linux/include/xen/interface/io/netif.h
<<
>>
Prefs
   1/******************************************************************************
   2 * xen_netif.h
   3 *
   4 * Unified network-device I/O interface for Xen guest OSes.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to
   8 * deal in the Software without restriction, including without limitation the
   9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
  10 * sell copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22 * DEALINGS IN THE SOFTWARE.
  23 *
  24 * Copyright (c) 2003-2004, Keir Fraser
  25 */
  26
  27#ifndef __XEN_PUBLIC_IO_XEN_NETIF_H__
  28#define __XEN_PUBLIC_IO_XEN_NETIF_H__
  29
  30#include "ring.h"
  31#include "../grant_table.h"
  32
  33/*
  34 * Older implementation of Xen network frontend / backend has an
  35 * implicit dependency on the MAX_SKB_FRAGS as the maximum number of
  36 * ring slots a skb can use. Netfront / netback may not work as
  37 * expected when frontend and backend have different MAX_SKB_FRAGS.
  38 *
  39 * A better approach is to add mechanism for netfront / netback to
  40 * negotiate this value. However we cannot fix all possible
  41 * frontends, so we need to define a value which states the minimum
  42 * slots backend must support.
  43 *
  44 * The minimum value derives from older Linux kernel's MAX_SKB_FRAGS
  45 * (18), which is proved to work with most frontends. Any new backend
  46 * which doesn't negotiate with frontend should expect frontend to
  47 * send a valid packet using slots up to this value.
  48 */
  49#define XEN_NETIF_NR_SLOTS_MIN 18
  50
  51/*
  52 * Notifications after enqueuing any type of message should be conditional on
  53 * the appropriate req_event or rsp_event field in the shared ring.
  54 * If the client sends notification for rx requests then it should specify
  55 * feature 'feature-rx-notify' via xenbus. Otherwise the backend will assume
  56 * that it cannot safely queue packets (as it may not be kicked to send them).
  57 */
  58
  59/*
  60 * "feature-split-event-channels" is introduced to separate guest TX
  61 * and RX notification. Backend either doesn't support this feature or
  62 * advertises it via xenstore as 0 (disabled) or 1 (enabled).
  63 *
  64 * To make use of this feature, frontend should allocate two event
  65 * channels for TX and RX, advertise them to backend as
  66 * "event-channel-tx" and "event-channel-rx" respectively. If frontend
  67 * doesn't want to use this feature, it just writes "event-channel"
  68 * node as before.
  69 */
  70
  71/*
  72 * Multiple transmit and receive queues:
  73 * If supported, the backend will write the key "multi-queue-max-queues" to
  74 * the directory for that vif, and set its value to the maximum supported
  75 * number of queues.
  76 * Frontends that are aware of this feature and wish to use it can write the
  77 * key "multi-queue-num-queues", set to the number they wish to use, which
  78 * must be greater than zero, and no more than the value reported by the backend
  79 * in "multi-queue-max-queues".
  80 *
  81 * Queues replicate the shared rings and event channels.
  82 * "feature-split-event-channels" may optionally be used when using
  83 * multiple queues, but is not mandatory.
  84 *
  85 * Each queue consists of one shared ring pair, i.e. there must be the same
  86 * number of tx and rx rings.
  87 *
  88 * For frontends requesting just one queue, the usual event-channel and
  89 * ring-ref keys are written as before, simplifying the backend processing
  90 * to avoid distinguishing between a frontend that doesn't understand the
  91 * multi-queue feature, and one that does, but requested only one queue.
  92 *
  93 * Frontends requesting two or more queues must not write the toplevel
  94 * event-channel (or event-channel-{tx,rx}) and {tx,rx}-ring-ref keys,
  95 * instead writing those keys under sub-keys having the name "queue-N" where
  96 * N is the integer ID of the queue for which those keys belong. Queues
  97 * are indexed from zero. For example, a frontend with two queues and split
  98 * event channels must write the following set of queue-related keys:
  99 *
 100 * /local/domain/1/device/vif/0/multi-queue-num-queues = "2"
 101 * /local/domain/1/device/vif/0/queue-0 = ""
 102 * /local/domain/1/device/vif/0/queue-0/tx-ring-ref = "<ring-ref-tx0>"
 103 * /local/domain/1/device/vif/0/queue-0/rx-ring-ref = "<ring-ref-rx0>"
 104 * /local/domain/1/device/vif/0/queue-0/event-channel-tx = "<evtchn-tx0>"
 105 * /local/domain/1/device/vif/0/queue-0/event-channel-rx = "<evtchn-rx0>"
 106 * /local/domain/1/device/vif/0/queue-1 = ""
 107 * /local/domain/1/device/vif/0/queue-1/tx-ring-ref = "<ring-ref-tx1>"
 108 * /local/domain/1/device/vif/0/queue-1/rx-ring-ref = "<ring-ref-rx1"
 109 * /local/domain/1/device/vif/0/queue-1/event-channel-tx = "<evtchn-tx1>"
 110 * /local/domain/1/device/vif/0/queue-1/event-channel-rx = "<evtchn-rx1>"
 111 *
 112 * If there is any inconsistency in the XenStore data, the backend may
 113 * choose not to connect any queues, instead treating the request as an
 114 * error. This includes scenarios where more (or fewer) queues were
 115 * requested than the frontend provided details for.
 116 *
 117 * Mapping of packets to queues is considered to be a function of the
 118 * transmitting system (backend or frontend) and is not negotiated
 119 * between the two. Guests are free to transmit packets on any queue
 120 * they choose, provided it has been set up correctly. Guests must be
 121 * prepared to receive packets on any queue they have requested be set up.
 122 */
 123
 124/*
 125 * "feature-no-csum-offload" should be used to turn IPv4 TCP/UDP checksum
 126 * offload off or on. If it is missing then the feature is assumed to be on.
 127 * "feature-ipv6-csum-offload" should be used to turn IPv6 TCP/UDP checksum
 128 * offload on or off. If it is missing then the feature is assumed to be off.
 129 */
 130
 131/*
 132 * "feature-gso-tcpv4" and "feature-gso-tcpv6" advertise the capability to
 133 * handle large TCP packets (in IPv4 or IPv6 form respectively). Neither
 134 * frontends nor backends are assumed to be capable unless the flags are
 135 * present.
 136 */
 137
 138/*
 139 * "feature-multicast-control" and "feature-dynamic-multicast-control"
 140 * advertise the capability to filter ethernet multicast packets in the
 141 * backend. If the frontend wishes to take advantage of this feature then
 142 * it may set "request-multicast-control". If the backend only advertises
 143 * "feature-multicast-control" then "request-multicast-control" must be set
 144 * before the frontend moves into the connected state. The backend will
 145 * sample the value on this state transition and any subsequent change in
 146 * value will have no effect. However, if the backend also advertises
 147 * "feature-dynamic-multicast-control" then "request-multicast-control"
 148 * may be set by the frontend at any time. In this case, the backend will
 149 * watch the value and re-sample on watch events.
 150 *
 151 * If the sampled value of "request-multicast-control" is set then the
 152 * backend transmit side should no longer flood multicast packets to the
 153 * frontend, it should instead drop any multicast packet that does not
 154 * match in a filter list.
 155 * The list is amended by the frontend by sending dummy transmit requests
 156 * containing XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL} extra-info fragments as
 157 * specified below.
 158 * Note that the filter list may be amended even if the sampled value of
 159 * "request-multicast-control" is not set, however the filter should only
 160 * be applied if it is set.
 161 */
 162
 163/*
 164 * Control ring
 165 * ============
 166 *
 167 * Some features, such as hashing (detailed below), require a
 168 * significant amount of out-of-band data to be passed from frontend to
 169 * backend. Use of xenstore is not suitable for large quantities of data
 170 * because of quota limitations and so a dedicated 'control ring' is used.
 171 * The ability of the backend to use a control ring is advertised by
 172 * setting:
 173 *
 174 * /local/domain/X/backend/<domid>/<vif>/feature-ctrl-ring = "1"
 175 *
 176 * The frontend provides a control ring to the backend by setting:
 177 *
 178 * /local/domain/<domid>/device/vif/<vif>/ctrl-ring-ref = <gref>
 179 * /local/domain/<domid>/device/vif/<vif>/event-channel-ctrl = <port>
 180 *
 181 * where <gref> is the grant reference of the shared page used to
 182 * implement the control ring and <port> is an event channel to be used
 183 * as a mailbox interrupt. These keys must be set before the frontend
 184 * moves into the connected state.
 185 *
 186 * The control ring uses a fixed request/response message size and is
 187 * balanced (i.e. one request to one response), so operationally it is much
 188 * the same as a transmit or receive ring.
 189 * Note that there is no requirement that responses are issued in the same
 190 * order as requests.
 191 */
 192
 193/*
 194 * Hash types
 195 * ==========
 196 *
 197 * For the purposes of the definitions below, 'Packet[]' is an array of
 198 * octets containing an IP packet without options, 'Array[X..Y]' means a
 199 * sub-array of 'Array' containing bytes X thru Y inclusive, and '+' is
 200 * used to indicate concatenation of arrays.
 201 */
 202
 203/*
 204 * A hash calculated over an IP version 4 header as follows:
 205 *
 206 * Buffer[0..8] = Packet[12..15] (source address) +
 207 *                Packet[16..19] (destination address)
 208 *
 209 * Result = Hash(Buffer, 8)
 210 */
 211#define _XEN_NETIF_CTRL_HASH_TYPE_IPV4 0
 212#define XEN_NETIF_CTRL_HASH_TYPE_IPV4 \
 213        (1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV4)
 214
 215/*
 216 * A hash calculated over an IP version 4 header and TCP header as
 217 * follows:
 218 *
 219 * Buffer[0..12] = Packet[12..15] (source address) +
 220 *                 Packet[16..19] (destination address) +
 221 *                 Packet[20..21] (source port) +
 222 *                 Packet[22..23] (destination port)
 223 *
 224 * Result = Hash(Buffer, 12)
 225 */
 226#define _XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP 1
 227#define XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP \
 228        (1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP)
 229
 230/*
 231 * A hash calculated over an IP version 6 header as follows:
 232 *
 233 * Buffer[0..32] = Packet[8..23]  (source address ) +
 234 *                 Packet[24..39] (destination address)
 235 *
 236 * Result = Hash(Buffer, 32)
 237 */
 238#define _XEN_NETIF_CTRL_HASH_TYPE_IPV6 2
 239#define XEN_NETIF_CTRL_HASH_TYPE_IPV6 \
 240        (1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV6)
 241
 242/*
 243 * A hash calculated over an IP version 6 header and TCP header as
 244 * follows:
 245 *
 246 * Buffer[0..36] = Packet[8..23]  (source address) +
 247 *                 Packet[24..39] (destination address) +
 248 *                 Packet[40..41] (source port) +
 249 *                 Packet[42..43] (destination port)
 250 *
 251 * Result = Hash(Buffer, 36)
 252 */
 253#define _XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP 3
 254#define XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP \
 255        (1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP)
 256
 257/*
 258 * Hash algorithms
 259 * ===============
 260 */
 261
 262#define XEN_NETIF_CTRL_HASH_ALGORITHM_NONE 0
 263
 264/*
 265 * Toeplitz hash:
 266 */
 267
 268#define XEN_NETIF_CTRL_HASH_ALGORITHM_TOEPLITZ 1
 269
 270/*
 271 * This algorithm uses a 'key' as well as the data buffer itself.
 272 * (Buffer[] and Key[] are treated as shift-registers where the MSB of
 273 * Buffer/Key[0] is considered 'left-most' and the LSB of Buffer/Key[N-1]
 274 * is the 'right-most').
 275 *
 276 * Value = 0
 277 * For number of bits in Buffer[]
 278 *    If (left-most bit of Buffer[] is 1)
 279 *        Value ^= left-most 32 bits of Key[]
 280 *    Key[] << 1
 281 *    Buffer[] << 1
 282 *
 283 * The code below is provided for convenience where an operating system
 284 * does not already provide an implementation.
 285 */
 286#ifdef XEN_NETIF_DEFINE_TOEPLITZ
 287static uint32_t xen_netif_toeplitz_hash(const uint8_t *key,
 288                                        unsigned int keylen,
 289                                        const uint8_t *buf, unsigned int buflen)
 290{
 291        unsigned int keyi, bufi;
 292        uint64_t prefix = 0;
 293        uint64_t hash = 0;
 294
 295        /* Pre-load prefix with the first 8 bytes of the key */
 296        for (keyi = 0; keyi < 8; keyi++) {
 297                prefix <<= 8;
 298                prefix |= (keyi < keylen) ? key[keyi] : 0;
 299        }
 300
 301        for (bufi = 0; bufi < buflen; bufi++) {
 302                uint8_t byte = buf[bufi];
 303                unsigned int bit;
 304
 305                for (bit = 0; bit < 8; bit++) {
 306                        if (byte & 0x80)
 307                                hash ^= prefix;
 308                        prefix <<= 1;
 309                        byte <<= 1;
 310                }
 311
 312                /*
 313                 * 'prefix' has now been left-shifted by 8, so
 314                 * OR in the next byte.
 315                 */
 316                prefix |= (keyi < keylen) ? key[keyi] : 0;
 317                keyi++;
 318        }
 319
 320        /* The valid part of the hash is in the upper 32 bits. */
 321        return hash >> 32;
 322}
 323#endif                          /* XEN_NETIF_DEFINE_TOEPLITZ */
 324
 325/*
 326 * Control requests (struct xen_netif_ctrl_request)
 327 * ================================================
 328 *
 329 * All requests have the following format:
 330 *
 331 *    0     1     2     3     4     5     6     7  octet
 332 * +-----+-----+-----+-----+-----+-----+-----+-----+
 333 * |    id     |   type    |         data[0]       |
 334 * +-----+-----+-----+-----+-----+-----+-----+-----+
 335 * |         data[1]       |         data[2]       |
 336 * +-----+-----+-----+-----+-----------------------+
 337 *
 338 * id: the request identifier, echoed in response.
 339 * type: the type of request (see below)
 340 * data[]: any data associated with the request (determined by type)
 341 */
 342
 343struct xen_netif_ctrl_request {
 344        uint16_t id;
 345        uint16_t type;
 346
 347#define XEN_NETIF_CTRL_TYPE_INVALID               0
 348#define XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS        1
 349#define XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS        2
 350#define XEN_NETIF_CTRL_TYPE_SET_HASH_KEY          3
 351#define XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE 4
 352#define XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE 5
 353#define XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING      6
 354#define XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM    7
 355
 356        uint32_t data[3];
 357};
 358
 359/*
 360 * Control responses (struct xen_netif_ctrl_response)
 361 * ==================================================
 362 *
 363 * All responses have the following format:
 364 *
 365 *    0     1     2     3     4     5     6     7  octet
 366 * +-----+-----+-----+-----+-----+-----+-----+-----+
 367 * |    id     |   type    |         status        |
 368 * +-----+-----+-----+-----+-----+-----+-----+-----+
 369 * |         data          |
 370 * +-----+-----+-----+-----+
 371 *
 372 * id: the corresponding request identifier
 373 * type: the type of the corresponding request
 374 * status: the status of request processing
 375 * data: any data associated with the response (determined by type and
 376 *       status)
 377 */
 378
 379struct xen_netif_ctrl_response {
 380        uint16_t id;
 381        uint16_t type;
 382        uint32_t status;
 383
 384#define XEN_NETIF_CTRL_STATUS_SUCCESS           0
 385#define XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     1
 386#define XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER 2
 387#define XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   3
 388
 389        uint32_t data;
 390};
 391
 392/*
 393 * Control messages
 394 * ================
 395 *
 396 * XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM
 397 * --------------------------------------
 398 *
 399 * This is sent by the frontend to set the desired hash algorithm.
 400 *
 401 * Request:
 402 *
 403 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM
 404 *  data[0] = a XEN_NETIF_CTRL_HASH_ALGORITHM_* value
 405 *  data[1] = 0
 406 *  data[2] = 0
 407 *
 408 * Response:
 409 *
 410 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
 411 *                                                     supported
 412 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - The algorithm is not
 413 *                                                     supported
 414 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
 415 *
 416 * NOTE: Setting data[0] to XEN_NETIF_CTRL_HASH_ALGORITHM_NONE disables
 417 *       hashing and the backend is free to choose how it steers packets
 418 *       to queues (which is the default behaviour).
 419 *
 420 * XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS
 421 * ----------------------------------
 422 *
 423 * This is sent by the frontend to query the types of hash supported by
 424 * the backend.
 425 *
 426 * Request:
 427 *
 428 *  type    = XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS
 429 *  data[0] = 0
 430 *  data[1] = 0
 431 *  data[2] = 0
 432 *
 433 * Response:
 434 *
 435 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not supported
 436 *           XEN_NETIF_CTRL_STATUS_SUCCESS       - Operation successful
 437 *  data   = supported hash types (if operation was successful)
 438 *
 439 * NOTE: A valid hash algorithm must be selected before this operation can
 440 *       succeed.
 441 *
 442 * XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS
 443 * ----------------------------------
 444 *
 445 * This is sent by the frontend to set the types of hash that the backend
 446 * should calculate. (See above for hash type definitions).
 447 * Note that the 'maximal' type of hash should always be chosen. For
 448 * example, if the frontend sets both IPV4 and IPV4_TCP hash types then
 449 * the latter hash type should be calculated for any TCP packet and the
 450 * former only calculated for non-TCP packets.
 451 *
 452 * Request:
 453 *
 454 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS
 455 *  data[0] = bitwise OR of XEN_NETIF_CTRL_HASH_TYPE_* values
 456 *  data[1] = 0
 457 *  data[2] = 0
 458 *
 459 * Response:
 460 *
 461 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
 462 *                                                     supported
 463 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - One or more flag
 464 *                                                     value is invalid or
 465 *                                                     unsupported
 466 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
 467 *  data   = 0
 468 *
 469 * NOTE: A valid hash algorithm must be selected before this operation can
 470 *       succeed.
 471 *       Also, setting data[0] to zero disables hashing and the backend
 472 *       is free to choose how it steers packets to queues.
 473 *
 474 * XEN_NETIF_CTRL_TYPE_SET_HASH_KEY
 475 * --------------------------------
 476 *
 477 * This is sent by the frontend to set the key of the hash if the algorithm
 478 * requires it. (See hash algorithms above).
 479 *
 480 * Request:
 481 *
 482 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_KEY
 483 *  data[0] = grant reference of page containing the key (assumed to
 484 *            start at beginning of grant)
 485 *  data[1] = size of key in octets
 486 *  data[2] = 0
 487 *
 488 * Response:
 489 *
 490 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
 491 *                                                     supported
 492 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Key size is invalid
 493 *           XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   - Key size is larger
 494 *                                                     than the backend
 495 *                                                     supports
 496 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
 497 *  data   = 0
 498 *
 499 * NOTE: Any key octets not specified are assumed to be zero (the key
 500 *       is assumed to be empty by default) and specifying a new key
 501 *       invalidates any previous key, hence specifying a key size of
 502 *       zero will clear the key (which ensures that the calculated hash
 503 *       will always be zero).
 504 *       The maximum size of key is algorithm and backend specific, but
 505 *       is also limited by the single grant reference.
 506 *       The grant reference may be read-only and must remain valid until
 507 *       the response has been processed.
 508 *
 509 * XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE
 510 * -----------------------------------------
 511 *
 512 * This is sent by the frontend to query the maximum size of mapping
 513 * table supported by the backend. The size is specified in terms of
 514 * table entries.
 515 *
 516 * Request:
 517 *
 518 *  type    = XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE
 519 *  data[0] = 0
 520 *  data[1] = 0
 521 *  data[2] = 0
 522 *
 523 * Response:
 524 *
 525 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not supported
 526 *           XEN_NETIF_CTRL_STATUS_SUCCESS       - Operation successful
 527 *  data   = maximum number of entries allowed in the mapping table
 528 *           (if operation was successful) or zero if a mapping table is
 529 *           not supported (i.e. hash mapping is done only by modular
 530 *           arithmetic).
 531 *
 532 * XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
 533 * -------------------------------------
 534 *
 535 * This is sent by the frontend to set the actual size of the mapping
 536 * table to be used by the backend. The size is specified in terms of
 537 * table entries.
 538 * Any previous table is invalidated by this message and any new table
 539 * is assumed to be zero filled.
 540 *
 541 * Request:
 542 *
 543 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
 544 *  data[0] = number of entries in mapping table
 545 *  data[1] = 0
 546 *  data[2] = 0
 547 *
 548 * Response:
 549 *
 550 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
 551 *                                                     supported
 552 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Table size is invalid
 553 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
 554 *  data   = 0
 555 *
 556 * NOTE: Setting data[0] to 0 means that hash mapping should be done
 557 *       using modular arithmetic.
 558 *
 559 * XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING
 560 * ------------------------------------
 561 *
 562 * This is sent by the frontend to set the content of the table mapping
 563 * hash value to queue number. The backend should calculate the hash from
 564 * the packet header, use it as an index into the table (modulo the size
 565 * of the table) and then steer the packet to the queue number found at
 566 * that index.
 567 *
 568 * Request:
 569 *
 570 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING
 571 *  data[0] = grant reference of page containing the mapping (sub-)table
 572 *            (assumed to start at beginning of grant)
 573 *  data[1] = size of (sub-)table in entries
 574 *  data[2] = offset, in entries, of sub-table within overall table
 575 *
 576 * Response:
 577 *
 578 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
 579 *                                                     supported
 580 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Table size or content
 581 *                                                     is invalid
 582 *           XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   - Table size is larger
 583 *                                                     than the backend
 584 *                                                     supports
 585 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
 586 *  data   = 0
 587 *
 588 * NOTE: The overall table has the following format:
 589 *
 590 *          0     1     2     3     4     5     6     7  octet
 591 *       +-----+-----+-----+-----+-----+-----+-----+-----+
 592 *       |       mapping[0]      |       mapping[1]      |
 593 *       +-----+-----+-----+-----+-----+-----+-----+-----+
 594 *       |                       .                       |
 595 *       |                       .                       |
 596 *       |                       .                       |
 597 *       +-----+-----+-----+-----+-----+-----+-----+-----+
 598 *       |      mapping[N-2]     |      mapping[N-1]     |
 599 *       +-----+-----+-----+-----+-----+-----+-----+-----+
 600 *
 601 *       where N is specified by a XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
 602 *       message and each  mapping must specifies a queue between 0 and
 603 *       "multi-queue-num-queues" (see above).
 604 *       The backend may support a mapping table larger than can be
 605 *       mapped by a single grant reference. Thus sub-tables within a
 606 *       larger table can be individually set by sending multiple messages
 607 *       with differing offset values. Specifying a new sub-table does not
 608 *       invalidate any table data outside that range.
 609 *       The grant reference may be read-only and must remain valid until
 610 *       the response has been processed.
 611 */
 612
 613DEFINE_RING_TYPES(xen_netif_ctrl,
 614                  struct xen_netif_ctrl_request,
 615                  struct xen_netif_ctrl_response);
 616
 617/*
 618 * Guest transmit
 619 * ==============
 620 *
 621 * This is the 'wire' format for transmit (frontend -> backend) packets:
 622 *
 623 *  Fragment 1: xen_netif_tx_request_t  - flags = XEN_NETTXF_*
 624 *                                    size = total packet size
 625 * [Extra 1: xen_netif_extra_info_t]    - (only if fragment 1 flags include
 626 *                                     XEN_NETTXF_extra_info)
 627 *  ...
 628 * [Extra N: xen_netif_extra_info_t]    - (only if extra N-1 flags include
 629 *                                     XEN_NETIF_EXTRA_MORE)
 630 *  ...
 631 *  Fragment N: xen_netif_tx_request_t  - (only if fragment N-1 flags include
 632 *                                     XEN_NETTXF_more_data - flags on preceding
 633 *                                     extras are not relevant here)
 634 *                                    flags = 0
 635 *                                    size = fragment size
 636 *
 637 * NOTE:
 638 *
 639 * This format slightly is different from that used for receive
 640 * (backend -> frontend) packets. Specifically, in a multi-fragment
 641 * packet the actual size of fragment 1 can only be determined by
 642 * subtracting the sizes of fragments 2..N from the total packet size.
 643 *
 644 * Ring slot size is 12 octets, however not all request/response
 645 * structs use the full size.
 646 *
 647 * tx request data (xen_netif_tx_request_t)
 648 * ------------------------------------
 649 *
 650 *    0     1     2     3     4     5     6     7  octet
 651 * +-----+-----+-----+-----+-----+-----+-----+-----+
 652 * | grant ref             | offset    | flags     |
 653 * +-----+-----+-----+-----+-----+-----+-----+-----+
 654 * | id        | size      |
 655 * +-----+-----+-----+-----+
 656 *
 657 * grant ref: Reference to buffer page.
 658 * offset: Offset within buffer page.
 659 * flags: XEN_NETTXF_*.
 660 * id: request identifier, echoed in response.
 661 * size: packet size in bytes.
 662 *
 663 * tx response (xen_netif_tx_response_t)
 664 * ---------------------------------
 665 *
 666 *    0     1     2     3     4     5     6     7  octet
 667 * +-----+-----+-----+-----+-----+-----+-----+-----+
 668 * | id        | status    | unused                |
 669 * +-----+-----+-----+-----+-----+-----+-----+-----+
 670 * | unused                |
 671 * +-----+-----+-----+-----+
 672 *
 673 * id: reflects id in transmit request
 674 * status: XEN_NETIF_RSP_*
 675 *
 676 * Guest receive
 677 * =============
 678 *
 679 * This is the 'wire' format for receive (backend -> frontend) packets:
 680 *
 681 *  Fragment 1: xen_netif_rx_request_t  - flags = XEN_NETRXF_*
 682 *                                    size = fragment size
 683 * [Extra 1: xen_netif_extra_info_t]    - (only if fragment 1 flags include
 684 *                                     XEN_NETRXF_extra_info)
 685 *  ...
 686 * [Extra N: xen_netif_extra_info_t]    - (only if extra N-1 flags include
 687 *                                     XEN_NETIF_EXTRA_MORE)
 688 *  ...
 689 *  Fragment N: xen_netif_rx_request_t  - (only if fragment N-1 flags include
 690 *                                     XEN_NETRXF_more_data - flags on preceding
 691 *                                     extras are not relevant here)
 692 *                                    flags = 0
 693 *                                    size = fragment size
 694 *
 695 * NOTE:
 696 *
 697 * This format slightly is different from that used for transmit
 698 * (frontend -> backend) packets. Specifically, in a multi-fragment
 699 * packet the size of the packet can only be determined by summing the
 700 * sizes of fragments 1..N.
 701 *
 702 * Ring slot size is 8 octets.
 703 *
 704 * rx request (xen_netif_rx_request_t)
 705 * -------------------------------
 706 *
 707 *    0     1     2     3     4     5     6     7  octet
 708 * +-----+-----+-----+-----+-----+-----+-----+-----+
 709 * | id        | pad       | gref                  |
 710 * +-----+-----+-----+-----+-----+-----+-----+-----+
 711 *
 712 * id: request identifier, echoed in response.
 713 * gref: reference to incoming granted frame.
 714 *
 715 * rx response (xen_netif_rx_response_t)
 716 * ---------------------------------
 717 *
 718 *    0     1     2     3     4     5     6     7  octet
 719 * +-----+-----+-----+-----+-----+-----+-----+-----+
 720 * | id        | offset    | flags     | status    |
 721 * +-----+-----+-----+-----+-----+-----+-----+-----+
 722 *
 723 * id: reflects id in receive request
 724 * offset: offset in page of start of received packet
 725 * flags: XEN_NETRXF_*
 726 * status: -ve: XEN_NETIF_RSP_*; +ve: Rx'ed pkt size.
 727 *
 728 * NOTE: Historically, to support GSO on the frontend receive side, Linux
 729 *       netfront does not make use of the rx response id (because, as
 730 *       described below, extra info structures overlay the id field).
 731 *       Instead it assumes that responses always appear in the same ring
 732 *       slot as their corresponding request. Thus, to maintain
 733 *       compatibility, backends must make sure this is the case.
 734 *
 735 * Extra Info
 736 * ==========
 737 *
 738 * Can be present if initial request or response has NET{T,R}XF_extra_info,
 739 * or previous extra request has XEN_NETIF_EXTRA_MORE.
 740 *
 741 * The struct therefore needs to fit into either a tx or rx slot and
 742 * is therefore limited to 8 octets.
 743 *
 744 * NOTE: Because extra info data overlays the usual request/response
 745 *       structures, there is no id information in the opposite direction.
 746 *       So, if an extra info overlays an rx response the frontend can
 747 *       assume that it is in the same ring slot as the request that was
 748 *       consumed to make the slot available, and the backend must ensure
 749 *       this assumption is true.
 750 *
 751 * extra info (xen_netif_extra_info_t)
 752 * -------------------------------
 753 *
 754 * General format:
 755 *
 756 *    0     1     2     3     4     5     6     7  octet
 757 * +-----+-----+-----+-----+-----+-----+-----+-----+
 758 * |type |flags| type specific data                |
 759 * +-----+-----+-----+-----+-----+-----+-----+-----+
 760 * | padding for tx        |
 761 * +-----+-----+-----+-----+
 762 *
 763 * type: XEN_NETIF_EXTRA_TYPE_*
 764 * flags: XEN_NETIF_EXTRA_FLAG_*
 765 * padding for tx: present only in the tx case due to 8 octet limit
 766 *                 from rx case. Not shown in type specific entries
 767 *                 below.
 768 *
 769 * XEN_NETIF_EXTRA_TYPE_GSO:
 770 *
 771 *    0     1     2     3     4     5     6     7  octet
 772 * +-----+-----+-----+-----+-----+-----+-----+-----+
 773 * |type |flags| size      |type | pad | features  |
 774 * +-----+-----+-----+-----+-----+-----+-----+-----+
 775 *
 776 * type: Must be XEN_NETIF_EXTRA_TYPE_GSO
 777 * flags: XEN_NETIF_EXTRA_FLAG_*
 778 * size: Maximum payload size of each segment. For example,
 779 *       for TCP this is just the path MSS.
 780 * type: XEN_NETIF_GSO_TYPE_*: This determines the protocol of
 781 *       the packet and any extra features required to segment the
 782 *       packet properly.
 783 * features: EN_XEN_NETIF_GSO_FEAT_*: This specifies any extra GSO
 784 *           features required to process this packet, such as ECN
 785 *           support for TCPv4.
 786 *
 787 * XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL}:
 788 *
 789 *    0     1     2     3     4     5     6     7  octet
 790 * +-----+-----+-----+-----+-----+-----+-----+-----+
 791 * |type |flags| addr                              |
 792 * +-----+-----+-----+-----+-----+-----+-----+-----+
 793 *
 794 * type: Must be XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL}
 795 * flags: XEN_NETIF_EXTRA_FLAG_*
 796 * addr: address to add/remove
 797 *
 798 * XEN_NETIF_EXTRA_TYPE_HASH:
 799 *
 800 * A backend that supports teoplitz hashing is assumed to accept
 801 * this type of extra info in transmit packets.
 802 * A frontend that enables hashing is assumed to accept
 803 * this type of extra info in receive packets.
 804 *
 805 *    0     1     2     3     4     5     6     7  octet
 806 * +-----+-----+-----+-----+-----+-----+-----+-----+
 807 * |type |flags|htype| alg |LSB ---- value ---- MSB|
 808 * +-----+-----+-----+-----+-----+-----+-----+-----+
 809 *
 810 * type: Must be XEN_NETIF_EXTRA_TYPE_HASH
 811 * flags: XEN_NETIF_EXTRA_FLAG_*
 812 * htype: Hash type (one of _XEN_NETIF_CTRL_HASH_TYPE_* - see above)
 813 * alg: The algorithm used to calculate the hash (one of
 814 *      XEN_NETIF_CTRL_HASH_TYPE_ALGORITHM_* - see above)
 815 * value: Hash value
 816 */
 817
 818/* Protocol checksum field is blank in the packet (hardware offload)? */
 819#define _XEN_NETTXF_csum_blank     (0)
 820#define  XEN_NETTXF_csum_blank     (1U<<_XEN_NETTXF_csum_blank)
 821
 822/* Packet data has been validated against protocol checksum. */
 823#define _XEN_NETTXF_data_validated (1)
 824#define  XEN_NETTXF_data_validated (1U<<_XEN_NETTXF_data_validated)
 825
 826/* Packet continues in the next request descriptor. */
 827#define _XEN_NETTXF_more_data      (2)
 828#define  XEN_NETTXF_more_data      (1U<<_XEN_NETTXF_more_data)
 829
 830/* Packet to be followed by extra descriptor(s). */
 831#define _XEN_NETTXF_extra_info     (3)
 832#define  XEN_NETTXF_extra_info     (1U<<_XEN_NETTXF_extra_info)
 833
 834#define XEN_NETIF_MAX_TX_SIZE 0xFFFF
 835struct xen_netif_tx_request {
 836        grant_ref_t gref;
 837        uint16_t offset;
 838        uint16_t flags;
 839        uint16_t id;
 840        uint16_t size;
 841};
 842
 843/* Types of xen_netif_extra_info descriptors. */
 844#define XEN_NETIF_EXTRA_TYPE_NONE      (0)      /* Never used - invalid */
 845#define XEN_NETIF_EXTRA_TYPE_GSO       (1)      /* u.gso */
 846#define XEN_NETIF_EXTRA_TYPE_MCAST_ADD (2)      /* u.mcast */
 847#define XEN_NETIF_EXTRA_TYPE_MCAST_DEL (3)      /* u.mcast */
 848#define XEN_NETIF_EXTRA_TYPE_HASH      (4)      /* u.hash */
 849#define XEN_NETIF_EXTRA_TYPE_MAX       (5)
 850
 851/* xen_netif_extra_info_t flags. */
 852#define _XEN_NETIF_EXTRA_FLAG_MORE (0)
 853#define XEN_NETIF_EXTRA_FLAG_MORE  (1U<<_XEN_NETIF_EXTRA_FLAG_MORE)
 854
 855/* GSO types */
 856#define XEN_NETIF_GSO_TYPE_NONE         (0)
 857#define XEN_NETIF_GSO_TYPE_TCPV4        (1)
 858#define XEN_NETIF_GSO_TYPE_TCPV6        (2)
 859
 860/*
 861 * This structure needs to fit within both xen_netif_tx_request_t and
 862 * xen_netif_rx_response_t for compatibility.
 863 */
 864struct xen_netif_extra_info {
 865        uint8_t type;
 866        uint8_t flags;
 867        union {
 868                struct {
 869                        uint16_t size;
 870                        uint8_t type;
 871                        uint8_t pad;
 872                        uint16_t features;
 873                } gso;
 874                struct {
 875                        uint8_t addr[6];
 876                } mcast;
 877                struct {
 878                        uint8_t type;
 879                        uint8_t algorithm;
 880                        uint8_t value[4];
 881                } hash;
 882                uint16_t pad[3];
 883        } u;
 884};
 885
 886struct xen_netif_tx_response {
 887        uint16_t id;
 888        int16_t status;
 889};
 890
 891struct xen_netif_rx_request {
 892        uint16_t id;            /* Echoed in response message.        */
 893        uint16_t pad;
 894        grant_ref_t gref;
 895};
 896
 897/* Packet data has been validated against protocol checksum. */
 898#define _XEN_NETRXF_data_validated (0)
 899#define  XEN_NETRXF_data_validated (1U<<_XEN_NETRXF_data_validated)
 900
 901/* Protocol checksum field is blank in the packet (hardware offload)? */
 902#define _XEN_NETRXF_csum_blank     (1)
 903#define  XEN_NETRXF_csum_blank     (1U<<_XEN_NETRXF_csum_blank)
 904
 905/* Packet continues in the next request descriptor. */
 906#define _XEN_NETRXF_more_data      (2)
 907#define  XEN_NETRXF_more_data      (1U<<_XEN_NETRXF_more_data)
 908
 909/* Packet to be followed by extra descriptor(s). */
 910#define _XEN_NETRXF_extra_info     (3)
 911#define  XEN_NETRXF_extra_info     (1U<<_XEN_NETRXF_extra_info)
 912
 913/* Packet has GSO prefix. Deprecated but included for compatibility */
 914#define _XEN_NETRXF_gso_prefix     (4)
 915#define  XEN_NETRXF_gso_prefix     (1U<<_XEN_NETRXF_gso_prefix)
 916
 917struct xen_netif_rx_response {
 918        uint16_t id;
 919        uint16_t offset;
 920        uint16_t flags;
 921        int16_t status;
 922};
 923
 924/*
 925 * Generate xen_netif ring structures and types.
 926 */
 927
 928DEFINE_RING_TYPES(xen_netif_tx, struct xen_netif_tx_request,
 929                  struct xen_netif_tx_response);
 930DEFINE_RING_TYPES(xen_netif_rx, struct xen_netif_rx_request,
 931                  struct xen_netif_rx_response);
 932
 933#define XEN_NETIF_RSP_DROPPED         -2
 934#define XEN_NETIF_RSP_ERROR           -1
 935#define XEN_NETIF_RSP_OKAY             0
 936/* No response: used for auxiliary requests (e.g., xen_netif_extra_info_t). */
 937#define XEN_NETIF_RSP_NULL             1
 938
 939#endif
 940