linux/kernel/memremap.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2015 Intel Corporation. All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of version 2 of the GNU General Public License as
   6 * published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 */
  13#include <linux/radix-tree.h>
  14#include <linux/memremap.h>
  15#include <linux/device.h>
  16#include <linux/types.h>
  17#include <linux/pfn_t.h>
  18#include <linux/io.h>
  19#include <linux/mm.h>
  20#include <linux/memory_hotplug.h>
  21
  22#ifndef ioremap_cache
  23/* temporary while we convert existing ioremap_cache users to memremap */
  24__weak void __iomem *ioremap_cache(resource_size_t offset, unsigned long size)
  25{
  26        return ioremap(offset, size);
  27}
  28#endif
  29
  30#ifndef arch_memremap_wb
  31static void *arch_memremap_wb(resource_size_t offset, unsigned long size)
  32{
  33        return (__force void *)ioremap_cache(offset, size);
  34}
  35#endif
  36
  37static void *try_ram_remap(resource_size_t offset, size_t size)
  38{
  39        unsigned long pfn = PHYS_PFN(offset);
  40
  41        /* In the simple case just return the existing linear address */
  42        if (pfn_valid(pfn) && !PageHighMem(pfn_to_page(pfn)))
  43                return __va(offset);
  44        return NULL; /* fallback to arch_memremap_wb */
  45}
  46
  47/**
  48 * memremap() - remap an iomem_resource as cacheable memory
  49 * @offset: iomem resource start address
  50 * @size: size of remap
  51 * @flags: any of MEMREMAP_WB, MEMREMAP_WT and MEMREMAP_WC
  52 *
  53 * memremap() is "ioremap" for cases where it is known that the resource
  54 * being mapped does not have i/o side effects and the __iomem
  55 * annotation is not applicable. In the case of multiple flags, the different
  56 * mapping types will be attempted in the order listed below until one of
  57 * them succeeds.
  58 *
  59 * MEMREMAP_WB - matches the default mapping for System RAM on
  60 * the architecture.  This is usually a read-allocate write-back cache.
  61 * Morever, if MEMREMAP_WB is specified and the requested remap region is RAM
  62 * memremap() will bypass establishing a new mapping and instead return
  63 * a pointer into the direct map.
  64 *
  65 * MEMREMAP_WT - establish a mapping whereby writes either bypass the
  66 * cache or are written through to memory and never exist in a
  67 * cache-dirty state with respect to program visibility.  Attempts to
  68 * map System RAM with this mapping type will fail.
  69 *
  70 * MEMREMAP_WC - establish a writecombine mapping, whereby writes may
  71 * be coalesced together (e.g. in the CPU's write buffers), but is otherwise
  72 * uncached. Attempts to map System RAM with this mapping type will fail.
  73 */
  74void *memremap(resource_size_t offset, size_t size, unsigned long flags)
  75{
  76        int is_ram = region_intersects(offset, size,
  77                                       IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE);
  78        void *addr = NULL;
  79
  80        if (!flags)
  81                return NULL;
  82
  83        if (is_ram == REGION_MIXED) {
  84                WARN_ONCE(1, "memremap attempted on mixed range %pa size: %#lx\n",
  85                                &offset, (unsigned long) size);
  86                return NULL;
  87        }
  88
  89        /* Try all mapping types requested until one returns non-NULL */
  90        if (flags & MEMREMAP_WB) {
  91                /*
  92                 * MEMREMAP_WB is special in that it can be satisifed
  93                 * from the direct map.  Some archs depend on the
  94                 * capability of memremap() to autodetect cases where
  95                 * the requested range is potentially in System RAM.
  96                 */
  97                if (is_ram == REGION_INTERSECTS)
  98                        addr = try_ram_remap(offset, size);
  99                if (!addr)
 100                        addr = arch_memremap_wb(offset, size);
 101        }
 102
 103        /*
 104         * If we don't have a mapping yet and other request flags are
 105         * present then we will be attempting to establish a new virtual
 106         * address mapping.  Enforce that this mapping is not aliasing
 107         * System RAM.
 108         */
 109        if (!addr && is_ram == REGION_INTERSECTS && flags != MEMREMAP_WB) {
 110                WARN_ONCE(1, "memremap attempted on ram %pa size: %#lx\n",
 111                                &offset, (unsigned long) size);
 112                return NULL;
 113        }
 114
 115        if (!addr && (flags & MEMREMAP_WT))
 116                addr = ioremap_wt(offset, size);
 117
 118        if (!addr && (flags & MEMREMAP_WC))
 119                addr = ioremap_wc(offset, size);
 120
 121        return addr;
 122}
 123EXPORT_SYMBOL(memremap);
 124
 125void memunmap(void *addr)
 126{
 127        if (is_vmalloc_addr(addr))
 128                iounmap((void __iomem *) addr);
 129}
 130EXPORT_SYMBOL(memunmap);
 131
 132static void devm_memremap_release(struct device *dev, void *res)
 133{
 134        memunmap(*(void **)res);
 135}
 136
 137static int devm_memremap_match(struct device *dev, void *res, void *match_data)
 138{
 139        return *(void **)res == match_data;
 140}
 141
 142void *devm_memremap(struct device *dev, resource_size_t offset,
 143                size_t size, unsigned long flags)
 144{
 145        void **ptr, *addr;
 146
 147        ptr = devres_alloc_node(devm_memremap_release, sizeof(*ptr), GFP_KERNEL,
 148                        dev_to_node(dev));
 149        if (!ptr)
 150                return ERR_PTR(-ENOMEM);
 151
 152        addr = memremap(offset, size, flags);
 153        if (addr) {
 154                *ptr = addr;
 155                devres_add(dev, ptr);
 156        } else {
 157                devres_free(ptr);
 158                return ERR_PTR(-ENXIO);
 159        }
 160
 161        return addr;
 162}
 163EXPORT_SYMBOL(devm_memremap);
 164
 165void devm_memunmap(struct device *dev, void *addr)
 166{
 167        WARN_ON(devres_release(dev, devm_memremap_release,
 168                                devm_memremap_match, addr));
 169}
 170EXPORT_SYMBOL(devm_memunmap);
 171
 172#ifdef CONFIG_ZONE_DEVICE
 173static DEFINE_MUTEX(pgmap_lock);
 174static RADIX_TREE(pgmap_radix, GFP_KERNEL);
 175#define SECTION_MASK ~((1UL << PA_SECTION_SHIFT) - 1)
 176#define SECTION_SIZE (1UL << PA_SECTION_SHIFT)
 177
 178struct page_map {
 179        struct resource res;
 180        struct percpu_ref *ref;
 181        struct dev_pagemap pgmap;
 182        struct vmem_altmap altmap;
 183};
 184
 185void get_zone_device_page(struct page *page)
 186{
 187        percpu_ref_get(page->pgmap->ref);
 188}
 189EXPORT_SYMBOL(get_zone_device_page);
 190
 191void put_zone_device_page(struct page *page)
 192{
 193        put_dev_pagemap(page->pgmap);
 194}
 195EXPORT_SYMBOL(put_zone_device_page);
 196
 197static void pgmap_radix_release(struct resource *res)
 198{
 199        resource_size_t key, align_start, align_size, align_end;
 200
 201        align_start = res->start & ~(SECTION_SIZE - 1);
 202        align_size = ALIGN(resource_size(res), SECTION_SIZE);
 203        align_end = align_start + align_size - 1;
 204
 205        mutex_lock(&pgmap_lock);
 206        for (key = res->start; key <= res->end; key += SECTION_SIZE)
 207                radix_tree_delete(&pgmap_radix, key >> PA_SECTION_SHIFT);
 208        mutex_unlock(&pgmap_lock);
 209}
 210
 211static unsigned long pfn_first(struct page_map *page_map)
 212{
 213        struct dev_pagemap *pgmap = &page_map->pgmap;
 214        const struct resource *res = &page_map->res;
 215        struct vmem_altmap *altmap = pgmap->altmap;
 216        unsigned long pfn;
 217
 218        pfn = res->start >> PAGE_SHIFT;
 219        if (altmap)
 220                pfn += vmem_altmap_offset(altmap);
 221        return pfn;
 222}
 223
 224static unsigned long pfn_end(struct page_map *page_map)
 225{
 226        const struct resource *res = &page_map->res;
 227
 228        return (res->start + resource_size(res)) >> PAGE_SHIFT;
 229}
 230
 231#define for_each_device_pfn(pfn, map) \
 232        for (pfn = pfn_first(map); pfn < pfn_end(map); pfn++)
 233
 234static void devm_memremap_pages_release(struct device *dev, void *data)
 235{
 236        struct page_map *page_map = data;
 237        struct resource *res = &page_map->res;
 238        resource_size_t align_start, align_size;
 239        struct dev_pagemap *pgmap = &page_map->pgmap;
 240
 241        if (percpu_ref_tryget_live(pgmap->ref)) {
 242                dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
 243                percpu_ref_put(pgmap->ref);
 244        }
 245
 246        /* pages are dead and unused, undo the arch mapping */
 247        align_start = res->start & ~(SECTION_SIZE - 1);
 248        align_size = ALIGN(resource_size(res), SECTION_SIZE);
 249        arch_remove_memory(align_start, align_size);
 250        untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
 251        pgmap_radix_release(res);
 252        dev_WARN_ONCE(dev, pgmap->altmap && pgmap->altmap->alloc,
 253                        "%s: failed to free all reserved pages\n", __func__);
 254}
 255
 256/* assumes rcu_read_lock() held at entry */
 257struct dev_pagemap *find_dev_pagemap(resource_size_t phys)
 258{
 259        struct page_map *page_map;
 260
 261        WARN_ON_ONCE(!rcu_read_lock_held());
 262
 263        page_map = radix_tree_lookup(&pgmap_radix, phys >> PA_SECTION_SHIFT);
 264        return page_map ? &page_map->pgmap : NULL;
 265}
 266
 267/**
 268 * devm_memremap_pages - remap and provide memmap backing for the given resource
 269 * @dev: hosting device for @res
 270 * @res: "host memory" address range
 271 * @ref: a live per-cpu reference count
 272 * @altmap: optional descriptor for allocating the memmap from @res
 273 *
 274 * Notes:
 275 * 1/ @ref must be 'live' on entry and 'dead' before devm_memunmap_pages() time
 276 *    (or devm release event).
 277 *
 278 * 2/ @res is expected to be a host memory range that could feasibly be
 279 *    treated as a "System RAM" range, i.e. not a device mmio range, but
 280 *    this is not enforced.
 281 */
 282void *devm_memremap_pages(struct device *dev, struct resource *res,
 283                struct percpu_ref *ref, struct vmem_altmap *altmap)
 284{
 285        resource_size_t key, align_start, align_size, align_end;
 286        pgprot_t pgprot = PAGE_KERNEL;
 287        struct dev_pagemap *pgmap;
 288        struct page_map *page_map;
 289        int error, nid, is_ram;
 290        unsigned long pfn;
 291
 292        align_start = res->start & ~(SECTION_SIZE - 1);
 293        align_size = ALIGN(res->start + resource_size(res), SECTION_SIZE)
 294                - align_start;
 295        is_ram = region_intersects(align_start, align_size,
 296                IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE);
 297
 298        if (is_ram == REGION_MIXED) {
 299                WARN_ONCE(1, "%s attempted on mixed region %pr\n",
 300                                __func__, res);
 301                return ERR_PTR(-ENXIO);
 302        }
 303
 304        if (is_ram == REGION_INTERSECTS)
 305                return __va(res->start);
 306
 307        if (!ref)
 308                return ERR_PTR(-EINVAL);
 309
 310        page_map = devres_alloc_node(devm_memremap_pages_release,
 311                        sizeof(*page_map), GFP_KERNEL, dev_to_node(dev));
 312        if (!page_map)
 313                return ERR_PTR(-ENOMEM);
 314        pgmap = &page_map->pgmap;
 315
 316        memcpy(&page_map->res, res, sizeof(*res));
 317
 318        pgmap->dev = dev;
 319        if (altmap) {
 320                memcpy(&page_map->altmap, altmap, sizeof(*altmap));
 321                pgmap->altmap = &page_map->altmap;
 322        }
 323        pgmap->ref = ref;
 324        pgmap->res = &page_map->res;
 325
 326        mutex_lock(&pgmap_lock);
 327        error = 0;
 328        align_end = align_start + align_size - 1;
 329        for (key = align_start; key <= align_end; key += SECTION_SIZE) {
 330                struct dev_pagemap *dup;
 331
 332                rcu_read_lock();
 333                dup = find_dev_pagemap(key);
 334                rcu_read_unlock();
 335                if (dup) {
 336                        dev_err(dev, "%s: %pr collides with mapping for %s\n",
 337                                        __func__, res, dev_name(dup->dev));
 338                        error = -EBUSY;
 339                        break;
 340                }
 341                error = radix_tree_insert(&pgmap_radix, key >> PA_SECTION_SHIFT,
 342                                page_map);
 343                if (error) {
 344                        dev_err(dev, "%s: failed: %d\n", __func__, error);
 345                        break;
 346                }
 347        }
 348        mutex_unlock(&pgmap_lock);
 349        if (error)
 350                goto err_radix;
 351
 352        nid = dev_to_node(dev);
 353        if (nid < 0)
 354                nid = numa_mem_id();
 355
 356        error = track_pfn_remap(NULL, &pgprot, PHYS_PFN(align_start), 0,
 357                        align_size);
 358        if (error)
 359                goto err_pfn_remap;
 360
 361        error = arch_add_memory(nid, align_start, align_size, true);
 362        if (error)
 363                goto err_add_memory;
 364
 365        for_each_device_pfn(pfn, page_map) {
 366                struct page *page = pfn_to_page(pfn);
 367
 368                /*
 369                 * ZONE_DEVICE pages union ->lru with a ->pgmap back
 370                 * pointer.  It is a bug if a ZONE_DEVICE page is ever
 371                 * freed or placed on a driver-private list.  Seed the
 372                 * storage with LIST_POISON* values.
 373                 */
 374                list_del(&page->lru);
 375                page->pgmap = pgmap;
 376        }
 377        devres_add(dev, page_map);
 378        return __va(res->start);
 379
 380 err_add_memory:
 381        untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
 382 err_pfn_remap:
 383 err_radix:
 384        pgmap_radix_release(res);
 385        devres_free(page_map);
 386        return ERR_PTR(error);
 387}
 388EXPORT_SYMBOL(devm_memremap_pages);
 389
 390unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
 391{
 392        /* number of pfns from base where pfn_to_page() is valid */
 393        return altmap->reserve + altmap->free;
 394}
 395
 396void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns)
 397{
 398        altmap->alloc -= nr_pfns;
 399}
 400
 401struct vmem_altmap *to_vmem_altmap(unsigned long memmap_start)
 402{
 403        /*
 404         * 'memmap_start' is the virtual address for the first "struct
 405         * page" in this range of the vmemmap array.  In the case of
 406         * CONFIG_SPARSEMEM_VMEMMAP a page_to_pfn conversion is simple
 407         * pointer arithmetic, so we can perform this to_vmem_altmap()
 408         * conversion without concern for the initialization state of
 409         * the struct page fields.
 410         */
 411        struct page *page = (struct page *) memmap_start;
 412        struct dev_pagemap *pgmap;
 413
 414        /*
 415         * Unconditionally retrieve a dev_pagemap associated with the
 416         * given physical address, this is only for use in the
 417         * arch_{add|remove}_memory() for setting up and tearing down
 418         * the memmap.
 419         */
 420        rcu_read_lock();
 421        pgmap = find_dev_pagemap(__pfn_to_phys(page_to_pfn(page)));
 422        rcu_read_unlock();
 423
 424        return pgmap ? pgmap->altmap : NULL;
 425}
 426#endif /* CONFIG_ZONE_DEVICE */
 427