linux/kernel/workqueue.c
<<
>>
Prefs
   1/*
   2 * kernel/workqueue.c - generic async execution with shared worker pool
   3 *
   4 * Copyright (C) 2002           Ingo Molnar
   5 *
   6 *   Derived from the taskqueue/keventd code by:
   7 *     David Woodhouse <dwmw2@infradead.org>
   8 *     Andrew Morton
   9 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10 *     Theodore Ts'o <tytso@mit.edu>
  11 *
  12 * Made to use alloc_percpu by Christoph Lameter.
  13 *
  14 * Copyright (C) 2010           SUSE Linux Products GmbH
  15 * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
  16 *
  17 * This is the generic async execution mechanism.  Work items as are
  18 * executed in process context.  The worker pool is shared and
  19 * automatically managed.  There are two worker pools for each CPU (one for
  20 * normal work items and the other for high priority ones) and some extra
  21 * pools for workqueues which are not bound to any specific CPU - the
  22 * number of these backing pools is dynamic.
  23 *
  24 * Please read Documentation/workqueue.txt for details.
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kernel.h>
  29#include <linux/sched.h>
  30#include <linux/init.h>
  31#include <linux/signal.h>
  32#include <linux/completion.h>
  33#include <linux/workqueue.h>
  34#include <linux/slab.h>
  35#include <linux/cpu.h>
  36#include <linux/notifier.h>
  37#include <linux/kthread.h>
  38#include <linux/hardirq.h>
  39#include <linux/mempolicy.h>
  40#include <linux/freezer.h>
  41#include <linux/kallsyms.h>
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
  51
  52#include "workqueue_internal.h"
  53
  54enum {
  55        /*
  56         * worker_pool flags
  57         *
  58         * A bound pool is either associated or disassociated with its CPU.
  59         * While associated (!DISASSOCIATED), all workers are bound to the
  60         * CPU and none has %WORKER_UNBOUND set and concurrency management
  61         * is in effect.
  62         *
  63         * While DISASSOCIATED, the cpu may be offline and all workers have
  64         * %WORKER_UNBOUND set and concurrency management disabled, and may
  65         * be executing on any CPU.  The pool behaves as an unbound one.
  66         *
  67         * Note that DISASSOCIATED should be flipped only while holding
  68         * attach_mutex to avoid changing binding state while
  69         * worker_attach_to_pool() is in progress.
  70         */
  71        POOL_DISASSOCIATED      = 1 << 2,       /* cpu can't serve workers */
  72
  73        /* worker flags */
  74        WORKER_DIE              = 1 << 1,       /* die die die */
  75        WORKER_IDLE             = 1 << 2,       /* is idle */
  76        WORKER_PREP             = 1 << 3,       /* preparing to run works */
  77        WORKER_CPU_INTENSIVE    = 1 << 6,       /* cpu intensive */
  78        WORKER_UNBOUND          = 1 << 7,       /* worker is unbound */
  79        WORKER_REBOUND          = 1 << 8,       /* worker was rebound */
  80
  81        WORKER_NOT_RUNNING      = WORKER_PREP | WORKER_CPU_INTENSIVE |
  82                                  WORKER_UNBOUND | WORKER_REBOUND,
  83
  84        NR_STD_WORKER_POOLS     = 2,            /* # standard pools per cpu */
  85
  86        UNBOUND_POOL_HASH_ORDER = 6,            /* hashed by pool->attrs */
  87        BUSY_WORKER_HASH_ORDER  = 6,            /* 64 pointers */
  88
  89        MAX_IDLE_WORKERS_RATIO  = 4,            /* 1/4 of busy can be idle */
  90        IDLE_WORKER_TIMEOUT     = 300 * HZ,     /* keep idle ones for 5 mins */
  91
  92        MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  93                                                /* call for help after 10ms
  94                                                   (min two ticks) */
  95        MAYDAY_INTERVAL         = HZ / 10,      /* and then every 100ms */
  96        CREATE_COOLDOWN         = HZ,           /* time to breath after fail */
  97
  98        /*
  99         * Rescue workers are used only on emergencies and shared by
 100         * all cpus.  Give MIN_NICE.
 101         */
 102        RESCUER_NICE_LEVEL      = MIN_NICE,
 103        HIGHPRI_NICE_LEVEL      = MIN_NICE,
 104
 105        WQ_NAME_LEN             = 24,
 106};
 107
 108/*
 109 * Structure fields follow one of the following exclusion rules.
 110 *
 111 * I: Modifiable by initialization/destruction paths and read-only for
 112 *    everyone else.
 113 *
 114 * P: Preemption protected.  Disabling preemption is enough and should
 115 *    only be modified and accessed from the local cpu.
 116 *
 117 * L: pool->lock protected.  Access with pool->lock held.
 118 *
 119 * X: During normal operation, modification requires pool->lock and should
 120 *    be done only from local cpu.  Either disabling preemption on local
 121 *    cpu or grabbing pool->lock is enough for read access.  If
 122 *    POOL_DISASSOCIATED is set, it's identical to L.
 123 *
 124 * A: pool->attach_mutex protected.
 125 *
 126 * PL: wq_pool_mutex protected.
 127 *
 128 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
 129 *
 130 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 131 *
 132 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 133 *      sched-RCU for reads.
 134 *
 135 * WQ: wq->mutex protected.
 136 *
 137 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
 138 *
 139 * MD: wq_mayday_lock protected.
 140 */
 141
 142/* struct worker is defined in workqueue_internal.h */
 143
 144struct worker_pool {
 145        spinlock_t              lock;           /* the pool lock */
 146        int                     cpu;            /* I: the associated cpu */
 147        int                     node;           /* I: the associated node ID */
 148        int                     id;             /* I: pool ID */
 149        unsigned int            flags;          /* X: flags */
 150
 151        unsigned long           watchdog_ts;    /* L: watchdog timestamp */
 152
 153        struct list_head        worklist;       /* L: list of pending works */
 154        int                     nr_workers;     /* L: total number of workers */
 155
 156        /* nr_idle includes the ones off idle_list for rebinding */
 157        int                     nr_idle;        /* L: currently idle ones */
 158
 159        struct list_head        idle_list;      /* X: list of idle workers */
 160        struct timer_list       idle_timer;     /* L: worker idle timeout */
 161        struct timer_list       mayday_timer;   /* L: SOS timer for workers */
 162
 163        /* a workers is either on busy_hash or idle_list, or the manager */
 164        DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 165                                                /* L: hash of busy workers */
 166
 167        /* see manage_workers() for details on the two manager mutexes */
 168        struct mutex            manager_arb;    /* manager arbitration */
 169        struct worker           *manager;       /* L: purely informational */
 170        struct mutex            attach_mutex;   /* attach/detach exclusion */
 171        struct list_head        workers;        /* A: attached workers */
 172        struct completion       *detach_completion; /* all workers detached */
 173
 174        struct ida              worker_ida;     /* worker IDs for task name */
 175
 176        struct workqueue_attrs  *attrs;         /* I: worker attributes */
 177        struct hlist_node       hash_node;      /* PL: unbound_pool_hash node */
 178        int                     refcnt;         /* PL: refcnt for unbound pools */
 179
 180        /*
 181         * The current concurrency level.  As it's likely to be accessed
 182         * from other CPUs during try_to_wake_up(), put it in a separate
 183         * cacheline.
 184         */
 185        atomic_t                nr_running ____cacheline_aligned_in_smp;
 186
 187        /*
 188         * Destruction of pool is sched-RCU protected to allow dereferences
 189         * from get_work_pool().
 190         */
 191        struct rcu_head         rcu;
 192} ____cacheline_aligned_in_smp;
 193
 194/*
 195 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 196 * of work_struct->data are used for flags and the remaining high bits
 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 198 * number of flag bits.
 199 */
 200struct pool_workqueue {
 201        struct worker_pool      *pool;          /* I: the associated pool */
 202        struct workqueue_struct *wq;            /* I: the owning workqueue */
 203        int                     work_color;     /* L: current color */
 204        int                     flush_color;    /* L: flushing color */
 205        int                     refcnt;         /* L: reference count */
 206        int                     nr_in_flight[WORK_NR_COLORS];
 207                                                /* L: nr of in_flight works */
 208        int                     nr_active;      /* L: nr of active works */
 209        int                     max_active;     /* L: max active works */
 210        struct list_head        delayed_works;  /* L: delayed works */
 211        struct list_head        pwqs_node;      /* WR: node on wq->pwqs */
 212        struct list_head        mayday_node;    /* MD: node on wq->maydays */
 213
 214        /*
 215         * Release of unbound pwq is punted to system_wq.  See put_pwq()
 216         * and pwq_unbound_release_workfn() for details.  pool_workqueue
 217         * itself is also sched-RCU protected so that the first pwq can be
 218         * determined without grabbing wq->mutex.
 219         */
 220        struct work_struct      unbound_release_work;
 221        struct rcu_head         rcu;
 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 223
 224/*
 225 * Structure used to wait for workqueue flush.
 226 */
 227struct wq_flusher {
 228        struct list_head        list;           /* WQ: list of flushers */
 229        int                     flush_color;    /* WQ: flush color waiting for */
 230        struct completion       done;           /* flush completion */
 231};
 232
 233struct wq_device;
 234
 235/*
 236 * The externally visible workqueue.  It relays the issued work items to
 237 * the appropriate worker_pool through its pool_workqueues.
 238 */
 239struct workqueue_struct {
 240        struct list_head        pwqs;           /* WR: all pwqs of this wq */
 241        struct list_head        list;           /* PR: list of all workqueues */
 242
 243        struct mutex            mutex;          /* protects this wq */
 244        int                     work_color;     /* WQ: current work color */
 245        int                     flush_color;    /* WQ: current flush color */
 246        atomic_t                nr_pwqs_to_flush; /* flush in progress */
 247        struct wq_flusher       *first_flusher; /* WQ: first flusher */
 248        struct list_head        flusher_queue;  /* WQ: flush waiters */
 249        struct list_head        flusher_overflow; /* WQ: flush overflow list */
 250
 251        struct list_head        maydays;        /* MD: pwqs requesting rescue */
 252        struct worker           *rescuer;       /* I: rescue worker */
 253
 254        int                     nr_drainers;    /* WQ: drain in progress */
 255        int                     saved_max_active; /* WQ: saved pwq max_active */
 256
 257        struct workqueue_attrs  *unbound_attrs; /* PW: only for unbound wqs */
 258        struct pool_workqueue   *dfl_pwq;       /* PW: only for unbound wqs */
 259
 260#ifdef CONFIG_SYSFS
 261        struct wq_device        *wq_dev;        /* I: for sysfs interface */
 262#endif
 263#ifdef CONFIG_LOCKDEP
 264        struct lockdep_map      lockdep_map;
 265#endif
 266        char                    name[WQ_NAME_LEN]; /* I: workqueue name */
 267
 268        /*
 269         * Destruction of workqueue_struct is sched-RCU protected to allow
 270         * walking the workqueues list without grabbing wq_pool_mutex.
 271         * This is used to dump all workqueues from sysrq.
 272         */
 273        struct rcu_head         rcu;
 274
 275        /* hot fields used during command issue, aligned to cacheline */
 276        unsigned int            flags ____cacheline_aligned; /* WQ: WQ_* flags */
 277        struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 278        struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 279};
 280
 281static struct kmem_cache *pwq_cache;
 282
 283static cpumask_var_t *wq_numa_possible_cpumask;
 284                                        /* possible CPUs of each node */
 285
 286static bool wq_disable_numa;
 287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 288
 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 292
 293static bool wq_numa_enabled;            /* unbound NUMA affinity enabled */
 294
 295/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 296static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 297
 298static DEFINE_MUTEX(wq_pool_mutex);     /* protects pools and workqueues list */
 299static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
 300
 301static LIST_HEAD(workqueues);           /* PR: list of all workqueues */
 302static bool workqueue_freezing;         /* PL: have wqs started freezing? */
 303
 304/* PL: allowable cpus for unbound wqs and work items */
 305static cpumask_var_t wq_unbound_cpumask;
 306
 307/* CPU where unbound work was last round robin scheduled from this CPU */
 308static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 309
 310/*
 311 * Local execution of unbound work items is no longer guaranteed.  The
 312 * following always forces round-robin CPU selection on unbound work items
 313 * to uncover usages which depend on it.
 314 */
 315#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 316static bool wq_debug_force_rr_cpu = true;
 317#else
 318static bool wq_debug_force_rr_cpu = false;
 319#endif
 320module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 321
 322/* the per-cpu worker pools */
 323static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 324
 325static DEFINE_IDR(worker_pool_idr);     /* PR: idr of all pools */
 326
 327/* PL: hash of all unbound pools keyed by pool->attrs */
 328static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 329
 330/* I: attributes used when instantiating standard unbound pools on demand */
 331static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 332
 333/* I: attributes used when instantiating ordered pools on demand */
 334static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 335
 336struct workqueue_struct *system_wq __read_mostly;
 337EXPORT_SYMBOL(system_wq);
 338struct workqueue_struct *system_highpri_wq __read_mostly;
 339EXPORT_SYMBOL_GPL(system_highpri_wq);
 340struct workqueue_struct *system_long_wq __read_mostly;
 341EXPORT_SYMBOL_GPL(system_long_wq);
 342struct workqueue_struct *system_unbound_wq __read_mostly;
 343EXPORT_SYMBOL_GPL(system_unbound_wq);
 344struct workqueue_struct *system_freezable_wq __read_mostly;
 345EXPORT_SYMBOL_GPL(system_freezable_wq);
 346struct workqueue_struct *system_power_efficient_wq __read_mostly;
 347EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 348struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 349EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 350
 351static int worker_thread(void *__worker);
 352static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 353
 354#define CREATE_TRACE_POINTS
 355#include <trace/events/workqueue.h>
 356
 357#define assert_rcu_or_pool_mutex()                                      \
 358        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&                 \
 359                         !lockdep_is_held(&wq_pool_mutex),              \
 360                         "sched RCU or wq_pool_mutex should be held")
 361
 362#define assert_rcu_or_wq_mutex(wq)                                      \
 363        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&                 \
 364                         !lockdep_is_held(&wq->mutex),                  \
 365                         "sched RCU or wq->mutex should be held")
 366
 367#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)                        \
 368        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&                 \
 369                         !lockdep_is_held(&wq->mutex) &&                \
 370                         !lockdep_is_held(&wq_pool_mutex),              \
 371                         "sched RCU, wq->mutex or wq_pool_mutex should be held")
 372
 373#define for_each_cpu_worker_pool(pool, cpu)                             \
 374        for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];               \
 375             (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 376             (pool)++)
 377
 378/**
 379 * for_each_pool - iterate through all worker_pools in the system
 380 * @pool: iteration cursor
 381 * @pi: integer used for iteration
 382 *
 383 * This must be called either with wq_pool_mutex held or sched RCU read
 384 * locked.  If the pool needs to be used beyond the locking in effect, the
 385 * caller is responsible for guaranteeing that the pool stays online.
 386 *
 387 * The if/else clause exists only for the lockdep assertion and can be
 388 * ignored.
 389 */
 390#define for_each_pool(pool, pi)                                         \
 391        idr_for_each_entry(&worker_pool_idr, pool, pi)                  \
 392                if (({ assert_rcu_or_pool_mutex(); false; })) { }       \
 393                else
 394
 395/**
 396 * for_each_pool_worker - iterate through all workers of a worker_pool
 397 * @worker: iteration cursor
 398 * @pool: worker_pool to iterate workers of
 399 *
 400 * This must be called with @pool->attach_mutex.
 401 *
 402 * The if/else clause exists only for the lockdep assertion and can be
 403 * ignored.
 404 */
 405#define for_each_pool_worker(worker, pool)                              \
 406        list_for_each_entry((worker), &(pool)->workers, node)           \
 407                if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
 408                else
 409
 410/**
 411 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 412 * @pwq: iteration cursor
 413 * @wq: the target workqueue
 414 *
 415 * This must be called either with wq->mutex held or sched RCU read locked.
 416 * If the pwq needs to be used beyond the locking in effect, the caller is
 417 * responsible for guaranteeing that the pwq stays online.
 418 *
 419 * The if/else clause exists only for the lockdep assertion and can be
 420 * ignored.
 421 */
 422#define for_each_pwq(pwq, wq)                                           \
 423        list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)          \
 424                if (({ assert_rcu_or_wq_mutex(wq); false; })) { }       \
 425                else
 426
 427#ifdef CONFIG_DEBUG_OBJECTS_WORK
 428
 429static struct debug_obj_descr work_debug_descr;
 430
 431static void *work_debug_hint(void *addr)
 432{
 433        return ((struct work_struct *) addr)->func;
 434}
 435
 436static bool work_is_static_object(void *addr)
 437{
 438        struct work_struct *work = addr;
 439
 440        return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 441}
 442
 443/*
 444 * fixup_init is called when:
 445 * - an active object is initialized
 446 */
 447static bool work_fixup_init(void *addr, enum debug_obj_state state)
 448{
 449        struct work_struct *work = addr;
 450
 451        switch (state) {
 452        case ODEBUG_STATE_ACTIVE:
 453                cancel_work_sync(work);
 454                debug_object_init(work, &work_debug_descr);
 455                return true;
 456        default:
 457                return false;
 458        }
 459}
 460
 461/*
 462 * fixup_free is called when:
 463 * - an active object is freed
 464 */
 465static bool work_fixup_free(void *addr, enum debug_obj_state state)
 466{
 467        struct work_struct *work = addr;
 468
 469        switch (state) {
 470        case ODEBUG_STATE_ACTIVE:
 471                cancel_work_sync(work);
 472                debug_object_free(work, &work_debug_descr);
 473                return true;
 474        default:
 475                return false;
 476        }
 477}
 478
 479static struct debug_obj_descr work_debug_descr = {
 480        .name           = "work_struct",
 481        .debug_hint     = work_debug_hint,
 482        .is_static_object = work_is_static_object,
 483        .fixup_init     = work_fixup_init,
 484        .fixup_free     = work_fixup_free,
 485};
 486
 487static inline void debug_work_activate(struct work_struct *work)
 488{
 489        debug_object_activate(work, &work_debug_descr);
 490}
 491
 492static inline void debug_work_deactivate(struct work_struct *work)
 493{
 494        debug_object_deactivate(work, &work_debug_descr);
 495}
 496
 497void __init_work(struct work_struct *work, int onstack)
 498{
 499        if (onstack)
 500                debug_object_init_on_stack(work, &work_debug_descr);
 501        else
 502                debug_object_init(work, &work_debug_descr);
 503}
 504EXPORT_SYMBOL_GPL(__init_work);
 505
 506void destroy_work_on_stack(struct work_struct *work)
 507{
 508        debug_object_free(work, &work_debug_descr);
 509}
 510EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 511
 512void destroy_delayed_work_on_stack(struct delayed_work *work)
 513{
 514        destroy_timer_on_stack(&work->timer);
 515        debug_object_free(&work->work, &work_debug_descr);
 516}
 517EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 518
 519#else
 520static inline void debug_work_activate(struct work_struct *work) { }
 521static inline void debug_work_deactivate(struct work_struct *work) { }
 522#endif
 523
 524/**
 525 * worker_pool_assign_id - allocate ID and assing it to @pool
 526 * @pool: the pool pointer of interest
 527 *
 528 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 529 * successfully, -errno on failure.
 530 */
 531static int worker_pool_assign_id(struct worker_pool *pool)
 532{
 533        int ret;
 534
 535        lockdep_assert_held(&wq_pool_mutex);
 536
 537        ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 538                        GFP_KERNEL);
 539        if (ret >= 0) {
 540                pool->id = ret;
 541                return 0;
 542        }
 543        return ret;
 544}
 545
 546/**
 547 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 548 * @wq: the target workqueue
 549 * @node: the node ID
 550 *
 551 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 552 * read locked.
 553 * If the pwq needs to be used beyond the locking in effect, the caller is
 554 * responsible for guaranteeing that the pwq stays online.
 555 *
 556 * Return: The unbound pool_workqueue for @node.
 557 */
 558static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 559                                                  int node)
 560{
 561        assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 562
 563        /*
 564         * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 565         * delayed item is pending.  The plan is to keep CPU -> NODE
 566         * mapping valid and stable across CPU on/offlines.  Once that
 567         * happens, this workaround can be removed.
 568         */
 569        if (unlikely(node == NUMA_NO_NODE))
 570                return wq->dfl_pwq;
 571
 572        return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 573}
 574
 575static unsigned int work_color_to_flags(int color)
 576{
 577        return color << WORK_STRUCT_COLOR_SHIFT;
 578}
 579
 580static int get_work_color(struct work_struct *work)
 581{
 582        return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 583                ((1 << WORK_STRUCT_COLOR_BITS) - 1);
 584}
 585
 586static int work_next_color(int color)
 587{
 588        return (color + 1) % WORK_NR_COLORS;
 589}
 590
 591/*
 592 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 593 * contain the pointer to the queued pwq.  Once execution starts, the flag
 594 * is cleared and the high bits contain OFFQ flags and pool ID.
 595 *
 596 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 597 * and clear_work_data() can be used to set the pwq, pool or clear
 598 * work->data.  These functions should only be called while the work is
 599 * owned - ie. while the PENDING bit is set.
 600 *
 601 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 602 * corresponding to a work.  Pool is available once the work has been
 603 * queued anywhere after initialization until it is sync canceled.  pwq is
 604 * available only while the work item is queued.
 605 *
 606 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 607 * canceled.  While being canceled, a work item may have its PENDING set
 608 * but stay off timer and worklist for arbitrarily long and nobody should
 609 * try to steal the PENDING bit.
 610 */
 611static inline void set_work_data(struct work_struct *work, unsigned long data,
 612                                 unsigned long flags)
 613{
 614        WARN_ON_ONCE(!work_pending(work));
 615        atomic_long_set(&work->data, data | flags | work_static(work));
 616}
 617
 618static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 619                         unsigned long extra_flags)
 620{
 621        set_work_data(work, (unsigned long)pwq,
 622                      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 623}
 624
 625static void set_work_pool_and_keep_pending(struct work_struct *work,
 626                                           int pool_id)
 627{
 628        set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 629                      WORK_STRUCT_PENDING);
 630}
 631
 632static void set_work_pool_and_clear_pending(struct work_struct *work,
 633                                            int pool_id)
 634{
 635        /*
 636         * The following wmb is paired with the implied mb in
 637         * test_and_set_bit(PENDING) and ensures all updates to @work made
 638         * here are visible to and precede any updates by the next PENDING
 639         * owner.
 640         */
 641        smp_wmb();
 642        set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 643        /*
 644         * The following mb guarantees that previous clear of a PENDING bit
 645         * will not be reordered with any speculative LOADS or STORES from
 646         * work->current_func, which is executed afterwards.  This possible
 647         * reordering can lead to a missed execution on attempt to qeueue
 648         * the same @work.  E.g. consider this case:
 649         *
 650         *   CPU#0                         CPU#1
 651         *   ----------------------------  --------------------------------
 652         *
 653         * 1  STORE event_indicated
 654         * 2  queue_work_on() {
 655         * 3    test_and_set_bit(PENDING)
 656         * 4 }                             set_..._and_clear_pending() {
 657         * 5                                 set_work_data() # clear bit
 658         * 6                                 smp_mb()
 659         * 7                               work->current_func() {
 660         * 8                                  LOAD event_indicated
 661         *                                 }
 662         *
 663         * Without an explicit full barrier speculative LOAD on line 8 can
 664         * be executed before CPU#0 does STORE on line 1.  If that happens,
 665         * CPU#0 observes the PENDING bit is still set and new execution of
 666         * a @work is not queued in a hope, that CPU#1 will eventually
 667         * finish the queued @work.  Meanwhile CPU#1 does not see
 668         * event_indicated is set, because speculative LOAD was executed
 669         * before actual STORE.
 670         */
 671        smp_mb();
 672}
 673
 674static void clear_work_data(struct work_struct *work)
 675{
 676        smp_wmb();      /* see set_work_pool_and_clear_pending() */
 677        set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 678}
 679
 680static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 681{
 682        unsigned long data = atomic_long_read(&work->data);
 683
 684        if (data & WORK_STRUCT_PWQ)
 685                return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 686        else
 687                return NULL;
 688}
 689
 690/**
 691 * get_work_pool - return the worker_pool a given work was associated with
 692 * @work: the work item of interest
 693 *
 694 * Pools are created and destroyed under wq_pool_mutex, and allows read
 695 * access under sched-RCU read lock.  As such, this function should be
 696 * called under wq_pool_mutex or with preemption disabled.
 697 *
 698 * All fields of the returned pool are accessible as long as the above
 699 * mentioned locking is in effect.  If the returned pool needs to be used
 700 * beyond the critical section, the caller is responsible for ensuring the
 701 * returned pool is and stays online.
 702 *
 703 * Return: The worker_pool @work was last associated with.  %NULL if none.
 704 */
 705static struct worker_pool *get_work_pool(struct work_struct *work)
 706{
 707        unsigned long data = atomic_long_read(&work->data);
 708        int pool_id;
 709
 710        assert_rcu_or_pool_mutex();
 711
 712        if (data & WORK_STRUCT_PWQ)
 713                return ((struct pool_workqueue *)
 714                        (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 715
 716        pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 717        if (pool_id == WORK_OFFQ_POOL_NONE)
 718                return NULL;
 719
 720        return idr_find(&worker_pool_idr, pool_id);
 721}
 722
 723/**
 724 * get_work_pool_id - return the worker pool ID a given work is associated with
 725 * @work: the work item of interest
 726 *
 727 * Return: The worker_pool ID @work was last associated with.
 728 * %WORK_OFFQ_POOL_NONE if none.
 729 */
 730static int get_work_pool_id(struct work_struct *work)
 731{
 732        unsigned long data = atomic_long_read(&work->data);
 733
 734        if (data & WORK_STRUCT_PWQ)
 735                return ((struct pool_workqueue *)
 736                        (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 737
 738        return data >> WORK_OFFQ_POOL_SHIFT;
 739}
 740
 741static void mark_work_canceling(struct work_struct *work)
 742{
 743        unsigned long pool_id = get_work_pool_id(work);
 744
 745        pool_id <<= WORK_OFFQ_POOL_SHIFT;
 746        set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 747}
 748
 749static bool work_is_canceling(struct work_struct *work)
 750{
 751        unsigned long data = atomic_long_read(&work->data);
 752
 753        return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 754}
 755
 756/*
 757 * Policy functions.  These define the policies on how the global worker
 758 * pools are managed.  Unless noted otherwise, these functions assume that
 759 * they're being called with pool->lock held.
 760 */
 761
 762static bool __need_more_worker(struct worker_pool *pool)
 763{
 764        return !atomic_read(&pool->nr_running);
 765}
 766
 767/*
 768 * Need to wake up a worker?  Called from anything but currently
 769 * running workers.
 770 *
 771 * Note that, because unbound workers never contribute to nr_running, this
 772 * function will always return %true for unbound pools as long as the
 773 * worklist isn't empty.
 774 */
 775static bool need_more_worker(struct worker_pool *pool)
 776{
 777        return !list_empty(&pool->worklist) && __need_more_worker(pool);
 778}
 779
 780/* Can I start working?  Called from busy but !running workers. */
 781static bool may_start_working(struct worker_pool *pool)
 782{
 783        return pool->nr_idle;
 784}
 785
 786/* Do I need to keep working?  Called from currently running workers. */
 787static bool keep_working(struct worker_pool *pool)
 788{
 789        return !list_empty(&pool->worklist) &&
 790                atomic_read(&pool->nr_running) <= 1;
 791}
 792
 793/* Do we need a new worker?  Called from manager. */
 794static bool need_to_create_worker(struct worker_pool *pool)
 795{
 796        return need_more_worker(pool) && !may_start_working(pool);
 797}
 798
 799/* Do we have too many workers and should some go away? */
 800static bool too_many_workers(struct worker_pool *pool)
 801{
 802        bool managing = mutex_is_locked(&pool->manager_arb);
 803        int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 804        int nr_busy = pool->nr_workers - nr_idle;
 805
 806        return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 807}
 808
 809/*
 810 * Wake up functions.
 811 */
 812
 813/* Return the first idle worker.  Safe with preemption disabled */
 814static struct worker *first_idle_worker(struct worker_pool *pool)
 815{
 816        if (unlikely(list_empty(&pool->idle_list)))
 817                return NULL;
 818
 819        return list_first_entry(&pool->idle_list, struct worker, entry);
 820}
 821
 822/**
 823 * wake_up_worker - wake up an idle worker
 824 * @pool: worker pool to wake worker from
 825 *
 826 * Wake up the first idle worker of @pool.
 827 *
 828 * CONTEXT:
 829 * spin_lock_irq(pool->lock).
 830 */
 831static void wake_up_worker(struct worker_pool *pool)
 832{
 833        struct worker *worker = first_idle_worker(pool);
 834
 835        if (likely(worker))
 836                wake_up_process(worker->task);
 837}
 838
 839/**
 840 * wq_worker_waking_up - a worker is waking up
 841 * @task: task waking up
 842 * @cpu: CPU @task is waking up to
 843 *
 844 * This function is called during try_to_wake_up() when a worker is
 845 * being awoken.
 846 *
 847 * CONTEXT:
 848 * spin_lock_irq(rq->lock)
 849 */
 850void wq_worker_waking_up(struct task_struct *task, int cpu)
 851{
 852        struct worker *worker = kthread_data(task);
 853
 854        if (!(worker->flags & WORKER_NOT_RUNNING)) {
 855                WARN_ON_ONCE(worker->pool->cpu != cpu);
 856                atomic_inc(&worker->pool->nr_running);
 857        }
 858}
 859
 860/**
 861 * wq_worker_sleeping - a worker is going to sleep
 862 * @task: task going to sleep
 863 *
 864 * This function is called during schedule() when a busy worker is
 865 * going to sleep.  Worker on the same cpu can be woken up by
 866 * returning pointer to its task.
 867 *
 868 * CONTEXT:
 869 * spin_lock_irq(rq->lock)
 870 *
 871 * Return:
 872 * Worker task on @cpu to wake up, %NULL if none.
 873 */
 874struct task_struct *wq_worker_sleeping(struct task_struct *task)
 875{
 876        struct worker *worker = kthread_data(task), *to_wakeup = NULL;
 877        struct worker_pool *pool;
 878
 879        /*
 880         * Rescuers, which may not have all the fields set up like normal
 881         * workers, also reach here, let's not access anything before
 882         * checking NOT_RUNNING.
 883         */
 884        if (worker->flags & WORKER_NOT_RUNNING)
 885                return NULL;
 886
 887        pool = worker->pool;
 888
 889        /* this can only happen on the local cpu */
 890        if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
 891                return NULL;
 892
 893        /*
 894         * The counterpart of the following dec_and_test, implied mb,
 895         * worklist not empty test sequence is in insert_work().
 896         * Please read comment there.
 897         *
 898         * NOT_RUNNING is clear.  This means that we're bound to and
 899         * running on the local cpu w/ rq lock held and preemption
 900         * disabled, which in turn means that none else could be
 901         * manipulating idle_list, so dereferencing idle_list without pool
 902         * lock is safe.
 903         */
 904        if (atomic_dec_and_test(&pool->nr_running) &&
 905            !list_empty(&pool->worklist))
 906                to_wakeup = first_idle_worker(pool);
 907        return to_wakeup ? to_wakeup->task : NULL;
 908}
 909
 910/**
 911 * worker_set_flags - set worker flags and adjust nr_running accordingly
 912 * @worker: self
 913 * @flags: flags to set
 914 *
 915 * Set @flags in @worker->flags and adjust nr_running accordingly.
 916 *
 917 * CONTEXT:
 918 * spin_lock_irq(pool->lock)
 919 */
 920static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 921{
 922        struct worker_pool *pool = worker->pool;
 923
 924        WARN_ON_ONCE(worker->task != current);
 925
 926        /* If transitioning into NOT_RUNNING, adjust nr_running. */
 927        if ((flags & WORKER_NOT_RUNNING) &&
 928            !(worker->flags & WORKER_NOT_RUNNING)) {
 929                atomic_dec(&pool->nr_running);
 930        }
 931
 932        worker->flags |= flags;
 933}
 934
 935/**
 936 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 937 * @worker: self
 938 * @flags: flags to clear
 939 *
 940 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 941 *
 942 * CONTEXT:
 943 * spin_lock_irq(pool->lock)
 944 */
 945static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 946{
 947        struct worker_pool *pool = worker->pool;
 948        unsigned int oflags = worker->flags;
 949
 950        WARN_ON_ONCE(worker->task != current);
 951
 952        worker->flags &= ~flags;
 953
 954        /*
 955         * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 956         * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 957         * of multiple flags, not a single flag.
 958         */
 959        if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 960                if (!(worker->flags & WORKER_NOT_RUNNING))
 961                        atomic_inc(&pool->nr_running);
 962}
 963
 964/**
 965 * find_worker_executing_work - find worker which is executing a work
 966 * @pool: pool of interest
 967 * @work: work to find worker for
 968 *
 969 * Find a worker which is executing @work on @pool by searching
 970 * @pool->busy_hash which is keyed by the address of @work.  For a worker
 971 * to match, its current execution should match the address of @work and
 972 * its work function.  This is to avoid unwanted dependency between
 973 * unrelated work executions through a work item being recycled while still
 974 * being executed.
 975 *
 976 * This is a bit tricky.  A work item may be freed once its execution
 977 * starts and nothing prevents the freed area from being recycled for
 978 * another work item.  If the same work item address ends up being reused
 979 * before the original execution finishes, workqueue will identify the
 980 * recycled work item as currently executing and make it wait until the
 981 * current execution finishes, introducing an unwanted dependency.
 982 *
 983 * This function checks the work item address and work function to avoid
 984 * false positives.  Note that this isn't complete as one may construct a
 985 * work function which can introduce dependency onto itself through a
 986 * recycled work item.  Well, if somebody wants to shoot oneself in the
 987 * foot that badly, there's only so much we can do, and if such deadlock
 988 * actually occurs, it should be easy to locate the culprit work function.
 989 *
 990 * CONTEXT:
 991 * spin_lock_irq(pool->lock).
 992 *
 993 * Return:
 994 * Pointer to worker which is executing @work if found, %NULL
 995 * otherwise.
 996 */
 997static struct worker *find_worker_executing_work(struct worker_pool *pool,
 998                                                 struct work_struct *work)
 999{
1000        struct worker *worker;
1001
1002        hash_for_each_possible(pool->busy_hash, worker, hentry,
1003                               (unsigned long)work)
1004                if (worker->current_work == work &&
1005                    worker->current_func == work->func)
1006                        return worker;
1007
1008        return NULL;
1009}
1010
1011/**
1012 * move_linked_works - move linked works to a list
1013 * @work: start of series of works to be scheduled
1014 * @head: target list to append @work to
1015 * @nextp: out parameter for nested worklist walking
1016 *
1017 * Schedule linked works starting from @work to @head.  Work series to
1018 * be scheduled starts at @work and includes any consecutive work with
1019 * WORK_STRUCT_LINKED set in its predecessor.
1020 *
1021 * If @nextp is not NULL, it's updated to point to the next work of
1022 * the last scheduled work.  This allows move_linked_works() to be
1023 * nested inside outer list_for_each_entry_safe().
1024 *
1025 * CONTEXT:
1026 * spin_lock_irq(pool->lock).
1027 */
1028static void move_linked_works(struct work_struct *work, struct list_head *head,
1029                              struct work_struct **nextp)
1030{
1031        struct work_struct *n;
1032
1033        /*
1034         * Linked worklist will always end before the end of the list,
1035         * use NULL for list head.
1036         */
1037        list_for_each_entry_safe_from(work, n, NULL, entry) {
1038                list_move_tail(&work->entry, head);
1039                if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1040                        break;
1041        }
1042
1043        /*
1044         * If we're already inside safe list traversal and have moved
1045         * multiple works to the scheduled queue, the next position
1046         * needs to be updated.
1047         */
1048        if (nextp)
1049                *nextp = n;
1050}
1051
1052/**
1053 * get_pwq - get an extra reference on the specified pool_workqueue
1054 * @pwq: pool_workqueue to get
1055 *
1056 * Obtain an extra reference on @pwq.  The caller should guarantee that
1057 * @pwq has positive refcnt and be holding the matching pool->lock.
1058 */
1059static void get_pwq(struct pool_workqueue *pwq)
1060{
1061        lockdep_assert_held(&pwq->pool->lock);
1062        WARN_ON_ONCE(pwq->refcnt <= 0);
1063        pwq->refcnt++;
1064}
1065
1066/**
1067 * put_pwq - put a pool_workqueue reference
1068 * @pwq: pool_workqueue to put
1069 *
1070 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1071 * destruction.  The caller should be holding the matching pool->lock.
1072 */
1073static void put_pwq(struct pool_workqueue *pwq)
1074{
1075        lockdep_assert_held(&pwq->pool->lock);
1076        if (likely(--pwq->refcnt))
1077                return;
1078        if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1079                return;
1080        /*
1081         * @pwq can't be released under pool->lock, bounce to
1082         * pwq_unbound_release_workfn().  This never recurses on the same
1083         * pool->lock as this path is taken only for unbound workqueues and
1084         * the release work item is scheduled on a per-cpu workqueue.  To
1085         * avoid lockdep warning, unbound pool->locks are given lockdep
1086         * subclass of 1 in get_unbound_pool().
1087         */
1088        schedule_work(&pwq->unbound_release_work);
1089}
1090
1091/**
1092 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1093 * @pwq: pool_workqueue to put (can be %NULL)
1094 *
1095 * put_pwq() with locking.  This function also allows %NULL @pwq.
1096 */
1097static void put_pwq_unlocked(struct pool_workqueue *pwq)
1098{
1099        if (pwq) {
1100                /*
1101                 * As both pwqs and pools are sched-RCU protected, the
1102                 * following lock operations are safe.
1103                 */
1104                spin_lock_irq(&pwq->pool->lock);
1105                put_pwq(pwq);
1106                spin_unlock_irq(&pwq->pool->lock);
1107        }
1108}
1109
1110static void pwq_activate_delayed_work(struct work_struct *work)
1111{
1112        struct pool_workqueue *pwq = get_work_pwq(work);
1113
1114        trace_workqueue_activate_work(work);
1115        if (list_empty(&pwq->pool->worklist))
1116                pwq->pool->watchdog_ts = jiffies;
1117        move_linked_works(work, &pwq->pool->worklist, NULL);
1118        __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1119        pwq->nr_active++;
1120}
1121
1122static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1123{
1124        struct work_struct *work = list_first_entry(&pwq->delayed_works,
1125                                                    struct work_struct, entry);
1126
1127        pwq_activate_delayed_work(work);
1128}
1129
1130/**
1131 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1132 * @pwq: pwq of interest
1133 * @color: color of work which left the queue
1134 *
1135 * A work either has completed or is removed from pending queue,
1136 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1137 *
1138 * CONTEXT:
1139 * spin_lock_irq(pool->lock).
1140 */
1141static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1142{
1143        /* uncolored work items don't participate in flushing or nr_active */
1144        if (color == WORK_NO_COLOR)
1145                goto out_put;
1146
1147        pwq->nr_in_flight[color]--;
1148
1149        pwq->nr_active--;
1150        if (!list_empty(&pwq->delayed_works)) {
1151                /* one down, submit a delayed one */
1152                if (pwq->nr_active < pwq->max_active)
1153                        pwq_activate_first_delayed(pwq);
1154        }
1155
1156        /* is flush in progress and are we at the flushing tip? */
1157        if (likely(pwq->flush_color != color))
1158                goto out_put;
1159
1160        /* are there still in-flight works? */
1161        if (pwq->nr_in_flight[color])
1162                goto out_put;
1163
1164        /* this pwq is done, clear flush_color */
1165        pwq->flush_color = -1;
1166
1167        /*
1168         * If this was the last pwq, wake up the first flusher.  It
1169         * will handle the rest.
1170         */
1171        if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1172                complete(&pwq->wq->first_flusher->done);
1173out_put:
1174        put_pwq(pwq);
1175}
1176
1177/**
1178 * try_to_grab_pending - steal work item from worklist and disable irq
1179 * @work: work item to steal
1180 * @is_dwork: @work is a delayed_work
1181 * @flags: place to store irq state
1182 *
1183 * Try to grab PENDING bit of @work.  This function can handle @work in any
1184 * stable state - idle, on timer or on worklist.
1185 *
1186 * Return:
1187 *  1           if @work was pending and we successfully stole PENDING
1188 *  0           if @work was idle and we claimed PENDING
1189 *  -EAGAIN     if PENDING couldn't be grabbed at the moment, safe to busy-retry
1190 *  -ENOENT     if someone else is canceling @work, this state may persist
1191 *              for arbitrarily long
1192 *
1193 * Note:
1194 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1195 * interrupted while holding PENDING and @work off queue, irq must be
1196 * disabled on entry.  This, combined with delayed_work->timer being
1197 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1198 *
1199 * On successful return, >= 0, irq is disabled and the caller is
1200 * responsible for releasing it using local_irq_restore(*@flags).
1201 *
1202 * This function is safe to call from any context including IRQ handler.
1203 */
1204static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1205                               unsigned long *flags)
1206{
1207        struct worker_pool *pool;
1208        struct pool_workqueue *pwq;
1209
1210        local_irq_save(*flags);
1211
1212        /* try to steal the timer if it exists */
1213        if (is_dwork) {
1214                struct delayed_work *dwork = to_delayed_work(work);
1215
1216                /*
1217                 * dwork->timer is irqsafe.  If del_timer() fails, it's
1218                 * guaranteed that the timer is not queued anywhere and not
1219                 * running on the local CPU.
1220                 */
1221                if (likely(del_timer(&dwork->timer)))
1222                        return 1;
1223        }
1224
1225        /* try to claim PENDING the normal way */
1226        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1227                return 0;
1228
1229        /*
1230         * The queueing is in progress, or it is already queued. Try to
1231         * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1232         */
1233        pool = get_work_pool(work);
1234        if (!pool)
1235                goto fail;
1236
1237        spin_lock(&pool->lock);
1238        /*
1239         * work->data is guaranteed to point to pwq only while the work
1240         * item is queued on pwq->wq, and both updating work->data to point
1241         * to pwq on queueing and to pool on dequeueing are done under
1242         * pwq->pool->lock.  This in turn guarantees that, if work->data
1243         * points to pwq which is associated with a locked pool, the work
1244         * item is currently queued on that pool.
1245         */
1246        pwq = get_work_pwq(work);
1247        if (pwq && pwq->pool == pool) {
1248                debug_work_deactivate(work);
1249
1250                /*
1251                 * A delayed work item cannot be grabbed directly because
1252                 * it might have linked NO_COLOR work items which, if left
1253                 * on the delayed_list, will confuse pwq->nr_active
1254                 * management later on and cause stall.  Make sure the work
1255                 * item is activated before grabbing.
1256                 */
1257                if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1258                        pwq_activate_delayed_work(work);
1259
1260                list_del_init(&work->entry);
1261                pwq_dec_nr_in_flight(pwq, get_work_color(work));
1262
1263                /* work->data points to pwq iff queued, point to pool */
1264                set_work_pool_and_keep_pending(work, pool->id);
1265
1266                spin_unlock(&pool->lock);
1267                return 1;
1268        }
1269        spin_unlock(&pool->lock);
1270fail:
1271        local_irq_restore(*flags);
1272        if (work_is_canceling(work))
1273                return -ENOENT;
1274        cpu_relax();
1275        return -EAGAIN;
1276}
1277
1278/**
1279 * insert_work - insert a work into a pool
1280 * @pwq: pwq @work belongs to
1281 * @work: work to insert
1282 * @head: insertion point
1283 * @extra_flags: extra WORK_STRUCT_* flags to set
1284 *
1285 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1286 * work_struct flags.
1287 *
1288 * CONTEXT:
1289 * spin_lock_irq(pool->lock).
1290 */
1291static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1292                        struct list_head *head, unsigned int extra_flags)
1293{
1294        struct worker_pool *pool = pwq->pool;
1295
1296        /* we own @work, set data and link */
1297        set_work_pwq(work, pwq, extra_flags);
1298        list_add_tail(&work->entry, head);
1299        get_pwq(pwq);
1300
1301        /*
1302         * Ensure either wq_worker_sleeping() sees the above
1303         * list_add_tail() or we see zero nr_running to avoid workers lying
1304         * around lazily while there are works to be processed.
1305         */
1306        smp_mb();
1307
1308        if (__need_more_worker(pool))
1309                wake_up_worker(pool);
1310}
1311
1312/*
1313 * Test whether @work is being queued from another work executing on the
1314 * same workqueue.
1315 */
1316static bool is_chained_work(struct workqueue_struct *wq)
1317{
1318        struct worker *worker;
1319
1320        worker = current_wq_worker();
1321        /*
1322         * Return %true iff I'm a worker execuing a work item on @wq.  If
1323         * I'm @worker, it's safe to dereference it without locking.
1324         */
1325        return worker && worker->current_pwq->wq == wq;
1326}
1327
1328/*
1329 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1330 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1331 * avoid perturbing sensitive tasks.
1332 */
1333static int wq_select_unbound_cpu(int cpu)
1334{
1335        static bool printed_dbg_warning;
1336        int new_cpu;
1337
1338        if (likely(!wq_debug_force_rr_cpu)) {
1339                if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1340                        return cpu;
1341        } else if (!printed_dbg_warning) {
1342                pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1343                printed_dbg_warning = true;
1344        }
1345
1346        if (cpumask_empty(wq_unbound_cpumask))
1347                return cpu;
1348
1349        new_cpu = __this_cpu_read(wq_rr_cpu_last);
1350        new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1351        if (unlikely(new_cpu >= nr_cpu_ids)) {
1352                new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1353                if (unlikely(new_cpu >= nr_cpu_ids))
1354                        return cpu;
1355        }
1356        __this_cpu_write(wq_rr_cpu_last, new_cpu);
1357
1358        return new_cpu;
1359}
1360
1361static void __queue_work(int cpu, struct workqueue_struct *wq,
1362                         struct work_struct *work)
1363{
1364        struct pool_workqueue *pwq;
1365        struct worker_pool *last_pool;
1366        struct list_head *worklist;
1367        unsigned int work_flags;
1368        unsigned int req_cpu = cpu;
1369
1370        /*
1371         * While a work item is PENDING && off queue, a task trying to
1372         * steal the PENDING will busy-loop waiting for it to either get
1373         * queued or lose PENDING.  Grabbing PENDING and queueing should
1374         * happen with IRQ disabled.
1375         */
1376        WARN_ON_ONCE(!irqs_disabled());
1377
1378        debug_work_activate(work);
1379
1380        /* if draining, only works from the same workqueue are allowed */
1381        if (unlikely(wq->flags & __WQ_DRAINING) &&
1382            WARN_ON_ONCE(!is_chained_work(wq)))
1383                return;
1384retry:
1385        if (req_cpu == WORK_CPU_UNBOUND)
1386                cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1387
1388        /* pwq which will be used unless @work is executing elsewhere */
1389        if (!(wq->flags & WQ_UNBOUND))
1390                pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1391        else
1392                pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1393
1394        /*
1395         * If @work was previously on a different pool, it might still be
1396         * running there, in which case the work needs to be queued on that
1397         * pool to guarantee non-reentrancy.
1398         */
1399        last_pool = get_work_pool(work);
1400        if (last_pool && last_pool != pwq->pool) {
1401                struct worker *worker;
1402
1403                spin_lock(&last_pool->lock);
1404
1405                worker = find_worker_executing_work(last_pool, work);
1406
1407                if (worker && worker->current_pwq->wq == wq) {
1408                        pwq = worker->current_pwq;
1409                } else {
1410                        /* meh... not running there, queue here */
1411                        spin_unlock(&last_pool->lock);
1412                        spin_lock(&pwq->pool->lock);
1413                }
1414        } else {
1415                spin_lock(&pwq->pool->lock);
1416        }
1417
1418        /*
1419         * pwq is determined and locked.  For unbound pools, we could have
1420         * raced with pwq release and it could already be dead.  If its
1421         * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1422         * without another pwq replacing it in the numa_pwq_tbl or while
1423         * work items are executing on it, so the retrying is guaranteed to
1424         * make forward-progress.
1425         */
1426        if (unlikely(!pwq->refcnt)) {
1427                if (wq->flags & WQ_UNBOUND) {
1428                        spin_unlock(&pwq->pool->lock);
1429                        cpu_relax();
1430                        goto retry;
1431                }
1432                /* oops */
1433                WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1434                          wq->name, cpu);
1435        }
1436
1437        /* pwq determined, queue */
1438        trace_workqueue_queue_work(req_cpu, pwq, work);
1439
1440        if (WARN_ON(!list_empty(&work->entry))) {
1441                spin_unlock(&pwq->pool->lock);
1442                return;
1443        }
1444
1445        pwq->nr_in_flight[pwq->work_color]++;
1446        work_flags = work_color_to_flags(pwq->work_color);
1447
1448        if (likely(pwq->nr_active < pwq->max_active)) {
1449                trace_workqueue_activate_work(work);
1450                pwq->nr_active++;
1451                worklist = &pwq->pool->worklist;
1452                if (list_empty(worklist))
1453                        pwq->pool->watchdog_ts = jiffies;
1454        } else {
1455                work_flags |= WORK_STRUCT_DELAYED;
1456                worklist = &pwq->delayed_works;
1457        }
1458
1459        insert_work(pwq, work, worklist, work_flags);
1460
1461        spin_unlock(&pwq->pool->lock);
1462}
1463
1464/**
1465 * queue_work_on - queue work on specific cpu
1466 * @cpu: CPU number to execute work on
1467 * @wq: workqueue to use
1468 * @work: work to queue
1469 *
1470 * We queue the work to a specific CPU, the caller must ensure it
1471 * can't go away.
1472 *
1473 * Return: %false if @work was already on a queue, %true otherwise.
1474 */
1475bool queue_work_on(int cpu, struct workqueue_struct *wq,
1476                   struct work_struct *work)
1477{
1478        bool ret = false;
1479        unsigned long flags;
1480
1481        local_irq_save(flags);
1482
1483        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1484                __queue_work(cpu, wq, work);
1485                ret = true;
1486        }
1487
1488        local_irq_restore(flags);
1489        return ret;
1490}
1491EXPORT_SYMBOL(queue_work_on);
1492
1493void delayed_work_timer_fn(unsigned long __data)
1494{
1495        struct delayed_work *dwork = (struct delayed_work *)__data;
1496
1497        /* should have been called from irqsafe timer with irq already off */
1498        __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1499}
1500EXPORT_SYMBOL(delayed_work_timer_fn);
1501
1502static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1503                                struct delayed_work *dwork, unsigned long delay)
1504{
1505        struct timer_list *timer = &dwork->timer;
1506        struct work_struct *work = &dwork->work;
1507
1508        WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1509                     timer->data != (unsigned long)dwork);
1510        WARN_ON_ONCE(timer_pending(timer));
1511        WARN_ON_ONCE(!list_empty(&work->entry));
1512
1513        /*
1514         * If @delay is 0, queue @dwork->work immediately.  This is for
1515         * both optimization and correctness.  The earliest @timer can
1516         * expire is on the closest next tick and delayed_work users depend
1517         * on that there's no such delay when @delay is 0.
1518         */
1519        if (!delay) {
1520                __queue_work(cpu, wq, &dwork->work);
1521                return;
1522        }
1523
1524        timer_stats_timer_set_start_info(&dwork->timer);
1525
1526        dwork->wq = wq;
1527        dwork->cpu = cpu;
1528        timer->expires = jiffies + delay;
1529
1530        if (unlikely(cpu != WORK_CPU_UNBOUND))
1531                add_timer_on(timer, cpu);
1532        else
1533                add_timer(timer);
1534}
1535
1536/**
1537 * queue_delayed_work_on - queue work on specific CPU after delay
1538 * @cpu: CPU number to execute work on
1539 * @wq: workqueue to use
1540 * @dwork: work to queue
1541 * @delay: number of jiffies to wait before queueing
1542 *
1543 * Return: %false if @work was already on a queue, %true otherwise.  If
1544 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1545 * execution.
1546 */
1547bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1548                           struct delayed_work *dwork, unsigned long delay)
1549{
1550        struct work_struct *work = &dwork->work;
1551        bool ret = false;
1552        unsigned long flags;
1553
1554        /* read the comment in __queue_work() */
1555        local_irq_save(flags);
1556
1557        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1558                __queue_delayed_work(cpu, wq, dwork, delay);
1559                ret = true;
1560        }
1561
1562        local_irq_restore(flags);
1563        return ret;
1564}
1565EXPORT_SYMBOL(queue_delayed_work_on);
1566
1567/**
1568 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1569 * @cpu: CPU number to execute work on
1570 * @wq: workqueue to use
1571 * @dwork: work to queue
1572 * @delay: number of jiffies to wait before queueing
1573 *
1574 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1575 * modify @dwork's timer so that it expires after @delay.  If @delay is
1576 * zero, @work is guaranteed to be scheduled immediately regardless of its
1577 * current state.
1578 *
1579 * Return: %false if @dwork was idle and queued, %true if @dwork was
1580 * pending and its timer was modified.
1581 *
1582 * This function is safe to call from any context including IRQ handler.
1583 * See try_to_grab_pending() for details.
1584 */
1585bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1586                         struct delayed_work *dwork, unsigned long delay)
1587{
1588        unsigned long flags;
1589        int ret;
1590
1591        do {
1592                ret = try_to_grab_pending(&dwork->work, true, &flags);
1593        } while (unlikely(ret == -EAGAIN));
1594
1595        if (likely(ret >= 0)) {
1596                __queue_delayed_work(cpu, wq, dwork, delay);
1597                local_irq_restore(flags);
1598        }
1599
1600        /* -ENOENT from try_to_grab_pending() becomes %true */
1601        return ret;
1602}
1603EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1604
1605/**
1606 * worker_enter_idle - enter idle state
1607 * @worker: worker which is entering idle state
1608 *
1609 * @worker is entering idle state.  Update stats and idle timer if
1610 * necessary.
1611 *
1612 * LOCKING:
1613 * spin_lock_irq(pool->lock).
1614 */
1615static void worker_enter_idle(struct worker *worker)
1616{
1617        struct worker_pool *pool = worker->pool;
1618
1619        if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1620            WARN_ON_ONCE(!list_empty(&worker->entry) &&
1621                         (worker->hentry.next || worker->hentry.pprev)))
1622                return;
1623
1624        /* can't use worker_set_flags(), also called from create_worker() */
1625        worker->flags |= WORKER_IDLE;
1626        pool->nr_idle++;
1627        worker->last_active = jiffies;
1628
1629        /* idle_list is LIFO */
1630        list_add(&worker->entry, &pool->idle_list);
1631
1632        if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1633                mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1634
1635        /*
1636         * Sanity check nr_running.  Because wq_unbind_fn() releases
1637         * pool->lock between setting %WORKER_UNBOUND and zapping
1638         * nr_running, the warning may trigger spuriously.  Check iff
1639         * unbind is not in progress.
1640         */
1641        WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1642                     pool->nr_workers == pool->nr_idle &&
1643                     atomic_read(&pool->nr_running));
1644}
1645
1646/**
1647 * worker_leave_idle - leave idle state
1648 * @worker: worker which is leaving idle state
1649 *
1650 * @worker is leaving idle state.  Update stats.
1651 *
1652 * LOCKING:
1653 * spin_lock_irq(pool->lock).
1654 */
1655static void worker_leave_idle(struct worker *worker)
1656{
1657        struct worker_pool *pool = worker->pool;
1658
1659        if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1660                return;
1661        worker_clr_flags(worker, WORKER_IDLE);
1662        pool->nr_idle--;
1663        list_del_init(&worker->entry);
1664}
1665
1666static struct worker *alloc_worker(int node)
1667{
1668        struct worker *worker;
1669
1670        worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1671        if (worker) {
1672                INIT_LIST_HEAD(&worker->entry);
1673                INIT_LIST_HEAD(&worker->scheduled);
1674                INIT_LIST_HEAD(&worker->node);
1675                /* on creation a worker is in !idle && prep state */
1676                worker->flags = WORKER_PREP;
1677        }
1678        return worker;
1679}
1680
1681/**
1682 * worker_attach_to_pool() - attach a worker to a pool
1683 * @worker: worker to be attached
1684 * @pool: the target pool
1685 *
1686 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1687 * cpu-binding of @worker are kept coordinated with the pool across
1688 * cpu-[un]hotplugs.
1689 */
1690static void worker_attach_to_pool(struct worker *worker,
1691                                   struct worker_pool *pool)
1692{
1693        mutex_lock(&pool->attach_mutex);
1694
1695        /*
1696         * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1697         * online CPUs.  It'll be re-applied when any of the CPUs come up.
1698         */
1699        set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1700
1701        /*
1702         * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1703         * stable across this function.  See the comments above the
1704         * flag definition for details.
1705         */
1706        if (pool->flags & POOL_DISASSOCIATED)
1707                worker->flags |= WORKER_UNBOUND;
1708
1709        list_add_tail(&worker->node, &pool->workers);
1710
1711        mutex_unlock(&pool->attach_mutex);
1712}
1713
1714/**
1715 * worker_detach_from_pool() - detach a worker from its pool
1716 * @worker: worker which is attached to its pool
1717 * @pool: the pool @worker is attached to
1718 *
1719 * Undo the attaching which had been done in worker_attach_to_pool().  The
1720 * caller worker shouldn't access to the pool after detached except it has
1721 * other reference to the pool.
1722 */
1723static void worker_detach_from_pool(struct worker *worker,
1724                                    struct worker_pool *pool)
1725{
1726        struct completion *detach_completion = NULL;
1727
1728        mutex_lock(&pool->attach_mutex);
1729        list_del(&worker->node);
1730        if (list_empty(&pool->workers))
1731                detach_completion = pool->detach_completion;
1732        mutex_unlock(&pool->attach_mutex);
1733
1734        /* clear leftover flags without pool->lock after it is detached */
1735        worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1736
1737        if (detach_completion)
1738                complete(detach_completion);
1739}
1740
1741/**
1742 * create_worker - create a new workqueue worker
1743 * @pool: pool the new worker will belong to
1744 *
1745 * Create and start a new worker which is attached to @pool.
1746 *
1747 * CONTEXT:
1748 * Might sleep.  Does GFP_KERNEL allocations.
1749 *
1750 * Return:
1751 * Pointer to the newly created worker.
1752 */
1753static struct worker *create_worker(struct worker_pool *pool)
1754{
1755        struct worker *worker = NULL;
1756        int id = -1;
1757        char id_buf[16];
1758
1759        /* ID is needed to determine kthread name */
1760        id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1761        if (id < 0)
1762                goto fail;
1763
1764        worker = alloc_worker(pool->node);
1765        if (!worker)
1766                goto fail;
1767
1768        worker->pool = pool;
1769        worker->id = id;
1770
1771        if (pool->cpu >= 0)
1772                snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1773                         pool->attrs->nice < 0  ? "H" : "");
1774        else
1775                snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1776
1777        worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1778                                              "kworker/%s", id_buf);
1779        if (IS_ERR(worker->task))
1780                goto fail;
1781
1782        set_user_nice(worker->task, pool->attrs->nice);
1783        kthread_bind_mask(worker->task, pool->attrs->cpumask);
1784
1785        /* successful, attach the worker to the pool */
1786        worker_attach_to_pool(worker, pool);
1787
1788        /* start the newly created worker */
1789        spin_lock_irq(&pool->lock);
1790        worker->pool->nr_workers++;
1791        worker_enter_idle(worker);
1792        wake_up_process(worker->task);
1793        spin_unlock_irq(&pool->lock);
1794
1795        return worker;
1796
1797fail:
1798        if (id >= 0)
1799                ida_simple_remove(&pool->worker_ida, id);
1800        kfree(worker);
1801        return NULL;
1802}
1803
1804/**
1805 * destroy_worker - destroy a workqueue worker
1806 * @worker: worker to be destroyed
1807 *
1808 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1809 * be idle.
1810 *
1811 * CONTEXT:
1812 * spin_lock_irq(pool->lock).
1813 */
1814static void destroy_worker(struct worker *worker)
1815{
1816        struct worker_pool *pool = worker->pool;
1817
1818        lockdep_assert_held(&pool->lock);
1819
1820        /* sanity check frenzy */
1821        if (WARN_ON(worker->current_work) ||
1822            WARN_ON(!list_empty(&worker->scheduled)) ||
1823            WARN_ON(!(worker->flags & WORKER_IDLE)))
1824                return;
1825
1826        pool->nr_workers--;
1827        pool->nr_idle--;
1828
1829        list_del_init(&worker->entry);
1830        worker->flags |= WORKER_DIE;
1831        wake_up_process(worker->task);
1832}
1833
1834static void idle_worker_timeout(unsigned long __pool)
1835{
1836        struct worker_pool *pool = (void *)__pool;
1837
1838        spin_lock_irq(&pool->lock);
1839
1840        while (too_many_workers(pool)) {
1841                struct worker *worker;
1842                unsigned long expires;
1843
1844                /* idle_list is kept in LIFO order, check the last one */
1845                worker = list_entry(pool->idle_list.prev, struct worker, entry);
1846                expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1847
1848                if (time_before(jiffies, expires)) {
1849                        mod_timer(&pool->idle_timer, expires);
1850                        break;
1851                }
1852
1853                destroy_worker(worker);
1854        }
1855
1856        spin_unlock_irq(&pool->lock);
1857}
1858
1859static void send_mayday(struct work_struct *work)
1860{
1861        struct pool_workqueue *pwq = get_work_pwq(work);
1862        struct workqueue_struct *wq = pwq->wq;
1863
1864        lockdep_assert_held(&wq_mayday_lock);
1865
1866        if (!wq->rescuer)
1867                return;
1868
1869        /* mayday mayday mayday */
1870        if (list_empty(&pwq->mayday_node)) {
1871                /*
1872                 * If @pwq is for an unbound wq, its base ref may be put at
1873                 * any time due to an attribute change.  Pin @pwq until the
1874                 * rescuer is done with it.
1875                 */
1876                get_pwq(pwq);
1877                list_add_tail(&pwq->mayday_node, &wq->maydays);
1878                wake_up_process(wq->rescuer->task);
1879        }
1880}
1881
1882static void pool_mayday_timeout(unsigned long __pool)
1883{
1884        struct worker_pool *pool = (void *)__pool;
1885        struct work_struct *work;
1886
1887        spin_lock_irq(&pool->lock);
1888        spin_lock(&wq_mayday_lock);             /* for wq->maydays */
1889
1890        if (need_to_create_worker(pool)) {
1891                /*
1892                 * We've been trying to create a new worker but
1893                 * haven't been successful.  We might be hitting an
1894                 * allocation deadlock.  Send distress signals to
1895                 * rescuers.
1896                 */
1897                list_for_each_entry(work, &pool->worklist, entry)
1898                        send_mayday(work);
1899        }
1900
1901        spin_unlock(&wq_mayday_lock);
1902        spin_unlock_irq(&pool->lock);
1903
1904        mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1905}
1906
1907/**
1908 * maybe_create_worker - create a new worker if necessary
1909 * @pool: pool to create a new worker for
1910 *
1911 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1912 * have at least one idle worker on return from this function.  If
1913 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1914 * sent to all rescuers with works scheduled on @pool to resolve
1915 * possible allocation deadlock.
1916 *
1917 * On return, need_to_create_worker() is guaranteed to be %false and
1918 * may_start_working() %true.
1919 *
1920 * LOCKING:
1921 * spin_lock_irq(pool->lock) which may be released and regrabbed
1922 * multiple times.  Does GFP_KERNEL allocations.  Called only from
1923 * manager.
1924 */
1925static void maybe_create_worker(struct worker_pool *pool)
1926__releases(&pool->lock)
1927__acquires(&pool->lock)
1928{
1929restart:
1930        spin_unlock_irq(&pool->lock);
1931
1932        /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1933        mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1934
1935        while (true) {
1936                if (create_worker(pool) || !need_to_create_worker(pool))
1937                        break;
1938
1939                schedule_timeout_interruptible(CREATE_COOLDOWN);
1940
1941                if (!need_to_create_worker(pool))
1942                        break;
1943        }
1944
1945        del_timer_sync(&pool->mayday_timer);
1946        spin_lock_irq(&pool->lock);
1947        /*
1948         * This is necessary even after a new worker was just successfully
1949         * created as @pool->lock was dropped and the new worker might have
1950         * already become busy.
1951         */
1952        if (need_to_create_worker(pool))
1953                goto restart;
1954}
1955
1956/**
1957 * manage_workers - manage worker pool
1958 * @worker: self
1959 *
1960 * Assume the manager role and manage the worker pool @worker belongs
1961 * to.  At any given time, there can be only zero or one manager per
1962 * pool.  The exclusion is handled automatically by this function.
1963 *
1964 * The caller can safely start processing works on false return.  On
1965 * true return, it's guaranteed that need_to_create_worker() is false
1966 * and may_start_working() is true.
1967 *
1968 * CONTEXT:
1969 * spin_lock_irq(pool->lock) which may be released and regrabbed
1970 * multiple times.  Does GFP_KERNEL allocations.
1971 *
1972 * Return:
1973 * %false if the pool doesn't need management and the caller can safely
1974 * start processing works, %true if management function was performed and
1975 * the conditions that the caller verified before calling the function may
1976 * no longer be true.
1977 */
1978static bool manage_workers(struct worker *worker)
1979{
1980        struct worker_pool *pool = worker->pool;
1981
1982        /*
1983         * Anyone who successfully grabs manager_arb wins the arbitration
1984         * and becomes the manager.  mutex_trylock() on pool->manager_arb
1985         * failure while holding pool->lock reliably indicates that someone
1986         * else is managing the pool and the worker which failed trylock
1987         * can proceed to executing work items.  This means that anyone
1988         * grabbing manager_arb is responsible for actually performing
1989         * manager duties.  If manager_arb is grabbed and released without
1990         * actual management, the pool may stall indefinitely.
1991         */
1992        if (!mutex_trylock(&pool->manager_arb))
1993                return false;
1994        pool->manager = worker;
1995
1996        maybe_create_worker(pool);
1997
1998        pool->manager = NULL;
1999        mutex_unlock(&pool->manager_arb);
2000        return true;
2001}
2002
2003/**
2004 * process_one_work - process single work
2005 * @worker: self
2006 * @work: work to process
2007 *
2008 * Process @work.  This function contains all the logics necessary to
2009 * process a single work including synchronization against and
2010 * interaction with other workers on the same cpu, queueing and
2011 * flushing.  As long as context requirement is met, any worker can
2012 * call this function to process a work.
2013 *
2014 * CONTEXT:
2015 * spin_lock_irq(pool->lock) which is released and regrabbed.
2016 */
2017static void process_one_work(struct worker *worker, struct work_struct *work)
2018__releases(&pool->lock)
2019__acquires(&pool->lock)
2020{
2021        struct pool_workqueue *pwq = get_work_pwq(work);
2022        struct worker_pool *pool = worker->pool;
2023        bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2024        int work_color;
2025        struct worker *collision;
2026#ifdef CONFIG_LOCKDEP
2027        /*
2028         * It is permissible to free the struct work_struct from
2029         * inside the function that is called from it, this we need to
2030         * take into account for lockdep too.  To avoid bogus "held
2031         * lock freed" warnings as well as problems when looking into
2032         * work->lockdep_map, make a copy and use that here.
2033         */
2034        struct lockdep_map lockdep_map;
2035
2036        lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2037#endif
2038        /* ensure we're on the correct CPU */
2039        WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2040                     raw_smp_processor_id() != pool->cpu);
2041
2042        /*
2043         * A single work shouldn't be executed concurrently by
2044         * multiple workers on a single cpu.  Check whether anyone is
2045         * already processing the work.  If so, defer the work to the
2046         * currently executing one.
2047         */
2048        collision = find_worker_executing_work(pool, work);
2049        if (unlikely(collision)) {
2050                move_linked_works(work, &collision->scheduled, NULL);
2051                return;
2052        }
2053
2054        /* claim and dequeue */
2055        debug_work_deactivate(work);
2056        hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2057        worker->current_work = work;
2058        worker->current_func = work->func;
2059        worker->current_pwq = pwq;
2060        work_color = get_work_color(work);
2061
2062        list_del_init(&work->entry);
2063
2064        /*
2065         * CPU intensive works don't participate in concurrency management.
2066         * They're the scheduler's responsibility.  This takes @worker out
2067         * of concurrency management and the next code block will chain
2068         * execution of the pending work items.
2069         */
2070        if (unlikely(cpu_intensive))
2071                worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2072
2073        /*
2074         * Wake up another worker if necessary.  The condition is always
2075         * false for normal per-cpu workers since nr_running would always
2076         * be >= 1 at this point.  This is used to chain execution of the
2077         * pending work items for WORKER_NOT_RUNNING workers such as the
2078         * UNBOUND and CPU_INTENSIVE ones.
2079         */
2080        if (need_more_worker(pool))
2081                wake_up_worker(pool);
2082
2083        /*
2084         * Record the last pool and clear PENDING which should be the last
2085         * update to @work.  Also, do this inside @pool->lock so that
2086         * PENDING and queued state changes happen together while IRQ is
2087         * disabled.
2088         */
2089        set_work_pool_and_clear_pending(work, pool->id);
2090
2091        spin_unlock_irq(&pool->lock);
2092
2093        lock_map_acquire_read(&pwq->wq->lockdep_map);
2094        lock_map_acquire(&lockdep_map);
2095        trace_workqueue_execute_start(work);
2096        worker->current_func(work);
2097        /*
2098         * While we must be careful to not use "work" after this, the trace
2099         * point will only record its address.
2100         */
2101        trace_workqueue_execute_end(work);
2102        lock_map_release(&lockdep_map);
2103        lock_map_release(&pwq->wq->lockdep_map);
2104
2105        if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2106                pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2107                       "     last function: %pf\n",
2108                       current->comm, preempt_count(), task_pid_nr(current),
2109                       worker->current_func);
2110                debug_show_held_locks(current);
2111                dump_stack();
2112        }
2113
2114        /*
2115         * The following prevents a kworker from hogging CPU on !PREEMPT
2116         * kernels, where a requeueing work item waiting for something to
2117         * happen could deadlock with stop_machine as such work item could
2118         * indefinitely requeue itself while all other CPUs are trapped in
2119         * stop_machine. At the same time, report a quiescent RCU state so
2120         * the same condition doesn't freeze RCU.
2121         */
2122        cond_resched_rcu_qs();
2123
2124        spin_lock_irq(&pool->lock);
2125
2126        /* clear cpu intensive status */
2127        if (unlikely(cpu_intensive))
2128                worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2129
2130        /* we're done with it, release */
2131        hash_del(&worker->hentry);
2132        worker->current_work = NULL;
2133        worker->current_func = NULL;
2134        worker->current_pwq = NULL;
2135        worker->desc_valid = false;
2136        pwq_dec_nr_in_flight(pwq, work_color);
2137}
2138
2139/**
2140 * process_scheduled_works - process scheduled works
2141 * @worker: self
2142 *
2143 * Process all scheduled works.  Please note that the scheduled list
2144 * may change while processing a work, so this function repeatedly
2145 * fetches a work from the top and executes it.
2146 *
2147 * CONTEXT:
2148 * spin_lock_irq(pool->lock) which may be released and regrabbed
2149 * multiple times.
2150 */
2151static void process_scheduled_works(struct worker *worker)
2152{
2153        while (!list_empty(&worker->scheduled)) {
2154                struct work_struct *work = list_first_entry(&worker->scheduled,
2155                                                struct work_struct, entry);
2156                process_one_work(worker, work);
2157        }
2158}
2159
2160/**
2161 * worker_thread - the worker thread function
2162 * @__worker: self
2163 *
2164 * The worker thread function.  All workers belong to a worker_pool -
2165 * either a per-cpu one or dynamic unbound one.  These workers process all
2166 * work items regardless of their specific target workqueue.  The only
2167 * exception is work items which belong to workqueues with a rescuer which
2168 * will be explained in rescuer_thread().
2169 *
2170 * Return: 0
2171 */
2172static int worker_thread(void *__worker)
2173{
2174        struct worker *worker = __worker;
2175        struct worker_pool *pool = worker->pool;
2176
2177        /* tell the scheduler that this is a workqueue worker */
2178        worker->task->flags |= PF_WQ_WORKER;
2179woke_up:
2180        spin_lock_irq(&pool->lock);
2181
2182        /* am I supposed to die? */
2183        if (unlikely(worker->flags & WORKER_DIE)) {
2184                spin_unlock_irq(&pool->lock);
2185                WARN_ON_ONCE(!list_empty(&worker->entry));
2186                worker->task->flags &= ~PF_WQ_WORKER;
2187
2188                set_task_comm(worker->task, "kworker/dying");
2189                ida_simple_remove(&pool->worker_ida, worker->id);
2190                worker_detach_from_pool(worker, pool);
2191                kfree(worker);
2192                return 0;
2193        }
2194
2195        worker_leave_idle(worker);
2196recheck:
2197        /* no more worker necessary? */
2198        if (!need_more_worker(pool))
2199                goto sleep;
2200
2201        /* do we need to manage? */
2202        if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2203                goto recheck;
2204
2205        /*
2206         * ->scheduled list can only be filled while a worker is
2207         * preparing to process a work or actually processing it.
2208         * Make sure nobody diddled with it while I was sleeping.
2209         */
2210        WARN_ON_ONCE(!list_empty(&worker->scheduled));
2211
2212        /*
2213         * Finish PREP stage.  We're guaranteed to have at least one idle
2214         * worker or that someone else has already assumed the manager
2215         * role.  This is where @worker starts participating in concurrency
2216         * management if applicable and concurrency management is restored
2217         * after being rebound.  See rebind_workers() for details.
2218         */
2219        worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2220
2221        do {
2222                struct work_struct *work =
2223                        list_first_entry(&pool->worklist,
2224                                         struct work_struct, entry);
2225
2226                pool->watchdog_ts = jiffies;
2227
2228                if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2229                        /* optimization path, not strictly necessary */
2230                        process_one_work(worker, work);
2231                        if (unlikely(!list_empty(&worker->scheduled)))
2232                                process_scheduled_works(worker);
2233                } else {
2234                        move_linked_works(work, &worker->scheduled, NULL);
2235                        process_scheduled_works(worker);
2236                }
2237        } while (keep_working(pool));
2238
2239        worker_set_flags(worker, WORKER_PREP);
2240sleep:
2241        /*
2242         * pool->lock is held and there's no work to process and no need to
2243         * manage, sleep.  Workers are woken up only while holding
2244         * pool->lock or from local cpu, so setting the current state
2245         * before releasing pool->lock is enough to prevent losing any
2246         * event.
2247         */
2248        worker_enter_idle(worker);
2249        __set_current_state(TASK_INTERRUPTIBLE);
2250        spin_unlock_irq(&pool->lock);
2251        schedule();
2252        goto woke_up;
2253}
2254
2255/**
2256 * rescuer_thread - the rescuer thread function
2257 * @__rescuer: self
2258 *
2259 * Workqueue rescuer thread function.  There's one rescuer for each
2260 * workqueue which has WQ_MEM_RECLAIM set.
2261 *
2262 * Regular work processing on a pool may block trying to create a new
2263 * worker which uses GFP_KERNEL allocation which has slight chance of
2264 * developing into deadlock if some works currently on the same queue
2265 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2266 * the problem rescuer solves.
2267 *
2268 * When such condition is possible, the pool summons rescuers of all
2269 * workqueues which have works queued on the pool and let them process
2270 * those works so that forward progress can be guaranteed.
2271 *
2272 * This should happen rarely.
2273 *
2274 * Return: 0
2275 */
2276static int rescuer_thread(void *__rescuer)
2277{
2278        struct worker *rescuer = __rescuer;
2279        struct workqueue_struct *wq = rescuer->rescue_wq;
2280        struct list_head *scheduled = &rescuer->scheduled;
2281        bool should_stop;
2282
2283        set_user_nice(current, RESCUER_NICE_LEVEL);
2284
2285        /*
2286         * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2287         * doesn't participate in concurrency management.
2288         */
2289        rescuer->task->flags |= PF_WQ_WORKER;
2290repeat:
2291        set_current_state(TASK_INTERRUPTIBLE);
2292
2293        /*
2294         * By the time the rescuer is requested to stop, the workqueue
2295         * shouldn't have any work pending, but @wq->maydays may still have
2296         * pwq(s) queued.  This can happen by non-rescuer workers consuming
2297         * all the work items before the rescuer got to them.  Go through
2298         * @wq->maydays processing before acting on should_stop so that the
2299         * list is always empty on exit.
2300         */
2301        should_stop = kthread_should_stop();
2302
2303        /* see whether any pwq is asking for help */
2304        spin_lock_irq(&wq_mayday_lock);
2305
2306        while (!list_empty(&wq->maydays)) {
2307                struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2308                                        struct pool_workqueue, mayday_node);
2309                struct worker_pool *pool = pwq->pool;
2310                struct work_struct *work, *n;
2311                bool first = true;
2312
2313                __set_current_state(TASK_RUNNING);
2314                list_del_init(&pwq->mayday_node);
2315
2316                spin_unlock_irq(&wq_mayday_lock);
2317
2318                worker_attach_to_pool(rescuer, pool);
2319
2320                spin_lock_irq(&pool->lock);
2321                rescuer->pool = pool;
2322
2323                /*
2324                 * Slurp in all works issued via this workqueue and
2325                 * process'em.
2326                 */
2327                WARN_ON_ONCE(!list_empty(scheduled));
2328                list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2329                        if (get_work_pwq(work) == pwq) {
2330                                if (first)
2331                                        pool->watchdog_ts = jiffies;
2332                                move_linked_works(work, scheduled, &n);
2333                        }
2334                        first = false;
2335                }
2336
2337                if (!list_empty(scheduled)) {
2338                        process_scheduled_works(rescuer);
2339
2340                        /*
2341                         * The above execution of rescued work items could
2342                         * have created more to rescue through
2343                         * pwq_activate_first_delayed() or chained
2344                         * queueing.  Let's put @pwq back on mayday list so
2345                         * that such back-to-back work items, which may be
2346                         * being used to relieve memory pressure, don't
2347                         * incur MAYDAY_INTERVAL delay inbetween.
2348                         */
2349                        if (need_to_create_worker(pool)) {
2350                                spin_lock(&wq_mayday_lock);
2351                                get_pwq(pwq);
2352                                list_move_tail(&pwq->mayday_node, &wq->maydays);
2353                                spin_unlock(&wq_mayday_lock);
2354                        }
2355                }
2356
2357                /*
2358                 * Put the reference grabbed by send_mayday().  @pool won't
2359                 * go away while we're still attached to it.
2360                 */
2361                put_pwq(pwq);
2362
2363                /*
2364                 * Leave this pool.  If need_more_worker() is %true, notify a
2365                 * regular worker; otherwise, we end up with 0 concurrency
2366                 * and stalling the execution.
2367                 */
2368                if (need_more_worker(pool))
2369                        wake_up_worker(pool);
2370
2371                rescuer->pool = NULL;
2372                spin_unlock_irq(&pool->lock);
2373
2374                worker_detach_from_pool(rescuer, pool);
2375
2376                spin_lock_irq(&wq_mayday_lock);
2377        }
2378
2379        spin_unlock_irq(&wq_mayday_lock);
2380
2381        if (should_stop) {
2382                __set_current_state(TASK_RUNNING);
2383                rescuer->task->flags &= ~PF_WQ_WORKER;
2384                return 0;
2385        }
2386
2387        /* rescuers should never participate in concurrency management */
2388        WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2389        schedule();
2390        goto repeat;
2391}
2392
2393/**
2394 * check_flush_dependency - check for flush dependency sanity
2395 * @target_wq: workqueue being flushed
2396 * @target_work: work item being flushed (NULL for workqueue flushes)
2397 *
2398 * %current is trying to flush the whole @target_wq or @target_work on it.
2399 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2400 * reclaiming memory or running on a workqueue which doesn't have
2401 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2402 * a deadlock.
2403 */
2404static void check_flush_dependency(struct workqueue_struct *target_wq,
2405                                   struct work_struct *target_work)
2406{
2407        work_func_t target_func = target_work ? target_work->func : NULL;
2408        struct worker *worker;
2409
2410        if (target_wq->flags & WQ_MEM_RECLAIM)
2411                return;
2412
2413        worker = current_wq_worker();
2414
2415        WARN_ONCE(current->flags & PF_MEMALLOC,
2416                  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2417                  current->pid, current->comm, target_wq->name, target_func);
2418        WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2419                              (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2420                  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2421                  worker->current_pwq->wq->name, worker->current_func,
2422                  target_wq->name, target_func);
2423}
2424
2425struct wq_barrier {
2426        struct work_struct      work;
2427        struct completion       done;
2428        struct task_struct      *task;  /* purely informational */
2429};
2430
2431static void wq_barrier_func(struct work_struct *work)
2432{
2433        struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2434        complete(&barr->done);
2435}
2436
2437/**
2438 * insert_wq_barrier - insert a barrier work
2439 * @pwq: pwq to insert barrier into
2440 * @barr: wq_barrier to insert
2441 * @target: target work to attach @barr to
2442 * @worker: worker currently executing @target, NULL if @target is not executing
2443 *
2444 * @barr is linked to @target such that @barr is completed only after
2445 * @target finishes execution.  Please note that the ordering
2446 * guarantee is observed only with respect to @target and on the local
2447 * cpu.
2448 *
2449 * Currently, a queued barrier can't be canceled.  This is because
2450 * try_to_grab_pending() can't determine whether the work to be
2451 * grabbed is at the head of the queue and thus can't clear LINKED
2452 * flag of the previous work while there must be a valid next work
2453 * after a work with LINKED flag set.
2454 *
2455 * Note that when @worker is non-NULL, @target may be modified
2456 * underneath us, so we can't reliably determine pwq from @target.
2457 *
2458 * CONTEXT:
2459 * spin_lock_irq(pool->lock).
2460 */
2461static void insert_wq_barrier(struct pool_workqueue *pwq,
2462                              struct wq_barrier *barr,
2463                              struct work_struct *target, struct worker *worker)
2464{
2465        struct list_head *head;
2466        unsigned int linked = 0;
2467
2468        /*
2469         * debugobject calls are safe here even with pool->lock locked
2470         * as we know for sure that this will not trigger any of the
2471         * checks and call back into the fixup functions where we
2472         * might deadlock.
2473         */
2474        INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2475        __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2476        init_completion(&barr->done);
2477        barr->task = current;
2478
2479        /*
2480         * If @target is currently being executed, schedule the
2481         * barrier to the worker; otherwise, put it after @target.
2482         */
2483        if (worker)
2484                head = worker->scheduled.next;
2485        else {
2486                unsigned long *bits = work_data_bits(target);
2487
2488                head = target->entry.next;
2489                /* there can already be other linked works, inherit and set */
2490                linked = *bits & WORK_STRUCT_LINKED;
2491                __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2492        }
2493
2494        debug_work_activate(&barr->work);
2495        insert_work(pwq, &barr->work, head,
2496                    work_color_to_flags(WORK_NO_COLOR) | linked);
2497}
2498
2499/**
2500 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2501 * @wq: workqueue being flushed
2502 * @flush_color: new flush color, < 0 for no-op
2503 * @work_color: new work color, < 0 for no-op
2504 *
2505 * Prepare pwqs for workqueue flushing.
2506 *
2507 * If @flush_color is non-negative, flush_color on all pwqs should be
2508 * -1.  If no pwq has in-flight commands at the specified color, all
2509 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2510 * has in flight commands, its pwq->flush_color is set to
2511 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2512 * wakeup logic is armed and %true is returned.
2513 *
2514 * The caller should have initialized @wq->first_flusher prior to
2515 * calling this function with non-negative @flush_color.  If
2516 * @flush_color is negative, no flush color update is done and %false
2517 * is returned.
2518 *
2519 * If @work_color is non-negative, all pwqs should have the same
2520 * work_color which is previous to @work_color and all will be
2521 * advanced to @work_color.
2522 *
2523 * CONTEXT:
2524 * mutex_lock(wq->mutex).
2525 *
2526 * Return:
2527 * %true if @flush_color >= 0 and there's something to flush.  %false
2528 * otherwise.
2529 */
2530static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2531                                      int flush_color, int work_color)
2532{
2533        bool wait = false;
2534        struct pool_workqueue *pwq;
2535
2536        if (flush_color >= 0) {
2537                WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2538                atomic_set(&wq->nr_pwqs_to_flush, 1);
2539        }
2540
2541        for_each_pwq(pwq, wq) {
2542                struct worker_pool *pool = pwq->pool;
2543
2544                spin_lock_irq(&pool->lock);
2545
2546                if (flush_color >= 0) {
2547                        WARN_ON_ONCE(pwq->flush_color != -1);
2548
2549                        if (pwq->nr_in_flight[flush_color]) {
2550                                pwq->flush_color = flush_color;
2551                                atomic_inc(&wq->nr_pwqs_to_flush);
2552                                wait = true;
2553                        }
2554                }
2555
2556                if (work_color >= 0) {
2557                        WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2558                        pwq->work_color = work_color;
2559                }
2560
2561                spin_unlock_irq(&pool->lock);
2562        }
2563
2564        if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2565                complete(&wq->first_flusher->done);
2566
2567        return wait;
2568}
2569
2570/**
2571 * flush_workqueue - ensure that any scheduled work has run to completion.
2572 * @wq: workqueue to flush
2573 *
2574 * This function sleeps until all work items which were queued on entry
2575 * have finished execution, but it is not livelocked by new incoming ones.
2576 */
2577void flush_workqueue(struct workqueue_struct *wq)
2578{
2579        struct wq_flusher this_flusher = {
2580                .list = LIST_HEAD_INIT(this_flusher.list),
2581                .flush_color = -1,
2582                .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2583        };
2584        int next_color;
2585
2586        lock_map_acquire(&wq->lockdep_map);
2587        lock_map_release(&wq->lockdep_map);
2588
2589        mutex_lock(&wq->mutex);
2590
2591        /*
2592         * Start-to-wait phase
2593         */
2594        next_color = work_next_color(wq->work_color);
2595
2596        if (next_color != wq->flush_color) {
2597                /*
2598                 * Color space is not full.  The current work_color
2599                 * becomes our flush_color and work_color is advanced
2600                 * by one.
2601                 */
2602                WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2603                this_flusher.flush_color = wq->work_color;
2604                wq->work_color = next_color;
2605
2606                if (!wq->first_flusher) {
2607                        /* no flush in progress, become the first flusher */
2608                        WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2609
2610                        wq->first_flusher = &this_flusher;
2611
2612                        if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2613                                                       wq->work_color)) {
2614                                /* nothing to flush, done */
2615                                wq->flush_color = next_color;
2616                                wq->first_flusher = NULL;
2617                                goto out_unlock;
2618                        }
2619                } else {
2620                        /* wait in queue */
2621                        WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2622                        list_add_tail(&this_flusher.list, &wq->flusher_queue);
2623                        flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2624                }
2625        } else {
2626                /*
2627                 * Oops, color space is full, wait on overflow queue.
2628                 * The next flush completion will assign us
2629                 * flush_color and transfer to flusher_queue.
2630                 */
2631                list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2632        }
2633
2634        check_flush_dependency(wq, NULL);
2635
2636        mutex_unlock(&wq->mutex);
2637
2638        wait_for_completion(&this_flusher.done);
2639
2640        /*
2641         * Wake-up-and-cascade phase
2642         *
2643         * First flushers are responsible for cascading flushes and
2644         * handling overflow.  Non-first flushers can simply return.
2645         */
2646        if (wq->first_flusher != &this_flusher)
2647                return;
2648
2649        mutex_lock(&wq->mutex);
2650
2651        /* we might have raced, check again with mutex held */
2652        if (wq->first_flusher != &this_flusher)
2653                goto out_unlock;
2654
2655        wq->first_flusher = NULL;
2656
2657        WARN_ON_ONCE(!list_empty(&this_flusher.list));
2658        WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2659
2660        while (true) {
2661                struct wq_flusher *next, *tmp;
2662
2663                /* complete all the flushers sharing the current flush color */
2664                list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2665                        if (next->flush_color != wq->flush_color)
2666                                break;
2667                        list_del_init(&next->list);
2668                        complete(&next->done);
2669                }
2670
2671                WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2672                             wq->flush_color != work_next_color(wq->work_color));
2673
2674                /* this flush_color is finished, advance by one */
2675                wq->flush_color = work_next_color(wq->flush_color);
2676
2677                /* one color has been freed, handle overflow queue */
2678                if (!list_empty(&wq->flusher_overflow)) {
2679                        /*
2680                         * Assign the same color to all overflowed
2681                         * flushers, advance work_color and append to
2682                         * flusher_queue.  This is the start-to-wait
2683                         * phase for these overflowed flushers.
2684                         */
2685                        list_for_each_entry(tmp, &wq->flusher_overflow, list)
2686                                tmp->flush_color = wq->work_color;
2687
2688                        wq->work_color = work_next_color(wq->work_color);
2689
2690                        list_splice_tail_init(&wq->flusher_overflow,
2691                                              &wq->flusher_queue);
2692                        flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2693                }
2694
2695                if (list_empty(&wq->flusher_queue)) {
2696                        WARN_ON_ONCE(wq->flush_color != wq->work_color);
2697                        break;
2698                }
2699
2700                /*
2701                 * Need to flush more colors.  Make the next flusher
2702                 * the new first flusher and arm pwqs.
2703                 */
2704                WARN_ON_ONCE(wq->flush_color == wq->work_color);
2705                WARN_ON_ONCE(wq->flush_color != next->flush_color);
2706
2707                list_del_init(&next->list);
2708                wq->first_flusher = next;
2709
2710                if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2711                        break;
2712
2713                /*
2714                 * Meh... this color is already done, clear first
2715                 * flusher and repeat cascading.
2716                 */
2717                wq->first_flusher = NULL;
2718        }
2719
2720out_unlock:
2721        mutex_unlock(&wq->mutex);
2722}
2723EXPORT_SYMBOL(flush_workqueue);
2724
2725/**
2726 * drain_workqueue - drain a workqueue
2727 * @wq: workqueue to drain
2728 *
2729 * Wait until the workqueue becomes empty.  While draining is in progress,
2730 * only chain queueing is allowed.  IOW, only currently pending or running
2731 * work items on @wq can queue further work items on it.  @wq is flushed
2732 * repeatedly until it becomes empty.  The number of flushing is determined
2733 * by the depth of chaining and should be relatively short.  Whine if it
2734 * takes too long.
2735 */
2736void drain_workqueue(struct workqueue_struct *wq)
2737{
2738        unsigned int flush_cnt = 0;
2739        struct pool_workqueue *pwq;
2740
2741        /*
2742         * __queue_work() needs to test whether there are drainers, is much
2743         * hotter than drain_workqueue() and already looks at @wq->flags.
2744         * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2745         */
2746        mutex_lock(&wq->mutex);
2747        if (!wq->nr_drainers++)
2748                wq->flags |= __WQ_DRAINING;
2749        mutex_unlock(&wq->mutex);
2750reflush:
2751        flush_workqueue(wq);
2752
2753        mutex_lock(&wq->mutex);
2754
2755        for_each_pwq(pwq, wq) {
2756                bool drained;
2757
2758                spin_lock_irq(&pwq->pool->lock);
2759                drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2760                spin_unlock_irq(&pwq->pool->lock);
2761
2762                if (drained)
2763                        continue;
2764
2765                if (++flush_cnt == 10 ||
2766                    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2767                        pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2768                                wq->name, flush_cnt);
2769
2770                mutex_unlock(&wq->mutex);
2771                goto reflush;
2772        }
2773
2774        if (!--wq->nr_drainers)
2775                wq->flags &= ~__WQ_DRAINING;
2776        mutex_unlock(&wq->mutex);
2777}
2778EXPORT_SYMBOL_GPL(drain_workqueue);
2779
2780static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2781{
2782        struct worker *worker = NULL;
2783        struct worker_pool *pool;
2784        struct pool_workqueue *pwq;
2785
2786        might_sleep();
2787
2788        local_irq_disable();
2789        pool = get_work_pool(work);
2790        if (!pool) {
2791                local_irq_enable();
2792                return false;
2793        }
2794
2795        spin_lock(&pool->lock);
2796        /* see the comment in try_to_grab_pending() with the same code */
2797        pwq = get_work_pwq(work);
2798        if (pwq) {
2799                if (unlikely(pwq->pool != pool))
2800                        goto already_gone;
2801        } else {
2802                worker = find_worker_executing_work(pool, work);
2803                if (!worker)
2804                        goto already_gone;
2805                pwq = worker->current_pwq;
2806        }
2807
2808        check_flush_dependency(pwq->wq, work);
2809
2810        insert_wq_barrier(pwq, barr, work, worker);
2811        spin_unlock_irq(&pool->lock);
2812
2813        /*
2814         * If @max_active is 1 or rescuer is in use, flushing another work
2815         * item on the same workqueue may lead to deadlock.  Make sure the
2816         * flusher is not running on the same workqueue by verifying write
2817         * access.
2818         */
2819        if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2820                lock_map_acquire(&pwq->wq->lockdep_map);
2821        else
2822                lock_map_acquire_read(&pwq->wq->lockdep_map);
2823        lock_map_release(&pwq->wq->lockdep_map);
2824
2825        return true;
2826already_gone:
2827        spin_unlock_irq(&pool->lock);
2828        return false;
2829}
2830
2831/**
2832 * flush_work - wait for a work to finish executing the last queueing instance
2833 * @work: the work to flush
2834 *
2835 * Wait until @work has finished execution.  @work is guaranteed to be idle
2836 * on return if it hasn't been requeued since flush started.
2837 *
2838 * Return:
2839 * %true if flush_work() waited for the work to finish execution,
2840 * %false if it was already idle.
2841 */
2842bool flush_work(struct work_struct *work)
2843{
2844        struct wq_barrier barr;
2845
2846        lock_map_acquire(&work->lockdep_map);
2847        lock_map_release(&work->lockdep_map);
2848
2849        if (start_flush_work(work, &barr)) {
2850                wait_for_completion(&barr.done);
2851                destroy_work_on_stack(&barr.work);
2852                return true;
2853        } else {
2854                return false;
2855        }
2856}
2857EXPORT_SYMBOL_GPL(flush_work);
2858
2859struct cwt_wait {
2860        wait_queue_t            wait;
2861        struct work_struct      *work;
2862};
2863
2864static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2865{
2866        struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2867
2868        if (cwait->work != key)
2869                return 0;
2870        return autoremove_wake_function(wait, mode, sync, key);
2871}
2872
2873static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2874{
2875        static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2876        unsigned long flags;
2877        int ret;
2878
2879        do {
2880                ret = try_to_grab_pending(work, is_dwork, &flags);
2881                /*
2882                 * If someone else is already canceling, wait for it to
2883                 * finish.  flush_work() doesn't work for PREEMPT_NONE
2884                 * because we may get scheduled between @work's completion
2885                 * and the other canceling task resuming and clearing
2886                 * CANCELING - flush_work() will return false immediately
2887                 * as @work is no longer busy, try_to_grab_pending() will
2888                 * return -ENOENT as @work is still being canceled and the
2889                 * other canceling task won't be able to clear CANCELING as
2890                 * we're hogging the CPU.
2891                 *
2892                 * Let's wait for completion using a waitqueue.  As this
2893                 * may lead to the thundering herd problem, use a custom
2894                 * wake function which matches @work along with exclusive
2895                 * wait and wakeup.
2896                 */
2897                if (unlikely(ret == -ENOENT)) {
2898                        struct cwt_wait cwait;
2899
2900                        init_wait(&cwait.wait);
2901                        cwait.wait.func = cwt_wakefn;
2902                        cwait.work = work;
2903
2904                        prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2905                                                  TASK_UNINTERRUPTIBLE);
2906                        if (work_is_canceling(work))
2907                                schedule();
2908                        finish_wait(&cancel_waitq, &cwait.wait);
2909                }
2910        } while (unlikely(ret < 0));
2911
2912        /* tell other tasks trying to grab @work to back off */
2913        mark_work_canceling(work);
2914        local_irq_restore(flags);
2915
2916        flush_work(work);
2917        clear_work_data(work);
2918
2919        /*
2920         * Paired with prepare_to_wait() above so that either
2921         * waitqueue_active() is visible here or !work_is_canceling() is
2922         * visible there.
2923         */
2924        smp_mb();
2925        if (waitqueue_active(&cancel_waitq))
2926                __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2927
2928        return ret;
2929}
2930
2931/**
2932 * cancel_work_sync - cancel a work and wait for it to finish
2933 * @work: the work to cancel
2934 *
2935 * Cancel @work and wait for its execution to finish.  This function
2936 * can be used even if the work re-queues itself or migrates to
2937 * another workqueue.  On return from this function, @work is
2938 * guaranteed to be not pending or executing on any CPU.
2939 *
2940 * cancel_work_sync(&delayed_work->work) must not be used for
2941 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2942 *
2943 * The caller must ensure that the workqueue on which @work was last
2944 * queued can't be destroyed before this function returns.
2945 *
2946 * Return:
2947 * %true if @work was pending, %false otherwise.
2948 */
2949bool cancel_work_sync(struct work_struct *work)
2950{
2951        return __cancel_work_timer(work, false);
2952}
2953EXPORT_SYMBOL_GPL(cancel_work_sync);
2954
2955/**
2956 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2957 * @dwork: the delayed work to flush
2958 *
2959 * Delayed timer is cancelled and the pending work is queued for
2960 * immediate execution.  Like flush_work(), this function only
2961 * considers the last queueing instance of @dwork.
2962 *
2963 * Return:
2964 * %true if flush_work() waited for the work to finish execution,
2965 * %false if it was already idle.
2966 */
2967bool flush_delayed_work(struct delayed_work *dwork)
2968{
2969        local_irq_disable();
2970        if (del_timer_sync(&dwork->timer))
2971                __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2972        local_irq_enable();
2973        return flush_work(&dwork->work);
2974}
2975EXPORT_SYMBOL(flush_delayed_work);
2976
2977static bool __cancel_work(struct work_struct *work, bool is_dwork)
2978{
2979        unsigned long flags;
2980        int ret;
2981
2982        do {
2983                ret = try_to_grab_pending(work, is_dwork, &flags);
2984        } while (unlikely(ret == -EAGAIN));
2985
2986        if (unlikely(ret < 0))
2987                return false;
2988
2989        set_work_pool_and_clear_pending(work, get_work_pool_id(work));
2990        local_irq_restore(flags);
2991        return ret;
2992}
2993
2994/*
2995 * See cancel_delayed_work()
2996 */
2997bool cancel_work(struct work_struct *work)
2998{
2999        return __cancel_work(work, false);
3000}
3001
3002/**
3003 * cancel_delayed_work - cancel a delayed work
3004 * @dwork: delayed_work to cancel
3005 *
3006 * Kill off a pending delayed_work.
3007 *
3008 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3009 * pending.
3010 *
3011 * Note:
3012 * The work callback function may still be running on return, unless
3013 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3014 * use cancel_delayed_work_sync() to wait on it.
3015 *
3016 * This function is safe to call from any context including IRQ handler.
3017 */
3018bool cancel_delayed_work(struct delayed_work *dwork)
3019{
3020        return __cancel_work(&dwork->work, true);
3021}
3022EXPORT_SYMBOL(cancel_delayed_work);
3023
3024/**
3025 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3026 * @dwork: the delayed work cancel
3027 *
3028 * This is cancel_work_sync() for delayed works.
3029 *
3030 * Return:
3031 * %true if @dwork was pending, %false otherwise.
3032 */
3033bool cancel_delayed_work_sync(struct delayed_work *dwork)
3034{
3035        return __cancel_work_timer(&dwork->work, true);
3036}
3037EXPORT_SYMBOL(cancel_delayed_work_sync);
3038
3039/**
3040 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3041 * @func: the function to call
3042 *
3043 * schedule_on_each_cpu() executes @func on each online CPU using the
3044 * system workqueue and blocks until all CPUs have completed.
3045 * schedule_on_each_cpu() is very slow.
3046 *
3047 * Return:
3048 * 0 on success, -errno on failure.
3049 */
3050int schedule_on_each_cpu(work_func_t func)
3051{
3052        int cpu;
3053        struct work_struct __percpu *works;
3054
3055        works = alloc_percpu(struct work_struct);
3056        if (!works)
3057                return -ENOMEM;
3058
3059        get_online_cpus();
3060
3061        for_each_online_cpu(cpu) {
3062                struct work_struct *work = per_cpu_ptr(works, cpu);
3063
3064                INIT_WORK(work, func);
3065                schedule_work_on(cpu, work);
3066        }
3067
3068        for_each_online_cpu(cpu)
3069                flush_work(per_cpu_ptr(works, cpu));
3070
3071        put_online_cpus();
3072        free_percpu(works);
3073        return 0;
3074}
3075
3076/**
3077 * execute_in_process_context - reliably execute the routine with user context
3078 * @fn:         the function to execute
3079 * @ew:         guaranteed storage for the execute work structure (must
3080 *              be available when the work executes)
3081 *
3082 * Executes the function immediately if process context is available,
3083 * otherwise schedules the function for delayed execution.
3084 *
3085 * Return:      0 - function was executed
3086 *              1 - function was scheduled for execution
3087 */
3088int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3089{
3090        if (!in_interrupt()) {
3091                fn(&ew->work);
3092                return 0;
3093        }
3094
3095        INIT_WORK(&ew->work, fn);
3096        schedule_work(&ew->work);
3097
3098        return 1;
3099}
3100EXPORT_SYMBOL_GPL(execute_in_process_context);
3101
3102/**
3103 * free_workqueue_attrs - free a workqueue_attrs
3104 * @attrs: workqueue_attrs to free
3105 *
3106 * Undo alloc_workqueue_attrs().
3107 */
3108void free_workqueue_attrs(struct workqueue_attrs *attrs)
3109{
3110        if (attrs) {
3111                free_cpumask_var(attrs->cpumask);
3112                kfree(attrs);
3113        }
3114}
3115
3116/**
3117 * alloc_workqueue_attrs - allocate a workqueue_attrs
3118 * @gfp_mask: allocation mask to use
3119 *
3120 * Allocate a new workqueue_attrs, initialize with default settings and
3121 * return it.
3122 *
3123 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3124 */
3125struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3126{
3127        struct workqueue_attrs *attrs;
3128
3129        attrs = kzalloc(sizeof(*attrs), gfp_mask);
3130        if (!attrs)
3131                goto fail;
3132        if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3133                goto fail;
3134
3135        cpumask_copy(attrs->cpumask, cpu_possible_mask);
3136        return attrs;
3137fail:
3138        free_workqueue_attrs(attrs);
3139        return NULL;
3140}
3141
3142static void copy_workqueue_attrs(struct workqueue_attrs *to,
3143                                 const struct workqueue_attrs *from)
3144{
3145        to->nice = from->nice;
3146        cpumask_copy(to->cpumask, from->cpumask);
3147        /*
3148         * Unlike hash and equality test, this function doesn't ignore
3149         * ->no_numa as it is used for both pool and wq attrs.  Instead,
3150         * get_unbound_pool() explicitly clears ->no_numa after copying.
3151         */
3152        to->no_numa = from->no_numa;
3153}
3154
3155/* hash value of the content of @attr */
3156static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3157{
3158        u32 hash = 0;
3159
3160        hash = jhash_1word(attrs->nice, hash);
3161        hash = jhash(cpumask_bits(attrs->cpumask),
3162                     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3163        return hash;
3164}
3165
3166/* content equality test */
3167static bool wqattrs_equal(const struct workqueue_attrs *a,
3168                          const struct workqueue_attrs *b)
3169{
3170        if (a->nice != b->nice)
3171                return false;
3172        if (!cpumask_equal(a->cpumask, b->cpumask))
3173                return false;
3174        return true;
3175}
3176
3177/**
3178 * init_worker_pool - initialize a newly zalloc'd worker_pool
3179 * @pool: worker_pool to initialize
3180 *
3181 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3182 *
3183 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3184 * inside @pool proper are initialized and put_unbound_pool() can be called
3185 * on @pool safely to release it.
3186 */
3187static int init_worker_pool(struct worker_pool *pool)
3188{
3189        spin_lock_init(&pool->lock);
3190        pool->id = -1;
3191        pool->cpu = -1;
3192        pool->node = NUMA_NO_NODE;
3193        pool->flags |= POOL_DISASSOCIATED;
3194        pool->watchdog_ts = jiffies;
3195        INIT_LIST_HEAD(&pool->worklist);
3196        INIT_LIST_HEAD(&pool->idle_list);
3197        hash_init(pool->busy_hash);
3198
3199        init_timer_deferrable(&pool->idle_timer);
3200        pool->idle_timer.function = idle_worker_timeout;
3201        pool->idle_timer.data = (unsigned long)pool;
3202
3203        setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3204                    (unsigned long)pool);
3205
3206        mutex_init(&pool->manager_arb);
3207        mutex_init(&pool->attach_mutex);
3208        INIT_LIST_HEAD(&pool->workers);
3209
3210        ida_init(&pool->worker_ida);
3211        INIT_HLIST_NODE(&pool->hash_node);
3212        pool->refcnt = 1;
3213
3214        /* shouldn't fail above this point */
3215        pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3216        if (!pool->attrs)
3217                return -ENOMEM;
3218        return 0;
3219}
3220
3221static void rcu_free_wq(struct rcu_head *rcu)
3222{
3223        struct workqueue_struct *wq =
3224                container_of(rcu, struct workqueue_struct, rcu);
3225
3226        if (!(wq->flags & WQ_UNBOUND))
3227                free_percpu(wq->cpu_pwqs);
3228        else
3229                free_workqueue_attrs(wq->unbound_attrs);
3230
3231        kfree(wq->rescuer);
3232        kfree(wq);
3233}
3234
3235static void rcu_free_pool(struct rcu_head *rcu)
3236{
3237        struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3238
3239        ida_destroy(&pool->worker_ida);
3240        free_workqueue_attrs(pool->attrs);
3241        kfree(pool);
3242}
3243
3244/**
3245 * put_unbound_pool - put a worker_pool
3246 * @pool: worker_pool to put
3247 *
3248 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3249 * safe manner.  get_unbound_pool() calls this function on its failure path
3250 * and this function should be able to release pools which went through,
3251 * successfully or not, init_worker_pool().
3252 *
3253 * Should be called with wq_pool_mutex held.
3254 */
3255static void put_unbound_pool(struct worker_pool *pool)
3256{
3257        DECLARE_COMPLETION_ONSTACK(detach_completion);
3258        struct worker *worker;
3259
3260        lockdep_assert_held(&wq_pool_mutex);
3261
3262        if (--pool->refcnt)
3263                return;
3264
3265        /* sanity checks */
3266        if (WARN_ON(!(pool->cpu < 0)) ||
3267            WARN_ON(!list_empty(&pool->worklist)))
3268                return;
3269
3270        /* release id and unhash */
3271        if (pool->id >= 0)
3272                idr_remove(&worker_pool_idr, pool->id);
3273        hash_del(&pool->hash_node);
3274
3275        /*
3276         * Become the manager and destroy all workers.  Grabbing
3277         * manager_arb prevents @pool's workers from blocking on
3278         * attach_mutex.
3279         */
3280        mutex_lock(&pool->manager_arb);
3281
3282        spin_lock_irq(&pool->lock);
3283        while ((worker = first_idle_worker(pool)))
3284                destroy_worker(worker);
3285        WARN_ON(pool->nr_workers || pool->nr_idle);
3286        spin_unlock_irq(&pool->lock);
3287
3288        mutex_lock(&pool->attach_mutex);
3289        if (!list_empty(&pool->workers))
3290                pool->detach_completion = &detach_completion;
3291        mutex_unlock(&pool->attach_mutex);
3292
3293        if (pool->detach_completion)
3294                wait_for_completion(pool->detach_completion);
3295
3296        mutex_unlock(&pool->manager_arb);
3297
3298        /* shut down the timers */
3299        del_timer_sync(&pool->idle_timer);
3300        del_timer_sync(&pool->mayday_timer);
3301
3302        /* sched-RCU protected to allow dereferences from get_work_pool() */
3303        call_rcu_sched(&pool->rcu, rcu_free_pool);
3304}
3305
3306/**
3307 * get_unbound_pool - get a worker_pool with the specified attributes
3308 * @attrs: the attributes of the worker_pool to get
3309 *
3310 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3311 * reference count and return it.  If there already is a matching
3312 * worker_pool, it will be used; otherwise, this function attempts to
3313 * create a new one.
3314 *
3315 * Should be called with wq_pool_mutex held.
3316 *
3317 * Return: On success, a worker_pool with the same attributes as @attrs.
3318 * On failure, %NULL.
3319 */
3320static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3321{
3322        u32 hash = wqattrs_hash(attrs);
3323        struct worker_pool *pool;
3324        int node;
3325        int target_node = NUMA_NO_NODE;
3326
3327        lockdep_assert_held(&wq_pool_mutex);
3328
3329        /* do we already have a matching pool? */
3330        hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3331                if (wqattrs_equal(pool->attrs, attrs)) {
3332                        pool->refcnt++;
3333                        return pool;
3334                }
3335        }
3336
3337        /* if cpumask is contained inside a NUMA node, we belong to that node */
3338        if (wq_numa_enabled) {
3339                for_each_node(node) {
3340                        if (cpumask_subset(attrs->cpumask,
3341                                           wq_numa_possible_cpumask[node])) {
3342                                target_node = node;
3343                                break;
3344                        }
3345                }
3346        }
3347
3348        /* nope, create a new one */
3349        pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3350        if (!pool || init_worker_pool(pool) < 0)
3351                goto fail;
3352
3353        lockdep_set_subclass(&pool->lock, 1);   /* see put_pwq() */
3354        copy_workqueue_attrs(pool->attrs, attrs);
3355        pool->node = target_node;
3356
3357        /*
3358         * no_numa isn't a worker_pool attribute, always clear it.  See
3359         * 'struct workqueue_attrs' comments for detail.
3360         */
3361        pool->attrs->no_numa = false;
3362
3363        if (worker_pool_assign_id(pool) < 0)
3364                goto fail;
3365
3366        /* create and start the initial worker */
3367        if (!create_worker(pool))
3368                goto fail;
3369
3370        /* install */
3371        hash_add(unbound_pool_hash, &pool->hash_node, hash);
3372
3373        return pool;
3374fail:
3375        if (pool)
3376                put_unbound_pool(pool);
3377        return NULL;
3378}
3379
3380static void rcu_free_pwq(struct rcu_head *rcu)
3381{
3382        kmem_cache_free(pwq_cache,
3383                        container_of(rcu, struct pool_workqueue, rcu));
3384}
3385
3386/*
3387 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3388 * and needs to be destroyed.
3389 */
3390static void pwq_unbound_release_workfn(struct work_struct *work)
3391{
3392        struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3393                                                  unbound_release_work);
3394        struct workqueue_struct *wq = pwq->wq;
3395        struct worker_pool *pool = pwq->pool;
3396        bool is_last;
3397
3398        if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3399                return;
3400
3401        mutex_lock(&wq->mutex);
3402        list_del_rcu(&pwq->pwqs_node);
3403        is_last = list_empty(&wq->pwqs);
3404        mutex_unlock(&wq->mutex);
3405
3406        mutex_lock(&wq_pool_mutex);
3407        put_unbound_pool(pool);
3408        mutex_unlock(&wq_pool_mutex);
3409
3410        call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3411
3412        /*
3413         * If we're the last pwq going away, @wq is already dead and no one
3414         * is gonna access it anymore.  Schedule RCU free.
3415         */
3416        if (is_last)
3417                call_rcu_sched(&wq->rcu, rcu_free_wq);
3418}
3419
3420/**
3421 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3422 * @pwq: target pool_workqueue
3423 *
3424 * If @pwq isn't freezing, set @pwq->max_active to the associated
3425 * workqueue's saved_max_active and activate delayed work items
3426 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3427 */
3428static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3429{
3430        struct workqueue_struct *wq = pwq->wq;
3431        bool freezable = wq->flags & WQ_FREEZABLE;
3432
3433        /* for @wq->saved_max_active */
3434        lockdep_assert_held(&wq->mutex);
3435
3436        /* fast exit for non-freezable wqs */
3437        if (!freezable && pwq->max_active == wq->saved_max_active)
3438                return;
3439
3440        spin_lock_irq(&pwq->pool->lock);
3441
3442        /*
3443         * During [un]freezing, the caller is responsible for ensuring that
3444         * this function is called at least once after @workqueue_freezing
3445         * is updated and visible.
3446         */
3447        if (!freezable || !workqueue_freezing) {
3448                pwq->max_active = wq->saved_max_active;
3449
3450                while (!list_empty(&pwq->delayed_works) &&
3451                       pwq->nr_active < pwq->max_active)
3452                        pwq_activate_first_delayed(pwq);
3453
3454                /*
3455                 * Need to kick a worker after thawed or an unbound wq's
3456                 * max_active is bumped.  It's a slow path.  Do it always.
3457                 */
3458                wake_up_worker(pwq->pool);
3459        } else {
3460                pwq->max_active = 0;
3461        }
3462
3463        spin_unlock_irq(&pwq->pool->lock);
3464}
3465
3466/* initialize newly alloced @pwq which is associated with @wq and @pool */
3467static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3468                     struct worker_pool *pool)
3469{
3470        BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3471
3472        memset(pwq, 0, sizeof(*pwq));
3473
3474        pwq->pool = pool;
3475        pwq->wq = wq;
3476        pwq->flush_color = -1;
3477        pwq->refcnt = 1;
3478        INIT_LIST_HEAD(&pwq->delayed_works);
3479        INIT_LIST_HEAD(&pwq->pwqs_node);
3480        INIT_LIST_HEAD(&pwq->mayday_node);
3481        INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3482}
3483
3484/* sync @pwq with the current state of its associated wq and link it */
3485static void link_pwq(struct pool_workqueue *pwq)
3486{
3487        struct workqueue_struct *wq = pwq->wq;
3488
3489        lockdep_assert_held(&wq->mutex);
3490
3491        /* may be called multiple times, ignore if already linked */
3492        if (!list_empty(&pwq->pwqs_node))
3493                return;
3494
3495        /* set the matching work_color */
3496        pwq->work_color = wq->work_color;
3497
3498        /* sync max_active to the current setting */
3499        pwq_adjust_max_active(pwq);
3500
3501        /* link in @pwq */
3502        list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3503}
3504
3505/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3506static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3507                                        const struct workqueue_attrs *attrs)
3508{
3509        struct worker_pool *pool;
3510        struct pool_workqueue *pwq;
3511
3512        lockdep_assert_held(&wq_pool_mutex);
3513
3514        pool = get_unbound_pool(attrs);
3515        if (!pool)
3516                return NULL;
3517
3518        pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3519        if (!pwq) {
3520                put_unbound_pool(pool);
3521                return NULL;
3522        }
3523
3524        init_pwq(pwq, wq, pool);
3525        return pwq;
3526}
3527
3528/**
3529 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3530 * @attrs: the wq_attrs of the default pwq of the target workqueue
3531 * @node: the target NUMA node
3532 * @cpu_going_down: if >= 0, the CPU to consider as offline
3533 * @cpumask: outarg, the resulting cpumask
3534 *
3535 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3536 * @cpu_going_down is >= 0, that cpu is considered offline during
3537 * calculation.  The result is stored in @cpumask.
3538 *
3539 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3540 * enabled and @node has online CPUs requested by @attrs, the returned
3541 * cpumask is the intersection of the possible CPUs of @node and
3542 * @attrs->cpumask.
3543 *
3544 * The caller is responsible for ensuring that the cpumask of @node stays
3545 * stable.
3546 *
3547 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3548 * %false if equal.
3549 */
3550static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3551                                 int cpu_going_down, cpumask_t *cpumask)
3552{
3553        if (!wq_numa_enabled || attrs->no_numa)
3554                goto use_dfl;
3555
3556        /* does @node have any online CPUs @attrs wants? */
3557        cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3558        if (cpu_going_down >= 0)
3559                cpumask_clear_cpu(cpu_going_down, cpumask);
3560
3561        if (cpumask_empty(cpumask))
3562                goto use_dfl;
3563
3564        /* yeap, return possible CPUs in @node that @attrs wants */
3565        cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3566        return !cpumask_equal(cpumask, attrs->cpumask);
3567
3568use_dfl:
3569        cpumask_copy(cpumask, attrs->cpumask);
3570        return false;
3571}
3572
3573/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3574static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3575                                                   int node,
3576                                                   struct pool_workqueue *pwq)
3577{
3578        struct pool_workqueue *old_pwq;
3579
3580        lockdep_assert_held(&wq_pool_mutex);
3581        lockdep_assert_held(&wq->mutex);
3582
3583        /* link_pwq() can handle duplicate calls */
3584        link_pwq(pwq);
3585
3586        old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3587        rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3588        return old_pwq;
3589}
3590
3591/* context to store the prepared attrs & pwqs before applying */
3592struct apply_wqattrs_ctx {
3593        struct workqueue_struct *wq;            /* target workqueue */
3594        struct workqueue_attrs  *attrs;         /* attrs to apply */
3595        struct list_head        list;           /* queued for batching commit */
3596        struct pool_workqueue   *dfl_pwq;
3597        struct pool_workqueue   *pwq_tbl[];
3598};
3599
3600/* free the resources after success or abort */
3601static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3602{
3603        if (ctx) {
3604                int node;
3605
3606                for_each_node(node)
3607                        put_pwq_unlocked(ctx->pwq_tbl[node]);
3608                put_pwq_unlocked(ctx->dfl_pwq);
3609
3610                free_workqueue_attrs(ctx->attrs);
3611
3612                kfree(ctx);
3613        }
3614}
3615
3616/* allocate the attrs and pwqs for later installation */
3617static struct apply_wqattrs_ctx *
3618apply_wqattrs_prepare(struct workqueue_struct *wq,
3619                      const struct workqueue_attrs *attrs)
3620{
3621        struct apply_wqattrs_ctx *ctx;
3622        struct workqueue_attrs *new_attrs, *tmp_attrs;
3623        int node;
3624
3625        lockdep_assert_held(&wq_pool_mutex);
3626
3627        ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3628                      GFP_KERNEL);
3629
3630        new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3631        tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3632        if (!ctx || !new_attrs || !tmp_attrs)
3633                goto out_free;
3634
3635        /*
3636         * Calculate the attrs of the default pwq.
3637         * If the user configured cpumask doesn't overlap with the
3638         * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3639         */
3640        copy_workqueue_attrs(new_attrs, attrs);
3641        cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3642        if (unlikely(cpumask_empty(new_attrs->cpumask)))
3643                cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3644
3645        /*
3646         * We may create multiple pwqs with differing cpumasks.  Make a
3647         * copy of @new_attrs which will be modified and used to obtain
3648         * pools.
3649         */
3650        copy_workqueue_attrs(tmp_attrs, new_attrs);
3651
3652        /*
3653         * If something goes wrong during CPU up/down, we'll fall back to
3654         * the default pwq covering whole @attrs->cpumask.  Always create
3655         * it even if we don't use it immediately.
3656         */
3657        ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3658        if (!ctx->dfl_pwq)
3659                goto out_free;
3660
3661        for_each_node(node) {
3662                if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3663                        ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3664                        if (!ctx->pwq_tbl[node])
3665                                goto out_free;
3666                } else {
3667                        ctx->dfl_pwq->refcnt++;
3668                        ctx->pwq_tbl[node] = ctx->dfl_pwq;
3669                }
3670        }
3671
3672        /* save the user configured attrs and sanitize it. */
3673        copy_workqueue_attrs(new_attrs, attrs);
3674        cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3675        ctx->attrs = new_attrs;
3676
3677        ctx->wq = wq;
3678        free_workqueue_attrs(tmp_attrs);
3679        return ctx;
3680
3681out_free:
3682        free_workqueue_attrs(tmp_attrs);
3683        free_workqueue_attrs(new_attrs);
3684        apply_wqattrs_cleanup(ctx);
3685        return NULL;
3686}
3687
3688/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3689static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3690{
3691        int node;
3692
3693        /* all pwqs have been created successfully, let's install'em */
3694        mutex_lock(&ctx->wq->mutex);
3695
3696        copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3697
3698        /* save the previous pwq and install the new one */
3699        for_each_node(node)
3700                ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3701                                                          ctx->pwq_tbl[node]);
3702
3703        /* @dfl_pwq might not have been used, ensure it's linked */
3704        link_pwq(ctx->dfl_pwq);
3705        swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3706
3707        mutex_unlock(&ctx->wq->mutex);
3708}
3709
3710static void apply_wqattrs_lock(void)
3711{
3712        /* CPUs should stay stable across pwq creations and installations */
3713        get_online_cpus();
3714        mutex_lock(&wq_pool_mutex);
3715}
3716
3717static void apply_wqattrs_unlock(void)
3718{
3719        mutex_unlock(&wq_pool_mutex);
3720        put_online_cpus();
3721}
3722
3723static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3724                                        const struct workqueue_attrs *attrs)
3725{
3726        struct apply_wqattrs_ctx *ctx;
3727
3728        /* only unbound workqueues can change attributes */
3729        if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3730                return -EINVAL;
3731
3732        /* creating multiple pwqs breaks ordering guarantee */
3733        if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3734                return -EINVAL;
3735
3736        ctx = apply_wqattrs_prepare(wq, attrs);
3737        if (!ctx)
3738                return -ENOMEM;
3739
3740        /* the ctx has been prepared successfully, let's commit it */
3741        apply_wqattrs_commit(ctx);
3742        apply_wqattrs_cleanup(ctx);
3743
3744        return 0;
3745}
3746
3747/**
3748 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3749 * @wq: the target workqueue
3750 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3751 *
3752 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3753 * machines, this function maps a separate pwq to each NUMA node with
3754 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3755 * NUMA node it was issued on.  Older pwqs are released as in-flight work
3756 * items finish.  Note that a work item which repeatedly requeues itself
3757 * back-to-back will stay on its current pwq.
3758 *
3759 * Performs GFP_KERNEL allocations.
3760 *
3761 * Return: 0 on success and -errno on failure.
3762 */
3763int apply_workqueue_attrs(struct workqueue_struct *wq,
3764                          const struct workqueue_attrs *attrs)
3765{
3766        int ret;
3767
3768        apply_wqattrs_lock();
3769        ret = apply_workqueue_attrs_locked(wq, attrs);
3770        apply_wqattrs_unlock();
3771
3772        return ret;
3773}
3774
3775/**
3776 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3777 * @wq: the target workqueue
3778 * @cpu: the CPU coming up or going down
3779 * @online: whether @cpu is coming up or going down
3780 *
3781 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3782 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3783 * @wq accordingly.
3784 *
3785 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3786 * falls back to @wq->dfl_pwq which may not be optimal but is always
3787 * correct.
3788 *
3789 * Note that when the last allowed CPU of a NUMA node goes offline for a
3790 * workqueue with a cpumask spanning multiple nodes, the workers which were
3791 * already executing the work items for the workqueue will lose their CPU
3792 * affinity and may execute on any CPU.  This is similar to how per-cpu
3793 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3794 * affinity, it's the user's responsibility to flush the work item from
3795 * CPU_DOWN_PREPARE.
3796 */
3797static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3798                                   bool online)
3799{
3800        int node = cpu_to_node(cpu);
3801        int cpu_off = online ? -1 : cpu;
3802        struct pool_workqueue *old_pwq = NULL, *pwq;
3803        struct workqueue_attrs *target_attrs;
3804        cpumask_t *cpumask;
3805
3806        lockdep_assert_held(&wq_pool_mutex);
3807
3808        if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3809            wq->unbound_attrs->no_numa)
3810                return;
3811
3812        /*
3813         * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3814         * Let's use a preallocated one.  The following buf is protected by
3815         * CPU hotplug exclusion.
3816         */
3817        target_attrs = wq_update_unbound_numa_attrs_buf;
3818        cpumask = target_attrs->cpumask;
3819
3820        copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3821        pwq = unbound_pwq_by_node(wq, node);
3822
3823        /*
3824         * Let's determine what needs to be done.  If the target cpumask is
3825         * different from the default pwq's, we need to compare it to @pwq's
3826         * and create a new one if they don't match.  If the target cpumask
3827         * equals the default pwq's, the default pwq should be used.
3828         */
3829        if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3830                if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3831                        return;
3832        } else {
3833                goto use_dfl_pwq;
3834        }
3835
3836        /* create a new pwq */
3837        pwq = alloc_unbound_pwq(wq, target_attrs);
3838        if (!pwq) {
3839                pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3840                        wq->name);
3841                goto use_dfl_pwq;
3842        }
3843
3844        /* Install the new pwq. */
3845        mutex_lock(&wq->mutex);
3846        old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3847        goto out_unlock;
3848
3849use_dfl_pwq:
3850        mutex_lock(&wq->mutex);
3851        spin_lock_irq(&wq->dfl_pwq->pool->lock);
3852        get_pwq(wq->dfl_pwq);
3853        spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3854        old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3855out_unlock:
3856        mutex_unlock(&wq->mutex);
3857        put_pwq_unlocked(old_pwq);
3858}
3859
3860static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3861{
3862        bool highpri = wq->flags & WQ_HIGHPRI;
3863        int cpu, ret;
3864
3865        if (!(wq->flags & WQ_UNBOUND)) {
3866                wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3867                if (!wq->cpu_pwqs)
3868                        return -ENOMEM;
3869
3870                for_each_possible_cpu(cpu) {
3871                        struct pool_workqueue *pwq =
3872                                per_cpu_ptr(wq->cpu_pwqs, cpu);
3873                        struct worker_pool *cpu_pools =
3874                                per_cpu(cpu_worker_pools, cpu);
3875
3876                        init_pwq(pwq, wq, &cpu_pools[highpri]);
3877
3878                        mutex_lock(&wq->mutex);
3879                        link_pwq(pwq);
3880                        mutex_unlock(&wq->mutex);
3881                }
3882                return 0;
3883        } else if (wq->flags & __WQ_ORDERED) {
3884                ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3885                /* there should only be single pwq for ordering guarantee */
3886                WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3887                              wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3888                     "ordering guarantee broken for workqueue %s\n", wq->name);
3889                return ret;
3890        } else {
3891                return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3892        }
3893}
3894
3895static int wq_clamp_max_active(int max_active, unsigned int flags,
3896                               const char *name)
3897{
3898        int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3899
3900        if (max_active < 1 || max_active > lim)
3901                pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3902                        max_active, name, 1, lim);
3903
3904        return clamp_val(max_active, 1, lim);
3905}
3906
3907struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3908                                               unsigned int flags,
3909                                               int max_active,
3910                                               struct lock_class_key *key,
3911                                               const char *lock_name, ...)
3912{
3913        size_t tbl_size = 0;
3914        va_list args;
3915        struct workqueue_struct *wq;
3916        struct pool_workqueue *pwq;
3917
3918        /* see the comment above the definition of WQ_POWER_EFFICIENT */
3919        if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3920                flags |= WQ_UNBOUND;
3921
3922        /* allocate wq and format name */
3923        if (flags & WQ_UNBOUND)
3924                tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3925
3926        wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3927        if (!wq)
3928                return NULL;
3929
3930        if (flags & WQ_UNBOUND) {
3931                wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3932                if (!wq->unbound_attrs)
3933                        goto err_free_wq;
3934        }
3935
3936        va_start(args, lock_name);
3937        vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3938        va_end(args);
3939
3940        max_active = max_active ?: WQ_DFL_ACTIVE;
3941        max_active = wq_clamp_max_active(max_active, flags, wq->name);
3942
3943        /* init wq */
3944        wq->flags = flags;
3945        wq->saved_max_active = max_active;
3946        mutex_init(&wq->mutex);
3947        atomic_set(&wq->nr_pwqs_to_flush, 0);
3948        INIT_LIST_HEAD(&wq->pwqs);
3949        INIT_LIST_HEAD(&wq->flusher_queue);
3950        INIT_LIST_HEAD(&wq->flusher_overflow);
3951        INIT_LIST_HEAD(&wq->maydays);
3952
3953        lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3954        INIT_LIST_HEAD(&wq->list);
3955
3956        if (alloc_and_link_pwqs(wq) < 0)
3957                goto err_free_wq;
3958
3959        /*
3960         * Workqueues which may be used during memory reclaim should
3961         * have a rescuer to guarantee forward progress.
3962         */
3963        if (flags & WQ_MEM_RECLAIM) {
3964                struct worker *rescuer;
3965
3966                rescuer = alloc_worker(NUMA_NO_NODE);
3967                if (!rescuer)
3968                        goto err_destroy;
3969
3970                rescuer->rescue_wq = wq;
3971                rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3972                                               wq->name);
3973                if (IS_ERR(rescuer->task)) {
3974                        kfree(rescuer);
3975                        goto err_destroy;
3976                }
3977
3978                wq->rescuer = rescuer;
3979                kthread_bind_mask(rescuer->task, cpu_possible_mask);
3980                wake_up_process(rescuer->task);
3981        }
3982
3983        if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3984                goto err_destroy;
3985
3986        /*
3987         * wq_pool_mutex protects global freeze state and workqueues list.
3988         * Grab it, adjust max_active and add the new @wq to workqueues
3989         * list.
3990         */
3991        mutex_lock(&wq_pool_mutex);
3992
3993        mutex_lock(&wq->mutex);
3994        for_each_pwq(pwq, wq)
3995                pwq_adjust_max_active(pwq);
3996        mutex_unlock(&wq->mutex);
3997
3998        list_add_tail_rcu(&wq->list, &workqueues);
3999
4000        mutex_unlock(&wq_pool_mutex);
4001
4002        return wq;
4003
4004err_free_wq:
4005        free_workqueue_attrs(wq->unbound_attrs);
4006        kfree(wq);
4007        return NULL;
4008err_destroy:
4009        destroy_workqueue(wq);
4010        return NULL;
4011}
4012EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4013
4014/**
4015 * destroy_workqueue - safely terminate a workqueue
4016 * @wq: target workqueue
4017 *
4018 * Safely destroy a workqueue. All work currently pending will be done first.
4019 */
4020void destroy_workqueue(struct workqueue_struct *wq)
4021{
4022        struct pool_workqueue *pwq;
4023        int node;
4024
4025        /* drain it before proceeding with destruction */
4026        drain_workqueue(wq);
4027
4028        /* sanity checks */
4029        mutex_lock(&wq->mutex);
4030        for_each_pwq(pwq, wq) {
4031                int i;
4032
4033                for (i = 0; i < WORK_NR_COLORS; i++) {
4034                        if (WARN_ON(pwq->nr_in_flight[i])) {
4035                                mutex_unlock(&wq->mutex);
4036                                return;
4037                        }
4038                }
4039
4040                if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4041                    WARN_ON(pwq->nr_active) ||
4042                    WARN_ON(!list_empty(&pwq->delayed_works))) {
4043                        mutex_unlock(&wq->mutex);
4044                        return;
4045                }
4046        }
4047        mutex_unlock(&wq->mutex);
4048
4049        /*
4050         * wq list is used to freeze wq, remove from list after
4051         * flushing is complete in case freeze races us.
4052         */
4053        mutex_lock(&wq_pool_mutex);
4054        list_del_rcu(&wq->list);
4055        mutex_unlock(&wq_pool_mutex);
4056
4057        workqueue_sysfs_unregister(wq);
4058
4059        if (wq->rescuer)
4060                kthread_stop(wq->rescuer->task);
4061
4062        if (!(wq->flags & WQ_UNBOUND)) {
4063                /*
4064                 * The base ref is never dropped on per-cpu pwqs.  Directly
4065                 * schedule RCU free.
4066                 */
4067                call_rcu_sched(&wq->rcu, rcu_free_wq);
4068        } else {
4069                /*
4070                 * We're the sole accessor of @wq at this point.  Directly
4071                 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4072                 * @wq will be freed when the last pwq is released.
4073                 */
4074                for_each_node(node) {
4075                        pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4076                        RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4077                        put_pwq_unlocked(pwq);
4078                }
4079
4080                /*
4081                 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4082                 * put.  Don't access it afterwards.
4083                 */
4084                pwq = wq->dfl_pwq;
4085                wq->dfl_pwq = NULL;
4086                put_pwq_unlocked(pwq);
4087        }
4088}
4089EXPORT_SYMBOL_GPL(destroy_workqueue);
4090
4091/**
4092 * workqueue_set_max_active - adjust max_active of a workqueue
4093 * @wq: target workqueue
4094 * @max_active: new max_active value.
4095 *
4096 * Set max_active of @wq to @max_active.
4097 *
4098 * CONTEXT:
4099 * Don't call from IRQ context.
4100 */
4101void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4102{
4103        struct pool_workqueue *pwq;
4104
4105        /* disallow meddling with max_active for ordered workqueues */
4106        if (WARN_ON(wq->flags & __WQ_ORDERED))
4107                return;
4108
4109        max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4110
4111        mutex_lock(&wq->mutex);
4112
4113        wq->saved_max_active = max_active;
4114
4115        for_each_pwq(pwq, wq)
4116                pwq_adjust_max_active(pwq);
4117
4118        mutex_unlock(&wq->mutex);
4119}
4120EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4121
4122/**
4123 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4124 *
4125 * Determine whether %current is a workqueue rescuer.  Can be used from
4126 * work functions to determine whether it's being run off the rescuer task.
4127 *
4128 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4129 */
4130bool current_is_workqueue_rescuer(void)
4131{
4132        struct worker *worker = current_wq_worker();
4133
4134        return worker && worker->rescue_wq;
4135}
4136
4137/**
4138 * workqueue_congested - test whether a workqueue is congested
4139 * @cpu: CPU in question
4140 * @wq: target workqueue
4141 *
4142 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4143 * no synchronization around this function and the test result is
4144 * unreliable and only useful as advisory hints or for debugging.
4145 *
4146 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4147 * Note that both per-cpu and unbound workqueues may be associated with
4148 * multiple pool_workqueues which have separate congested states.  A
4149 * workqueue being congested on one CPU doesn't mean the workqueue is also
4150 * contested on other CPUs / NUMA nodes.
4151 *
4152 * Return:
4153 * %true if congested, %false otherwise.
4154 */
4155bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4156{
4157        struct pool_workqueue *pwq;
4158        bool ret;
4159
4160        rcu_read_lock_sched();
4161
4162        if (cpu == WORK_CPU_UNBOUND)
4163                cpu = smp_processor_id();
4164
4165        if (!(wq->flags & WQ_UNBOUND))
4166                pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4167        else
4168                pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4169
4170        ret = !list_empty(&pwq->delayed_works);
4171        rcu_read_unlock_sched();
4172
4173        return ret;
4174}
4175EXPORT_SYMBOL_GPL(workqueue_congested);
4176
4177/**
4178 * work_busy - test whether a work is currently pending or running
4179 * @work: the work to be tested
4180 *
4181 * Test whether @work is currently pending or running.  There is no
4182 * synchronization around this function and the test result is
4183 * unreliable and only useful as advisory hints or for debugging.
4184 *
4185 * Return:
4186 * OR'd bitmask of WORK_BUSY_* bits.
4187 */
4188unsigned int work_busy(struct work_struct *work)
4189{
4190        struct worker_pool *pool;
4191        unsigned long flags;
4192        unsigned int ret = 0;
4193
4194        if (work_pending(work))
4195                ret |= WORK_BUSY_PENDING;
4196
4197        local_irq_save(flags);
4198        pool = get_work_pool(work);
4199        if (pool) {
4200                spin_lock(&pool->lock);
4201                if (find_worker_executing_work(pool, work))
4202                        ret |= WORK_BUSY_RUNNING;
4203                spin_unlock(&pool->lock);
4204        }
4205        local_irq_restore(flags);
4206
4207        return ret;
4208}
4209EXPORT_SYMBOL_GPL(work_busy);
4210
4211/**
4212 * set_worker_desc - set description for the current work item
4213 * @fmt: printf-style format string
4214 * @...: arguments for the format string
4215 *
4216 * This function can be called by a running work function to describe what
4217 * the work item is about.  If the worker task gets dumped, this
4218 * information will be printed out together to help debugging.  The
4219 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4220 */
4221void set_worker_desc(const char *fmt, ...)
4222{
4223        struct worker *worker = current_wq_worker();
4224        va_list args;
4225
4226        if (worker) {
4227                va_start(args, fmt);
4228                vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4229                va_end(args);
4230                worker->desc_valid = true;
4231        }
4232}
4233
4234/**
4235 * print_worker_info - print out worker information and description
4236 * @log_lvl: the log level to use when printing
4237 * @task: target task
4238 *
4239 * If @task is a worker and currently executing a work item, print out the
4240 * name of the workqueue being serviced and worker description set with
4241 * set_worker_desc() by the currently executing work item.
4242 *
4243 * This function can be safely called on any task as long as the
4244 * task_struct itself is accessible.  While safe, this function isn't
4245 * synchronized and may print out mixups or garbages of limited length.
4246 */
4247void print_worker_info(const char *log_lvl, struct task_struct *task)
4248{
4249        work_func_t *fn = NULL;
4250        char name[WQ_NAME_LEN] = { };
4251        char desc[WORKER_DESC_LEN] = { };
4252        struct pool_workqueue *pwq = NULL;
4253        struct workqueue_struct *wq = NULL;
4254        bool desc_valid = false;
4255        struct worker *worker;
4256
4257        if (!(task->flags & PF_WQ_WORKER))
4258                return;
4259
4260        /*
4261         * This function is called without any synchronization and @task
4262         * could be in any state.  Be careful with dereferences.
4263         */
4264        worker = kthread_probe_data(task);
4265
4266        /*
4267         * Carefully copy the associated workqueue's workfn and name.  Keep
4268         * the original last '\0' in case the original contains garbage.
4269         */
4270        probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4271        probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4272        probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4273        probe_kernel_read(name, wq->name, sizeof(name) - 1);
4274
4275        /* copy worker description */
4276        probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4277        if (desc_valid)
4278                probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4279
4280        if (fn || name[0] || desc[0]) {
4281                printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4282                if (desc[0])
4283                        pr_cont(" (%s)", desc);
4284                pr_cont("\n");
4285        }
4286}
4287
4288static void pr_cont_pool_info(struct worker_pool *pool)
4289{
4290        pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4291        if (pool->node != NUMA_NO_NODE)
4292                pr_cont(" node=%d", pool->node);
4293        pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4294}
4295
4296static void pr_cont_work(bool comma, struct work_struct *work)
4297{
4298        if (work->func == wq_barrier_func) {
4299                struct wq_barrier *barr;
4300
4301                barr = container_of(work, struct wq_barrier, work);
4302
4303                pr_cont("%s BAR(%d)", comma ? "," : "",
4304                        task_pid_nr(barr->task));
4305        } else {
4306                pr_cont("%s %pf", comma ? "," : "", work->func);
4307        }
4308}
4309
4310static void show_pwq(struct pool_workqueue *pwq)
4311{
4312        struct worker_pool *pool = pwq->pool;
4313        struct work_struct *work;
4314        struct worker *worker;
4315        bool has_in_flight = false, has_pending = false;
4316        int bkt;
4317
4318        pr_info("  pwq %d:", pool->id);
4319        pr_cont_pool_info(pool);
4320
4321        pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4322                !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4323
4324        hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4325                if (worker->current_pwq == pwq) {
4326                        has_in_flight = true;
4327                        break;
4328                }
4329        }
4330        if (has_in_flight) {
4331                bool comma = false;
4332
4333                pr_info("    in-flight:");
4334                hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4335                        if (worker->current_pwq != pwq)
4336                                continue;
4337
4338                        pr_cont("%s %d%s:%pf", comma ? "," : "",
4339                                task_pid_nr(worker->task),
4340                                worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4341                                worker->current_func);
4342                        list_for_each_entry(work, &worker->scheduled, entry)
4343                                pr_cont_work(false, work);
4344                        comma = true;
4345                }
4346                pr_cont("\n");
4347        }
4348
4349        list_for_each_entry(work, &pool->worklist, entry) {
4350                if (get_work_pwq(work) == pwq) {
4351                        has_pending = true;
4352                        break;
4353                }
4354        }
4355        if (has_pending) {
4356                bool comma = false;
4357
4358                pr_info("    pending:");
4359                list_for_each_entry(work, &pool->worklist, entry) {
4360                        if (get_work_pwq(work) != pwq)
4361                                continue;
4362
4363                        pr_cont_work(comma, work);
4364                        comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4365                }
4366                pr_cont("\n");
4367        }
4368
4369        if (!list_empty(&pwq->delayed_works)) {
4370                bool comma = false;
4371
4372                pr_info("    delayed:");
4373                list_for_each_entry(work, &pwq->delayed_works, entry) {
4374                        pr_cont_work(comma, work);
4375                        comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4376                }
4377                pr_cont("\n");
4378        }
4379}
4380
4381/**
4382 * show_workqueue_state - dump workqueue state
4383 *
4384 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4385 * all busy workqueues and pools.
4386 */
4387void show_workqueue_state(void)
4388{
4389        struct workqueue_struct *wq;
4390        struct worker_pool *pool;
4391        unsigned long flags;
4392        int pi;
4393
4394        rcu_read_lock_sched();
4395
4396        pr_info("Showing busy workqueues and worker pools:\n");
4397
4398        list_for_each_entry_rcu(wq, &workqueues, list) {
4399                struct pool_workqueue *pwq;
4400                bool idle = true;
4401
4402                for_each_pwq(pwq, wq) {
4403                        if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4404                                idle = false;
4405                                break;
4406                        }
4407                }
4408                if (idle)
4409                        continue;
4410
4411                pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4412
4413                for_each_pwq(pwq, wq) {
4414                        spin_lock_irqsave(&pwq->pool->lock, flags);
4415                        if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4416                                show_pwq(pwq);
4417                        spin_unlock_irqrestore(&pwq->pool->lock, flags);
4418                }
4419        }
4420
4421        for_each_pool(pool, pi) {
4422                struct worker *worker;
4423                bool first = true;
4424
4425                spin_lock_irqsave(&pool->lock, flags);
4426                if (pool->nr_workers == pool->nr_idle)
4427                        goto next_pool;
4428
4429                pr_info("pool %d:", pool->id);
4430                pr_cont_pool_info(pool);
4431                pr_cont(" hung=%us workers=%d",
4432                        jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4433                        pool->nr_workers);
4434                if (pool->manager)
4435                        pr_cont(" manager: %d",
4436                                task_pid_nr(pool->manager->task));
4437                list_for_each_entry(worker, &pool->idle_list, entry) {
4438                        pr_cont(" %s%d", first ? "idle: " : "",
4439                                task_pid_nr(worker->task));
4440                        first = false;
4441                }
4442                pr_cont("\n");
4443        next_pool:
4444                spin_unlock_irqrestore(&pool->lock, flags);
4445        }
4446
4447        rcu_read_unlock_sched();
4448}
4449
4450/*
4451 * CPU hotplug.
4452 *
4453 * There are two challenges in supporting CPU hotplug.  Firstly, there
4454 * are a lot of assumptions on strong associations among work, pwq and
4455 * pool which make migrating pending and scheduled works very
4456 * difficult to implement without impacting hot paths.  Secondly,
4457 * worker pools serve mix of short, long and very long running works making
4458 * blocked draining impractical.
4459 *
4460 * This is solved by allowing the pools to be disassociated from the CPU
4461 * running as an unbound one and allowing it to be reattached later if the
4462 * cpu comes back online.
4463 */
4464
4465static void wq_unbind_fn(struct work_struct *work)
4466{
4467        int cpu = smp_processor_id();
4468        struct worker_pool *pool;
4469        struct worker *worker;
4470
4471        for_each_cpu_worker_pool(pool, cpu) {
4472                mutex_lock(&pool->attach_mutex);
4473                spin_lock_irq(&pool->lock);
4474
4475                /*
4476                 * We've blocked all attach/detach operations. Make all workers
4477                 * unbound and set DISASSOCIATED.  Before this, all workers
4478                 * except for the ones which are still executing works from
4479                 * before the last CPU down must be on the cpu.  After
4480                 * this, they may become diasporas.
4481                 */
4482                for_each_pool_worker(worker, pool)
4483                        worker->flags |= WORKER_UNBOUND;
4484
4485                pool->flags |= POOL_DISASSOCIATED;
4486
4487                spin_unlock_irq(&pool->lock);
4488                mutex_unlock(&pool->attach_mutex);
4489
4490                /*
4491                 * Call schedule() so that we cross rq->lock and thus can
4492                 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4493                 * This is necessary as scheduler callbacks may be invoked
4494                 * from other cpus.
4495                 */
4496                schedule();
4497
4498                /*
4499                 * Sched callbacks are disabled now.  Zap nr_running.
4500                 * After this, nr_running stays zero and need_more_worker()
4501                 * and keep_working() are always true as long as the
4502                 * worklist is not empty.  This pool now behaves as an
4503                 * unbound (in terms of concurrency management) pool which
4504                 * are served by workers tied to the pool.
4505                 */
4506                atomic_set(&pool->nr_running, 0);
4507
4508                /*
4509                 * With concurrency management just turned off, a busy
4510                 * worker blocking could lead to lengthy stalls.  Kick off
4511                 * unbound chain execution of currently pending work items.
4512                 */
4513                spin_lock_irq(&pool->lock);
4514                wake_up_worker(pool);
4515                spin_unlock_irq(&pool->lock);
4516        }
4517}
4518
4519/**
4520 * rebind_workers - rebind all workers of a pool to the associated CPU
4521 * @pool: pool of interest
4522 *
4523 * @pool->cpu is coming online.  Rebind all workers to the CPU.
4524 */
4525static void rebind_workers(struct worker_pool *pool)
4526{
4527        struct worker *worker;
4528
4529        lockdep_assert_held(&pool->attach_mutex);
4530
4531        /*
4532         * Restore CPU affinity of all workers.  As all idle workers should
4533         * be on the run-queue of the associated CPU before any local
4534         * wake-ups for concurrency management happen, restore CPU affinity
4535         * of all workers first and then clear UNBOUND.  As we're called
4536         * from CPU_ONLINE, the following shouldn't fail.
4537         */
4538        for_each_pool_worker(worker, pool)
4539                WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4540                                                  pool->attrs->cpumask) < 0);
4541
4542        spin_lock_irq(&pool->lock);
4543
4544        /*
4545         * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4546         * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
4547         * being reworked and this can go away in time.
4548         */
4549        if (!(pool->flags & POOL_DISASSOCIATED)) {
4550                spin_unlock_irq(&pool->lock);
4551                return;
4552        }
4553
4554        pool->flags &= ~POOL_DISASSOCIATED;
4555
4556        for_each_pool_worker(worker, pool) {
4557                unsigned int worker_flags = worker->flags;
4558
4559                /*
4560                 * A bound idle worker should actually be on the runqueue
4561                 * of the associated CPU for local wake-ups targeting it to
4562                 * work.  Kick all idle workers so that they migrate to the
4563                 * associated CPU.  Doing this in the same loop as
4564                 * replacing UNBOUND with REBOUND is safe as no worker will
4565                 * be bound before @pool->lock is released.
4566                 */
4567                if (worker_flags & WORKER_IDLE)
4568                        wake_up_process(worker->task);
4569
4570                /*
4571                 * We want to clear UNBOUND but can't directly call
4572                 * worker_clr_flags() or adjust nr_running.  Atomically
4573                 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4574                 * @worker will clear REBOUND using worker_clr_flags() when
4575                 * it initiates the next execution cycle thus restoring
4576                 * concurrency management.  Note that when or whether
4577                 * @worker clears REBOUND doesn't affect correctness.
4578                 *
4579                 * ACCESS_ONCE() is necessary because @worker->flags may be
4580                 * tested without holding any lock in
4581                 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4582                 * fail incorrectly leading to premature concurrency
4583                 * management operations.
4584                 */
4585                WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4586                worker_flags |= WORKER_REBOUND;
4587                worker_flags &= ~WORKER_UNBOUND;
4588                ACCESS_ONCE(worker->flags) = worker_flags;
4589        }
4590
4591        spin_unlock_irq(&pool->lock);
4592}
4593
4594/**
4595 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4596 * @pool: unbound pool of interest
4597 * @cpu: the CPU which is coming up
4598 *
4599 * An unbound pool may end up with a cpumask which doesn't have any online
4600 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4601 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4602 * online CPU before, cpus_allowed of all its workers should be restored.
4603 */
4604static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4605{
4606        static cpumask_t cpumask;
4607        struct worker *worker;
4608
4609        lockdep_assert_held(&pool->attach_mutex);
4610
4611        /* is @cpu allowed for @pool? */
4612        if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4613                return;
4614
4615        cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4616
4617        /* as we're called from CPU_ONLINE, the following shouldn't fail */
4618        for_each_pool_worker(worker, pool)
4619                WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4620}
4621
4622int workqueue_prepare_cpu(unsigned int cpu)
4623{
4624        struct worker_pool *pool;
4625
4626        for_each_cpu_worker_pool(pool, cpu) {
4627                if (pool->nr_workers)
4628                        continue;
4629                if (!create_worker(pool))
4630                        return -ENOMEM;
4631        }
4632        return 0;
4633}
4634
4635int workqueue_online_cpu(unsigned int cpu)
4636{
4637        struct worker_pool *pool;
4638        struct workqueue_struct *wq;
4639        int pi;
4640
4641        mutex_lock(&wq_pool_mutex);
4642
4643        for_each_pool(pool, pi) {
4644                mutex_lock(&pool->attach_mutex);
4645
4646                if (pool->cpu == cpu)
4647                        rebind_workers(pool);
4648                else if (pool->cpu < 0)
4649                        restore_unbound_workers_cpumask(pool, cpu);
4650
4651                mutex_unlock(&pool->attach_mutex);
4652        }
4653
4654        /* update NUMA affinity of unbound workqueues */
4655        list_for_each_entry(wq, &workqueues, list)
4656                wq_update_unbound_numa(wq, cpu, true);
4657
4658        mutex_unlock(&wq_pool_mutex);
4659        return 0;
4660}
4661
4662int workqueue_offline_cpu(unsigned int cpu)
4663{
4664        struct work_struct unbind_work;
4665        struct workqueue_struct *wq;
4666
4667        /* unbinding per-cpu workers should happen on the local CPU */
4668        INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4669        queue_work_on(cpu, system_highpri_wq, &unbind_work);
4670
4671        /* update NUMA affinity of unbound workqueues */
4672        mutex_lock(&wq_pool_mutex);
4673        list_for_each_entry(wq, &workqueues, list)
4674                wq_update_unbound_numa(wq, cpu, false);
4675        mutex_unlock(&wq_pool_mutex);
4676
4677        /* wait for per-cpu unbinding to finish */
4678        flush_work(&unbind_work);
4679        destroy_work_on_stack(&unbind_work);
4680        return 0;
4681}
4682
4683#ifdef CONFIG_SMP
4684
4685struct work_for_cpu {
4686        struct work_struct work;
4687        long (*fn)(void *);
4688        void *arg;
4689        long ret;
4690};
4691
4692static void work_for_cpu_fn(struct work_struct *work)
4693{
4694        struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4695
4696        wfc->ret = wfc->fn(wfc->arg);
4697}
4698
4699/**
4700 * work_on_cpu - run a function in thread context on a particular cpu
4701 * @cpu: the cpu to run on
4702 * @fn: the function to run
4703 * @arg: the function arg
4704 *
4705 * It is up to the caller to ensure that the cpu doesn't go offline.
4706 * The caller must not hold any locks which would prevent @fn from completing.
4707 *
4708 * Return: The value @fn returns.
4709 */
4710long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4711{
4712        struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4713
4714        INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4715        schedule_work_on(cpu, &wfc.work);
4716        flush_work(&wfc.work);
4717        destroy_work_on_stack(&wfc.work);
4718        return wfc.ret;
4719}
4720EXPORT_SYMBOL_GPL(work_on_cpu);
4721#endif /* CONFIG_SMP */
4722
4723#ifdef CONFIG_FREEZER
4724
4725/**
4726 * freeze_workqueues_begin - begin freezing workqueues
4727 *
4728 * Start freezing workqueues.  After this function returns, all freezable
4729 * workqueues will queue new works to their delayed_works list instead of
4730 * pool->worklist.
4731 *
4732 * CONTEXT:
4733 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4734 */
4735void freeze_workqueues_begin(void)
4736{
4737        struct workqueue_struct *wq;
4738        struct pool_workqueue *pwq;
4739
4740        mutex_lock(&wq_pool_mutex);
4741
4742        WARN_ON_ONCE(workqueue_freezing);
4743        workqueue_freezing = true;
4744
4745        list_for_each_entry(wq, &workqueues, list) {
4746                mutex_lock(&wq->mutex);
4747                for_each_pwq(pwq, wq)
4748                        pwq_adjust_max_active(pwq);
4749                mutex_unlock(&wq->mutex);
4750        }
4751
4752        mutex_unlock(&wq_pool_mutex);
4753}
4754
4755/**
4756 * freeze_workqueues_busy - are freezable workqueues still busy?
4757 *
4758 * Check whether freezing is complete.  This function must be called
4759 * between freeze_workqueues_begin() and thaw_workqueues().
4760 *
4761 * CONTEXT:
4762 * Grabs and releases wq_pool_mutex.
4763 *
4764 * Return:
4765 * %true if some freezable workqueues are still busy.  %false if freezing
4766 * is complete.
4767 */
4768bool freeze_workqueues_busy(void)
4769{
4770        bool busy = false;
4771        struct workqueue_struct *wq;
4772        struct pool_workqueue *pwq;
4773
4774        mutex_lock(&wq_pool_mutex);
4775
4776        WARN_ON_ONCE(!workqueue_freezing);
4777
4778        list_for_each_entry(wq, &workqueues, list) {
4779                if (!(wq->flags & WQ_FREEZABLE))
4780                        continue;
4781                /*
4782                 * nr_active is monotonically decreasing.  It's safe
4783                 * to peek without lock.
4784                 */
4785                rcu_read_lock_sched();
4786                for_each_pwq(pwq, wq) {
4787                        WARN_ON_ONCE(pwq->nr_active < 0);
4788                        if (pwq->nr_active) {
4789                                busy = true;
4790                                rcu_read_unlock_sched();
4791                                goto out_unlock;
4792                        }
4793                }
4794                rcu_read_unlock_sched();
4795        }
4796out_unlock:
4797        mutex_unlock(&wq_pool_mutex);
4798        return busy;
4799}
4800
4801/**
4802 * thaw_workqueues - thaw workqueues
4803 *
4804 * Thaw workqueues.  Normal queueing is restored and all collected
4805 * frozen works are transferred to their respective pool worklists.
4806 *
4807 * CONTEXT:
4808 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4809 */
4810void thaw_workqueues(void)
4811{
4812        struct workqueue_struct *wq;
4813        struct pool_workqueue *pwq;
4814
4815        mutex_lock(&wq_pool_mutex);
4816
4817        if (!workqueue_freezing)
4818                goto out_unlock;
4819
4820        workqueue_freezing = false;
4821
4822        /* restore max_active and repopulate worklist */
4823        list_for_each_entry(wq, &workqueues, list) {
4824                mutex_lock(&wq->mutex);
4825                for_each_pwq(pwq, wq)
4826                        pwq_adjust_max_active(pwq);
4827                mutex_unlock(&wq->mutex);
4828        }
4829
4830out_unlock:
4831        mutex_unlock(&wq_pool_mutex);
4832}
4833#endif /* CONFIG_FREEZER */
4834
4835static int workqueue_apply_unbound_cpumask(void)
4836{
4837        LIST_HEAD(ctxs);
4838        int ret = 0;
4839        struct workqueue_struct *wq;
4840        struct apply_wqattrs_ctx *ctx, *n;
4841
4842        lockdep_assert_held(&wq_pool_mutex);
4843
4844        list_for_each_entry(wq, &workqueues, list) {
4845                if (!(wq->flags & WQ_UNBOUND))
4846                        continue;
4847                /* creating multiple pwqs breaks ordering guarantee */
4848                if (wq->flags & __WQ_ORDERED)
4849                        continue;
4850
4851                ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4852                if (!ctx) {
4853                        ret = -ENOMEM;
4854                        break;
4855                }
4856
4857                list_add_tail(&ctx->list, &ctxs);
4858        }
4859
4860        list_for_each_entry_safe(ctx, n, &ctxs, list) {
4861                if (!ret)
4862                        apply_wqattrs_commit(ctx);
4863                apply_wqattrs_cleanup(ctx);
4864        }
4865
4866        return ret;
4867}
4868
4869/**
4870 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4871 *  @cpumask: the cpumask to set
4872 *
4873 *  The low-level workqueues cpumask is a global cpumask that limits
4874 *  the affinity of all unbound workqueues.  This function check the @cpumask
4875 *  and apply it to all unbound workqueues and updates all pwqs of them.
4876 *
4877 *  Retun:      0       - Success
4878 *              -EINVAL - Invalid @cpumask
4879 *              -ENOMEM - Failed to allocate memory for attrs or pwqs.
4880 */
4881int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4882{
4883        int ret = -EINVAL;
4884        cpumask_var_t saved_cpumask;
4885
4886        if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4887                return -ENOMEM;
4888
4889        cpumask_and(cpumask, cpumask, cpu_possible_mask);
4890        if (!cpumask_empty(cpumask)) {
4891                apply_wqattrs_lock();
4892
4893                /* save the old wq_unbound_cpumask. */
4894                cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4895
4896                /* update wq_unbound_cpumask at first and apply it to wqs. */
4897                cpumask_copy(wq_unbound_cpumask, cpumask);
4898                ret = workqueue_apply_unbound_cpumask();
4899
4900                /* restore the wq_unbound_cpumask when failed. */
4901                if (ret < 0)
4902                        cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4903
4904                apply_wqattrs_unlock();
4905        }
4906
4907        free_cpumask_var(saved_cpumask);
4908        return ret;
4909}
4910
4911#ifdef CONFIG_SYSFS
4912/*
4913 * Workqueues with WQ_SYSFS flag set is visible to userland via
4914 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4915 * following attributes.
4916 *
4917 *  per_cpu     RO bool : whether the workqueue is per-cpu or unbound
4918 *  max_active  RW int  : maximum number of in-flight work items
4919 *
4920 * Unbound workqueues have the following extra attributes.
4921 *
4922 *  id          RO int  : the associated pool ID
4923 *  nice        RW int  : nice value of the workers
4924 *  cpumask     RW mask : bitmask of allowed CPUs for the workers
4925 */
4926struct wq_device {
4927        struct workqueue_struct         *wq;
4928        struct device                   dev;
4929};
4930
4931static struct workqueue_struct *dev_to_wq(struct device *dev)
4932{
4933        struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4934
4935        return wq_dev->wq;
4936}
4937
4938static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4939                            char *buf)
4940{
4941        struct workqueue_struct *wq = dev_to_wq(dev);
4942
4943        return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4944}
4945static DEVICE_ATTR_RO(per_cpu);
4946
4947static ssize_t max_active_show(struct device *dev,
4948                               struct device_attribute *attr, char *buf)
4949{
4950        struct workqueue_struct *wq = dev_to_wq(dev);
4951
4952        return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4953}
4954
4955static ssize_t max_active_store(struct device *dev,
4956                                struct device_attribute *attr, const char *buf,
4957                                size_t count)
4958{
4959        struct workqueue_struct *wq = dev_to_wq(dev);
4960        int val;
4961
4962        if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4963                return -EINVAL;
4964
4965        workqueue_set_max_active(wq, val);
4966        return count;
4967}
4968static DEVICE_ATTR_RW(max_active);
4969
4970static struct attribute *wq_sysfs_attrs[] = {
4971        &dev_attr_per_cpu.attr,
4972        &dev_attr_max_active.attr,
4973        NULL,
4974};
4975ATTRIBUTE_GROUPS(wq_sysfs);
4976
4977static ssize_t wq_pool_ids_show(struct device *dev,
4978                                struct device_attribute *attr, char *buf)
4979{
4980        struct workqueue_struct *wq = dev_to_wq(dev);
4981        const char *delim = "";
4982        int node, written = 0;
4983
4984        rcu_read_lock_sched();
4985        for_each_node(node) {
4986                written += scnprintf(buf + written, PAGE_SIZE - written,
4987                                     "%s%d:%d", delim, node,
4988                                     unbound_pwq_by_node(wq, node)->pool->id);
4989                delim = " ";
4990        }
4991        written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4992        rcu_read_unlock_sched();
4993
4994        return written;
4995}
4996
4997static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4998                            char *buf)
4999{
5000        struct workqueue_struct *wq = dev_to_wq(dev);
5001        int written;
5002
5003        mutex_lock(&wq->mutex);
5004        written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5005        mutex_unlock(&wq->mutex);
5006
5007        return written;
5008}
5009
5010/* prepare workqueue_attrs for sysfs store operations */
5011static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5012{
5013        struct workqueue_attrs *attrs;
5014
5015        lockdep_assert_held(&wq_pool_mutex);
5016
5017        attrs = alloc_workqueue_attrs(GFP_KERNEL);
5018        if (!attrs)
5019                return NULL;
5020
5021        copy_workqueue_attrs(attrs, wq->unbound_attrs);
5022        return attrs;
5023}
5024
5025static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5026                             const char *buf, size_t count)
5027{
5028        struct workqueue_struct *wq = dev_to_wq(dev);
5029        struct workqueue_attrs *attrs;
5030        int ret = -ENOMEM;
5031
5032        apply_wqattrs_lock();
5033
5034        attrs = wq_sysfs_prep_attrs(wq);
5035        if (!attrs)
5036                goto out_unlock;
5037
5038        if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5039            attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5040                ret = apply_workqueue_attrs_locked(wq, attrs);
5041        else
5042                ret = -EINVAL;
5043
5044out_unlock:
5045        apply_wqattrs_unlock();
5046        free_workqueue_attrs(attrs);
5047        return ret ?: count;
5048}
5049
5050static ssize_t wq_cpumask_show(struct device *dev,
5051                               struct device_attribute *attr, char *buf)
5052{
5053        struct workqueue_struct *wq = dev_to_wq(dev);
5054        int written;
5055
5056        mutex_lock(&wq->mutex);
5057        written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5058                            cpumask_pr_args(wq->unbound_attrs->cpumask));
5059        mutex_unlock(&wq->mutex);
5060        return written;
5061}
5062
5063static ssize_t wq_cpumask_store(struct device *dev,
5064                                struct device_attribute *attr,
5065                                const char *buf, size_t count)
5066{
5067        struct workqueue_struct *wq = dev_to_wq(dev);
5068        struct workqueue_attrs *attrs;
5069        int ret = -ENOMEM;
5070
5071        apply_wqattrs_lock();
5072
5073        attrs = wq_sysfs_prep_attrs(wq);
5074        if (!attrs)
5075                goto out_unlock;
5076
5077        ret = cpumask_parse(buf, attrs->cpumask);
5078        if (!ret)
5079                ret = apply_workqueue_attrs_locked(wq, attrs);
5080
5081out_unlock:
5082        apply_wqattrs_unlock();
5083        free_workqueue_attrs(attrs);
5084        return ret ?: count;
5085}
5086
5087static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5088                            char *buf)
5089{
5090        struct workqueue_struct *wq = dev_to_wq(dev);
5091        int written;
5092
5093        mutex_lock(&wq->mutex);
5094        written = scnprintf(buf, PAGE_SIZE, "%d\n",
5095                            !wq->unbound_attrs->no_numa);
5096        mutex_unlock(&wq->mutex);
5097
5098        return written;
5099}
5100
5101static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5102                             const char *buf, size_t count)
5103{
5104        struct workqueue_struct *wq = dev_to_wq(dev);
5105        struct workqueue_attrs *attrs;
5106        int v, ret = -ENOMEM;
5107
5108        apply_wqattrs_lock();
5109
5110        attrs = wq_sysfs_prep_attrs(wq);
5111        if (!attrs)
5112                goto out_unlock;
5113
5114        ret = -EINVAL;
5115        if (sscanf(buf, "%d", &v) == 1) {
5116                attrs->no_numa = !v;
5117                ret = apply_workqueue_attrs_locked(wq, attrs);
5118        }
5119
5120out_unlock:
5121        apply_wqattrs_unlock();
5122        free_workqueue_attrs(attrs);
5123        return ret ?: count;
5124}
5125
5126static struct device_attribute wq_sysfs_unbound_attrs[] = {
5127        __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5128        __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5129        __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5130        __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5131        __ATTR_NULL,
5132};
5133
5134static struct bus_type wq_subsys = {
5135        .name                           = "workqueue",
5136        .dev_groups                     = wq_sysfs_groups,
5137};
5138
5139static ssize_t wq_unbound_cpumask_show(struct device *dev,
5140                struct device_attribute *attr, char *buf)
5141{
5142        int written;
5143
5144        mutex_lock(&wq_pool_mutex);
5145        written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5146                            cpumask_pr_args(wq_unbound_cpumask));
5147        mutex_unlock(&wq_pool_mutex);
5148
5149        return written;
5150}
5151
5152static ssize_t wq_unbound_cpumask_store(struct device *dev,
5153                struct device_attribute *attr, const char *buf, size_t count)
5154{
5155        cpumask_var_t cpumask;
5156        int ret;
5157
5158        if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5159                return -ENOMEM;
5160
5161        ret = cpumask_parse(buf, cpumask);
5162        if (!ret)
5163                ret = workqueue_set_unbound_cpumask(cpumask);
5164
5165        free_cpumask_var(cpumask);
5166        return ret ? ret : count;
5167}
5168
5169static struct device_attribute wq_sysfs_cpumask_attr =
5170        __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5171               wq_unbound_cpumask_store);
5172
5173static int __init wq_sysfs_init(void)
5174{
5175        int err;
5176
5177        err = subsys_virtual_register(&wq_subsys, NULL);
5178        if (err)
5179                return err;
5180
5181        return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5182}
5183core_initcall(wq_sysfs_init);
5184
5185static void wq_device_release(struct device *dev)
5186{
5187        struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5188
5189        kfree(wq_dev);
5190}
5191
5192/**
5193 * workqueue_sysfs_register - make a workqueue visible in sysfs
5194 * @wq: the workqueue to register
5195 *
5196 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5197 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5198 * which is the preferred method.
5199 *
5200 * Workqueue user should use this function directly iff it wants to apply
5201 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5202 * apply_workqueue_attrs() may race against userland updating the
5203 * attributes.
5204 *
5205 * Return: 0 on success, -errno on failure.
5206 */
5207int workqueue_sysfs_register(struct workqueue_struct *wq)
5208{
5209        struct wq_device *wq_dev;
5210        int ret;
5211
5212        /*
5213         * Adjusting max_active or creating new pwqs by applying
5214         * attributes breaks ordering guarantee.  Disallow exposing ordered
5215         * workqueues.
5216         */
5217        if (WARN_ON(wq->flags & __WQ_ORDERED))
5218                return -EINVAL;
5219
5220        wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5221        if (!wq_dev)
5222                return -ENOMEM;
5223
5224        wq_dev->wq = wq;
5225        wq_dev->dev.bus = &wq_subsys;
5226        wq_dev->dev.release = wq_device_release;
5227        dev_set_name(&wq_dev->dev, "%s", wq->name);
5228
5229        /*
5230         * unbound_attrs are created separately.  Suppress uevent until
5231         * everything is ready.
5232         */
5233        dev_set_uevent_suppress(&wq_dev->dev, true);
5234
5235        ret = device_register(&wq_dev->dev);
5236        if (ret) {
5237                kfree(wq_dev);
5238                wq->wq_dev = NULL;
5239                return ret;
5240        }
5241
5242        if (wq->flags & WQ_UNBOUND) {
5243                struct device_attribute *attr;
5244
5245                for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5246                        ret = device_create_file(&wq_dev->dev, attr);
5247                        if (ret) {
5248                                device_unregister(&wq_dev->dev);
5249                                wq->wq_dev = NULL;
5250                                return ret;
5251                        }
5252                }
5253        }
5254
5255        dev_set_uevent_suppress(&wq_dev->dev, false);
5256        kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5257        return 0;
5258}
5259
5260/**
5261 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5262 * @wq: the workqueue to unregister
5263 *
5264 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5265 */
5266static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5267{
5268        struct wq_device *wq_dev = wq->wq_dev;
5269
5270        if (!wq->wq_dev)
5271                return;
5272
5273        wq->wq_dev = NULL;
5274        device_unregister(&wq_dev->dev);
5275}
5276#else   /* CONFIG_SYSFS */
5277static void workqueue_sysfs_unregister(struct workqueue_struct *wq)     { }
5278#endif  /* CONFIG_SYSFS */
5279
5280/*
5281 * Workqueue watchdog.
5282 *
5283 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5284 * flush dependency, a concurrency managed work item which stays RUNNING
5285 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5286 * usual warning mechanisms don't trigger and internal workqueue state is
5287 * largely opaque.
5288 *
5289 * Workqueue watchdog monitors all worker pools periodically and dumps
5290 * state if some pools failed to make forward progress for a while where
5291 * forward progress is defined as the first item on ->worklist changing.
5292 *
5293 * This mechanism is controlled through the kernel parameter
5294 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5295 * corresponding sysfs parameter file.
5296 */
5297#ifdef CONFIG_WQ_WATCHDOG
5298
5299static void wq_watchdog_timer_fn(unsigned long data);
5300
5301static unsigned long wq_watchdog_thresh = 30;
5302static struct timer_list wq_watchdog_timer =
5303        TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5304
5305static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5306static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5307
5308static void wq_watchdog_reset_touched(void)
5309{
5310        int cpu;
5311
5312        wq_watchdog_touched = jiffies;
5313        for_each_possible_cpu(cpu)
5314                per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5315}
5316
5317static void wq_watchdog_timer_fn(unsigned long data)
5318{
5319        unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5320        bool lockup_detected = false;
5321        struct worker_pool *pool;
5322        int pi;
5323
5324        if (!thresh)
5325                return;
5326
5327        rcu_read_lock();
5328
5329        for_each_pool(pool, pi) {
5330                unsigned long pool_ts, touched, ts;
5331
5332                if (list_empty(&pool->worklist))
5333                        continue;
5334
5335                /* get the latest of pool and touched timestamps */
5336                pool_ts = READ_ONCE(pool->watchdog_ts);
5337                touched = READ_ONCE(wq_watchdog_touched);
5338
5339                if (time_after(pool_ts, touched))
5340                        ts = pool_ts;
5341                else
5342                        ts = touched;
5343
5344                if (pool->cpu >= 0) {
5345                        unsigned long cpu_touched =
5346                                READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5347                                                  pool->cpu));
5348                        if (time_after(cpu_touched, ts))
5349                                ts = cpu_touched;
5350                }
5351
5352                /* did we stall? */
5353                if (time_after(jiffies, ts + thresh)) {
5354                        lockup_detected = true;
5355                        pr_emerg("BUG: workqueue lockup - pool");
5356                        pr_cont_pool_info(pool);
5357                        pr_cont(" stuck for %us!\n",
5358                                jiffies_to_msecs(jiffies - pool_ts) / 1000);
5359                }
5360        }
5361
5362        rcu_read_unlock();
5363
5364        if (lockup_detected)
5365                show_workqueue_state();
5366
5367        wq_watchdog_reset_touched();
5368        mod_timer(&wq_watchdog_timer, jiffies + thresh);
5369}
5370
5371void wq_watchdog_touch(int cpu)
5372{
5373        if (cpu >= 0)
5374                per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5375        else
5376                wq_watchdog_touched = jiffies;
5377}
5378
5379static void wq_watchdog_set_thresh(unsigned long thresh)
5380{
5381        wq_watchdog_thresh = 0;
5382        del_timer_sync(&wq_watchdog_timer);
5383
5384        if (thresh) {
5385                wq_watchdog_thresh = thresh;
5386                wq_watchdog_reset_touched();
5387                mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5388        }
5389}
5390
5391static int wq_watchdog_param_set_thresh(const char *val,
5392                                        const struct kernel_param *kp)
5393{
5394        unsigned long thresh;
5395        int ret;
5396
5397        ret = kstrtoul(val, 0, &thresh);
5398        if (ret)
5399                return ret;
5400
5401        if (system_wq)
5402                wq_watchdog_set_thresh(thresh);
5403        else
5404                wq_watchdog_thresh = thresh;
5405
5406        return 0;
5407}
5408
5409static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5410        .set    = wq_watchdog_param_set_thresh,
5411        .get    = param_get_ulong,
5412};
5413
5414module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5415                0644);
5416
5417static void wq_watchdog_init(void)
5418{
5419        wq_watchdog_set_thresh(wq_watchdog_thresh);
5420}
5421
5422#else   /* CONFIG_WQ_WATCHDOG */
5423
5424static inline void wq_watchdog_init(void) { }
5425
5426#endif  /* CONFIG_WQ_WATCHDOG */
5427
5428static void __init wq_numa_init(void)
5429{
5430        cpumask_var_t *tbl;
5431        int node, cpu;
5432
5433        if (num_possible_nodes() <= 1)
5434                return;
5435
5436        if (wq_disable_numa) {
5437                pr_info("workqueue: NUMA affinity support disabled\n");
5438                return;
5439        }
5440
5441        wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5442        BUG_ON(!wq_update_unbound_numa_attrs_buf);
5443
5444        /*
5445         * We want masks of possible CPUs of each node which isn't readily
5446         * available.  Build one from cpu_to_node() which should have been
5447         * fully initialized by now.
5448         */
5449        tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5450        BUG_ON(!tbl);
5451
5452        for_each_node(node)
5453                BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5454                                node_online(node) ? node : NUMA_NO_NODE));
5455
5456        for_each_possible_cpu(cpu) {
5457                node = cpu_to_node(cpu);
5458                if (WARN_ON(node == NUMA_NO_NODE)) {
5459                        pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5460                        /* happens iff arch is bonkers, let's just proceed */
5461                        return;
5462                }
5463                cpumask_set_cpu(cpu, tbl[node]);
5464        }
5465
5466        wq_numa_possible_cpumask = tbl;
5467        wq_numa_enabled = true;
5468}
5469
5470static int __init init_workqueues(void)
5471{
5472        int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5473        int i, cpu;
5474
5475        WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5476
5477        BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5478        cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5479
5480        pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5481
5482        wq_numa_init();
5483
5484        /* initialize CPU pools */
5485        for_each_possible_cpu(cpu) {
5486                struct worker_pool *pool;
5487
5488                i = 0;
5489                for_each_cpu_worker_pool(pool, cpu) {
5490                        BUG_ON(init_worker_pool(pool));
5491                        pool->cpu = cpu;
5492                        cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5493                        pool->attrs->nice = std_nice[i++];
5494                        pool->node = cpu_to_node(cpu);
5495
5496                        /* alloc pool ID */
5497                        mutex_lock(&wq_pool_mutex);
5498                        BUG_ON(worker_pool_assign_id(pool));
5499                        mutex_unlock(&wq_pool_mutex);
5500                }
5501        }
5502
5503        /* create the initial worker */
5504        for_each_online_cpu(cpu) {
5505                struct worker_pool *pool;
5506
5507                for_each_cpu_worker_pool(pool, cpu) {
5508                        pool->flags &= ~POOL_DISASSOCIATED;
5509                        BUG_ON(!create_worker(pool));
5510                }
5511        }
5512
5513        /* create default unbound and ordered wq attrs */
5514        for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5515                struct workqueue_attrs *attrs;
5516
5517                BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5518                attrs->nice = std_nice[i];
5519                unbound_std_wq_attrs[i] = attrs;
5520
5521                /*
5522                 * An ordered wq should have only one pwq as ordering is
5523                 * guaranteed by max_active which is enforced by pwqs.
5524                 * Turn off NUMA so that dfl_pwq is used for all nodes.
5525                 */
5526                BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5527                attrs->nice = std_nice[i];
5528                attrs->no_numa = true;
5529                ordered_wq_attrs[i] = attrs;
5530        }
5531
5532        system_wq = alloc_workqueue("events", 0, 0);
5533        system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5534        system_long_wq = alloc_workqueue("events_long", 0, 0);
5535        system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5536                                            WQ_UNBOUND_MAX_ACTIVE);
5537        system_freezable_wq = alloc_workqueue("events_freezable",
5538                                              WQ_FREEZABLE, 0);
5539        system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5540                                              WQ_POWER_EFFICIENT, 0);
5541        system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5542                                              WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5543                                              0);
5544        BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5545               !system_unbound_wq || !system_freezable_wq ||
5546               !system_power_efficient_wq ||
5547               !system_freezable_power_efficient_wq);
5548
5549        wq_watchdog_init();
5550
5551        return 0;
5552}
5553early_initcall(init_workqueues);
5554