linux/kernel/time/posix-timers.c
<<
>>
Prefs
   1/*
   2 * linux/kernel/posix-timers.c
   3 *
   4 *
   5 * 2002-10-15  Posix Clocks & timers
   6 *                           by George Anzinger george@mvista.com
   7 *
   8 *                           Copyright (C) 2002 2003 by MontaVista Software.
   9 *
  10 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
  11 *                           Copyright (C) 2004 Boris Hu
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or (at
  16 * your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful, but
  19 * WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  21 * General Public License for more details.
  22
  23 * You should have received a copy of the GNU General Public License
  24 * along with this program; if not, write to the Free Software
  25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  26 *
  27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
  28 */
  29
  30/* These are all the functions necessary to implement
  31 * POSIX clocks & timers
  32 */
  33#include <linux/mm.h>
  34#include <linux/interrupt.h>
  35#include <linux/slab.h>
  36#include <linux/time.h>
  37#include <linux/mutex.h>
  38
  39#include <asm/uaccess.h>
  40#include <linux/list.h>
  41#include <linux/init.h>
  42#include <linux/compiler.h>
  43#include <linux/hash.h>
  44#include <linux/posix-clock.h>
  45#include <linux/posix-timers.h>
  46#include <linux/syscalls.h>
  47#include <linux/wait.h>
  48#include <linux/workqueue.h>
  49#include <linux/export.h>
  50#include <linux/hashtable.h>
  51
  52#include "timekeeping.h"
  53
  54/*
  55 * Management arrays for POSIX timers. Timers are now kept in static hash table
  56 * with 512 entries.
  57 * Timer ids are allocated by local routine, which selects proper hash head by
  58 * key, constructed from current->signal address and per signal struct counter.
  59 * This keeps timer ids unique per process, but now they can intersect between
  60 * processes.
  61 */
  62
  63/*
  64 * Lets keep our timers in a slab cache :-)
  65 */
  66static struct kmem_cache *posix_timers_cache;
  67
  68static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
  69static DEFINE_SPINLOCK(hash_lock);
  70
  71/*
  72 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
  73 * SIGEV values.  Here we put out an error if this assumption fails.
  74 */
  75#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
  76                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
  77#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
  78#endif
  79
  80/*
  81 * parisc wants ENOTSUP instead of EOPNOTSUPP
  82 */
  83#ifndef ENOTSUP
  84# define ENANOSLEEP_NOTSUP EOPNOTSUPP
  85#else
  86# define ENANOSLEEP_NOTSUP ENOTSUP
  87#endif
  88
  89/*
  90 * The timer ID is turned into a timer address by idr_find().
  91 * Verifying a valid ID consists of:
  92 *
  93 * a) checking that idr_find() returns other than -1.
  94 * b) checking that the timer id matches the one in the timer itself.
  95 * c) that the timer owner is in the callers thread group.
  96 */
  97
  98/*
  99 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
 100 *          to implement others.  This structure defines the various
 101 *          clocks.
 102 *
 103 * RESOLUTION: Clock resolution is used to round up timer and interval
 104 *          times, NOT to report clock times, which are reported with as
 105 *          much resolution as the system can muster.  In some cases this
 106 *          resolution may depend on the underlying clock hardware and
 107 *          may not be quantifiable until run time, and only then is the
 108 *          necessary code is written.  The standard says we should say
 109 *          something about this issue in the documentation...
 110 *
 111 * FUNCTIONS: The CLOCKs structure defines possible functions to
 112 *          handle various clock functions.
 113 *
 114 *          The standard POSIX timer management code assumes the
 115 *          following: 1.) The k_itimer struct (sched.h) is used for
 116 *          the timer.  2.) The list, it_lock, it_clock, it_id and
 117 *          it_pid fields are not modified by timer code.
 118 *
 119 * Permissions: It is assumed that the clock_settime() function defined
 120 *          for each clock will take care of permission checks.  Some
 121 *          clocks may be set able by any user (i.e. local process
 122 *          clocks) others not.  Currently the only set able clock we
 123 *          have is CLOCK_REALTIME and its high res counter part, both of
 124 *          which we beg off on and pass to do_sys_settimeofday().
 125 */
 126
 127static struct k_clock posix_clocks[MAX_CLOCKS];
 128
 129/*
 130 * These ones are defined below.
 131 */
 132static int common_nsleep(const clockid_t, int flags, struct timespec *t,
 133                         struct timespec __user *rmtp);
 134static int common_timer_create(struct k_itimer *new_timer);
 135static void common_timer_get(struct k_itimer *, struct itimerspec *);
 136static int common_timer_set(struct k_itimer *, int,
 137                            struct itimerspec *, struct itimerspec *);
 138static int common_timer_del(struct k_itimer *timer);
 139
 140static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
 141
 142static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
 143
 144#define lock_timer(tid, flags)                                             \
 145({      struct k_itimer *__timr;                                           \
 146        __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
 147        __timr;                                                            \
 148})
 149
 150static int hash(struct signal_struct *sig, unsigned int nr)
 151{
 152        return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
 153}
 154
 155static struct k_itimer *__posix_timers_find(struct hlist_head *head,
 156                                            struct signal_struct *sig,
 157                                            timer_t id)
 158{
 159        struct k_itimer *timer;
 160
 161        hlist_for_each_entry_rcu(timer, head, t_hash) {
 162                if ((timer->it_signal == sig) && (timer->it_id == id))
 163                        return timer;
 164        }
 165        return NULL;
 166}
 167
 168static struct k_itimer *posix_timer_by_id(timer_t id)
 169{
 170        struct signal_struct *sig = current->signal;
 171        struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
 172
 173        return __posix_timers_find(head, sig, id);
 174}
 175
 176static int posix_timer_add(struct k_itimer *timer)
 177{
 178        struct signal_struct *sig = current->signal;
 179        int first_free_id = sig->posix_timer_id;
 180        struct hlist_head *head;
 181        int ret = -ENOENT;
 182
 183        do {
 184                spin_lock(&hash_lock);
 185                head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
 186                if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
 187                        hlist_add_head_rcu(&timer->t_hash, head);
 188                        ret = sig->posix_timer_id;
 189                }
 190                if (++sig->posix_timer_id < 0)
 191                        sig->posix_timer_id = 0;
 192                if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
 193                        /* Loop over all possible ids completed */
 194                        ret = -EAGAIN;
 195                spin_unlock(&hash_lock);
 196        } while (ret == -ENOENT);
 197        return ret;
 198}
 199
 200static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
 201{
 202        spin_unlock_irqrestore(&timr->it_lock, flags);
 203}
 204
 205/* Get clock_realtime */
 206static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
 207{
 208        ktime_get_real_ts(tp);
 209        return 0;
 210}
 211
 212/* Set clock_realtime */
 213static int posix_clock_realtime_set(const clockid_t which_clock,
 214                                    const struct timespec *tp)
 215{
 216        return do_sys_settimeofday(tp, NULL);
 217}
 218
 219static int posix_clock_realtime_adj(const clockid_t which_clock,
 220                                    struct timex *t)
 221{
 222        return do_adjtimex(t);
 223}
 224
 225/*
 226 * Get monotonic time for posix timers
 227 */
 228static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
 229{
 230        ktime_get_ts(tp);
 231        return 0;
 232}
 233
 234/*
 235 * Get monotonic-raw time for posix timers
 236 */
 237static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
 238{
 239        getrawmonotonic(tp);
 240        return 0;
 241}
 242
 243
 244static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
 245{
 246        *tp = current_kernel_time();
 247        return 0;
 248}
 249
 250static int posix_get_monotonic_coarse(clockid_t which_clock,
 251                                                struct timespec *tp)
 252{
 253        *tp = get_monotonic_coarse();
 254        return 0;
 255}
 256
 257static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
 258{
 259        *tp = ktime_to_timespec(KTIME_LOW_RES);
 260        return 0;
 261}
 262
 263static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
 264{
 265        get_monotonic_boottime(tp);
 266        return 0;
 267}
 268
 269static int posix_get_tai(clockid_t which_clock, struct timespec *tp)
 270{
 271        timekeeping_clocktai(tp);
 272        return 0;
 273}
 274
 275static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec *tp)
 276{
 277        tp->tv_sec = 0;
 278        tp->tv_nsec = hrtimer_resolution;
 279        return 0;
 280}
 281
 282/*
 283 * Initialize everything, well, just everything in Posix clocks/timers ;)
 284 */
 285static __init int init_posix_timers(void)
 286{
 287        struct k_clock clock_realtime = {
 288                .clock_getres   = posix_get_hrtimer_res,
 289                .clock_get      = posix_clock_realtime_get,
 290                .clock_set      = posix_clock_realtime_set,
 291                .clock_adj      = posix_clock_realtime_adj,
 292                .nsleep         = common_nsleep,
 293                .nsleep_restart = hrtimer_nanosleep_restart,
 294                .timer_create   = common_timer_create,
 295                .timer_set      = common_timer_set,
 296                .timer_get      = common_timer_get,
 297                .timer_del      = common_timer_del,
 298        };
 299        struct k_clock clock_monotonic = {
 300                .clock_getres   = posix_get_hrtimer_res,
 301                .clock_get      = posix_ktime_get_ts,
 302                .nsleep         = common_nsleep,
 303                .nsleep_restart = hrtimer_nanosleep_restart,
 304                .timer_create   = common_timer_create,
 305                .timer_set      = common_timer_set,
 306                .timer_get      = common_timer_get,
 307                .timer_del      = common_timer_del,
 308        };
 309        struct k_clock clock_monotonic_raw = {
 310                .clock_getres   = posix_get_hrtimer_res,
 311                .clock_get      = posix_get_monotonic_raw,
 312        };
 313        struct k_clock clock_realtime_coarse = {
 314                .clock_getres   = posix_get_coarse_res,
 315                .clock_get      = posix_get_realtime_coarse,
 316        };
 317        struct k_clock clock_monotonic_coarse = {
 318                .clock_getres   = posix_get_coarse_res,
 319                .clock_get      = posix_get_monotonic_coarse,
 320        };
 321        struct k_clock clock_tai = {
 322                .clock_getres   = posix_get_hrtimer_res,
 323                .clock_get      = posix_get_tai,
 324                .nsleep         = common_nsleep,
 325                .nsleep_restart = hrtimer_nanosleep_restart,
 326                .timer_create   = common_timer_create,
 327                .timer_set      = common_timer_set,
 328                .timer_get      = common_timer_get,
 329                .timer_del      = common_timer_del,
 330        };
 331        struct k_clock clock_boottime = {
 332                .clock_getres   = posix_get_hrtimer_res,
 333                .clock_get      = posix_get_boottime,
 334                .nsleep         = common_nsleep,
 335                .nsleep_restart = hrtimer_nanosleep_restart,
 336                .timer_create   = common_timer_create,
 337                .timer_set      = common_timer_set,
 338                .timer_get      = common_timer_get,
 339                .timer_del      = common_timer_del,
 340        };
 341
 342        posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
 343        posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
 344        posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
 345        posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
 346        posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
 347        posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
 348        posix_timers_register_clock(CLOCK_TAI, &clock_tai);
 349
 350        posix_timers_cache = kmem_cache_create("posix_timers_cache",
 351                                        sizeof (struct k_itimer), 0, SLAB_PANIC,
 352                                        NULL);
 353        return 0;
 354}
 355
 356__initcall(init_posix_timers);
 357
 358static void schedule_next_timer(struct k_itimer *timr)
 359{
 360        struct hrtimer *timer = &timr->it.real.timer;
 361
 362        if (timr->it.real.interval.tv64 == 0)
 363                return;
 364
 365        timr->it_overrun += (unsigned int) hrtimer_forward(timer,
 366                                                timer->base->get_time(),
 367                                                timr->it.real.interval);
 368
 369        timr->it_overrun_last = timr->it_overrun;
 370        timr->it_overrun = -1;
 371        ++timr->it_requeue_pending;
 372        hrtimer_restart(timer);
 373}
 374
 375/*
 376 * This function is exported for use by the signal deliver code.  It is
 377 * called just prior to the info block being released and passes that
 378 * block to us.  It's function is to update the overrun entry AND to
 379 * restart the timer.  It should only be called if the timer is to be
 380 * restarted (i.e. we have flagged this in the sys_private entry of the
 381 * info block).
 382 *
 383 * To protect against the timer going away while the interrupt is queued,
 384 * we require that the it_requeue_pending flag be set.
 385 */
 386void do_schedule_next_timer(struct siginfo *info)
 387{
 388        struct k_itimer *timr;
 389        unsigned long flags;
 390
 391        timr = lock_timer(info->si_tid, &flags);
 392
 393        if (timr && timr->it_requeue_pending == info->si_sys_private) {
 394                if (timr->it_clock < 0)
 395                        posix_cpu_timer_schedule(timr);
 396                else
 397                        schedule_next_timer(timr);
 398
 399                info->si_overrun += timr->it_overrun_last;
 400        }
 401
 402        if (timr)
 403                unlock_timer(timr, flags);
 404}
 405
 406int posix_timer_event(struct k_itimer *timr, int si_private)
 407{
 408        struct task_struct *task;
 409        int shared, ret = -1;
 410        /*
 411         * FIXME: if ->sigq is queued we can race with
 412         * dequeue_signal()->do_schedule_next_timer().
 413         *
 414         * If dequeue_signal() sees the "right" value of
 415         * si_sys_private it calls do_schedule_next_timer().
 416         * We re-queue ->sigq and drop ->it_lock().
 417         * do_schedule_next_timer() locks the timer
 418         * and re-schedules it while ->sigq is pending.
 419         * Not really bad, but not that we want.
 420         */
 421        timr->sigq->info.si_sys_private = si_private;
 422
 423        rcu_read_lock();
 424        task = pid_task(timr->it_pid, PIDTYPE_PID);
 425        if (task) {
 426                shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
 427                ret = send_sigqueue(timr->sigq, task, shared);
 428        }
 429        rcu_read_unlock();
 430        /* If we failed to send the signal the timer stops. */
 431        return ret > 0;
 432}
 433EXPORT_SYMBOL_GPL(posix_timer_event);
 434
 435/*
 436 * This function gets called when a POSIX.1b interval timer expires.  It
 437 * is used as a callback from the kernel internal timer.  The
 438 * run_timer_list code ALWAYS calls with interrupts on.
 439
 440 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 441 */
 442static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
 443{
 444        struct k_itimer *timr;
 445        unsigned long flags;
 446        int si_private = 0;
 447        enum hrtimer_restart ret = HRTIMER_NORESTART;
 448
 449        timr = container_of(timer, struct k_itimer, it.real.timer);
 450        spin_lock_irqsave(&timr->it_lock, flags);
 451
 452        if (timr->it.real.interval.tv64 != 0)
 453                si_private = ++timr->it_requeue_pending;
 454
 455        if (posix_timer_event(timr, si_private)) {
 456                /*
 457                 * signal was not sent because of sig_ignor
 458                 * we will not get a call back to restart it AND
 459                 * it should be restarted.
 460                 */
 461                if (timr->it.real.interval.tv64 != 0) {
 462                        ktime_t now = hrtimer_cb_get_time(timer);
 463
 464                        /*
 465                         * FIXME: What we really want, is to stop this
 466                         * timer completely and restart it in case the
 467                         * SIG_IGN is removed. This is a non trivial
 468                         * change which involves sighand locking
 469                         * (sigh !), which we don't want to do late in
 470                         * the release cycle.
 471                         *
 472                         * For now we just let timers with an interval
 473                         * less than a jiffie expire every jiffie to
 474                         * avoid softirq starvation in case of SIG_IGN
 475                         * and a very small interval, which would put
 476                         * the timer right back on the softirq pending
 477                         * list. By moving now ahead of time we trick
 478                         * hrtimer_forward() to expire the timer
 479                         * later, while we still maintain the overrun
 480                         * accuracy, but have some inconsistency in
 481                         * the timer_gettime() case. This is at least
 482                         * better than a starved softirq. A more
 483                         * complex fix which solves also another related
 484                         * inconsistency is already in the pipeline.
 485                         */
 486#ifdef CONFIG_HIGH_RES_TIMERS
 487                        {
 488                                ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
 489
 490                                if (timr->it.real.interval.tv64 < kj.tv64)
 491                                        now = ktime_add(now, kj);
 492                        }
 493#endif
 494                        timr->it_overrun += (unsigned int)
 495                                hrtimer_forward(timer, now,
 496                                                timr->it.real.interval);
 497                        ret = HRTIMER_RESTART;
 498                        ++timr->it_requeue_pending;
 499                }
 500        }
 501
 502        unlock_timer(timr, flags);
 503        return ret;
 504}
 505
 506static struct pid *good_sigevent(sigevent_t * event)
 507{
 508        struct task_struct *rtn = current->group_leader;
 509
 510        if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
 511                (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
 512                 !same_thread_group(rtn, current) ||
 513                 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
 514                return NULL;
 515
 516        if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
 517            ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
 518                return NULL;
 519
 520        return task_pid(rtn);
 521}
 522
 523void posix_timers_register_clock(const clockid_t clock_id,
 524                                 struct k_clock *new_clock)
 525{
 526        if ((unsigned) clock_id >= MAX_CLOCKS) {
 527                printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
 528                       clock_id);
 529                return;
 530        }
 531
 532        if (!new_clock->clock_get) {
 533                printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
 534                       clock_id);
 535                return;
 536        }
 537        if (!new_clock->clock_getres) {
 538                printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
 539                       clock_id);
 540                return;
 541        }
 542
 543        posix_clocks[clock_id] = *new_clock;
 544}
 545EXPORT_SYMBOL_GPL(posix_timers_register_clock);
 546
 547static struct k_itimer * alloc_posix_timer(void)
 548{
 549        struct k_itimer *tmr;
 550        tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
 551        if (!tmr)
 552                return tmr;
 553        if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
 554                kmem_cache_free(posix_timers_cache, tmr);
 555                return NULL;
 556        }
 557        memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
 558        return tmr;
 559}
 560
 561static void k_itimer_rcu_free(struct rcu_head *head)
 562{
 563        struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
 564
 565        kmem_cache_free(posix_timers_cache, tmr);
 566}
 567
 568#define IT_ID_SET       1
 569#define IT_ID_NOT_SET   0
 570static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
 571{
 572        if (it_id_set) {
 573                unsigned long flags;
 574                spin_lock_irqsave(&hash_lock, flags);
 575                hlist_del_rcu(&tmr->t_hash);
 576                spin_unlock_irqrestore(&hash_lock, flags);
 577        }
 578        put_pid(tmr->it_pid);
 579        sigqueue_free(tmr->sigq);
 580        call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
 581}
 582
 583static struct k_clock *clockid_to_kclock(const clockid_t id)
 584{
 585        if (id < 0)
 586                return (id & CLOCKFD_MASK) == CLOCKFD ?
 587                        &clock_posix_dynamic : &clock_posix_cpu;
 588
 589        if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
 590                return NULL;
 591        return &posix_clocks[id];
 592}
 593
 594static int common_timer_create(struct k_itimer *new_timer)
 595{
 596        hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
 597        return 0;
 598}
 599
 600/* Create a POSIX.1b interval timer. */
 601
 602SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
 603                struct sigevent __user *, timer_event_spec,
 604                timer_t __user *, created_timer_id)
 605{
 606        struct k_clock *kc = clockid_to_kclock(which_clock);
 607        struct k_itimer *new_timer;
 608        int error, new_timer_id;
 609        sigevent_t event;
 610        int it_id_set = IT_ID_NOT_SET;
 611
 612        if (!kc)
 613                return -EINVAL;
 614        if (!kc->timer_create)
 615                return -EOPNOTSUPP;
 616
 617        new_timer = alloc_posix_timer();
 618        if (unlikely(!new_timer))
 619                return -EAGAIN;
 620
 621        spin_lock_init(&new_timer->it_lock);
 622        new_timer_id = posix_timer_add(new_timer);
 623        if (new_timer_id < 0) {
 624                error = new_timer_id;
 625                goto out;
 626        }
 627
 628        it_id_set = IT_ID_SET;
 629        new_timer->it_id = (timer_t) new_timer_id;
 630        new_timer->it_clock = which_clock;
 631        new_timer->it_overrun = -1;
 632
 633        if (timer_event_spec) {
 634                if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
 635                        error = -EFAULT;
 636                        goto out;
 637                }
 638                rcu_read_lock();
 639                new_timer->it_pid = get_pid(good_sigevent(&event));
 640                rcu_read_unlock();
 641                if (!new_timer->it_pid) {
 642                        error = -EINVAL;
 643                        goto out;
 644                }
 645        } else {
 646                memset(&event.sigev_value, 0, sizeof(event.sigev_value));
 647                event.sigev_notify = SIGEV_SIGNAL;
 648                event.sigev_signo = SIGALRM;
 649                event.sigev_value.sival_int = new_timer->it_id;
 650                new_timer->it_pid = get_pid(task_tgid(current));
 651        }
 652
 653        new_timer->it_sigev_notify     = event.sigev_notify;
 654        new_timer->sigq->info.si_signo = event.sigev_signo;
 655        new_timer->sigq->info.si_value = event.sigev_value;
 656        new_timer->sigq->info.si_tid   = new_timer->it_id;
 657        new_timer->sigq->info.si_code  = SI_TIMER;
 658
 659        if (copy_to_user(created_timer_id,
 660                         &new_timer_id, sizeof (new_timer_id))) {
 661                error = -EFAULT;
 662                goto out;
 663        }
 664
 665        error = kc->timer_create(new_timer);
 666        if (error)
 667                goto out;
 668
 669        spin_lock_irq(&current->sighand->siglock);
 670        new_timer->it_signal = current->signal;
 671        list_add(&new_timer->list, &current->signal->posix_timers);
 672        spin_unlock_irq(&current->sighand->siglock);
 673
 674        return 0;
 675        /*
 676         * In the case of the timer belonging to another task, after
 677         * the task is unlocked, the timer is owned by the other task
 678         * and may cease to exist at any time.  Don't use or modify
 679         * new_timer after the unlock call.
 680         */
 681out:
 682        release_posix_timer(new_timer, it_id_set);
 683        return error;
 684}
 685
 686/*
 687 * Locking issues: We need to protect the result of the id look up until
 688 * we get the timer locked down so it is not deleted under us.  The
 689 * removal is done under the idr spinlock so we use that here to bridge
 690 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 691 * be release with out holding the timer lock.
 692 */
 693static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
 694{
 695        struct k_itimer *timr;
 696
 697        /*
 698         * timer_t could be any type >= int and we want to make sure any
 699         * @timer_id outside positive int range fails lookup.
 700         */
 701        if ((unsigned long long)timer_id > INT_MAX)
 702                return NULL;
 703
 704        rcu_read_lock();
 705        timr = posix_timer_by_id(timer_id);
 706        if (timr) {
 707                spin_lock_irqsave(&timr->it_lock, *flags);
 708                if (timr->it_signal == current->signal) {
 709                        rcu_read_unlock();
 710                        return timr;
 711                }
 712                spin_unlock_irqrestore(&timr->it_lock, *flags);
 713        }
 714        rcu_read_unlock();
 715
 716        return NULL;
 717}
 718
 719/*
 720 * Get the time remaining on a POSIX.1b interval timer.  This function
 721 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 722 * mess with irq.
 723 *
 724 * We have a couple of messes to clean up here.  First there is the case
 725 * of a timer that has a requeue pending.  These timers should appear to
 726 * be in the timer list with an expiry as if we were to requeue them
 727 * now.
 728 *
 729 * The second issue is the SIGEV_NONE timer which may be active but is
 730 * not really ever put in the timer list (to save system resources).
 731 * This timer may be expired, and if so, we will do it here.  Otherwise
 732 * it is the same as a requeue pending timer WRT to what we should
 733 * report.
 734 */
 735static void
 736common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
 737{
 738        ktime_t now, remaining, iv;
 739        struct hrtimer *timer = &timr->it.real.timer;
 740
 741        memset(cur_setting, 0, sizeof(struct itimerspec));
 742
 743        iv = timr->it.real.interval;
 744
 745        /* interval timer ? */
 746        if (iv.tv64)
 747                cur_setting->it_interval = ktime_to_timespec(iv);
 748        else if (!hrtimer_active(timer) &&
 749                 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
 750                return;
 751
 752        now = timer->base->get_time();
 753
 754        /*
 755         * When a requeue is pending or this is a SIGEV_NONE
 756         * timer move the expiry time forward by intervals, so
 757         * expiry is > now.
 758         */
 759        if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
 760            (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
 761                timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
 762
 763        remaining = __hrtimer_expires_remaining_adjusted(timer, now);
 764        /* Return 0 only, when the timer is expired and not pending */
 765        if (remaining.tv64 <= 0) {
 766                /*
 767                 * A single shot SIGEV_NONE timer must return 0, when
 768                 * it is expired !
 769                 */
 770                if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
 771                        cur_setting->it_value.tv_nsec = 1;
 772        } else
 773                cur_setting->it_value = ktime_to_timespec(remaining);
 774}
 775
 776/* Get the time remaining on a POSIX.1b interval timer. */
 777SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
 778                struct itimerspec __user *, setting)
 779{
 780        struct itimerspec cur_setting;
 781        struct k_itimer *timr;
 782        struct k_clock *kc;
 783        unsigned long flags;
 784        int ret = 0;
 785
 786        timr = lock_timer(timer_id, &flags);
 787        if (!timr)
 788                return -EINVAL;
 789
 790        kc = clockid_to_kclock(timr->it_clock);
 791        if (WARN_ON_ONCE(!kc || !kc->timer_get))
 792                ret = -EINVAL;
 793        else
 794                kc->timer_get(timr, &cur_setting);
 795
 796        unlock_timer(timr, flags);
 797
 798        if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
 799                return -EFAULT;
 800
 801        return ret;
 802}
 803
 804/*
 805 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 806 * be the overrun of the timer last delivered.  At the same time we are
 807 * accumulating overruns on the next timer.  The overrun is frozen when
 808 * the signal is delivered, either at the notify time (if the info block
 809 * is not queued) or at the actual delivery time (as we are informed by
 810 * the call back to do_schedule_next_timer().  So all we need to do is
 811 * to pick up the frozen overrun.
 812 */
 813SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
 814{
 815        struct k_itimer *timr;
 816        int overrun;
 817        unsigned long flags;
 818
 819        timr = lock_timer(timer_id, &flags);
 820        if (!timr)
 821                return -EINVAL;
 822
 823        overrun = timr->it_overrun_last;
 824        unlock_timer(timr, flags);
 825
 826        return overrun;
 827}
 828
 829/* Set a POSIX.1b interval timer. */
 830/* timr->it_lock is taken. */
 831static int
 832common_timer_set(struct k_itimer *timr, int flags,
 833                 struct itimerspec *new_setting, struct itimerspec *old_setting)
 834{
 835        struct hrtimer *timer = &timr->it.real.timer;
 836        enum hrtimer_mode mode;
 837
 838        if (old_setting)
 839                common_timer_get(timr, old_setting);
 840
 841        /* disable the timer */
 842        timr->it.real.interval.tv64 = 0;
 843        /*
 844         * careful here.  If smp we could be in the "fire" routine which will
 845         * be spinning as we hold the lock.  But this is ONLY an SMP issue.
 846         */
 847        if (hrtimer_try_to_cancel(timer) < 0)
 848                return TIMER_RETRY;
 849
 850        timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 
 851                ~REQUEUE_PENDING;
 852        timr->it_overrun_last = 0;
 853
 854        /* switch off the timer when it_value is zero */
 855        if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
 856                return 0;
 857
 858        mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
 859        hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
 860        timr->it.real.timer.function = posix_timer_fn;
 861
 862        hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
 863
 864        /* Convert interval */
 865        timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
 866
 867        /* SIGEV_NONE timers are not queued ! See common_timer_get */
 868        if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
 869                /* Setup correct expiry time for relative timers */
 870                if (mode == HRTIMER_MODE_REL) {
 871                        hrtimer_add_expires(timer, timer->base->get_time());
 872                }
 873                return 0;
 874        }
 875
 876        hrtimer_start_expires(timer, mode);
 877        return 0;
 878}
 879
 880/* Set a POSIX.1b interval timer */
 881SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
 882                const struct itimerspec __user *, new_setting,
 883                struct itimerspec __user *, old_setting)
 884{
 885        struct k_itimer *timr;
 886        struct itimerspec new_spec, old_spec;
 887        int error = 0;
 888        unsigned long flag;
 889        struct itimerspec *rtn = old_setting ? &old_spec : NULL;
 890        struct k_clock *kc;
 891
 892        if (!new_setting)
 893                return -EINVAL;
 894
 895        if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
 896                return -EFAULT;
 897
 898        if (!timespec_valid(&new_spec.it_interval) ||
 899            !timespec_valid(&new_spec.it_value))
 900                return -EINVAL;
 901retry:
 902        timr = lock_timer(timer_id, &flag);
 903        if (!timr)
 904                return -EINVAL;
 905
 906        kc = clockid_to_kclock(timr->it_clock);
 907        if (WARN_ON_ONCE(!kc || !kc->timer_set))
 908                error = -EINVAL;
 909        else
 910                error = kc->timer_set(timr, flags, &new_spec, rtn);
 911
 912        unlock_timer(timr, flag);
 913        if (error == TIMER_RETRY) {
 914                rtn = NULL;     // We already got the old time...
 915                goto retry;
 916        }
 917
 918        if (old_setting && !error &&
 919            copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
 920                error = -EFAULT;
 921
 922        return error;
 923}
 924
 925static int common_timer_del(struct k_itimer *timer)
 926{
 927        timer->it.real.interval.tv64 = 0;
 928
 929        if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
 930                return TIMER_RETRY;
 931        return 0;
 932}
 933
 934static inline int timer_delete_hook(struct k_itimer *timer)
 935{
 936        struct k_clock *kc = clockid_to_kclock(timer->it_clock);
 937
 938        if (WARN_ON_ONCE(!kc || !kc->timer_del))
 939                return -EINVAL;
 940        return kc->timer_del(timer);
 941}
 942
 943/* Delete a POSIX.1b interval timer. */
 944SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
 945{
 946        struct k_itimer *timer;
 947        unsigned long flags;
 948
 949retry_delete:
 950        timer = lock_timer(timer_id, &flags);
 951        if (!timer)
 952                return -EINVAL;
 953
 954        if (timer_delete_hook(timer) == TIMER_RETRY) {
 955                unlock_timer(timer, flags);
 956                goto retry_delete;
 957        }
 958
 959        spin_lock(&current->sighand->siglock);
 960        list_del(&timer->list);
 961        spin_unlock(&current->sighand->siglock);
 962        /*
 963         * This keeps any tasks waiting on the spin lock from thinking
 964         * they got something (see the lock code above).
 965         */
 966        timer->it_signal = NULL;
 967
 968        unlock_timer(timer, flags);
 969        release_posix_timer(timer, IT_ID_SET);
 970        return 0;
 971}
 972
 973/*
 974 * return timer owned by the process, used by exit_itimers
 975 */
 976static void itimer_delete(struct k_itimer *timer)
 977{
 978        unsigned long flags;
 979
 980retry_delete:
 981        spin_lock_irqsave(&timer->it_lock, flags);
 982
 983        if (timer_delete_hook(timer) == TIMER_RETRY) {
 984                unlock_timer(timer, flags);
 985                goto retry_delete;
 986        }
 987        list_del(&timer->list);
 988        /*
 989         * This keeps any tasks waiting on the spin lock from thinking
 990         * they got something (see the lock code above).
 991         */
 992        timer->it_signal = NULL;
 993
 994        unlock_timer(timer, flags);
 995        release_posix_timer(timer, IT_ID_SET);
 996}
 997
 998/*
 999 * This is called by do_exit or de_thread, only when there are no more
1000 * references to the shared signal_struct.
1001 */
1002void exit_itimers(struct signal_struct *sig)
1003{
1004        struct k_itimer *tmr;
1005
1006        while (!list_empty(&sig->posix_timers)) {
1007                tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1008                itimer_delete(tmr);
1009        }
1010}
1011
1012SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1013                const struct timespec __user *, tp)
1014{
1015        struct k_clock *kc = clockid_to_kclock(which_clock);
1016        struct timespec new_tp;
1017
1018        if (!kc || !kc->clock_set)
1019                return -EINVAL;
1020
1021        if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1022                return -EFAULT;
1023
1024        return kc->clock_set(which_clock, &new_tp);
1025}
1026
1027SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1028                struct timespec __user *,tp)
1029{
1030        struct k_clock *kc = clockid_to_kclock(which_clock);
1031        struct timespec kernel_tp;
1032        int error;
1033
1034        if (!kc)
1035                return -EINVAL;
1036
1037        error = kc->clock_get(which_clock, &kernel_tp);
1038
1039        if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1040                error = -EFAULT;
1041
1042        return error;
1043}
1044
1045SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1046                struct timex __user *, utx)
1047{
1048        struct k_clock *kc = clockid_to_kclock(which_clock);
1049        struct timex ktx;
1050        int err;
1051
1052        if (!kc)
1053                return -EINVAL;
1054        if (!kc->clock_adj)
1055                return -EOPNOTSUPP;
1056
1057        if (copy_from_user(&ktx, utx, sizeof(ktx)))
1058                return -EFAULT;
1059
1060        err = kc->clock_adj(which_clock, &ktx);
1061
1062        if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1063                return -EFAULT;
1064
1065        return err;
1066}
1067
1068SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1069                struct timespec __user *, tp)
1070{
1071        struct k_clock *kc = clockid_to_kclock(which_clock);
1072        struct timespec rtn_tp;
1073        int error;
1074
1075        if (!kc)
1076                return -EINVAL;
1077
1078        error = kc->clock_getres(which_clock, &rtn_tp);
1079
1080        if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1081                error = -EFAULT;
1082
1083        return error;
1084}
1085
1086/*
1087 * nanosleep for monotonic and realtime clocks
1088 */
1089static int common_nsleep(const clockid_t which_clock, int flags,
1090                         struct timespec *tsave, struct timespec __user *rmtp)
1091{
1092        return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1093                                 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1094                                 which_clock);
1095}
1096
1097SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1098                const struct timespec __user *, rqtp,
1099                struct timespec __user *, rmtp)
1100{
1101        struct k_clock *kc = clockid_to_kclock(which_clock);
1102        struct timespec t;
1103
1104        if (!kc)
1105                return -EINVAL;
1106        if (!kc->nsleep)
1107                return -ENANOSLEEP_NOTSUP;
1108
1109        if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1110                return -EFAULT;
1111
1112        if (!timespec_valid(&t))
1113                return -EINVAL;
1114
1115        return kc->nsleep(which_clock, flags, &t, rmtp);
1116}
1117
1118/*
1119 * This will restart clock_nanosleep. This is required only by
1120 * compat_clock_nanosleep_restart for now.
1121 */
1122long clock_nanosleep_restart(struct restart_block *restart_block)
1123{
1124        clockid_t which_clock = restart_block->nanosleep.clockid;
1125        struct k_clock *kc = clockid_to_kclock(which_clock);
1126
1127        if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1128                return -EINVAL;
1129
1130        return kc->nsleep_restart(restart_block);
1131}
1132