linux/kernel/cpu.c
<<
>>
Prefs
   1/* CPU control.
   2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
   3 *
   4 * This code is licenced under the GPL.
   5 */
   6#include <linux/proc_fs.h>
   7#include <linux/smp.h>
   8#include <linux/init.h>
   9#include <linux/notifier.h>
  10#include <linux/sched.h>
  11#include <linux/unistd.h>
  12#include <linux/cpu.h>
  13#include <linux/oom.h>
  14#include <linux/rcupdate.h>
  15#include <linux/export.h>
  16#include <linux/bug.h>
  17#include <linux/kthread.h>
  18#include <linux/stop_machine.h>
  19#include <linux/mutex.h>
  20#include <linux/gfp.h>
  21#include <linux/suspend.h>
  22#include <linux/lockdep.h>
  23#include <linux/tick.h>
  24#include <linux/irq.h>
  25#include <linux/smpboot.h>
  26#include <linux/relay.h>
  27#include <linux/slab.h>
  28
  29#include <trace/events/power.h>
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/cpuhp.h>
  32
  33#include "smpboot.h"
  34
  35/**
  36 * cpuhp_cpu_state - Per cpu hotplug state storage
  37 * @state:      The current cpu state
  38 * @target:     The target state
  39 * @thread:     Pointer to the hotplug thread
  40 * @should_run: Thread should execute
  41 * @rollback:   Perform a rollback
  42 * @single:     Single callback invocation
  43 * @bringup:    Single callback bringup or teardown selector
  44 * @cb_state:   The state for a single callback (install/uninstall)
  45 * @result:     Result of the operation
  46 * @done:       Signal completion to the issuer of the task
  47 */
  48struct cpuhp_cpu_state {
  49        enum cpuhp_state        state;
  50        enum cpuhp_state        target;
  51#ifdef CONFIG_SMP
  52        struct task_struct      *thread;
  53        bool                    should_run;
  54        bool                    rollback;
  55        bool                    single;
  56        bool                    bringup;
  57        struct hlist_node       *node;
  58        enum cpuhp_state        cb_state;
  59        int                     result;
  60        struct completion       done;
  61#endif
  62};
  63
  64static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
  65
  66/**
  67 * cpuhp_step - Hotplug state machine step
  68 * @name:       Name of the step
  69 * @startup:    Startup function of the step
  70 * @teardown:   Teardown function of the step
  71 * @skip_onerr: Do not invoke the functions on error rollback
  72 *              Will go away once the notifiers are gone
  73 * @cant_stop:  Bringup/teardown can't be stopped at this step
  74 */
  75struct cpuhp_step {
  76        const char              *name;
  77        union {
  78                int             (*single)(unsigned int cpu);
  79                int             (*multi)(unsigned int cpu,
  80                                         struct hlist_node *node);
  81        } startup;
  82        union {
  83                int             (*single)(unsigned int cpu);
  84                int             (*multi)(unsigned int cpu,
  85                                         struct hlist_node *node);
  86        } teardown;
  87        struct hlist_head       list;
  88        bool                    skip_onerr;
  89        bool                    cant_stop;
  90        bool                    multi_instance;
  91};
  92
  93static DEFINE_MUTEX(cpuhp_state_mutex);
  94static struct cpuhp_step cpuhp_bp_states[];
  95static struct cpuhp_step cpuhp_ap_states[];
  96
  97static bool cpuhp_is_ap_state(enum cpuhp_state state)
  98{
  99        /*
 100         * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
 101         * purposes as that state is handled explicitly in cpu_down.
 102         */
 103        return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
 104}
 105
 106static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
 107{
 108        struct cpuhp_step *sp;
 109
 110        sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
 111        return sp + state;
 112}
 113
 114/**
 115 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
 116 * @cpu:        The cpu for which the callback should be invoked
 117 * @step:       The step in the state machine
 118 * @bringup:    True if the bringup callback should be invoked
 119 *
 120 * Called from cpu hotplug and from the state register machinery.
 121 */
 122static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
 123                                 bool bringup, struct hlist_node *node)
 124{
 125        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 126        struct cpuhp_step *step = cpuhp_get_step(state);
 127        int (*cbm)(unsigned int cpu, struct hlist_node *node);
 128        int (*cb)(unsigned int cpu);
 129        int ret, cnt;
 130
 131        if (!step->multi_instance) {
 132                cb = bringup ? step->startup.single : step->teardown.single;
 133                if (!cb)
 134                        return 0;
 135                trace_cpuhp_enter(cpu, st->target, state, cb);
 136                ret = cb(cpu);
 137                trace_cpuhp_exit(cpu, st->state, state, ret);
 138                return ret;
 139        }
 140        cbm = bringup ? step->startup.multi : step->teardown.multi;
 141        if (!cbm)
 142                return 0;
 143
 144        /* Single invocation for instance add/remove */
 145        if (node) {
 146                trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 147                ret = cbm(cpu, node);
 148                trace_cpuhp_exit(cpu, st->state, state, ret);
 149                return ret;
 150        }
 151
 152        /* State transition. Invoke on all instances */
 153        cnt = 0;
 154        hlist_for_each(node, &step->list) {
 155                trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 156                ret = cbm(cpu, node);
 157                trace_cpuhp_exit(cpu, st->state, state, ret);
 158                if (ret)
 159                        goto err;
 160                cnt++;
 161        }
 162        return 0;
 163err:
 164        /* Rollback the instances if one failed */
 165        cbm = !bringup ? step->startup.multi : step->teardown.multi;
 166        if (!cbm)
 167                return ret;
 168
 169        hlist_for_each(node, &step->list) {
 170                if (!cnt--)
 171                        break;
 172                cbm(cpu, node);
 173        }
 174        return ret;
 175}
 176
 177#ifdef CONFIG_SMP
 178/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 179static DEFINE_MUTEX(cpu_add_remove_lock);
 180bool cpuhp_tasks_frozen;
 181EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
 182
 183/*
 184 * The following two APIs (cpu_maps_update_begin/done) must be used when
 185 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
 186 * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
 187 * hotplug callback (un)registration performed using __register_cpu_notifier()
 188 * or __unregister_cpu_notifier().
 189 */
 190void cpu_maps_update_begin(void)
 191{
 192        mutex_lock(&cpu_add_remove_lock);
 193}
 194EXPORT_SYMBOL(cpu_notifier_register_begin);
 195
 196void cpu_maps_update_done(void)
 197{
 198        mutex_unlock(&cpu_add_remove_lock);
 199}
 200EXPORT_SYMBOL(cpu_notifier_register_done);
 201
 202static RAW_NOTIFIER_HEAD(cpu_chain);
 203
 204/* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 205 * Should always be manipulated under cpu_add_remove_lock
 206 */
 207static int cpu_hotplug_disabled;
 208
 209#ifdef CONFIG_HOTPLUG_CPU
 210
 211static struct {
 212        struct task_struct *active_writer;
 213        /* wait queue to wake up the active_writer */
 214        wait_queue_head_t wq;
 215        /* verifies that no writer will get active while readers are active */
 216        struct mutex lock;
 217        /*
 218         * Also blocks the new readers during
 219         * an ongoing cpu hotplug operation.
 220         */
 221        atomic_t refcount;
 222
 223#ifdef CONFIG_DEBUG_LOCK_ALLOC
 224        struct lockdep_map dep_map;
 225#endif
 226} cpu_hotplug = {
 227        .active_writer = NULL,
 228        .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
 229        .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
 230#ifdef CONFIG_DEBUG_LOCK_ALLOC
 231        .dep_map = STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug.dep_map),
 232#endif
 233};
 234
 235/* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
 236#define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
 237#define cpuhp_lock_acquire_tryread() \
 238                                  lock_map_acquire_tryread(&cpu_hotplug.dep_map)
 239#define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
 240#define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
 241
 242
 243void get_online_cpus(void)
 244{
 245        might_sleep();
 246        if (cpu_hotplug.active_writer == current)
 247                return;
 248        cpuhp_lock_acquire_read();
 249        mutex_lock(&cpu_hotplug.lock);
 250        atomic_inc(&cpu_hotplug.refcount);
 251        mutex_unlock(&cpu_hotplug.lock);
 252}
 253EXPORT_SYMBOL_GPL(get_online_cpus);
 254
 255void put_online_cpus(void)
 256{
 257        int refcount;
 258
 259        if (cpu_hotplug.active_writer == current)
 260                return;
 261
 262        refcount = atomic_dec_return(&cpu_hotplug.refcount);
 263        if (WARN_ON(refcount < 0)) /* try to fix things up */
 264                atomic_inc(&cpu_hotplug.refcount);
 265
 266        if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
 267                wake_up(&cpu_hotplug.wq);
 268
 269        cpuhp_lock_release();
 270
 271}
 272EXPORT_SYMBOL_GPL(put_online_cpus);
 273
 274/*
 275 * This ensures that the hotplug operation can begin only when the
 276 * refcount goes to zero.
 277 *
 278 * Note that during a cpu-hotplug operation, the new readers, if any,
 279 * will be blocked by the cpu_hotplug.lock
 280 *
 281 * Since cpu_hotplug_begin() is always called after invoking
 282 * cpu_maps_update_begin(), we can be sure that only one writer is active.
 283 *
 284 * Note that theoretically, there is a possibility of a livelock:
 285 * - Refcount goes to zero, last reader wakes up the sleeping
 286 *   writer.
 287 * - Last reader unlocks the cpu_hotplug.lock.
 288 * - A new reader arrives at this moment, bumps up the refcount.
 289 * - The writer acquires the cpu_hotplug.lock finds the refcount
 290 *   non zero and goes to sleep again.
 291 *
 292 * However, this is very difficult to achieve in practice since
 293 * get_online_cpus() not an api which is called all that often.
 294 *
 295 */
 296void cpu_hotplug_begin(void)
 297{
 298        DEFINE_WAIT(wait);
 299
 300        cpu_hotplug.active_writer = current;
 301        cpuhp_lock_acquire();
 302
 303        for (;;) {
 304                mutex_lock(&cpu_hotplug.lock);
 305                prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
 306                if (likely(!atomic_read(&cpu_hotplug.refcount)))
 307                                break;
 308                mutex_unlock(&cpu_hotplug.lock);
 309                schedule();
 310        }
 311        finish_wait(&cpu_hotplug.wq, &wait);
 312}
 313
 314void cpu_hotplug_done(void)
 315{
 316        cpu_hotplug.active_writer = NULL;
 317        mutex_unlock(&cpu_hotplug.lock);
 318        cpuhp_lock_release();
 319}
 320
 321/*
 322 * Wait for currently running CPU hotplug operations to complete (if any) and
 323 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 324 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 325 * hotplug path before performing hotplug operations. So acquiring that lock
 326 * guarantees mutual exclusion from any currently running hotplug operations.
 327 */
 328void cpu_hotplug_disable(void)
 329{
 330        cpu_maps_update_begin();
 331        cpu_hotplug_disabled++;
 332        cpu_maps_update_done();
 333}
 334EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
 335
 336static void __cpu_hotplug_enable(void)
 337{
 338        if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
 339                return;
 340        cpu_hotplug_disabled--;
 341}
 342
 343void cpu_hotplug_enable(void)
 344{
 345        cpu_maps_update_begin();
 346        __cpu_hotplug_enable();
 347        cpu_maps_update_done();
 348}
 349EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
 350#endif  /* CONFIG_HOTPLUG_CPU */
 351
 352/* Need to know about CPUs going up/down? */
 353int register_cpu_notifier(struct notifier_block *nb)
 354{
 355        int ret;
 356        cpu_maps_update_begin();
 357        ret = raw_notifier_chain_register(&cpu_chain, nb);
 358        cpu_maps_update_done();
 359        return ret;
 360}
 361
 362int __register_cpu_notifier(struct notifier_block *nb)
 363{
 364        return raw_notifier_chain_register(&cpu_chain, nb);
 365}
 366
 367static int __cpu_notify(unsigned long val, unsigned int cpu, int nr_to_call,
 368                        int *nr_calls)
 369{
 370        unsigned long mod = cpuhp_tasks_frozen ? CPU_TASKS_FROZEN : 0;
 371        void *hcpu = (void *)(long)cpu;
 372
 373        int ret;
 374
 375        ret = __raw_notifier_call_chain(&cpu_chain, val | mod, hcpu, nr_to_call,
 376                                        nr_calls);
 377
 378        return notifier_to_errno(ret);
 379}
 380
 381static int cpu_notify(unsigned long val, unsigned int cpu)
 382{
 383        return __cpu_notify(val, cpu, -1, NULL);
 384}
 385
 386static void cpu_notify_nofail(unsigned long val, unsigned int cpu)
 387{
 388        BUG_ON(cpu_notify(val, cpu));
 389}
 390
 391/* Notifier wrappers for transitioning to state machine */
 392static int notify_prepare(unsigned int cpu)
 393{
 394        int nr_calls = 0;
 395        int ret;
 396
 397        ret = __cpu_notify(CPU_UP_PREPARE, cpu, -1, &nr_calls);
 398        if (ret) {
 399                nr_calls--;
 400                printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
 401                                __func__, cpu);
 402                __cpu_notify(CPU_UP_CANCELED, cpu, nr_calls, NULL);
 403        }
 404        return ret;
 405}
 406
 407static int notify_online(unsigned int cpu)
 408{
 409        cpu_notify(CPU_ONLINE, cpu);
 410        return 0;
 411}
 412
 413static int bringup_wait_for_ap(unsigned int cpu)
 414{
 415        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 416
 417        wait_for_completion(&st->done);
 418        return st->result;
 419}
 420
 421static int bringup_cpu(unsigned int cpu)
 422{
 423        struct task_struct *idle = idle_thread_get(cpu);
 424        int ret;
 425
 426        /*
 427         * Some architectures have to walk the irq descriptors to
 428         * setup the vector space for the cpu which comes online.
 429         * Prevent irq alloc/free across the bringup.
 430         */
 431        irq_lock_sparse();
 432
 433        /* Arch-specific enabling code. */
 434        ret = __cpu_up(cpu, idle);
 435        irq_unlock_sparse();
 436        if (ret) {
 437                cpu_notify(CPU_UP_CANCELED, cpu);
 438                return ret;
 439        }
 440        ret = bringup_wait_for_ap(cpu);
 441        BUG_ON(!cpu_online(cpu));
 442        return ret;
 443}
 444
 445/*
 446 * Hotplug state machine related functions
 447 */
 448static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
 449{
 450        for (st->state++; st->state < st->target; st->state++) {
 451                struct cpuhp_step *step = cpuhp_get_step(st->state);
 452
 453                if (!step->skip_onerr)
 454                        cpuhp_invoke_callback(cpu, st->state, true, NULL);
 455        }
 456}
 457
 458static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 459                                enum cpuhp_state target)
 460{
 461        enum cpuhp_state prev_state = st->state;
 462        int ret = 0;
 463
 464        for (; st->state > target; st->state--) {
 465                ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
 466                if (ret) {
 467                        st->target = prev_state;
 468                        undo_cpu_down(cpu, st);
 469                        break;
 470                }
 471        }
 472        return ret;
 473}
 474
 475static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
 476{
 477        for (st->state--; st->state > st->target; st->state--) {
 478                struct cpuhp_step *step = cpuhp_get_step(st->state);
 479
 480                if (!step->skip_onerr)
 481                        cpuhp_invoke_callback(cpu, st->state, false, NULL);
 482        }
 483}
 484
 485static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 486                              enum cpuhp_state target)
 487{
 488        enum cpuhp_state prev_state = st->state;
 489        int ret = 0;
 490
 491        while (st->state < target) {
 492                st->state++;
 493                ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
 494                if (ret) {
 495                        st->target = prev_state;
 496                        undo_cpu_up(cpu, st);
 497                        break;
 498                }
 499        }
 500        return ret;
 501}
 502
 503/*
 504 * The cpu hotplug threads manage the bringup and teardown of the cpus
 505 */
 506static void cpuhp_create(unsigned int cpu)
 507{
 508        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 509
 510        init_completion(&st->done);
 511}
 512
 513static int cpuhp_should_run(unsigned int cpu)
 514{
 515        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 516
 517        return st->should_run;
 518}
 519
 520/* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
 521static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
 522{
 523        enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
 524
 525        return cpuhp_down_callbacks(cpu, st, target);
 526}
 527
 528/* Execute the online startup callbacks. Used to be CPU_ONLINE */
 529static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
 530{
 531        return cpuhp_up_callbacks(cpu, st, st->target);
 532}
 533
 534/*
 535 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
 536 * callbacks when a state gets [un]installed at runtime.
 537 */
 538static void cpuhp_thread_fun(unsigned int cpu)
 539{
 540        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 541        int ret = 0;
 542
 543        /*
 544         * Paired with the mb() in cpuhp_kick_ap_work and
 545         * cpuhp_invoke_ap_callback, so the work set is consistent visible.
 546         */
 547        smp_mb();
 548        if (!st->should_run)
 549                return;
 550
 551        st->should_run = false;
 552
 553        /* Single callback invocation for [un]install ? */
 554        if (st->single) {
 555                if (st->cb_state < CPUHP_AP_ONLINE) {
 556                        local_irq_disable();
 557                        ret = cpuhp_invoke_callback(cpu, st->cb_state,
 558                                                    st->bringup, st->node);
 559                        local_irq_enable();
 560                } else {
 561                        ret = cpuhp_invoke_callback(cpu, st->cb_state,
 562                                                    st->bringup, st->node);
 563                }
 564        } else if (st->rollback) {
 565                BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
 566
 567                undo_cpu_down(cpu, st);
 568                /*
 569                 * This is a momentary workaround to keep the notifier users
 570                 * happy. Will go away once we got rid of the notifiers.
 571                 */
 572                cpu_notify_nofail(CPU_DOWN_FAILED, cpu);
 573                st->rollback = false;
 574        } else {
 575                /* Cannot happen .... */
 576                BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
 577
 578                /* Regular hotplug work */
 579                if (st->state < st->target)
 580                        ret = cpuhp_ap_online(cpu, st);
 581                else if (st->state > st->target)
 582                        ret = cpuhp_ap_offline(cpu, st);
 583        }
 584        st->result = ret;
 585        complete(&st->done);
 586}
 587
 588/* Invoke a single callback on a remote cpu */
 589static int
 590cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
 591                         struct hlist_node *node)
 592{
 593        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 594
 595        if (!cpu_online(cpu))
 596                return 0;
 597
 598        /*
 599         * If we are up and running, use the hotplug thread. For early calls
 600         * we invoke the thread function directly.
 601         */
 602        if (!st->thread)
 603                return cpuhp_invoke_callback(cpu, state, bringup, node);
 604
 605        st->cb_state = state;
 606        st->single = true;
 607        st->bringup = bringup;
 608        st->node = node;
 609
 610        /*
 611         * Make sure the above stores are visible before should_run becomes
 612         * true. Paired with the mb() above in cpuhp_thread_fun()
 613         */
 614        smp_mb();
 615        st->should_run = true;
 616        wake_up_process(st->thread);
 617        wait_for_completion(&st->done);
 618        return st->result;
 619}
 620
 621/* Regular hotplug invocation of the AP hotplug thread */
 622static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
 623{
 624        st->result = 0;
 625        st->single = false;
 626        /*
 627         * Make sure the above stores are visible before should_run becomes
 628         * true. Paired with the mb() above in cpuhp_thread_fun()
 629         */
 630        smp_mb();
 631        st->should_run = true;
 632        wake_up_process(st->thread);
 633}
 634
 635static int cpuhp_kick_ap_work(unsigned int cpu)
 636{
 637        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 638        enum cpuhp_state state = st->state;
 639
 640        trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
 641        __cpuhp_kick_ap_work(st);
 642        wait_for_completion(&st->done);
 643        trace_cpuhp_exit(cpu, st->state, state, st->result);
 644        return st->result;
 645}
 646
 647static struct smp_hotplug_thread cpuhp_threads = {
 648        .store                  = &cpuhp_state.thread,
 649        .create                 = &cpuhp_create,
 650        .thread_should_run      = cpuhp_should_run,
 651        .thread_fn              = cpuhp_thread_fun,
 652        .thread_comm            = "cpuhp/%u",
 653        .selfparking            = true,
 654};
 655
 656void __init cpuhp_threads_init(void)
 657{
 658        BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
 659        kthread_unpark(this_cpu_read(cpuhp_state.thread));
 660}
 661
 662#ifdef CONFIG_HOTPLUG_CPU
 663EXPORT_SYMBOL(register_cpu_notifier);
 664EXPORT_SYMBOL(__register_cpu_notifier);
 665void unregister_cpu_notifier(struct notifier_block *nb)
 666{
 667        cpu_maps_update_begin();
 668        raw_notifier_chain_unregister(&cpu_chain, nb);
 669        cpu_maps_update_done();
 670}
 671EXPORT_SYMBOL(unregister_cpu_notifier);
 672
 673void __unregister_cpu_notifier(struct notifier_block *nb)
 674{
 675        raw_notifier_chain_unregister(&cpu_chain, nb);
 676}
 677EXPORT_SYMBOL(__unregister_cpu_notifier);
 678
 679/**
 680 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 681 * @cpu: a CPU id
 682 *
 683 * This function walks all processes, finds a valid mm struct for each one and
 684 * then clears a corresponding bit in mm's cpumask.  While this all sounds
 685 * trivial, there are various non-obvious corner cases, which this function
 686 * tries to solve in a safe manner.
 687 *
 688 * Also note that the function uses a somewhat relaxed locking scheme, so it may
 689 * be called only for an already offlined CPU.
 690 */
 691void clear_tasks_mm_cpumask(int cpu)
 692{
 693        struct task_struct *p;
 694
 695        /*
 696         * This function is called after the cpu is taken down and marked
 697         * offline, so its not like new tasks will ever get this cpu set in
 698         * their mm mask. -- Peter Zijlstra
 699         * Thus, we may use rcu_read_lock() here, instead of grabbing
 700         * full-fledged tasklist_lock.
 701         */
 702        WARN_ON(cpu_online(cpu));
 703        rcu_read_lock();
 704        for_each_process(p) {
 705                struct task_struct *t;
 706
 707                /*
 708                 * Main thread might exit, but other threads may still have
 709                 * a valid mm. Find one.
 710                 */
 711                t = find_lock_task_mm(p);
 712                if (!t)
 713                        continue;
 714                cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
 715                task_unlock(t);
 716        }
 717        rcu_read_unlock();
 718}
 719
 720static inline void check_for_tasks(int dead_cpu)
 721{
 722        struct task_struct *g, *p;
 723
 724        read_lock(&tasklist_lock);
 725        for_each_process_thread(g, p) {
 726                if (!p->on_rq)
 727                        continue;
 728                /*
 729                 * We do the check with unlocked task_rq(p)->lock.
 730                 * Order the reading to do not warn about a task,
 731                 * which was running on this cpu in the past, and
 732                 * it's just been woken on another cpu.
 733                 */
 734                rmb();
 735                if (task_cpu(p) != dead_cpu)
 736                        continue;
 737
 738                pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
 739                        p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
 740        }
 741        read_unlock(&tasklist_lock);
 742}
 743
 744static int notify_down_prepare(unsigned int cpu)
 745{
 746        int err, nr_calls = 0;
 747
 748        err = __cpu_notify(CPU_DOWN_PREPARE, cpu, -1, &nr_calls);
 749        if (err) {
 750                nr_calls--;
 751                __cpu_notify(CPU_DOWN_FAILED, cpu, nr_calls, NULL);
 752                pr_warn("%s: attempt to take down CPU %u failed\n",
 753                                __func__, cpu);
 754        }
 755        return err;
 756}
 757
 758/* Take this CPU down. */
 759static int take_cpu_down(void *_param)
 760{
 761        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 762        enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
 763        int err, cpu = smp_processor_id();
 764
 765        /* Ensure this CPU doesn't handle any more interrupts. */
 766        err = __cpu_disable();
 767        if (err < 0)
 768                return err;
 769
 770        /*
 771         * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
 772         * do this step again.
 773         */
 774        WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
 775        st->state--;
 776        /* Invoke the former CPU_DYING callbacks */
 777        for (; st->state > target; st->state--)
 778                cpuhp_invoke_callback(cpu, st->state, false, NULL);
 779
 780        /* Give up timekeeping duties */
 781        tick_handover_do_timer();
 782        /* Park the stopper thread */
 783        stop_machine_park(cpu);
 784        return 0;
 785}
 786
 787static int takedown_cpu(unsigned int cpu)
 788{
 789        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 790        int err;
 791
 792        /* Park the smpboot threads */
 793        kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 794        smpboot_park_threads(cpu);
 795
 796        /*
 797         * Prevent irq alloc/free while the dying cpu reorganizes the
 798         * interrupt affinities.
 799         */
 800        irq_lock_sparse();
 801
 802        /*
 803         * So now all preempt/rcu users must observe !cpu_active().
 804         */
 805        err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
 806        if (err) {
 807                /* CPU refused to die */
 808                irq_unlock_sparse();
 809                /* Unpark the hotplug thread so we can rollback there */
 810                kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 811                return err;
 812        }
 813        BUG_ON(cpu_online(cpu));
 814
 815        /*
 816         * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
 817         * runnable tasks from the cpu, there's only the idle task left now
 818         * that the migration thread is done doing the stop_machine thing.
 819         *
 820         * Wait for the stop thread to go away.
 821         */
 822        wait_for_completion(&st->done);
 823        BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
 824
 825        /* Interrupts are moved away from the dying cpu, reenable alloc/free */
 826        irq_unlock_sparse();
 827
 828        hotplug_cpu__broadcast_tick_pull(cpu);
 829        /* This actually kills the CPU. */
 830        __cpu_die(cpu);
 831
 832        tick_cleanup_dead_cpu(cpu);
 833        return 0;
 834}
 835
 836static int notify_dead(unsigned int cpu)
 837{
 838        cpu_notify_nofail(CPU_DEAD, cpu);
 839        check_for_tasks(cpu);
 840        return 0;
 841}
 842
 843static void cpuhp_complete_idle_dead(void *arg)
 844{
 845        struct cpuhp_cpu_state *st = arg;
 846
 847        complete(&st->done);
 848}
 849
 850void cpuhp_report_idle_dead(void)
 851{
 852        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 853
 854        BUG_ON(st->state != CPUHP_AP_OFFLINE);
 855        rcu_report_dead(smp_processor_id());
 856        st->state = CPUHP_AP_IDLE_DEAD;
 857        /*
 858         * We cannot call complete after rcu_report_dead() so we delegate it
 859         * to an online cpu.
 860         */
 861        smp_call_function_single(cpumask_first(cpu_online_mask),
 862                                 cpuhp_complete_idle_dead, st, 0);
 863}
 864
 865#else
 866#define notify_down_prepare     NULL
 867#define takedown_cpu            NULL
 868#define notify_dead             NULL
 869#endif
 870
 871#ifdef CONFIG_HOTPLUG_CPU
 872
 873/* Requires cpu_add_remove_lock to be held */
 874static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
 875                           enum cpuhp_state target)
 876{
 877        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 878        int prev_state, ret = 0;
 879        bool hasdied = false;
 880
 881        if (num_online_cpus() == 1)
 882                return -EBUSY;
 883
 884        if (!cpu_present(cpu))
 885                return -EINVAL;
 886
 887        cpu_hotplug_begin();
 888
 889        cpuhp_tasks_frozen = tasks_frozen;
 890
 891        prev_state = st->state;
 892        st->target = target;
 893        /*
 894         * If the current CPU state is in the range of the AP hotplug thread,
 895         * then we need to kick the thread.
 896         */
 897        if (st->state > CPUHP_TEARDOWN_CPU) {
 898                ret = cpuhp_kick_ap_work(cpu);
 899                /*
 900                 * The AP side has done the error rollback already. Just
 901                 * return the error code..
 902                 */
 903                if (ret)
 904                        goto out;
 905
 906                /*
 907                 * We might have stopped still in the range of the AP hotplug
 908                 * thread. Nothing to do anymore.
 909                 */
 910                if (st->state > CPUHP_TEARDOWN_CPU)
 911                        goto out;
 912        }
 913        /*
 914         * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
 915         * to do the further cleanups.
 916         */
 917        ret = cpuhp_down_callbacks(cpu, st, target);
 918        if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
 919                st->target = prev_state;
 920                st->rollback = true;
 921                cpuhp_kick_ap_work(cpu);
 922        }
 923
 924        hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
 925out:
 926        cpu_hotplug_done();
 927        /* This post dead nonsense must die */
 928        if (!ret && hasdied)
 929                cpu_notify_nofail(CPU_POST_DEAD, cpu);
 930        return ret;
 931}
 932
 933static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
 934{
 935        int err;
 936
 937        cpu_maps_update_begin();
 938
 939        if (cpu_hotplug_disabled) {
 940                err = -EBUSY;
 941                goto out;
 942        }
 943
 944        err = _cpu_down(cpu, 0, target);
 945
 946out:
 947        cpu_maps_update_done();
 948        return err;
 949}
 950int cpu_down(unsigned int cpu)
 951{
 952        return do_cpu_down(cpu, CPUHP_OFFLINE);
 953}
 954EXPORT_SYMBOL(cpu_down);
 955#endif /*CONFIG_HOTPLUG_CPU*/
 956
 957/**
 958 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
 959 * @cpu: cpu that just started
 960 *
 961 * It must be called by the arch code on the new cpu, before the new cpu
 962 * enables interrupts and before the "boot" cpu returns from __cpu_up().
 963 */
 964void notify_cpu_starting(unsigned int cpu)
 965{
 966        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 967        enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
 968
 969        rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
 970        while (st->state < target) {
 971                st->state++;
 972                cpuhp_invoke_callback(cpu, st->state, true, NULL);
 973        }
 974}
 975
 976/*
 977 * Called from the idle task. We need to set active here, so we can kick off
 978 * the stopper thread and unpark the smpboot threads. If the target state is
 979 * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
 980 * cpu further.
 981 */
 982void cpuhp_online_idle(enum cpuhp_state state)
 983{
 984        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 985        unsigned int cpu = smp_processor_id();
 986
 987        /* Happens for the boot cpu */
 988        if (state != CPUHP_AP_ONLINE_IDLE)
 989                return;
 990
 991        st->state = CPUHP_AP_ONLINE_IDLE;
 992
 993        /* Unpark the stopper thread and the hotplug thread of this cpu */
 994        stop_machine_unpark(cpu);
 995        kthread_unpark(st->thread);
 996
 997        /* Should we go further up ? */
 998        if (st->target > CPUHP_AP_ONLINE_IDLE)
 999                __cpuhp_kick_ap_work(st);
1000        else
1001                complete(&st->done);
1002}
1003
1004/* Requires cpu_add_remove_lock to be held */
1005static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1006{
1007        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1008        struct task_struct *idle;
1009        int ret = 0;
1010
1011        cpu_hotplug_begin();
1012
1013        if (!cpu_present(cpu)) {
1014                ret = -EINVAL;
1015                goto out;
1016        }
1017
1018        /*
1019         * The caller of do_cpu_up might have raced with another
1020         * caller. Ignore it for now.
1021         */
1022        if (st->state >= target)
1023                goto out;
1024
1025        if (st->state == CPUHP_OFFLINE) {
1026                /* Let it fail before we try to bring the cpu up */
1027                idle = idle_thread_get(cpu);
1028                if (IS_ERR(idle)) {
1029                        ret = PTR_ERR(idle);
1030                        goto out;
1031                }
1032        }
1033
1034        cpuhp_tasks_frozen = tasks_frozen;
1035
1036        st->target = target;
1037        /*
1038         * If the current CPU state is in the range of the AP hotplug thread,
1039         * then we need to kick the thread once more.
1040         */
1041        if (st->state > CPUHP_BRINGUP_CPU) {
1042                ret = cpuhp_kick_ap_work(cpu);
1043                /*
1044                 * The AP side has done the error rollback already. Just
1045                 * return the error code..
1046                 */
1047                if (ret)
1048                        goto out;
1049        }
1050
1051        /*
1052         * Try to reach the target state. We max out on the BP at
1053         * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1054         * responsible for bringing it up to the target state.
1055         */
1056        target = min((int)target, CPUHP_BRINGUP_CPU);
1057        ret = cpuhp_up_callbacks(cpu, st, target);
1058out:
1059        cpu_hotplug_done();
1060        return ret;
1061}
1062
1063static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1064{
1065        int err = 0;
1066
1067        if (!cpu_possible(cpu)) {
1068                pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1069                       cpu);
1070#if defined(CONFIG_IA64)
1071                pr_err("please check additional_cpus= boot parameter\n");
1072#endif
1073                return -EINVAL;
1074        }
1075
1076        err = try_online_node(cpu_to_node(cpu));
1077        if (err)
1078                return err;
1079
1080        cpu_maps_update_begin();
1081
1082        if (cpu_hotplug_disabled) {
1083                err = -EBUSY;
1084                goto out;
1085        }
1086
1087        err = _cpu_up(cpu, 0, target);
1088out:
1089        cpu_maps_update_done();
1090        return err;
1091}
1092
1093int cpu_up(unsigned int cpu)
1094{
1095        return do_cpu_up(cpu, CPUHP_ONLINE);
1096}
1097EXPORT_SYMBOL_GPL(cpu_up);
1098
1099#ifdef CONFIG_PM_SLEEP_SMP
1100static cpumask_var_t frozen_cpus;
1101
1102int freeze_secondary_cpus(int primary)
1103{
1104        int cpu, error = 0;
1105
1106        cpu_maps_update_begin();
1107        if (!cpu_online(primary))
1108                primary = cpumask_first(cpu_online_mask);
1109        /*
1110         * We take down all of the non-boot CPUs in one shot to avoid races
1111         * with the userspace trying to use the CPU hotplug at the same time
1112         */
1113        cpumask_clear(frozen_cpus);
1114
1115        pr_info("Disabling non-boot CPUs ...\n");
1116        for_each_online_cpu(cpu) {
1117                if (cpu == primary)
1118                        continue;
1119                trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1120                error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1121                trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1122                if (!error)
1123                        cpumask_set_cpu(cpu, frozen_cpus);
1124                else {
1125                        pr_err("Error taking CPU%d down: %d\n", cpu, error);
1126                        break;
1127                }
1128        }
1129
1130        if (!error)
1131                BUG_ON(num_online_cpus() > 1);
1132        else
1133                pr_err("Non-boot CPUs are not disabled\n");
1134
1135        /*
1136         * Make sure the CPUs won't be enabled by someone else. We need to do
1137         * this even in case of failure as all disable_nonboot_cpus() users are
1138         * supposed to do enable_nonboot_cpus() on the failure path.
1139         */
1140        cpu_hotplug_disabled++;
1141
1142        cpu_maps_update_done();
1143        return error;
1144}
1145
1146void __weak arch_enable_nonboot_cpus_begin(void)
1147{
1148}
1149
1150void __weak arch_enable_nonboot_cpus_end(void)
1151{
1152}
1153
1154void enable_nonboot_cpus(void)
1155{
1156        int cpu, error;
1157
1158        /* Allow everyone to use the CPU hotplug again */
1159        cpu_maps_update_begin();
1160        __cpu_hotplug_enable();
1161        if (cpumask_empty(frozen_cpus))
1162                goto out;
1163
1164        pr_info("Enabling non-boot CPUs ...\n");
1165
1166        arch_enable_nonboot_cpus_begin();
1167
1168        for_each_cpu(cpu, frozen_cpus) {
1169                trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1170                error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1171                trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1172                if (!error) {
1173                        pr_info("CPU%d is up\n", cpu);
1174                        continue;
1175                }
1176                pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1177        }
1178
1179        arch_enable_nonboot_cpus_end();
1180
1181        cpumask_clear(frozen_cpus);
1182out:
1183        cpu_maps_update_done();
1184}
1185
1186static int __init alloc_frozen_cpus(void)
1187{
1188        if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1189                return -ENOMEM;
1190        return 0;
1191}
1192core_initcall(alloc_frozen_cpus);
1193
1194/*
1195 * When callbacks for CPU hotplug notifications are being executed, we must
1196 * ensure that the state of the system with respect to the tasks being frozen
1197 * or not, as reported by the notification, remains unchanged *throughout the
1198 * duration* of the execution of the callbacks.
1199 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1200 *
1201 * This synchronization is implemented by mutually excluding regular CPU
1202 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1203 * Hibernate notifications.
1204 */
1205static int
1206cpu_hotplug_pm_callback(struct notifier_block *nb,
1207                        unsigned long action, void *ptr)
1208{
1209        switch (action) {
1210
1211        case PM_SUSPEND_PREPARE:
1212        case PM_HIBERNATION_PREPARE:
1213                cpu_hotplug_disable();
1214                break;
1215
1216        case PM_POST_SUSPEND:
1217        case PM_POST_HIBERNATION:
1218                cpu_hotplug_enable();
1219                break;
1220
1221        default:
1222                return NOTIFY_DONE;
1223        }
1224
1225        return NOTIFY_OK;
1226}
1227
1228
1229static int __init cpu_hotplug_pm_sync_init(void)
1230{
1231        /*
1232         * cpu_hotplug_pm_callback has higher priority than x86
1233         * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1234         * to disable cpu hotplug to avoid cpu hotplug race.
1235         */
1236        pm_notifier(cpu_hotplug_pm_callback, 0);
1237        return 0;
1238}
1239core_initcall(cpu_hotplug_pm_sync_init);
1240
1241#endif /* CONFIG_PM_SLEEP_SMP */
1242
1243#endif /* CONFIG_SMP */
1244
1245/* Boot processor state steps */
1246static struct cpuhp_step cpuhp_bp_states[] = {
1247        [CPUHP_OFFLINE] = {
1248                .name                   = "offline",
1249                .startup.single         = NULL,
1250                .teardown.single        = NULL,
1251        },
1252#ifdef CONFIG_SMP
1253        [CPUHP_CREATE_THREADS]= {
1254                .name                   = "threads:prepare",
1255                .startup.single         = smpboot_create_threads,
1256                .teardown.single        = NULL,
1257                .cant_stop              = true,
1258        },
1259        [CPUHP_PERF_PREPARE] = {
1260                .name                   = "perf:prepare",
1261                .startup.single         = perf_event_init_cpu,
1262                .teardown.single        = perf_event_exit_cpu,
1263        },
1264        [CPUHP_WORKQUEUE_PREP] = {
1265                .name                   = "workqueue:prepare",
1266                .startup.single         = workqueue_prepare_cpu,
1267                .teardown.single        = NULL,
1268        },
1269        [CPUHP_HRTIMERS_PREPARE] = {
1270                .name                   = "hrtimers:prepare",
1271                .startup.single         = hrtimers_prepare_cpu,
1272                .teardown.single        = hrtimers_dead_cpu,
1273        },
1274        [CPUHP_SMPCFD_PREPARE] = {
1275                .name                   = "smpcfd:prepare",
1276                .startup.single         = smpcfd_prepare_cpu,
1277                .teardown.single        = smpcfd_dead_cpu,
1278        },
1279        [CPUHP_RELAY_PREPARE] = {
1280                .name                   = "relay:prepare",
1281                .startup.single         = relay_prepare_cpu,
1282                .teardown.single        = NULL,
1283        },
1284        [CPUHP_SLAB_PREPARE] = {
1285                .name                   = "slab:prepare",
1286                .startup.single         = slab_prepare_cpu,
1287                .teardown.single        = slab_dead_cpu,
1288        },
1289        [CPUHP_RCUTREE_PREP] = {
1290                .name                   = "RCU/tree:prepare",
1291                .startup.single         = rcutree_prepare_cpu,
1292                .teardown.single        = rcutree_dead_cpu,
1293        },
1294        /*
1295         * Preparatory and dead notifiers. Will be replaced once the notifiers
1296         * are converted to states.
1297         */
1298        [CPUHP_NOTIFY_PREPARE] = {
1299                .name                   = "notify:prepare",
1300                .startup.single         = notify_prepare,
1301                .teardown.single        = notify_dead,
1302                .skip_onerr             = true,
1303                .cant_stop              = true,
1304        },
1305        /*
1306         * On the tear-down path, timers_dead_cpu() must be invoked
1307         * before blk_mq_queue_reinit_notify() from notify_dead(),
1308         * otherwise a RCU stall occurs.
1309         */
1310        [CPUHP_TIMERS_DEAD] = {
1311                .name                   = "timers:dead",
1312                .startup.single         = NULL,
1313                .teardown.single        = timers_dead_cpu,
1314        },
1315        /* Kicks the plugged cpu into life */
1316        [CPUHP_BRINGUP_CPU] = {
1317                .name                   = "cpu:bringup",
1318                .startup.single         = bringup_cpu,
1319                .teardown.single        = NULL,
1320                .cant_stop              = true,
1321        },
1322        [CPUHP_AP_SMPCFD_DYING] = {
1323                .name                   = "smpcfd:dying",
1324                .startup.single         = NULL,
1325                .teardown.single        = smpcfd_dying_cpu,
1326        },
1327        /*
1328         * Handled on controll processor until the plugged processor manages
1329         * this itself.
1330         */
1331        [CPUHP_TEARDOWN_CPU] = {
1332                .name                   = "cpu:teardown",
1333                .startup.single         = NULL,
1334                .teardown.single        = takedown_cpu,
1335                .cant_stop              = true,
1336        },
1337#else
1338        [CPUHP_BRINGUP_CPU] = { },
1339#endif
1340};
1341
1342/* Application processor state steps */
1343static struct cpuhp_step cpuhp_ap_states[] = {
1344#ifdef CONFIG_SMP
1345        /* Final state before CPU kills itself */
1346        [CPUHP_AP_IDLE_DEAD] = {
1347                .name                   = "idle:dead",
1348        },
1349        /*
1350         * Last state before CPU enters the idle loop to die. Transient state
1351         * for synchronization.
1352         */
1353        [CPUHP_AP_OFFLINE] = {
1354                .name                   = "ap:offline",
1355                .cant_stop              = true,
1356        },
1357        /* First state is scheduler control. Interrupts are disabled */
1358        [CPUHP_AP_SCHED_STARTING] = {
1359                .name                   = "sched:starting",
1360                .startup.single         = sched_cpu_starting,
1361                .teardown.single        = sched_cpu_dying,
1362        },
1363        [CPUHP_AP_RCUTREE_DYING] = {
1364                .name                   = "RCU/tree:dying",
1365                .startup.single         = NULL,
1366                .teardown.single        = rcutree_dying_cpu,
1367        },
1368        /* Entry state on starting. Interrupts enabled from here on. Transient
1369         * state for synchronsization */
1370        [CPUHP_AP_ONLINE] = {
1371                .name                   = "ap:online",
1372        },
1373        /* Handle smpboot threads park/unpark */
1374        [CPUHP_AP_SMPBOOT_THREADS] = {
1375                .name                   = "smpboot/threads:online",
1376                .startup.single         = smpboot_unpark_threads,
1377                .teardown.single        = NULL,
1378        },
1379        [CPUHP_AP_PERF_ONLINE] = {
1380                .name                   = "perf:online",
1381                .startup.single         = perf_event_init_cpu,
1382                .teardown.single        = perf_event_exit_cpu,
1383        },
1384        [CPUHP_AP_WORKQUEUE_ONLINE] = {
1385                .name                   = "workqueue:online",
1386                .startup.single         = workqueue_online_cpu,
1387                .teardown.single        = workqueue_offline_cpu,
1388        },
1389        [CPUHP_AP_RCUTREE_ONLINE] = {
1390                .name                   = "RCU/tree:online",
1391                .startup.single         = rcutree_online_cpu,
1392                .teardown.single        = rcutree_offline_cpu,
1393        },
1394
1395        /*
1396         * Online/down_prepare notifiers. Will be removed once the notifiers
1397         * are converted to states.
1398         */
1399        [CPUHP_AP_NOTIFY_ONLINE] = {
1400                .name                   = "notify:online",
1401                .startup.single         = notify_online,
1402                .teardown.single        = notify_down_prepare,
1403                .skip_onerr             = true,
1404        },
1405#endif
1406        /*
1407         * The dynamically registered state space is here
1408         */
1409
1410#ifdef CONFIG_SMP
1411        /* Last state is scheduler control setting the cpu active */
1412        [CPUHP_AP_ACTIVE] = {
1413                .name                   = "sched:active",
1414                .startup.single         = sched_cpu_activate,
1415                .teardown.single        = sched_cpu_deactivate,
1416        },
1417#endif
1418
1419        /* CPU is fully up and running. */
1420        [CPUHP_ONLINE] = {
1421                .name                   = "online",
1422                .startup.single         = NULL,
1423                .teardown.single        = NULL,
1424        },
1425};
1426
1427/* Sanity check for callbacks */
1428static int cpuhp_cb_check(enum cpuhp_state state)
1429{
1430        if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1431                return -EINVAL;
1432        return 0;
1433}
1434
1435static void cpuhp_store_callbacks(enum cpuhp_state state,
1436                                  const char *name,
1437                                  int (*startup)(unsigned int cpu),
1438                                  int (*teardown)(unsigned int cpu),
1439                                  bool multi_instance)
1440{
1441        /* (Un)Install the callbacks for further cpu hotplug operations */
1442        struct cpuhp_step *sp;
1443
1444        mutex_lock(&cpuhp_state_mutex);
1445        sp = cpuhp_get_step(state);
1446        sp->startup.single = startup;
1447        sp->teardown.single = teardown;
1448        sp->name = name;
1449        sp->multi_instance = multi_instance;
1450        INIT_HLIST_HEAD(&sp->list);
1451        mutex_unlock(&cpuhp_state_mutex);
1452}
1453
1454static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1455{
1456        return cpuhp_get_step(state)->teardown.single;
1457}
1458
1459/*
1460 * Call the startup/teardown function for a step either on the AP or
1461 * on the current CPU.
1462 */
1463static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1464                            struct hlist_node *node)
1465{
1466        struct cpuhp_step *sp = cpuhp_get_step(state);
1467        int ret;
1468
1469        if ((bringup && !sp->startup.single) ||
1470            (!bringup && !sp->teardown.single))
1471                return 0;
1472        /*
1473         * The non AP bound callbacks can fail on bringup. On teardown
1474         * e.g. module removal we crash for now.
1475         */
1476#ifdef CONFIG_SMP
1477        if (cpuhp_is_ap_state(state))
1478                ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1479        else
1480                ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1481#else
1482        ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1483#endif
1484        BUG_ON(ret && !bringup);
1485        return ret;
1486}
1487
1488/*
1489 * Called from __cpuhp_setup_state on a recoverable failure.
1490 *
1491 * Note: The teardown callbacks for rollback are not allowed to fail!
1492 */
1493static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1494                                   struct hlist_node *node)
1495{
1496        int cpu;
1497
1498        /* Roll back the already executed steps on the other cpus */
1499        for_each_present_cpu(cpu) {
1500                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1501                int cpustate = st->state;
1502
1503                if (cpu >= failedcpu)
1504                        break;
1505
1506                /* Did we invoke the startup call on that cpu ? */
1507                if (cpustate >= state)
1508                        cpuhp_issue_call(cpu, state, false, node);
1509        }
1510}
1511
1512/*
1513 * Returns a free for dynamic slot assignment of the Online state. The states
1514 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1515 * by having no name assigned.
1516 */
1517static int cpuhp_reserve_state(enum cpuhp_state state)
1518{
1519        enum cpuhp_state i;
1520
1521        mutex_lock(&cpuhp_state_mutex);
1522        for (i = CPUHP_AP_ONLINE_DYN; i <= CPUHP_AP_ONLINE_DYN_END; i++) {
1523                if (cpuhp_ap_states[i].name)
1524                        continue;
1525
1526                cpuhp_ap_states[i].name = "Reserved";
1527                mutex_unlock(&cpuhp_state_mutex);
1528                return i;
1529        }
1530        mutex_unlock(&cpuhp_state_mutex);
1531        WARN(1, "No more dynamic states available for CPU hotplug\n");
1532        return -ENOSPC;
1533}
1534
1535int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1536                               bool invoke)
1537{
1538        struct cpuhp_step *sp;
1539        int cpu;
1540        int ret;
1541
1542        sp = cpuhp_get_step(state);
1543        if (sp->multi_instance == false)
1544                return -EINVAL;
1545
1546        get_online_cpus();
1547
1548        if (!invoke || !sp->startup.multi)
1549                goto add_node;
1550
1551        /*
1552         * Try to call the startup callback for each present cpu
1553         * depending on the hotplug state of the cpu.
1554         */
1555        for_each_present_cpu(cpu) {
1556                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1557                int cpustate = st->state;
1558
1559                if (cpustate < state)
1560                        continue;
1561
1562                ret = cpuhp_issue_call(cpu, state, true, node);
1563                if (ret) {
1564                        if (sp->teardown.multi)
1565                                cpuhp_rollback_install(cpu, state, node);
1566                        goto err;
1567                }
1568        }
1569add_node:
1570        ret = 0;
1571        mutex_lock(&cpuhp_state_mutex);
1572        hlist_add_head(node, &sp->list);
1573        mutex_unlock(&cpuhp_state_mutex);
1574
1575err:
1576        put_online_cpus();
1577        return ret;
1578}
1579EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1580
1581/**
1582 * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1583 * @state:      The state to setup
1584 * @invoke:     If true, the startup function is invoked for cpus where
1585 *              cpu state >= @state
1586 * @startup:    startup callback function
1587 * @teardown:   teardown callback function
1588 *
1589 * Returns 0 if successful, otherwise a proper error code
1590 */
1591int __cpuhp_setup_state(enum cpuhp_state state,
1592                        const char *name, bool invoke,
1593                        int (*startup)(unsigned int cpu),
1594                        int (*teardown)(unsigned int cpu),
1595                        bool multi_instance)
1596{
1597        int cpu, ret = 0;
1598        int dyn_state = 0;
1599
1600        if (cpuhp_cb_check(state) || !name)
1601                return -EINVAL;
1602
1603        get_online_cpus();
1604
1605        /* currently assignments for the ONLINE state are possible */
1606        if (state == CPUHP_AP_ONLINE_DYN) {
1607                dyn_state = 1;
1608                ret = cpuhp_reserve_state(state);
1609                if (ret < 0)
1610                        goto out;
1611                state = ret;
1612        }
1613
1614        cpuhp_store_callbacks(state, name, startup, teardown, multi_instance);
1615
1616        if (!invoke || !startup)
1617                goto out;
1618
1619        /*
1620         * Try to call the startup callback for each present cpu
1621         * depending on the hotplug state of the cpu.
1622         */
1623        for_each_present_cpu(cpu) {
1624                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1625                int cpustate = st->state;
1626
1627                if (cpustate < state)
1628                        continue;
1629
1630                ret = cpuhp_issue_call(cpu, state, true, NULL);
1631                if (ret) {
1632                        if (teardown)
1633                                cpuhp_rollback_install(cpu, state, NULL);
1634                        cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1635                        goto out;
1636                }
1637        }
1638out:
1639        put_online_cpus();
1640        if (!ret && dyn_state)
1641                return state;
1642        return ret;
1643}
1644EXPORT_SYMBOL(__cpuhp_setup_state);
1645
1646int __cpuhp_state_remove_instance(enum cpuhp_state state,
1647                                  struct hlist_node *node, bool invoke)
1648{
1649        struct cpuhp_step *sp = cpuhp_get_step(state);
1650        int cpu;
1651
1652        BUG_ON(cpuhp_cb_check(state));
1653
1654        if (!sp->multi_instance)
1655                return -EINVAL;
1656
1657        get_online_cpus();
1658        if (!invoke || !cpuhp_get_teardown_cb(state))
1659                goto remove;
1660        /*
1661         * Call the teardown callback for each present cpu depending
1662         * on the hotplug state of the cpu. This function is not
1663         * allowed to fail currently!
1664         */
1665        for_each_present_cpu(cpu) {
1666                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1667                int cpustate = st->state;
1668
1669                if (cpustate >= state)
1670                        cpuhp_issue_call(cpu, state, false, node);
1671        }
1672
1673remove:
1674        mutex_lock(&cpuhp_state_mutex);
1675        hlist_del(node);
1676        mutex_unlock(&cpuhp_state_mutex);
1677        put_online_cpus();
1678
1679        return 0;
1680}
1681EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1682/**
1683 * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1684 * @state:      The state to remove
1685 * @invoke:     If true, the teardown function is invoked for cpus where
1686 *              cpu state >= @state
1687 *
1688 * The teardown callback is currently not allowed to fail. Think
1689 * about module removal!
1690 */
1691void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1692{
1693        struct cpuhp_step *sp = cpuhp_get_step(state);
1694        int cpu;
1695
1696        BUG_ON(cpuhp_cb_check(state));
1697
1698        get_online_cpus();
1699
1700        if (sp->multi_instance) {
1701                WARN(!hlist_empty(&sp->list),
1702                     "Error: Removing state %d which has instances left.\n",
1703                     state);
1704                goto remove;
1705        }
1706
1707        if (!invoke || !cpuhp_get_teardown_cb(state))
1708                goto remove;
1709
1710        /*
1711         * Call the teardown callback for each present cpu depending
1712         * on the hotplug state of the cpu. This function is not
1713         * allowed to fail currently!
1714         */
1715        for_each_present_cpu(cpu) {
1716                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1717                int cpustate = st->state;
1718
1719                if (cpustate >= state)
1720                        cpuhp_issue_call(cpu, state, false, NULL);
1721        }
1722remove:
1723        cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1724        put_online_cpus();
1725}
1726EXPORT_SYMBOL(__cpuhp_remove_state);
1727
1728#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1729static ssize_t show_cpuhp_state(struct device *dev,
1730                                struct device_attribute *attr, char *buf)
1731{
1732        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1733
1734        return sprintf(buf, "%d\n", st->state);
1735}
1736static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1737
1738static ssize_t write_cpuhp_target(struct device *dev,
1739                                  struct device_attribute *attr,
1740                                  const char *buf, size_t count)
1741{
1742        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1743        struct cpuhp_step *sp;
1744        int target, ret;
1745
1746        ret = kstrtoint(buf, 10, &target);
1747        if (ret)
1748                return ret;
1749
1750#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1751        if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1752                return -EINVAL;
1753#else
1754        if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1755                return -EINVAL;
1756#endif
1757
1758        ret = lock_device_hotplug_sysfs();
1759        if (ret)
1760                return ret;
1761
1762        mutex_lock(&cpuhp_state_mutex);
1763        sp = cpuhp_get_step(target);
1764        ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1765        mutex_unlock(&cpuhp_state_mutex);
1766        if (ret)
1767                return ret;
1768
1769        if (st->state < target)
1770                ret = do_cpu_up(dev->id, target);
1771        else
1772                ret = do_cpu_down(dev->id, target);
1773
1774        unlock_device_hotplug();
1775        return ret ? ret : count;
1776}
1777
1778static ssize_t show_cpuhp_target(struct device *dev,
1779                                 struct device_attribute *attr, char *buf)
1780{
1781        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1782
1783        return sprintf(buf, "%d\n", st->target);
1784}
1785static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1786
1787static struct attribute *cpuhp_cpu_attrs[] = {
1788        &dev_attr_state.attr,
1789        &dev_attr_target.attr,
1790        NULL
1791};
1792
1793static struct attribute_group cpuhp_cpu_attr_group = {
1794        .attrs = cpuhp_cpu_attrs,
1795        .name = "hotplug",
1796        NULL
1797};
1798
1799static ssize_t show_cpuhp_states(struct device *dev,
1800                                 struct device_attribute *attr, char *buf)
1801{
1802        ssize_t cur, res = 0;
1803        int i;
1804
1805        mutex_lock(&cpuhp_state_mutex);
1806        for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1807                struct cpuhp_step *sp = cpuhp_get_step(i);
1808
1809                if (sp->name) {
1810                        cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1811                        buf += cur;
1812                        res += cur;
1813                }
1814        }
1815        mutex_unlock(&cpuhp_state_mutex);
1816        return res;
1817}
1818static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1819
1820static struct attribute *cpuhp_cpu_root_attrs[] = {
1821        &dev_attr_states.attr,
1822        NULL
1823};
1824
1825static struct attribute_group cpuhp_cpu_root_attr_group = {
1826        .attrs = cpuhp_cpu_root_attrs,
1827        .name = "hotplug",
1828        NULL
1829};
1830
1831static int __init cpuhp_sysfs_init(void)
1832{
1833        int cpu, ret;
1834
1835        ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1836                                 &cpuhp_cpu_root_attr_group);
1837        if (ret)
1838                return ret;
1839
1840        for_each_possible_cpu(cpu) {
1841                struct device *dev = get_cpu_device(cpu);
1842
1843                if (!dev)
1844                        continue;
1845                ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1846                if (ret)
1847                        return ret;
1848        }
1849        return 0;
1850}
1851device_initcall(cpuhp_sysfs_init);
1852#endif
1853
1854/*
1855 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1856 * represents all NR_CPUS bits binary values of 1<<nr.
1857 *
1858 * It is used by cpumask_of() to get a constant address to a CPU
1859 * mask value that has a single bit set only.
1860 */
1861
1862/* cpu_bit_bitmap[0] is empty - so we can back into it */
1863#define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
1864#define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1865#define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1866#define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1867
1868const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1869
1870        MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
1871        MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
1872#if BITS_PER_LONG > 32
1873        MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
1874        MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
1875#endif
1876};
1877EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1878
1879const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1880EXPORT_SYMBOL(cpu_all_bits);
1881
1882#ifdef CONFIG_INIT_ALL_POSSIBLE
1883struct cpumask __cpu_possible_mask __read_mostly
1884        = {CPU_BITS_ALL};
1885#else
1886struct cpumask __cpu_possible_mask __read_mostly;
1887#endif
1888EXPORT_SYMBOL(__cpu_possible_mask);
1889
1890struct cpumask __cpu_online_mask __read_mostly;
1891EXPORT_SYMBOL(__cpu_online_mask);
1892
1893struct cpumask __cpu_present_mask __read_mostly;
1894EXPORT_SYMBOL(__cpu_present_mask);
1895
1896struct cpumask __cpu_active_mask __read_mostly;
1897EXPORT_SYMBOL(__cpu_active_mask);
1898
1899void init_cpu_present(const struct cpumask *src)
1900{
1901        cpumask_copy(&__cpu_present_mask, src);
1902}
1903
1904void init_cpu_possible(const struct cpumask *src)
1905{
1906        cpumask_copy(&__cpu_possible_mask, src);
1907}
1908
1909void init_cpu_online(const struct cpumask *src)
1910{
1911        cpumask_copy(&__cpu_online_mask, src);
1912}
1913
1914/*
1915 * Activate the first processor.
1916 */
1917void __init boot_cpu_init(void)
1918{
1919        int cpu = smp_processor_id();
1920
1921        /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1922        set_cpu_online(cpu, true);
1923        set_cpu_active(cpu, true);
1924        set_cpu_present(cpu, true);
1925        set_cpu_possible(cpu, true);
1926}
1927
1928/*
1929 * Must be called _AFTER_ setting up the per_cpu areas
1930 */
1931void __init boot_cpu_state_init(void)
1932{
1933        per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1934}
1935