URB_ISO_ASAP            0x0002  /* iso-only; use the first unexpired
1222                                         * slot in the schedule */
1223#define URB_NO_TRANSFER_DMA_MAP 0x0004  /* urb->transfer_dma valid on submit */
1224#define URB_NO_FSBR             0x0020  /* UHCI-specific */
1225#define URB_ZERO_PACKET         0x0040  /* Finish bulk OUT with short packet */
1226#define URB_NO_INTERRUPT        0x0080  /* HINT: no non-error interrupt
1227                                         * needed */
1228#define URB_FREE_BUFFER         0x0100  /* Free transfer buffer with the URB */
1229
1230/* The following flags are used internally by usbcore and HCDs */
1231#define URB_DIR_IN              0x0200  /* Transfer from device to host */
1232#define URB_DIR_OUT             0
1233#define URB_DIR_MASK            URB_DIR_IN
1234
1235#define URB_DMA_MAP_SINGLE      0x00010000      /* Non-scatter-gather mapping */
1236#define URB_DMA_MAP_PAGE        0x00020000      /* HCD-unsupported S-G */
1237#define URB_DMA_MAP_SG          0x00040000      /* HCD-supported S-G */
1238#define URB_MAP_LOCAL           0x00080000      /* HCD-local-memory mapping */
1239#define URB_SETUP_MAP_SINGLE    0x00100000      /* Setup packet DMA mapped */
1240#define URB_SETUP_MAP_LOCAL     0x00200000      /* HCD-local setup packet */
1241#define URB_DMA_SG_COMBINED     0x00400000      /* S-G entries were combined */
1242#define URB_ALIGNED_TEMP_BUFFER 0x00800000      /* Temp buffer was alloc'd */
1243
1244struct usb_iso_packet_descriptor {
1245        unsigned int offset;
1246        unsigned int length;            /* expected length */
1247        unsigned int actual_length;
1248        int status;
1249};
1250
1251struct urb;
1252
1253struct usb_anchor {
1254        struct list_head urb_list;
1255        wait_queue_head_t wait;
1256        spinlock_t lock;
1257        atomic_t suspend_wakeups;
1258        unsigned int poisoned:1;
1259};
1260
1261static inline void init_usb_anchor(struct usb_anchor *anchor)
1262{
1263        memset(anchor, 0, sizeof(*anchor));
1264        INIT_LIST_HEAD(&anchor->urb_list);
1265        init_waitqueue_head(&anchor->wait);
1266        spin_lock_init(&anchor->lock);
1267}
1268
1269typedef void (*usb_complete_t)(struct urb *);
1270
1271/**
1272 * struct urb - USB Request Block
1273 * @urb_list: For use by current owner of the URB.
1274 * @anchor_list: membership in the list of an anchor
1275 * @anchor: to anchor URBs to a common mooring
1276 * @ep: Points to the endpoint's data structure.  Will eventually
1277 *      replace @pipe.
1278 * @pipe: Holds endpoint number, direction, type, and more.
1279 *      Create these values with the eight macros available;
1280 *      usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1281 *      (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1282 *      For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1283 *      numbers range from zero to fifteen.  Note that "in" endpoint two
1284 *      is a different endpoint (and pipe) from "out" endpoint two.
1285 *      The current configuration controls the existence, type, and
1286 *      maximum packet size of any given endpoint.
1287 * @stream_id: the endpoint's stream ID for bulk streams
1288 * @dev: Identifies the USB device to perform the request.
1289 * @status: This is read in non-iso completion functions to get the
1290 *      status of the particular request.  ISO requests only use it
1291 *      to tell whether the URB was unlinked; detailed status for
1292 *      each frame is in the fields of the iso_frame-desc.
1293 * @transfer_flags: A variety of flags may be used to affect how URB
1294 *      submission, unlinking, or operation are handled.  Different
1295 *      kinds of URB can use different flags.
1296 * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1297 *      request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1298 *      (however, do not leave garbage in transfer_buffer even then).
1299 *      This buffer must be suitable for DMA; allocate it with
1300 *      kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1301 *      of this buffer will be modified.  This buffer is used for the data
1302 *      stage of control transfers.
1303 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1304 *      the device driver is saying that it provided this DMA address,
1305 *      which the host controller driver should use in preference to the
1306 *      transfer_buffer.
1307 * @sg: scatter gather buffer list, the buffer size of each element in
1308 *      the list (except the last) must be divisible by the endpoint's
1309 *      max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1310 * @num_mapped_sgs: (internal) number of mapped sg entries
1311 * @num_sgs: number of entries in the sg list
1312 * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1313 *      be broken up into chunks according to the current maximum packet
1314 *      size for the endpoint, which is a function of the configuration
1315 *      and is encoded in the pipe.  When the length is zero, neither
1316 *      transfer_buffer nor transfer_dma is used.
1317 * @actual_length: This is read in non-iso completion functions, and
1318 *      it tells how many bytes (out of transfer_buffer_length) were
1319 *      transferred.  It will normally be the same as requested, unless
1320 *      either an error was reported or a short read was performed.
1321 *      The URB_SHORT_NOT_OK transfer flag may be used to make such
1322 *      short reads be reported as errors.
1323 * @setup_packet: Only used for control transfers, this points to eight bytes
1324 *      of setup data.  Control transfers always start by sending this data
1325 *      to the device.  Then transfer_buffer is read or written, if needed.
1326 * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1327 *      this field; setup_packet must point to a valid buffer.
1328 * @start_frame: Returns the initial frame for isochronous transfers.
1329 * @number_of_packets: Lists the number of ISO transfer buffers.
1330 * @interval: Specifies the polling interval for interrupt or isochronous
1331 *      transfers.  The units are frames (milliseconds) for full and low
1332 *      speed devices, and microframes (1/8 millisecond) for highspeed
1333 *      and SuperSpeed devices.
1334 * @error_count: Returns the number of ISO transfers that reported errors.
1335 * @context: For use in completion functions.  This normally points to
1336 *      request-specific driver context.
1337 * @complete: Completion handler. This URB is passed as the parameter to the
1338 *      completion function.  The completion function may then do what
1339 *      it likes with the URB, including resubmitting or freeing it.
1340 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1341 *      collect the transfer status for each buffer.
1342 *
1343 * This structure identifies USB transfer requests.  URBs must be allocated by
1344 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1345 * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1346 * are submitted using usb_submit_urb(), and pending requests may be canceled
1347 * using usb_unlink_urb() or usb_kill_urb().
1348 *
1349 * Data Transfer Buffers:
1350 *
1351 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1352 * taken from the general page pool.  That is provided by transfer_buffer
1353 * (control requests also use setup_packet), and host controller drivers
1354 * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1355 * mapping operations can be expensive on some platforms (perhaps using a dma
1356 * bounce buffer or talking to an IOMMU),
1357 * although they're cheap on commodity x86 and ppc hardware.
1358 *
1359 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1360 * which tells the host controller driver that no such mapping is needed for
1361 * the transfer_buffer since
1362 * the device driver is DMA-aware.  For example, a device driver might
1363 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1364 * When this transfer flag is provided, host controller drivers will
1365 * attempt to use the dma address found in the transfer_dma
1366 * field rather than determining a dma address themselves.
1367 *
1368 * Note that transfer_buffer must still be set if the controller
1369 * does not support DMA (as indicated by bus.uses_dma) and when talking
1370 * to root hub. If you have to trasfer between highmem zone and the device
1371 * on such controller, create a bounce buffer or bail out with an error.
1372 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1373 * capable, assign NULL to it, so that usbmon knows not to use the value.
1374 * The setup_packet must always be set, so it cannot be located in highmem.
1375 *
1376 * Initialization:
1377 *
1378 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1379 * zero), and complete fields.  All URBs must also initialize
1380 * transfer_buffer and transfer_buffer_length.  They may provide the
1381 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1382 * to be treated as errors; that flag is invalid for write requests.
1383 *
1384 * Bulk URBs may
1385 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1386 * should always terminate with a short packet, even if it means adding an
1387 * extra zero length packet.
1388 *
1389 * Control URBs must provide a valid pointer in the setup_packet field.
1390 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1391 * beforehand.
1392 *
1393 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1394 * or, for highspeed devices, 125 microsecond units)
1395 * to poll for transfers.  After the URB has been submitted, the interval
1396 * field reflects how the transfer was actually scheduled.
1397 * The polling interval may be more frequent than requested.
1398 * For example, some controllers have a maximum interval of 32 milliseconds,
1399 * while others support intervals of up to 1024 milliseconds.
1400 * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1401 * endpoints, as well as high speed interrupt endpoints, the encoding of
1402 * the transfer interval in the endpoint descriptor is logarithmic.
1403 * Device drivers must convert that value to linear units themselves.)
1404 *
1405 * If an isochronous endpoint queue isn't already running, the host
1406 * controller will schedule a new URB to start as soon as bandwidth
1407 * utilization allows.  If the queue is running then a new URB will be
1408 * scheduled to start in the first transfer slot following the end of the
1409 * preceding URB, if that slot has not already expired.  If the slot has
1410 * expired (which can happen when IRQ delivery is delayed for a long time),
1411 * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1412 * is clear then the URB will be scheduled to start in the expired slot,
1413 * implying that some of its packets will not be transferred; if the flag
1414 * is set then the URB will be scheduled in the first unexpired slot,
1415 * breaking the queue's synchronization.  Upon URB completion, the
1416 * start_frame field will be set to the (micro)frame number in which the
1417 * transfer was scheduled.  Ranges for frame counter values are HC-specific
1418 * and can go from as low as 256 to as high as 65536 frames.
1419 *
1420 * Isochronous URBs have a different data transfer model, in part because
1421 * the quality of service is only "best effort".  Callers provide specially
1422 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1423 * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1424 * URBs are normally queued, submitted by drivers to arrange that
1425 * transfers are at least double buffered, and then explicitly resubmitted
1426 * in completion handlers, so
1427 * that data (such as audio or video) streams at as constant a rate as the
1428 * host controller scheduler can support.
1429 *
1430 * Completion Callbacks:
1431 *
1432 * The completion callback is made in_interrupt(), and one of the first
1433 * things that a completion handler should do is check the status field.
1434 * The status field is provided for all URBs.  It is used to report
1435 * unlinked URBs, and status for all non-ISO transfers.  It should not
1436 * be examined before the URB is returned to the completion handler.
1437 *
1438 * The context field is normally used to link URBs back to the relevant
1439 * driver or request state.
1440 *
1441 * When the completion callback is invoked for non-isochronous URBs, the
1442 * actual_length field tells how many bytes were transferred.  This field
1443 * is updated even when the URB terminated with an error or was unlinked.
1444 *
1445 * ISO transfer status is reported in the status and actual_length fields
1446 * of the iso_frame_desc array, and the number of errors is reported in
1447 * error_count.  Completion callbacks for ISO transfers will normally
1448 * (re)submit URBs to ensure a constant transfer rate.
1449 *
1450 * Note that even fields marked "public" should not be touched by the driver
1451 * when the urb is owned by the hcd, that is, since the call to
1452 * usb_submit_urb() till the entry into the completion routine.
1453 */
1454struct urb {
1455        /* private: usb core and host controller only fields in the urb */
1456        struct kref kref;               /* reference count of the URB */
1457        void *hcpriv;                   /* private data for host controller */
1458        atomic_t use_count;             /* concurrent submissions counter */
1459        atomic_t reject;                /* submissions will fail */
1460        int unlinked;                   /* unlink error code */
1461
1462        /* public: documented fields in the urb that can be used by drivers */
1463        struct list_head urb_list;      /* list head for use by the urb's
1464                                         * current owner */
1465        struct list_head anchor_list;   /* the URB may be anchored */
1466        struct usb_anchor *anchor;
1467        struct usb_device *dev;         /* (in) pointer to associated device */
1468        struct usb_host_endpoint *ep;   /* (internal) pointer to endpoint */
1469        unsigned int pipe;              /* (in) pipe information */
1470        unsigned int stream_id;         /* (in) stream ID */
1471        int status;                     /* (return) non-ISO status */
1472        unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
1473        void *transfer_buffer;          /* (in) associated data buffer */
1474        dma_addr_t transfer_dma;        /* (in) dma addr for transfer_buffer */
1475        struct scatterlist *sg;         /* (in) scatter gather buffer list */
1476        int num_mapped_sgs;             /* (internal) mapped sg entries */
1477        int num_sgs;                    /* (in) number of entries in the sg list */
1478        u32 transfer_buffer_length;     /* (in) data buffer length */
1479        u32 actual_length;              /* (return) actual transfer length */
1480        unsigned char *setup_packet;    /* (in) setup packet (control only) */
1481        dma_addr_t setup_dma;           /* (in) dma addr for setup_packet */
1482        int start_frame;                /* (modify) start frame (ISO) */
1483        int number_of_packets;          /* (in) number of ISO packets */
1484        int interval;                   /* (modify) transfer interval
1485                                         * (INT/ISO) */
1486        int error_count;                /* (return) number of ISO errors */
1487        void *context;                  /* (in) context for completion */
1488        usb_complete_t complete;        /* (in) completion routine */
1489        struct usb_iso_packet_descriptor iso_frame_desc[0];
1490                                        /* (in) ISO ONLY */
1491};
1492
1493/* ----------------------------------------------------------------------- */
1494
1495/**
1496 * usb_fill_control_urb - initializes a control urb
1497 * @urb: pointer to the urb to initialize.
1498 * @dev: pointer to the struct usb_device for this urb.
1499 * @pipe: the endpoint pipe
1500 * @setup_packet: pointer to the setup_packet buffer
1501 * @transfer_buffer: pointer to the transfer buffer
1502 * @buffer_length: length of the transfer buffer
1503 * @complete_fn: pointer to the usb_complete_t function
1504 * @context: what to set the urb context to.
1505 *
1506 * Initializes a control urb with the proper information needed to submit
1507 * it to a device.
1508 */
1509static inline void usb_fill_control_urb(struct urb *urb,
1510                                        struct usb_device *dev,
1511                                        unsigned int pipe,
1512                                        unsigned char *setup_packet,
1513                                        void *transfer_buffer,
1514                                        int buffer_length,
1515                                        usb_complete_t complete_fn,
1516                                        void *context)
1517{
1518        urb->dev = dev;
1519        urb->pipe = pipe;
1520        urb->setup_packet = setup_packet;
1521        urb->transfer_buffer = transfer_buffer;
1522        urb->transfer_buffer_length = buffer_length;
1523        urb->complete = complete_fn;
1524        urb->context = context;
1525}
1526
1527/**
1528 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1529 * @urb: pointer to the urb to initialize.
1530 * @dev: pointer to the struct usb_device for this urb.
1531 * @pipe: the endpoint pipe
1532 * @transfer_buffer: pointer to the transfer buffer
1533 * @buffer_length: length of the transfer buffer
1534 * @complete_fn: pointer to the usb_complete_t function
1535 * @context: what to set the urb context to.
1536 *
1537 * Initializes a bulk urb with the proper information needed to submit it
1538 * to a device.
1539 */
1540static inline void usb_fill_bulk_urb(struct urb *urb,
1541                                     struct usb_device *dev,
1542                                     unsigned int pipe,
1543                                     void *transfer_buffer,
1544                                     int buffer_length,
1545                                     usb_complete_t complete_fn,
1546                                     void *context)
1547{
1548        urb->dev = dev;
1549        urb->pipe = pipe;
1550        urb->transfer_buffer = transfer_buffer;
1551        urb->transfer_buffer_length = buffer_length;
1552        urb->complete = complete_fn;
1553        urb->context = context;
1554}
1555
1556/**
1557 * usb_fill_int_urb - macro to help initialize a interrupt urb
1558 * @urb: pointer to the urb to initialize.
1559 * @dev: pointer to the struct usb_device for this urb.
1560 * @pipe: the endpoint pipe
1561 * @transfer_buffer: pointer to the transfer buffer
1562 * @buffer_length: length of the transfer buffer
1563 * @complete_fn: pointer to the usb_complete_t function
1564 * @context: what to set the urb context to.
1565 * @interval: what to set the urb interval to, encoded like
1566 *      the endpoint descriptor's bInterval value.
1567 *
1568 * Initializes a interrupt urb with the proper information needed to submit
1569 * it to a device.
1570 *
1571 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1572 * encoding of the endpoint interval, and express polling intervals in
1573 * microframes (eight per millisecond) rather than in frames (one per
1574 * millisecond).
1575 *
1576 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1577 * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1578 * through to the host controller, rather than being translated into microframe
1579 * units.
1580 */
1581static inline void usb_fill_int_urb(struct urb *urb,
1582                                    struct usb_device *dev,
1583                                    unsigned int pipe,
1584                                    void *transfer_buffer,
1585                                    int buffer_length,
1586                                    usb_complete_t complete_fn,
1587                                    void *context,
1588                                    int interval)
1589{
1590        urb->dev = dev;
1591        urb->pipe = pipe;
1592        urb->transfer_buffer = transfer_buffer;
1593        urb->transfer_buffer_length = buffer_length;
1594        urb->complete = complete_fn;
1595        urb->context = context;
1596
1597        if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1598                /* make sure interval is within allowed range */
1599                interval = clamp(interval, 1, 16);
1600
1601                urb->interval = 1 << (interval - 1);
1602        } else {
1603                urb->interval = interval;
1604        }
1605
1606        urb->start_frame = -1;
1607}
1608
1609extern void usb_init_urb(struct urb *urb);
1610extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1611extern void usb_free_urb(struct urb *urb);
1612#define usb_put_urb usb_free_urb
1613extern struct urb *usb_get_urb(struct urb *urb);
1614extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1615extern int usb_unlink_urb(struct urb *urb);
1616extern void usb_kill_urb(struct urb *urb);
1617extern void usb_poison_urb(struct urb *urb);
1618extern void usb_unpoison_urb(struct urb *urb);
1619extern void usb_block_urb(struct urb *urb);
1620extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1621extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1622extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1623extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1624extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1625extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1626extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1627extern void usb_unanchor_urb(struct urb *urb);
1628extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1629                                         unsigned int timeout);
1630extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1631extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1632extern int usb_anchor_empty(struct usb_anchor *anchor);
1633
1634#define usb_unblock_urb usb_unpoison_urb
1635
1636/**
1637 * usb_urb_dir_in - check if an URB describes an IN transfer
1638 * @urb: URB to be checked
1639 *
1640 * Return: 1 if @urb describes an IN transfer (device-to-host),
1641 * otherwise 0.
1642 */
1643static inline int usb_urb_dir_in(struct urb *urb)
1644{
1645        return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1646}
1647
1648/**
1649 * usb_urb_dir_out - check if an URB describes an OUT transfer
1650 * @urb: URB to be checked
1651 *
1652 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1653 * otherwise 0.
1654 */
1655static inline int usb_urb_dir_out(struct urb *urb)
1656{
1657        return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1658}
1659
1660void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1661        gfp_t mem_flags, dma_addr_t *dma);
1662void usb_free_coherent(struct usb_device *dev, size_t size,
1663        void *addr, dma_addr_t dma);
1664
1665#if 0
1666struct urb *usb_buffer_map(struct urb *urb);
1667void usb_buffer_dmasync(struct urb *urb);
1668void usb_buffer_unmap(struct urb *urb);
1669#endif
1670
1671struct scatterlist;
1672int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1673                      struct scatterlist *sg, int nents);
1674#if 0
1675void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1676                           struct scatterlist *sg, int n_hw_ents);
1677#endif
1678void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1679                         struct scatterlist *sg, int n_hw_ents);
1680
1681/*-------------------------------------------------------------------*
1682 *                         SYNCHRONOUS CALL SUPPORT                  *
1683 *-------------------------------------------------------------------*/
1684
1685extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1686        __u8 request, __u8 requesttype, __u16 value, __u16 index,
1687        void *data, __u16 size, int timeout);
1688extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1689        void *data, int len, int *actual_length, int timeout);
1690extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1691        void *data, int len, int *actual_length,
1692        int timeout);
1693
1694/* wrappers around usb_control_msg() for the most common standard requests */
1695extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1696        unsigned char descindex, void *buf, int size);
1697extern int usb_get_status(struct usb_device *dev,
1698        int type, int target, void *data);
1699extern int usb_string(struct usb_device *dev, int index,
1700        char *buf, size_t size);
1701
1702/* wrappers that also update important state inside usbcore */
1703extern int usb_clear_halt(struct usb_device *dev, int pipe);
1704extern int usb_reset_configuration(struct usb_device *dev);
1705extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1706extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1707
1708/* this request isn't really synchronous, but it belongs with the others */
1709extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1710
1711/* choose and set configuration for device */
1712extern int usb_choose_configuration(struct usb_device *udev);
1713extern int usb_set_configuration(struct usb_device *dev, int configuration);
1714
1715/*
1716 * timeouts, in milliseconds, used for sending/receiving control messages
1717 * they typically complete within a few frames (msec) after they're issued
1718 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1719 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1720 */
1721#define USB_CTRL_GET_TIMEOUT    5000
1722#define USB_CTRL_SET_TIMEOUT    5000
1723
1724
1725/**
1726 * struct usb_sg_request - support for scatter/gather I/O
1727 * @status: zero indicates success, else negative errno
1728 * @bytes: counts bytes transferred.
1729 *
1730 * These requests are initialized using usb_sg_init(), and then are used
1731 * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1732 * members of the request object aren't for driver access.
1733 *
1734 * The status and bytecount values are valid only after usb_sg_wait()
1735 * returns.  If the status is zero, then the bytecount matches the total
1736 * from the request.
1737 *
1738 * After an error completion, drivers may need to clear a halt condition
1739 * on the endpoint.
1740 */
1741struct usb_sg_request {
1742        int                     status;
1743        size_t                  bytes;
1744
1745        /* private:
1746         * members below are private to usbcore,
1747         * and are not provided for driver access!
1748         */
1749        spinlock_t              lock;
1750
1751        struct usb_device       *dev;
1752        int                     pipe;
1753
1754        int                     entries;
1755        struct urb              **urbs;
1756
1757        int                     count;
1758        struct completion       complete;
1759};
1760
1761int usb_sg_init(
1762        struct usb_sg_request   *io,
1763        struct usb_device       *dev,
1764        unsigned                pipe,
1765        unsigned                period,
1766        struct scatterlist      *sg,
1767        int                     nents,
1768        size_t                  length,
1769        gfp_t                   mem_flags
1770);
1771void usb_sg_cancel(struct usb_sg_request *io);
1772void usb_sg_wait(struct usb_sg_request *io);
1773
1774
1775/* ----------------------------------------------------------------------- */
1776
1777/*
1778 * For various legacy reasons, Linux has a small cookie that's paired with
1779 * a struct usb_device to identify an endpoint queue.  Queue characteristics
1780 * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1781 * an unsigned int encoded as:
1782 *
1783 *  - direction:        bit 7           (0 = Host-to-Device [Out],
1784 *                                       1 = Device-to-Host [In] ...
1785 *                                      like endpoint bEndpointAddress)
1786 *  - device address:   bits 8-14       ... bit positions known to uhci-hcd
1787 *  - endpoint:         bits 15-18      ... bit positions known to uhci-hcd
1788 *  - pipe type:        bits 30-31      (00 = isochronous, 01 = interrupt,
1789 *                                       10 = control, 11 = bulk)
1790 *
1791 * Given the device address and endpoint descriptor, pipes are redundant.
1792 */
1793
1794/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1795/* (yet ... they're the values used by usbfs) */
1796#define PIPE_ISOCHRONOUS                0
1797#define PIPE_INTERRUPT                  1
1798#define PIPE_CONTROL                    2
1799#define PIPE_BULK                       3
1800
1801#define usb_pipein(pipe)        ((pipe) & USB_DIR_IN)
1802#define usb_pipeout(pipe)       (!usb_pipein(pipe))
1803
1804#define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
1805#define usb_pipeendpoint(pipe)  (((pipe) >> 15) & 0xf)
1806
1807#define usb_pipetype(pipe)      (((pipe) >> 30) & 3)
1808#define usb_pipeisoc(pipe)      (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1809#define usb_pipeint(pipe)       (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1810#define usb_pipecontrol(pipe)   (usb_pipetype((pipe)) == PIPE_CONTROL)
1811#define usb_pipebulk(pipe)      (usb_pipetype((pipe)) == PIPE_BULK)
1812
1813static inline unsigned int __create_pipe(struct usb_device *dev,
1814                unsigned int endpoint)
1815{
1816        return (dev->devnum << 8) | (endpoint << 15);
1817}
1818
1819/* Create various pipes... */
1820#define usb_sndctrlpipe(dev, endpoint)  \
1821        ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1822#define usb_rcvctrlpipe(dev, endpoint)  \
1823        ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1824#define usb_sndisocpipe(dev, endpoint)  \
1825        ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1826#define usb_rcvisocpipe(dev, endpoint)  \
1827        ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1828#define usb_sndbulkpipe(dev, endpoint)  \
1829        ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1830#define usb_rcvbulkpipe(dev, endpoint)  \
1831        ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1832#define usb_sndintpipe(dev, endpoint)   \
1833        ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1834#define usb_rcvintpipe(dev, endpoint)   \
1835        ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1836
1837static inline struct usb_host_endpoint *
1838usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1839{
1840        struct usb_host_endpoint **eps;
1841        eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1842        return eps[usb_pipeendpoint(pipe)];
1843}
1844
1845/*-------------------------------------------------------------------------*/
1846
1847static inline __u16
1848usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1849{
1850        struct usb_host_endpoint        *ep;
1851        unsigned                        epnum = usb_pipeendpoint(pipe);
1852
1853        if (is_out) {
1854                WARN_ON(usb_pipein(pipe));
1855                ep = udev->ep_out[epnum];
1856        } else {
1857                WARN_ON(usb_pipeout(pipe));
1858                ep = udev->ep_in[epnum];
1859        }
1860        if (!ep)
1861                return 0;
1862
1863        /* NOTE:  only 0x07ff bits are for packet size... */
1864        return usb_endpoint_maxp(&ep->desc);
1865}
1866
1867/* ----------------------------------------------------------------------- */
1868
1869/* translate USB error codes to codes user space understands */
1870static inline int usb_translate_errors(int error_code)
1871{
1872        switch (error_code) {
1873        case 0:
1874        case -ENOMEM:
1875        case -ENODEV:
1876        case -EOPNOTSUPP:
1877                return error_code;
1878        default:
1879                return -EIO;
1880        }
1881}
1882
1883/* Events from the usb core */
1884#define USB_DEVICE_ADD          0x0001
1885#define USB_DEVICE_REMOVE       0x0002
1886#define USB_BUS_ADD             0x0003
1887#define USB_BUS_REMOVE          0x0004
1888extern void usb_register_notify(struct notifier_block *nb);
1889extern void usb_unregister_notify(struct notifier_block *nb);
1890
1891/* debugfs stuff */
1892extern struct dentry *usb_debug_root;
1893
1894/* LED triggers */
1895enum usb_led_event {
1896        USB_LED_EVENT_HOST = 0,
1897        USB_LED_EVENT_GADGET = 1,
1898};
1899
1900#ifdef CONFIG_USB_LED_TRIG
1901extern void usb_led_activity(enum usb_led_event ev);
1902#else
1903static inline void usb_led_activity(enum usb_led_event ev) {}
1904#endif
1905
1906#endif  /* __KERNEL__ */
1907
1908#endif
1909