linux/mm/mempolicy.c
<<
>>
Prefs
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *                in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/mm.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
  76#include <linux/nodemask.h>
  77#include <linux/cpuset.h>
  78#include <linux/slab.h>
  79#include <linux/string.h>
  80#include <linux/export.h>
  81#include <linux/nsproxy.h>
  82#include <linux/interrupt.h>
  83#include <linux/init.h>
  84#include <linux/compat.h>
  85#include <linux/swap.h>
  86#include <linux/seq_file.h>
  87#include <linux/proc_fs.h>
  88#include <linux/migrate.h>
  89#include <linux/ksm.h>
  90#include <linux/rmap.h>
  91#include <linux/security.h>
  92#include <linux/syscalls.h>
  93#include <linux/ctype.h>
  94#include <linux/mm_inline.h>
  95#include <linux/mmu_notifier.h>
  96#include <linux/printk.h>
  97
  98#include <asm/tlbflush.h>
  99#include <asm/uaccess.h>
 100
 101#include "internal.h"
 102
 103/* Internal flags */
 104#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)    /* Skip checks for continuous vmas */
 105#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)          /* Invert check for nodemask */
 106
 107static struct kmem_cache *policy_cache;
 108static struct kmem_cache *sn_cache;
 109
 110/* Highest zone. An specific allocation for a zone below that is not
 111   policied. */
 112enum zone_type policy_zone = 0;
 113
 114/*
 115 * run-time system-wide default policy => local allocation
 116 */
 117static struct mempolicy default_policy = {
 118        .refcnt = ATOMIC_INIT(1), /* never free it */
 119        .mode = MPOL_PREFERRED,
 120        .flags = MPOL_F_LOCAL,
 121};
 122
 123static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 124
 125struct mempolicy *get_task_policy(struct task_struct *p)
 126{
 127        struct mempolicy *pol = p->mempolicy;
 128        int node;
 129
 130        if (pol)
 131                return pol;
 132
 133        node = numa_node_id();
 134        if (node != NUMA_NO_NODE) {
 135                pol = &preferred_node_policy[node];
 136                /* preferred_node_policy is not initialised early in boot */
 137                if (pol->mode)
 138                        return pol;
 139        }
 140
 141        return &default_policy;
 142}
 143
 144static const struct mempolicy_operations {
 145        int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 146        /*
 147         * If read-side task has no lock to protect task->mempolicy, write-side
 148         * task will rebind the task->mempolicy by two step. The first step is
 149         * setting all the newly nodes, and the second step is cleaning all the
 150         * disallowed nodes. In this way, we can avoid finding no node to alloc
 151         * page.
 152         * If we have a lock to protect task->mempolicy in read-side, we do
 153         * rebind directly.
 154         *
 155         * step:
 156         *      MPOL_REBIND_ONCE - do rebind work at once
 157         *      MPOL_REBIND_STEP1 - set all the newly nodes
 158         *      MPOL_REBIND_STEP2 - clean all the disallowed nodes
 159         */
 160        void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 161                        enum mpol_rebind_step step);
 162} mpol_ops[MPOL_MAX];
 163
 164static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 165{
 166        return pol->flags & MPOL_MODE_FLAGS;
 167}
 168
 169static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 170                                   const nodemask_t *rel)
 171{
 172        nodemask_t tmp;
 173        nodes_fold(tmp, *orig, nodes_weight(*rel));
 174        nodes_onto(*ret, tmp, *rel);
 175}
 176
 177static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 178{
 179        if (nodes_empty(*nodes))
 180                return -EINVAL;
 181        pol->v.nodes = *nodes;
 182        return 0;
 183}
 184
 185static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 186{
 187        if (!nodes)
 188                pol->flags |= MPOL_F_LOCAL;     /* local allocation */
 189        else if (nodes_empty(*nodes))
 190                return -EINVAL;                 /*  no allowed nodes */
 191        else
 192                pol->v.preferred_node = first_node(*nodes);
 193        return 0;
 194}
 195
 196static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 197{
 198        if (nodes_empty(*nodes))
 199                return -EINVAL;
 200        pol->v.nodes = *nodes;
 201        return 0;
 202}
 203
 204/*
 205 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 206 * any, for the new policy.  mpol_new() has already validated the nodes
 207 * parameter with respect to the policy mode and flags.  But, we need to
 208 * handle an empty nodemask with MPOL_PREFERRED here.
 209 *
 210 * Must be called holding task's alloc_lock to protect task's mems_allowed
 211 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 212 */
 213static int mpol_set_nodemask(struct mempolicy *pol,
 214                     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 215{
 216        int ret;
 217
 218        /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 219        if (pol == NULL)
 220                return 0;
 221        /* Check N_MEMORY */
 222        nodes_and(nsc->mask1,
 223                  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 224
 225        VM_BUG_ON(!nodes);
 226        if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 227                nodes = NULL;   /* explicit local allocation */
 228        else {
 229                if (pol->flags & MPOL_F_RELATIVE_NODES)
 230                        mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 231                else
 232                        nodes_and(nsc->mask2, *nodes, nsc->mask1);
 233
 234                if (mpol_store_user_nodemask(pol))
 235                        pol->w.user_nodemask = *nodes;
 236                else
 237                        pol->w.cpuset_mems_allowed =
 238                                                cpuset_current_mems_allowed;
 239        }
 240
 241        if (nodes)
 242                ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 243        else
 244                ret = mpol_ops[pol->mode].create(pol, NULL);
 245        return ret;
 246}
 247
 248/*
 249 * This function just creates a new policy, does some check and simple
 250 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 251 */
 252static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 253                                  nodemask_t *nodes)
 254{
 255        struct mempolicy *policy;
 256
 257        pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 258                 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 259
 260        if (mode == MPOL_DEFAULT) {
 261                if (nodes && !nodes_empty(*nodes))
 262                        return ERR_PTR(-EINVAL);
 263                return NULL;
 264        }
 265        VM_BUG_ON(!nodes);
 266
 267        /*
 268         * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 269         * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 270         * All other modes require a valid pointer to a non-empty nodemask.
 271         */
 272        if (mode == MPOL_PREFERRED) {
 273                if (nodes_empty(*nodes)) {
 274                        if (((flags & MPOL_F_STATIC_NODES) ||
 275                             (flags & MPOL_F_RELATIVE_NODES)))
 276                                return ERR_PTR(-EINVAL);
 277                }
 278        } else if (mode == MPOL_LOCAL) {
 279                if (!nodes_empty(*nodes))
 280                        return ERR_PTR(-EINVAL);
 281                mode = MPOL_PREFERRED;
 282        } else if (nodes_empty(*nodes))
 283                return ERR_PTR(-EINVAL);
 284        policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 285        if (!policy)
 286                return ERR_PTR(-ENOMEM);
 287        atomic_set(&policy->refcnt, 1);
 288        policy->mode = mode;
 289        policy->flags = flags;
 290
 291        return policy;
 292}
 293
 294/* Slow path of a mpol destructor. */
 295void __mpol_put(struct mempolicy *p)
 296{
 297        if (!atomic_dec_and_test(&p->refcnt))
 298                return;
 299        kmem_cache_free(policy_cache, p);
 300}
 301
 302static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 303                                enum mpol_rebind_step step)
 304{
 305}
 306
 307/*
 308 * step:
 309 *      MPOL_REBIND_ONCE  - do rebind work at once
 310 *      MPOL_REBIND_STEP1 - set all the newly nodes
 311 *      MPOL_REBIND_STEP2 - clean all the disallowed nodes
 312 */
 313static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 314                                 enum mpol_rebind_step step)
 315{
 316        nodemask_t tmp;
 317
 318        if (pol->flags & MPOL_F_STATIC_NODES)
 319                nodes_and(tmp, pol->w.user_nodemask, *nodes);
 320        else if (pol->flags & MPOL_F_RELATIVE_NODES)
 321                mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 322        else {
 323                /*
 324                 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 325                 * result
 326                 */
 327                if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 328                        nodes_remap(tmp, pol->v.nodes,
 329                                        pol->w.cpuset_mems_allowed, *nodes);
 330                        pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 331                } else if (step == MPOL_REBIND_STEP2) {
 332                        tmp = pol->w.cpuset_mems_allowed;
 333                        pol->w.cpuset_mems_allowed = *nodes;
 334                } else
 335                        BUG();
 336        }
 337
 338        if (nodes_empty(tmp))
 339                tmp = *nodes;
 340
 341        if (step == MPOL_REBIND_STEP1)
 342                nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 343        else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 344                pol->v.nodes = tmp;
 345        else
 346                BUG();
 347
 348        if (!node_isset(current->il_next, tmp)) {
 349                current->il_next = next_node_in(current->il_next, tmp);
 350                if (current->il_next >= MAX_NUMNODES)
 351                        current->il_next = numa_node_id();
 352        }
 353}
 354
 355static void mpol_rebind_preferred(struct mempolicy *pol,
 356                                  const nodemask_t *nodes,
 357                                  enum mpol_rebind_step step)
 358{
 359        nodemask_t tmp;
 360
 361        if (pol->flags & MPOL_F_STATIC_NODES) {
 362                int node = first_node(pol->w.user_nodemask);
 363
 364                if (node_isset(node, *nodes)) {
 365                        pol->v.preferred_node = node;
 366                        pol->flags &= ~MPOL_F_LOCAL;
 367                } else
 368                        pol->flags |= MPOL_F_LOCAL;
 369        } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 370                mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 371                pol->v.preferred_node = first_node(tmp);
 372        } else if (!(pol->flags & MPOL_F_LOCAL)) {
 373                pol->v.preferred_node = node_remap(pol->v.preferred_node,
 374                                                   pol->w.cpuset_mems_allowed,
 375                                                   *nodes);
 376                pol->w.cpuset_mems_allowed = *nodes;
 377        }
 378}
 379
 380/*
 381 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 382 *
 383 * If read-side task has no lock to protect task->mempolicy, write-side
 384 * task will rebind the task->mempolicy by two step. The first step is
 385 * setting all the newly nodes, and the second step is cleaning all the
 386 * disallowed nodes. In this way, we can avoid finding no node to alloc
 387 * page.
 388 * If we have a lock to protect task->mempolicy in read-side, we do
 389 * rebind directly.
 390 *
 391 * step:
 392 *      MPOL_REBIND_ONCE  - do rebind work at once
 393 *      MPOL_REBIND_STEP1 - set all the newly nodes
 394 *      MPOL_REBIND_STEP2 - clean all the disallowed nodes
 395 */
 396static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 397                                enum mpol_rebind_step step)
 398{
 399        if (!pol)
 400                return;
 401        if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
 402            nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 403                return;
 404
 405        if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 406                return;
 407
 408        if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 409                BUG();
 410
 411        if (step == MPOL_REBIND_STEP1)
 412                pol->flags |= MPOL_F_REBINDING;
 413        else if (step == MPOL_REBIND_STEP2)
 414                pol->flags &= ~MPOL_F_REBINDING;
 415        else if (step >= MPOL_REBIND_NSTEP)
 416                BUG();
 417
 418        mpol_ops[pol->mode].rebind(pol, newmask, step);
 419}
 420
 421/*
 422 * Wrapper for mpol_rebind_policy() that just requires task
 423 * pointer, and updates task mempolicy.
 424 *
 425 * Called with task's alloc_lock held.
 426 */
 427
 428void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 429                        enum mpol_rebind_step step)
 430{
 431        mpol_rebind_policy(tsk->mempolicy, new, step);
 432}
 433
 434/*
 435 * Rebind each vma in mm to new nodemask.
 436 *
 437 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 438 */
 439
 440void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 441{
 442        struct vm_area_struct *vma;
 443
 444        down_write(&mm->mmap_sem);
 445        for (vma = mm->mmap; vma; vma = vma->vm_next)
 446                mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 447        up_write(&mm->mmap_sem);
 448}
 449
 450static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 451        [MPOL_DEFAULT] = {
 452                .rebind = mpol_rebind_default,
 453        },
 454        [MPOL_INTERLEAVE] = {
 455                .create = mpol_new_interleave,
 456                .rebind = mpol_rebind_nodemask,
 457        },
 458        [MPOL_PREFERRED] = {
 459                .create = mpol_new_preferred,
 460                .rebind = mpol_rebind_preferred,
 461        },
 462        [MPOL_BIND] = {
 463                .create = mpol_new_bind,
 464                .rebind = mpol_rebind_nodemask,
 465        },
 466};
 467
 468static void migrate_page_add(struct page *page, struct list_head *pagelist,
 469                                unsigned long flags);
 470
 471struct queue_pages {
 472        struct list_head *pagelist;
 473        unsigned long flags;
 474        nodemask_t *nmask;
 475        struct vm_area_struct *prev;
 476};
 477
 478/*
 479 * Scan through pages checking if pages follow certain conditions,
 480 * and move them to the pagelist if they do.
 481 */
 482static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 483                        unsigned long end, struct mm_walk *walk)
 484{
 485        struct vm_area_struct *vma = walk->vma;
 486        struct page *page;
 487        struct queue_pages *qp = walk->private;
 488        unsigned long flags = qp->flags;
 489        int nid, ret;
 490        pte_t *pte;
 491        spinlock_t *ptl;
 492
 493        if (pmd_trans_huge(*pmd)) {
 494                ptl = pmd_lock(walk->mm, pmd);
 495                if (pmd_trans_huge(*pmd)) {
 496                        page = pmd_page(*pmd);
 497                        if (is_huge_zero_page(page)) {
 498                                spin_unlock(ptl);
 499                                split_huge_pmd(vma, pmd, addr);
 500                        } else {
 501                                get_page(page);
 502                                spin_unlock(ptl);
 503                                lock_page(page);
 504                                ret = split_huge_page(page);
 505                                unlock_page(page);
 506                                put_page(page);
 507                                if (ret)
 508                                        return 0;
 509                        }
 510                } else {
 511                        spin_unlock(ptl);
 512                }
 513        }
 514
 515        if (pmd_trans_unstable(pmd))
 516                return 0;
 517retry:
 518        pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 519        for (; addr != end; pte++, addr += PAGE_SIZE) {
 520                if (!pte_present(*pte))
 521                        continue;
 522                page = vm_normal_page(vma, addr, *pte);
 523                if (!page)
 524                        continue;
 525                /*
 526                 * vm_normal_page() filters out zero pages, but there might
 527                 * still be PageReserved pages to skip, perhaps in a VDSO.
 528                 */
 529                if (PageReserved(page))
 530                        continue;
 531                nid = page_to_nid(page);
 532                if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
 533                        continue;
 534                if (PageTransCompound(page)) {
 535                        get_page(page);
 536                        pte_unmap_unlock(pte, ptl);
 537                        lock_page(page);
 538                        ret = split_huge_page(page);
 539                        unlock_page(page);
 540                        put_page(page);
 541                        /* Failed to split -- skip. */
 542                        if (ret) {
 543                                pte = pte_offset_map_lock(walk->mm, pmd,
 544                                                addr, &ptl);
 545                                continue;
 546                        }
 547                        goto retry;
 548                }
 549
 550                migrate_page_add(page, qp->pagelist, flags);
 551        }
 552        pte_unmap_unlock(pte - 1, ptl);
 553        cond_resched();
 554        return 0;
 555}
 556
 557static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 558                               unsigned long addr, unsigned long end,
 559                               struct mm_walk *walk)
 560{
 561#ifdef CONFIG_HUGETLB_PAGE
 562        struct queue_pages *qp = walk->private;
 563        unsigned long flags = qp->flags;
 564        int nid;
 565        struct page *page;
 566        spinlock_t *ptl;
 567        pte_t entry;
 568
 569        ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 570        entry = huge_ptep_get(pte);
 571        if (!pte_present(entry))
 572                goto unlock;
 573        page = pte_page(entry);
 574        nid = page_to_nid(page);
 575        if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
 576                goto unlock;
 577        /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 578        if (flags & (MPOL_MF_MOVE_ALL) ||
 579            (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 580                isolate_huge_page(page, qp->pagelist);
 581unlock:
 582        spin_unlock(ptl);
 583#else
 584        BUG();
 585#endif
 586        return 0;
 587}
 588
 589#ifdef CONFIG_NUMA_BALANCING
 590/*
 591 * This is used to mark a range of virtual addresses to be inaccessible.
 592 * These are later cleared by a NUMA hinting fault. Depending on these
 593 * faults, pages may be migrated for better NUMA placement.
 594 *
 595 * This is assuming that NUMA faults are handled using PROT_NONE. If
 596 * an architecture makes a different choice, it will need further
 597 * changes to the core.
 598 */
 599unsigned long change_prot_numa(struct vm_area_struct *vma,
 600                        unsigned long addr, unsigned long end)
 601{
 602        int nr_updated;
 603
 604        nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
 605        if (nr_updated)
 606                count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 607
 608        return nr_updated;
 609}
 610#else
 611static unsigned long change_prot_numa(struct vm_area_struct *vma,
 612                        unsigned long addr, unsigned long end)
 613{
 614        return 0;
 615}
 616#endif /* CONFIG_NUMA_BALANCING */
 617
 618static int queue_pages_test_walk(unsigned long start, unsigned long end,
 619                                struct mm_walk *walk)
 620{
 621        struct vm_area_struct *vma = walk->vma;
 622        struct queue_pages *qp = walk->private;
 623        unsigned long endvma = vma->vm_end;
 624        unsigned long flags = qp->flags;
 625
 626        if (!vma_migratable(vma))
 627                return 1;
 628
 629        if (endvma > end)
 630                endvma = end;
 631        if (vma->vm_start > start)
 632                start = vma->vm_start;
 633
 634        if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 635                if (!vma->vm_next && vma->vm_end < end)
 636                        return -EFAULT;
 637                if (qp->prev && qp->prev->vm_end < vma->vm_start)
 638                        return -EFAULT;
 639        }
 640
 641        qp->prev = vma;
 642
 643        if (flags & MPOL_MF_LAZY) {
 644                /* Similar to task_numa_work, skip inaccessible VMAs */
 645                if (!is_vm_hugetlb_page(vma) &&
 646                        (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
 647                        !(vma->vm_flags & VM_MIXEDMAP))
 648                        change_prot_numa(vma, start, endvma);
 649                return 1;
 650        }
 651
 652        /* queue pages from current vma */
 653        if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 654                return 0;
 655        return 1;
 656}
 657
 658/*
 659 * Walk through page tables and collect pages to be migrated.
 660 *
 661 * If pages found in a given range are on a set of nodes (determined by
 662 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 663 * passed via @private.)
 664 */
 665static int
 666queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 667                nodemask_t *nodes, unsigned long flags,
 668                struct list_head *pagelist)
 669{
 670        struct queue_pages qp = {
 671                .pagelist = pagelist,
 672                .flags = flags,
 673                .nmask = nodes,
 674                .prev = NULL,
 675        };
 676        struct mm_walk queue_pages_walk = {
 677                .hugetlb_entry = queue_pages_hugetlb,
 678                .pmd_entry = queue_pages_pte_range,
 679                .test_walk = queue_pages_test_walk,
 680                .mm = mm,
 681                .private = &qp,
 682        };
 683
 684        return walk_page_range(start, end, &queue_pages_walk);
 685}
 686
 687/*
 688 * Apply policy to a single VMA
 689 * This must be called with the mmap_sem held for writing.
 690 */
 691static int vma_replace_policy(struct vm_area_struct *vma,
 692                                                struct mempolicy *pol)
 693{
 694        int err;
 695        struct mempolicy *old;
 696        struct mempolicy *new;
 697
 698        pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 699                 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 700                 vma->vm_ops, vma->vm_file,
 701                 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 702
 703        new = mpol_dup(pol);
 704        if (IS_ERR(new))
 705                return PTR_ERR(new);
 706
 707        if (vma->vm_ops && vma->vm_ops->set_policy) {
 708                err = vma->vm_ops->set_policy(vma, new);
 709                if (err)
 710                        goto err_out;
 711        }
 712
 713        old = vma->vm_policy;
 714        vma->vm_policy = new; /* protected by mmap_sem */
 715        mpol_put(old);
 716
 717        return 0;
 718 err_out:
 719        mpol_put(new);
 720        return err;
 721}
 722
 723/* Step 2: apply policy to a range and do splits. */
 724static int mbind_range(struct mm_struct *mm, unsigned long start,
 725                       unsigned long end, struct mempolicy *new_pol)
 726{
 727        struct vm_area_struct *next;
 728        struct vm_area_struct *prev;
 729        struct vm_area_struct *vma;
 730        int err = 0;
 731        pgoff_t pgoff;
 732        unsigned long vmstart;
 733        unsigned long vmend;
 734
 735        vma = find_vma(mm, start);
 736        if (!vma || vma->vm_start > start)
 737                return -EFAULT;
 738
 739        prev = vma->vm_prev;
 740        if (start > vma->vm_start)
 741                prev = vma;
 742
 743        for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 744                next = vma->vm_next;
 745                vmstart = max(start, vma->vm_start);
 746                vmend   = min(end, vma->vm_end);
 747
 748                if (mpol_equal(vma_policy(vma), new_pol))
 749                        continue;
 750
 751                pgoff = vma->vm_pgoff +
 752                        ((vmstart - vma->vm_start) >> PAGE_SHIFT);
 753                prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 754                                 vma->anon_vma, vma->vm_file, pgoff,
 755                                 new_pol, vma->vm_userfaultfd_ctx);
 756                if (prev) {
 757                        vma = prev;
 758                        next = vma->vm_next;
 759                        if (mpol_equal(vma_policy(vma), new_pol))
 760                                continue;
 761                        /* vma_merge() joined vma && vma->next, case 8 */
 762                        goto replace;
 763                }
 764                if (vma->vm_start != vmstart) {
 765                        err = split_vma(vma->vm_mm, vma, vmstart, 1);
 766                        if (err)
 767                                goto out;
 768                }
 769                if (vma->vm_end != vmend) {
 770                        err = split_vma(vma->vm_mm, vma, vmend, 0);
 771                        if (err)
 772                                goto out;
 773                }
 774 replace:
 775                err = vma_replace_policy(vma, new_pol);
 776                if (err)
 777                        goto out;
 778        }
 779
 780 out:
 781        return err;
 782}
 783
 784/* Set the process memory policy */
 785static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 786                             nodemask_t *nodes)
 787{
 788        struct mempolicy *new, *old;
 789        NODEMASK_SCRATCH(scratch);
 790        int ret;
 791
 792        if (!scratch)
 793                return -ENOMEM;
 794
 795        new = mpol_new(mode, flags, nodes);
 796        if (IS_ERR(new)) {
 797                ret = PTR_ERR(new);
 798                goto out;
 799        }
 800
 801        task_lock(current);
 802        ret = mpol_set_nodemask(new, nodes, scratch);
 803        if (ret) {
 804                task_unlock(current);
 805                mpol_put(new);
 806                goto out;
 807        }
 808        old = current->mempolicy;
 809        current->mempolicy = new;
 810        if (new && new->mode == MPOL_INTERLEAVE &&
 811            nodes_weight(new->v.nodes))
 812                current->il_next = first_node(new->v.nodes);
 813        task_unlock(current);
 814        mpol_put(old);
 815        ret = 0;
 816out:
 817        NODEMASK_SCRATCH_FREE(scratch);
 818        return ret;
 819}
 820
 821/*
 822 * Return nodemask for policy for get_mempolicy() query
 823 *
 824 * Called with task's alloc_lock held
 825 */
 826static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 827{
 828        nodes_clear(*nodes);
 829        if (p == &default_policy)
 830                return;
 831
 832        switch (p->mode) {
 833        case MPOL_BIND:
 834                /* Fall through */
 835        case MPOL_INTERLEAVE:
 836                *nodes = p->v.nodes;
 837                break;
 838        case MPOL_PREFERRED:
 839                if (!(p->flags & MPOL_F_LOCAL))
 840                        node_set(p->v.preferred_node, *nodes);
 841                /* else return empty node mask for local allocation */
 842                break;
 843        default:
 844                BUG();
 845        }
 846}
 847
 848static int lookup_node(unsigned long addr)
 849{
 850        struct page *p;
 851        int err;
 852
 853        err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
 854        if (err >= 0) {
 855                err = page_to_nid(p);
 856                put_page(p);
 857        }
 858        return err;
 859}
 860
 861/* Retrieve NUMA policy */
 862static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 863                             unsigned long addr, unsigned long flags)
 864{
 865        int err;
 866        struct mm_struct *mm = current->mm;
 867        struct vm_area_struct *vma = NULL;
 868        struct mempolicy *pol = current->mempolicy;
 869
 870        if (flags &
 871                ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 872                return -EINVAL;
 873
 874        if (flags & MPOL_F_MEMS_ALLOWED) {
 875                if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 876                        return -EINVAL;
 877                *policy = 0;    /* just so it's initialized */
 878                task_lock(current);
 879                *nmask  = cpuset_current_mems_allowed;
 880                task_unlock(current);
 881                return 0;
 882        }
 883
 884        if (flags & MPOL_F_ADDR) {
 885                /*
 886                 * Do NOT fall back to task policy if the
 887                 * vma/shared policy at addr is NULL.  We
 888                 * want to return MPOL_DEFAULT in this case.
 889                 */
 890                down_read(&mm->mmap_sem);
 891                vma = find_vma_intersection(mm, addr, addr+1);
 892                if (!vma) {
 893                        up_read(&mm->mmap_sem);
 894                        return -EFAULT;
 895                }
 896                if (vma->vm_ops && vma->vm_ops->get_policy)
 897                        pol = vma->vm_ops->get_policy(vma, addr);
 898                else
 899                        pol = vma->vm_policy;
 900        } else if (addr)
 901                return -EINVAL;
 902
 903        if (!pol)
 904                pol = &default_policy;  /* indicates default behavior */
 905
 906        if (flags & MPOL_F_NODE) {
 907                if (flags & MPOL_F_ADDR) {
 908                        err = lookup_node(addr);
 909                        if (err < 0)
 910                                goto out;
 911                        *policy = err;
 912                } else if (pol == current->mempolicy &&
 913                                pol->mode == MPOL_INTERLEAVE) {
 914                        *policy = current->il_next;
 915                } else {
 916                        err = -EINVAL;
 917                        goto out;
 918                }
 919        } else {
 920                *policy = pol == &default_policy ? MPOL_DEFAULT :
 921                                                pol->mode;
 922                /*
 923                 * Internal mempolicy flags must be masked off before exposing
 924                 * the policy to userspace.
 925                 */
 926                *policy |= (pol->flags & MPOL_MODE_FLAGS);
 927        }
 928
 929        if (vma) {
 930                up_read(&current->mm->mmap_sem);
 931                vma = NULL;
 932        }
 933
 934        err = 0;
 935        if (nmask) {
 936                if (mpol_store_user_nodemask(pol)) {
 937                        *nmask = pol->w.user_nodemask;
 938                } else {
 939                        task_lock(current);
 940                        get_policy_nodemask(pol, nmask);
 941                        task_unlock(current);
 942                }
 943        }
 944
 945 out:
 946        mpol_cond_put(pol);
 947        if (vma)
 948                up_read(&current->mm->mmap_sem);
 949        return err;
 950}
 951
 952#ifdef CONFIG_MIGRATION
 953/*
 954 * page migration
 955 */
 956static void migrate_page_add(struct page *page, struct list_head *pagelist,
 957                                unsigned long flags)
 958{
 959        /*
 960         * Avoid migrating a page that is shared with others.
 961         */
 962        if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 963                if (!isolate_lru_page(page)) {
 964                        list_add_tail(&page->lru, pagelist);
 965                        inc_node_page_state(page, NR_ISOLATED_ANON +
 966                                            page_is_file_cache(page));
 967                }
 968        }
 969}
 970
 971static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 972{
 973        if (PageHuge(page))
 974                return alloc_huge_page_node(page_hstate(compound_head(page)),
 975                                        node);
 976        else
 977                return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
 978                                                    __GFP_THISNODE, 0);
 979}
 980
 981/*
 982 * Migrate pages from one node to a target node.
 983 * Returns error or the number of pages not migrated.
 984 */
 985static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 986                           int flags)
 987{
 988        nodemask_t nmask;
 989        LIST_HEAD(pagelist);
 990        int err = 0;
 991
 992        nodes_clear(nmask);
 993        node_set(source, nmask);
 994
 995        /*
 996         * This does not "check" the range but isolates all pages that
 997         * need migration.  Between passing in the full user address
 998         * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
 999         */
1000        VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1001        queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1002                        flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1003
1004        if (!list_empty(&pagelist)) {
1005                err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1006                                        MIGRATE_SYNC, MR_SYSCALL);
1007                if (err)
1008                        putback_movable_pages(&pagelist);
1009        }
1010
1011        return err;
1012}
1013
1014/*
1015 * Move pages between the two nodesets so as to preserve the physical
1016 * layout as much as possible.
1017 *
1018 * Returns the number of page that could not be moved.
1019 */
1020int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1021                     const nodemask_t *to, int flags)
1022{
1023        int busy = 0;
1024        int err;
1025        nodemask_t tmp;
1026
1027        err = migrate_prep();
1028        if (err)
1029                return err;
1030
1031        down_read(&mm->mmap_sem);
1032
1033        /*
1034         * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1035         * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1036         * bit in 'tmp', and return that <source, dest> pair for migration.
1037         * The pair of nodemasks 'to' and 'from' define the map.
1038         *
1039         * If no pair of bits is found that way, fallback to picking some
1040         * pair of 'source' and 'dest' bits that are not the same.  If the
1041         * 'source' and 'dest' bits are the same, this represents a node
1042         * that will be migrating to itself, so no pages need move.
1043         *
1044         * If no bits are left in 'tmp', or if all remaining bits left
1045         * in 'tmp' correspond to the same bit in 'to', return false
1046         * (nothing left to migrate).
1047         *
1048         * This lets us pick a pair of nodes to migrate between, such that
1049         * if possible the dest node is not already occupied by some other
1050         * source node, minimizing the risk of overloading the memory on a
1051         * node that would happen if we migrated incoming memory to a node
1052         * before migrating outgoing memory source that same node.
1053         *
1054         * A single scan of tmp is sufficient.  As we go, we remember the
1055         * most recent <s, d> pair that moved (s != d).  If we find a pair
1056         * that not only moved, but what's better, moved to an empty slot
1057         * (d is not set in tmp), then we break out then, with that pair.
1058         * Otherwise when we finish scanning from_tmp, we at least have the
1059         * most recent <s, d> pair that moved.  If we get all the way through
1060         * the scan of tmp without finding any node that moved, much less
1061         * moved to an empty node, then there is nothing left worth migrating.
1062         */
1063
1064        tmp = *from;
1065        while (!nodes_empty(tmp)) {
1066                int s,d;
1067                int source = NUMA_NO_NODE;
1068                int dest = 0;
1069
1070                for_each_node_mask(s, tmp) {
1071
1072                        /*
1073                         * do_migrate_pages() tries to maintain the relative
1074                         * node relationship of the pages established between
1075                         * threads and memory areas.
1076                         *
1077                         * However if the number of source nodes is not equal to
1078                         * the number of destination nodes we can not preserve
1079                         * this node relative relationship.  In that case, skip
1080                         * copying memory from a node that is in the destination
1081                         * mask.
1082                         *
1083                         * Example: [2,3,4] -> [3,4,5] moves everything.
1084                         *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1085                         */
1086
1087                        if ((nodes_weight(*from) != nodes_weight(*to)) &&
1088                                                (node_isset(s, *to)))
1089                                continue;
1090
1091                        d = node_remap(s, *from, *to);
1092                        if (s == d)
1093                                continue;
1094
1095                        source = s;     /* Node moved. Memorize */
1096                        dest = d;
1097
1098                        /* dest not in remaining from nodes? */
1099                        if (!node_isset(dest, tmp))
1100                                break;
1101                }
1102                if (source == NUMA_NO_NODE)
1103                        break;
1104
1105                node_clear(source, tmp);
1106                err = migrate_to_node(mm, source, dest, flags);
1107                if (err > 0)
1108                        busy += err;
1109                if (err < 0)
1110                        break;
1111        }
1112        up_read(&mm->mmap_sem);
1113        if (err < 0)
1114                return err;
1115        return busy;
1116
1117}
1118
1119/*
1120 * Allocate a new page for page migration based on vma policy.
1121 * Start by assuming the page is mapped by the same vma as contains @start.
1122 * Search forward from there, if not.  N.B., this assumes that the
1123 * list of pages handed to migrate_pages()--which is how we get here--
1124 * is in virtual address order.
1125 */
1126static struct page *new_page(struct page *page, unsigned long start, int **x)
1127{
1128        struct vm_area_struct *vma;
1129        unsigned long uninitialized_var(address);
1130
1131        vma = find_vma(current->mm, start);
1132        while (vma) {
1133                address = page_address_in_vma(page, vma);
1134                if (address != -EFAULT)
1135                        break;
1136                vma = vma->vm_next;
1137        }
1138
1139        if (PageHuge(page)) {
1140                BUG_ON(!vma);
1141                return alloc_huge_page_noerr(vma, address, 1);
1142        }
1143        /*
1144         * if !vma, alloc_page_vma() will use task or system default policy
1145         */
1146        return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1147}
1148#else
1149
1150static void migrate_page_add(struct page *page, struct list_head *pagelist,
1151                                unsigned long flags)
1152{
1153}
1154
1155int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1156                     const nodemask_t *to, int flags)
1157{
1158        return -ENOSYS;
1159}
1160
1161static struct page *new_page(struct page *page, unsigned long start, int **x)
1162{
1163        return NULL;
1164}
1165#endif
1166
1167static long do_mbind(unsigned long start, unsigned long len,
1168                     unsigned short mode, unsigned short mode_flags,
1169                     nodemask_t *nmask, unsigned long flags)
1170{
1171        struct mm_struct *mm = current->mm;
1172        struct mempolicy *new;
1173        unsigned long end;
1174        int err;
1175        LIST_HEAD(pagelist);
1176
1177        if (flags & ~(unsigned long)MPOL_MF_VALID)
1178                return -EINVAL;
1179        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1180                return -EPERM;
1181
1182        if (start & ~PAGE_MASK)
1183                return -EINVAL;
1184
1185        if (mode == MPOL_DEFAULT)
1186                flags &= ~MPOL_MF_STRICT;
1187
1188        len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1189        end = start + len;
1190
1191        if (end < start)
1192                return -EINVAL;
1193        if (end == start)
1194                return 0;
1195
1196        new = mpol_new(mode, mode_flags, nmask);
1197        if (IS_ERR(new))
1198                return PTR_ERR(new);
1199
1200        if (flags & MPOL_MF_LAZY)
1201                new->flags |= MPOL_F_MOF;
1202
1203        /*
1204         * If we are using the default policy then operation
1205         * on discontinuous address spaces is okay after all
1206         */
1207        if (!new)
1208                flags |= MPOL_MF_DISCONTIG_OK;
1209
1210        pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1211                 start, start + len, mode, mode_flags,
1212                 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1213
1214        if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1215
1216                err = migrate_prep();
1217                if (err)
1218                        goto mpol_out;
1219        }
1220        {
1221                NODEMASK_SCRATCH(scratch);
1222                if (scratch) {
1223                        down_write(&mm->mmap_sem);
1224                        task_lock(current);
1225                        err = mpol_set_nodemask(new, nmask, scratch);
1226                        task_unlock(current);
1227                        if (err)
1228                                up_write(&mm->mmap_sem);
1229                } else
1230                        err = -ENOMEM;
1231                NODEMASK_SCRATCH_FREE(scratch);
1232        }
1233        if (err)
1234                goto mpol_out;
1235
1236        err = queue_pages_range(mm, start, end, nmask,
1237                          flags | MPOL_MF_INVERT, &pagelist);
1238        if (!err)
1239                err = mbind_range(mm, start, end, new);
1240
1241        if (!err) {
1242                int nr_failed = 0;
1243
1244                if (!list_empty(&pagelist)) {
1245                        WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1246                        nr_failed = migrate_pages(&pagelist, new_page, NULL,
1247                                start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1248                        if (nr_failed)
1249                                putback_movable_pages(&pagelist);
1250                }
1251
1252                if (nr_failed && (flags & MPOL_MF_STRICT))
1253                        err = -EIO;
1254        } else
1255                putback_movable_pages(&pagelist);
1256
1257        up_write(&mm->mmap_sem);
1258 mpol_out:
1259        mpol_put(new);
1260        return err;
1261}
1262
1263/*
1264 * User space interface with variable sized bitmaps for nodelists.
1265 */
1266
1267/* Copy a node mask from user space. */
1268static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1269                     unsigned long maxnode)
1270{
1271        unsigned long k;
1272        unsigned long nlongs;
1273        unsigned long endmask;
1274
1275        --maxnode;
1276        nodes_clear(*nodes);
1277        if (maxnode == 0 || !nmask)
1278                return 0;
1279        if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1280                return -EINVAL;
1281
1282        nlongs = BITS_TO_LONGS(maxnode);
1283        if ((maxnode % BITS_PER_LONG) == 0)
1284                endmask = ~0UL;
1285        else
1286                endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1287
1288        /* When the user specified more nodes than supported just check
1289           if the non supported part is all zero. */
1290        if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1291                if (nlongs > PAGE_SIZE/sizeof(long))
1292                        return -EINVAL;
1293                for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1294                        unsigned long t;
1295                        if (get_user(t, nmask + k))
1296                                return -EFAULT;
1297                        if (k == nlongs - 1) {
1298                                if (t & endmask)
1299                                        return -EINVAL;
1300                        } else if (t)
1301                                return -EINVAL;
1302                }
1303                nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1304                endmask = ~0UL;
1305        }
1306
1307        if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1308                return -EFAULT;
1309        nodes_addr(*nodes)[nlongs-1] &= endmask;
1310        return 0;
1311}
1312
1313/* Copy a kernel node mask to user space */
1314static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1315                              nodemask_t *nodes)
1316{
1317        unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1318        const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1319
1320        if (copy > nbytes) {
1321                if (copy > PAGE_SIZE)
1322                        return -EINVAL;
1323                if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1324                        return -EFAULT;
1325                copy = nbytes;
1326        }
1327        return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1328}
1329
1330SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1331                unsigned long, mode, const unsigned long __user *, nmask,
1332                unsigned long, maxnode, unsigned, flags)
1333{
1334        nodemask_t nodes;
1335        int err;
1336        unsigned short mode_flags;
1337
1338        mode_flags = mode & MPOL_MODE_FLAGS;
1339        mode &= ~MPOL_MODE_FLAGS;
1340        if (mode >= MPOL_MAX)
1341                return -EINVAL;
1342        if ((mode_flags & MPOL_F_STATIC_NODES) &&
1343            (mode_flags & MPOL_F_RELATIVE_NODES))
1344                return -EINVAL;
1345        err = get_nodes(&nodes, nmask, maxnode);
1346        if (err)
1347                return err;
1348        return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1349}
1350
1351/* Set the process memory policy */
1352SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1353                unsigned long, maxnode)
1354{
1355        int err;
1356        nodemask_t nodes;
1357        unsigned short flags;
1358
1359        flags = mode & MPOL_MODE_FLAGS;
1360        mode &= ~MPOL_MODE_FLAGS;
1361        if ((unsigned int)mode >= MPOL_MAX)
1362                return -EINVAL;
1363        if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1364                return -EINVAL;
1365        err = get_nodes(&nodes, nmask, maxnode);
1366        if (err)
1367                return err;
1368        return do_set_mempolicy(mode, flags, &nodes);
1369}
1370
1371SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1372                const unsigned long __user *, old_nodes,
1373                const unsigned long __user *, new_nodes)
1374{
1375        const struct cred *cred = current_cred(), *tcred;
1376        struct mm_struct *mm = NULL;
1377        struct task_struct *task;
1378        nodemask_t task_nodes;
1379        int err;
1380        nodemask_t *old;
1381        nodemask_t *new;
1382        NODEMASK_SCRATCH(scratch);
1383
1384        if (!scratch)
1385                return -ENOMEM;
1386
1387        old = &scratch->mask1;
1388        new = &scratch->mask2;
1389
1390        err = get_nodes(old, old_nodes, maxnode);
1391        if (err)
1392                goto out;
1393
1394        err = get_nodes(new, new_nodes, maxnode);
1395        if (err)
1396                goto out;
1397
1398        /* Find the mm_struct */
1399        rcu_read_lock();
1400        task = pid ? find_task_by_vpid(pid) : current;
1401        if (!task) {
1402                rcu_read_unlock();
1403                err = -ESRCH;
1404                goto out;
1405        }
1406        get_task_struct(task);
1407
1408        err = -EINVAL;
1409
1410        /*
1411         * Check if this process has the right to modify the specified
1412         * process. The right exists if the process has administrative
1413         * capabilities, superuser privileges or the same
1414         * userid as the target process.
1415         */
1416        tcred = __task_cred(task);
1417        if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1418            !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1419            !capable(CAP_SYS_NICE)) {
1420                rcu_read_unlock();
1421                err = -EPERM;
1422                goto out_put;
1423        }
1424        rcu_read_unlock();
1425
1426        task_nodes = cpuset_mems_allowed(task);
1427        /* Is the user allowed to access the target nodes? */
1428        if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1429                err = -EPERM;
1430                goto out_put;
1431        }
1432
1433        if (!nodes_subset(*new, node_states[N_MEMORY])) {
1434                err = -EINVAL;
1435                goto out_put;
1436        }
1437
1438        err = security_task_movememory(task);
1439        if (err)
1440                goto out_put;
1441
1442        mm = get_task_mm(task);
1443        put_task_struct(task);
1444
1445        if (!mm) {
1446                err = -EINVAL;
1447                goto out;
1448        }
1449
1450        err = do_migrate_pages(mm, old, new,
1451                capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1452
1453        mmput(mm);
1454out:
1455        NODEMASK_SCRATCH_FREE(scratch);
1456
1457        return err;
1458
1459out_put:
1460        put_task_struct(task);
1461        goto out;
1462
1463}
1464
1465
1466/* Retrieve NUMA policy */
1467SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1468                unsigned long __user *, nmask, unsigned long, maxnode,
1469                unsigned long, addr, unsigned long, flags)
1470{
1471        int err;
1472        int uninitialized_var(pval);
1473        nodemask_t nodes;
1474
1475        if (nmask != NULL && maxnode < MAX_NUMNODES)
1476                return -EINVAL;
1477
1478        err = do_get_mempolicy(&pval, &nodes, addr, flags);
1479
1480        if (err)
1481                return err;
1482
1483        if (policy && put_user(pval, policy))
1484                return -EFAULT;
1485
1486        if (nmask)
1487                err = copy_nodes_to_user(nmask, maxnode, &nodes);
1488
1489        return err;
1490}
1491
1492#ifdef CONFIG_COMPAT
1493
1494COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1495                       compat_ulong_t __user *, nmask,
1496                       compat_ulong_t, maxnode,
1497                       compat_ulong_t, addr, compat_ulong_t, flags)
1498{
1499        long err;
1500        unsigned long __user *nm = NULL;
1501        unsigned long nr_bits, alloc_size;
1502        DECLARE_BITMAP(bm, MAX_NUMNODES);
1503
1504        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1505        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1506
1507        if (nmask)
1508                nm = compat_alloc_user_space(alloc_size);
1509
1510        err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1511
1512        if (!err && nmask) {
1513                unsigned long copy_size;
1514                copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1515                err = copy_from_user(bm, nm, copy_size);
1516                /* ensure entire bitmap is zeroed */
1517                err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1518                err |= compat_put_bitmap(nmask, bm, nr_bits);
1519        }
1520
1521        return err;
1522}
1523
1524COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1525                       compat_ulong_t, maxnode)
1526{
1527        long err = 0;
1528        unsigned long __user *nm = NULL;
1529        unsigned long nr_bits, alloc_size;
1530        DECLARE_BITMAP(bm, MAX_NUMNODES);
1531
1532        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1533        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1534
1535        if (nmask) {
1536                err = compat_get_bitmap(bm, nmask, nr_bits);
1537                nm = compat_alloc_user_space(alloc_size);
1538                err |= copy_to_user(nm, bm, alloc_size);
1539        }
1540
1541        if (err)
1542                return -EFAULT;
1543
1544        return sys_set_mempolicy(mode, nm, nr_bits+1);
1545}
1546
1547COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1548                       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1549                       compat_ulong_t, maxnode, compat_ulong_t, flags)
1550{
1551        long err = 0;
1552        unsigned long __user *nm = NULL;
1553        unsigned long nr_bits, alloc_size;
1554        nodemask_t bm;
1555
1556        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1557        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1558
1559        if (nmask) {
1560                err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1561                nm = compat_alloc_user_space(alloc_size);
1562                err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1563        }
1564
1565        if (err)
1566                return -EFAULT;
1567
1568        return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1569}
1570
1571#endif
1572
1573struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1574                                                unsigned long addr)
1575{
1576        struct mempolicy *pol = NULL;
1577
1578        if (vma) {
1579                if (vma->vm_ops && vma->vm_ops->get_policy) {
1580                        pol = vma->vm_ops->get_policy(vma, addr);
1581                } else if (vma->vm_policy) {
1582                        pol = vma->vm_policy;
1583
1584                        /*
1585                         * shmem_alloc_page() passes MPOL_F_SHARED policy with
1586                         * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1587                         * count on these policies which will be dropped by
1588                         * mpol_cond_put() later
1589                         */
1590                        if (mpol_needs_cond_ref(pol))
1591                                mpol_get(pol);
1592                }
1593        }
1594
1595        return pol;
1596}
1597
1598/*
1599 * get_vma_policy(@vma, @addr)
1600 * @vma: virtual memory area whose policy is sought
1601 * @addr: address in @vma for shared policy lookup
1602 *
1603 * Returns effective policy for a VMA at specified address.
1604 * Falls back to current->mempolicy or system default policy, as necessary.
1605 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1606 * count--added by the get_policy() vm_op, as appropriate--to protect against
1607 * freeing by another task.  It is the caller's responsibility to free the
1608 * extra reference for shared policies.
1609 */
1610static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1611                                                unsigned long addr)
1612{
1613        struct mempolicy *pol = __get_vma_policy(vma, addr);
1614
1615        if (!pol)
1616                pol = get_task_policy(current);
1617
1618        return pol;
1619}
1620
1621bool vma_policy_mof(struct vm_area_struct *vma)
1622{
1623        struct mempolicy *pol;
1624
1625        if (vma->vm_ops && vma->vm_ops->get_policy) {
1626                bool ret = false;
1627
1628                pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1629                if (pol && (pol->flags & MPOL_F_MOF))
1630                        ret = true;
1631                mpol_cond_put(pol);
1632
1633                return ret;
1634        }
1635
1636        pol = vma->vm_policy;
1637        if (!pol)
1638                pol = get_task_policy(current);
1639
1640        return pol->flags & MPOL_F_MOF;
1641}
1642
1643static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1644{
1645        enum zone_type dynamic_policy_zone = policy_zone;
1646
1647        BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1648
1649        /*
1650         * if policy->v.nodes has movable memory only,
1651         * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1652         *
1653         * policy->v.nodes is intersect with node_states[N_MEMORY].
1654         * so if the following test faile, it implies
1655         * policy->v.nodes has movable memory only.
1656         */
1657        if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1658                dynamic_policy_zone = ZONE_MOVABLE;
1659
1660        return zone >= dynamic_policy_zone;
1661}
1662
1663/*
1664 * Return a nodemask representing a mempolicy for filtering nodes for
1665 * page allocation
1666 */
1667static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1668{
1669        /* Lower zones don't get a nodemask applied for MPOL_BIND */
1670        if (unlikely(policy->mode == MPOL_BIND) &&
1671                        apply_policy_zone(policy, gfp_zone(gfp)) &&
1672                        cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1673                return &policy->v.nodes;
1674
1675        return NULL;
1676}
1677
1678/* Return a zonelist indicated by gfp for node representing a mempolicy */
1679static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1680        int nd)
1681{
1682        switch (policy->mode) {
1683        case MPOL_PREFERRED:
1684                if (!(policy->flags & MPOL_F_LOCAL))
1685                        nd = policy->v.preferred_node;
1686                break;
1687        case MPOL_BIND:
1688                /*
1689                 * Normally, MPOL_BIND allocations are node-local within the
1690                 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1691                 * current node isn't part of the mask, we use the zonelist for
1692                 * the first node in the mask instead.
1693                 */
1694                if (unlikely(gfp & __GFP_THISNODE) &&
1695                                unlikely(!node_isset(nd, policy->v.nodes)))
1696                        nd = first_node(policy->v.nodes);
1697                break;
1698        default:
1699                BUG();
1700        }
1701        return node_zonelist(nd, gfp);
1702}
1703
1704/* Do dynamic interleaving for a process */
1705static unsigned interleave_nodes(struct mempolicy *policy)
1706{
1707        unsigned nid, next;
1708        struct task_struct *me = current;
1709
1710        nid = me->il_next;
1711        next = next_node_in(nid, policy->v.nodes);
1712        if (next < MAX_NUMNODES)
1713                me->il_next = next;
1714        return nid;
1715}
1716
1717/*
1718 * Depending on the memory policy provide a node from which to allocate the
1719 * next slab entry.
1720 */
1721unsigned int mempolicy_slab_node(void)
1722{
1723        struct mempolicy *policy;
1724        int node = numa_mem_id();
1725
1726        if (in_interrupt())
1727                return node;
1728
1729        policy = current->mempolicy;
1730        if (!policy || policy->flags & MPOL_F_LOCAL)
1731                return node;
1732
1733        switch (policy->mode) {
1734        case MPOL_PREFERRED:
1735                /*
1736                 * handled MPOL_F_LOCAL above
1737                 */
1738                return policy->v.preferred_node;
1739
1740        case MPOL_INTERLEAVE:
1741                return interleave_nodes(policy);
1742
1743        case MPOL_BIND: {
1744                struct zoneref *z;
1745
1746                /*
1747                 * Follow bind policy behavior and start allocation at the
1748                 * first node.
1749                 */
1750                struct zonelist *zonelist;
1751                enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1752                zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1753                z = first_zones_zonelist(zonelist, highest_zoneidx,
1754                                                        &policy->v.nodes);
1755                return z->zone ? z->zone->node : node;
1756        }
1757
1758        default:
1759                BUG();
1760        }
1761}
1762
1763/*
1764 * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1765 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1766 * number of present nodes.
1767 */
1768static unsigned offset_il_node(struct mempolicy *pol,
1769                               struct vm_area_struct *vma, unsigned long n)
1770{
1771        unsigned nnodes = nodes_weight(pol->v.nodes);
1772        unsigned target;
1773        int i;
1774        int nid;
1775
1776        if (!nnodes)
1777                return numa_node_id();
1778        target = (unsigned int)n % nnodes;
1779        nid = first_node(pol->v.nodes);
1780        for (i = 0; i < target; i++)
1781                nid = next_node(nid, pol->v.nodes);
1782        return nid;
1783}
1784
1785/* Determine a node number for interleave */
1786static inline unsigned interleave_nid(struct mempolicy *pol,
1787                 struct vm_area_struct *vma, unsigned long addr, int shift)
1788{
1789        if (vma) {
1790                unsigned long off;
1791
1792                /*
1793                 * for small pages, there is no difference between
1794                 * shift and PAGE_SHIFT, so the bit-shift is safe.
1795                 * for huge pages, since vm_pgoff is in units of small
1796                 * pages, we need to shift off the always 0 bits to get
1797                 * a useful offset.
1798                 */
1799                BUG_ON(shift < PAGE_SHIFT);
1800                off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1801                off += (addr - vma->vm_start) >> shift;
1802                return offset_il_node(pol, vma, off);
1803        } else
1804                return interleave_nodes(pol);
1805}
1806
1807#ifdef CONFIG_HUGETLBFS
1808/*
1809 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1810 * @vma: virtual memory area whose policy is sought
1811 * @addr: address in @vma for shared policy lookup and interleave policy
1812 * @gfp_flags: for requested zone
1813 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1814 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1815 *
1816 * Returns a zonelist suitable for a huge page allocation and a pointer
1817 * to the struct mempolicy for conditional unref after allocation.
1818 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1819 * @nodemask for filtering the zonelist.
1820 *
1821 * Must be protected by read_mems_allowed_begin()
1822 */
1823struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1824                                gfp_t gfp_flags, struct mempolicy **mpol,
1825                                nodemask_t **nodemask)
1826{
1827        struct zonelist *zl;
1828
1829        *mpol = get_vma_policy(vma, addr);
1830        *nodemask = NULL;       /* assume !MPOL_BIND */
1831
1832        if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1833                zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1834                                huge_page_shift(hstate_vma(vma))), gfp_flags);
1835        } else {
1836                zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1837                if ((*mpol)->mode == MPOL_BIND)
1838                        *nodemask = &(*mpol)->v.nodes;
1839        }
1840        return zl;
1841}
1842
1843/*
1844 * init_nodemask_of_mempolicy
1845 *
1846 * If the current task's mempolicy is "default" [NULL], return 'false'
1847 * to indicate default policy.  Otherwise, extract the policy nodemask
1848 * for 'bind' or 'interleave' policy into the argument nodemask, or
1849 * initialize the argument nodemask to contain the single node for
1850 * 'preferred' or 'local' policy and return 'true' to indicate presence
1851 * of non-default mempolicy.
1852 *
1853 * We don't bother with reference counting the mempolicy [mpol_get/put]
1854 * because the current task is examining it's own mempolicy and a task's
1855 * mempolicy is only ever changed by the task itself.
1856 *
1857 * N.B., it is the caller's responsibility to free a returned nodemask.
1858 */
1859bool init_nodemask_of_mempolicy(nodemask_t *mask)
1860{
1861        struct mempolicy *mempolicy;
1862        int nid;
1863
1864        if (!(mask && current->mempolicy))
1865                return false;
1866
1867        task_lock(current);
1868        mempolicy = current->mempolicy;
1869        switch (mempolicy->mode) {
1870        case MPOL_PREFERRED:
1871                if (mempolicy->flags & MPOL_F_LOCAL)
1872                        nid = numa_node_id();
1873                else
1874                        nid = mempolicy->v.preferred_node;
1875                init_nodemask_of_node(mask, nid);
1876                break;
1877
1878        case MPOL_BIND:
1879                /* Fall through */
1880        case MPOL_INTERLEAVE:
1881                *mask =  mempolicy->v.nodes;
1882                break;
1883
1884        default:
1885                BUG();
1886        }
1887        task_unlock(current);
1888
1889        return true;
1890}
1891#endif
1892
1893/*
1894 * mempolicy_nodemask_intersects
1895 *
1896 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1897 * policy.  Otherwise, check for intersection between mask and the policy
1898 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1899 * policy, always return true since it may allocate elsewhere on fallback.
1900 *
1901 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1902 */
1903bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1904                                        const nodemask_t *mask)
1905{
1906        struct mempolicy *mempolicy;
1907        bool ret = true;
1908
1909        if (!mask)
1910                return ret;
1911        task_lock(tsk);
1912        mempolicy = tsk->mempolicy;
1913        if (!mempolicy)
1914                goto out;
1915
1916        switch (mempolicy->mode) {
1917        case MPOL_PREFERRED:
1918                /*
1919                 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1920                 * allocate from, they may fallback to other nodes when oom.
1921                 * Thus, it's possible for tsk to have allocated memory from
1922                 * nodes in mask.
1923                 */
1924                break;
1925        case MPOL_BIND:
1926        case MPOL_INTERLEAVE:
1927                ret = nodes_intersects(mempolicy->v.nodes, *mask);
1928                break;
1929        default:
1930                BUG();
1931        }
1932out:
1933        task_unlock(tsk);
1934        return ret;
1935}
1936
1937/* Allocate a page in interleaved policy.
1938   Own path because it needs to do special accounting. */
1939static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1940                                        unsigned nid)
1941{
1942        struct zonelist *zl;
1943        struct page *page;
1944
1945        zl = node_zonelist(nid, gfp);
1946        page = __alloc_pages(gfp, order, zl);
1947        if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1948                inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1949        return page;
1950}
1951
1952/**
1953 *      alloc_pages_vma - Allocate a page for a VMA.
1954 *
1955 *      @gfp:
1956 *      %GFP_USER    user allocation.
1957 *      %GFP_KERNEL  kernel allocations,
1958 *      %GFP_HIGHMEM highmem/user allocations,
1959 *      %GFP_FS      allocation should not call back into a file system.
1960 *      %GFP_ATOMIC  don't sleep.
1961 *
1962 *      @order:Order of the GFP allocation.
1963 *      @vma:  Pointer to VMA or NULL if not available.
1964 *      @addr: Virtual Address of the allocation. Must be inside the VMA.
1965 *      @node: Which node to prefer for allocation (modulo policy).
1966 *      @hugepage: for hugepages try only the preferred node if possible
1967 *
1968 *      This function allocates a page from the kernel page pool and applies
1969 *      a NUMA policy associated with the VMA or the current process.
1970 *      When VMA is not NULL caller must hold down_read on the mmap_sem of the
1971 *      mm_struct of the VMA to prevent it from going away. Should be used for
1972 *      all allocations for pages that will be mapped into user space. Returns
1973 *      NULL when no page can be allocated.
1974 */
1975struct page *
1976alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1977                unsigned long addr, int node, bool hugepage)
1978{
1979        struct mempolicy *pol;
1980        struct page *page;
1981        unsigned int cpuset_mems_cookie;
1982        struct zonelist *zl;
1983        nodemask_t *nmask;
1984
1985retry_cpuset:
1986        pol = get_vma_policy(vma, addr);
1987        cpuset_mems_cookie = read_mems_allowed_begin();
1988
1989        if (pol->mode == MPOL_INTERLEAVE) {
1990                unsigned nid;
1991
1992                nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1993                mpol_cond_put(pol);
1994                page = alloc_page_interleave(gfp, order, nid);
1995                goto out;
1996        }
1997
1998        if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1999                int hpage_node = node;
2000
2001                /*
2002                 * For hugepage allocation and non-interleave policy which
2003                 * allows the current node (or other explicitly preferred
2004                 * node) we only try to allocate from the current/preferred
2005                 * node and don't fall back to other nodes, as the cost of
2006                 * remote accesses would likely offset THP benefits.
2007                 *
2008                 * If the policy is interleave, or does not allow the current
2009                 * node in its nodemask, we allocate the standard way.
2010                 */
2011                if (pol->mode == MPOL_PREFERRED &&
2012                                                !(pol->flags & MPOL_F_LOCAL))
2013                        hpage_node = pol->v.preferred_node;
2014
2015                nmask = policy_nodemask(gfp, pol);
2016                if (!nmask || node_isset(hpage_node, *nmask)) {
2017                        mpol_cond_put(pol);
2018                        page = __alloc_pages_node(hpage_node,
2019                                                gfp | __GFP_THISNODE, order);
2020                        goto out;
2021                }
2022        }
2023
2024        nmask = policy_nodemask(gfp, pol);
2025        zl = policy_zonelist(gfp, pol, node);
2026        mpol_cond_put(pol);
2027        page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2028out:
2029        if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2030                goto retry_cpuset;
2031        return page;
2032}
2033
2034/**
2035 *      alloc_pages_current - Allocate pages.
2036 *
2037 *      @gfp:
2038 *              %GFP_USER   user allocation,
2039 *              %GFP_KERNEL kernel allocation,
2040 *              %GFP_HIGHMEM highmem allocation,
2041 *              %GFP_FS     don't call back into a file system.
2042 *              %GFP_ATOMIC don't sleep.
2043 *      @order: Power of two of allocation size in pages. 0 is a single page.
2044 *
2045 *      Allocate a page from the kernel page pool.  When not in
2046 *      interrupt context and apply the current process NUMA policy.
2047 *      Returns NULL when no page can be allocated.
2048 *
2049 *      Don't call cpuset_update_task_memory_state() unless
2050 *      1) it's ok to take cpuset_sem (can WAIT), and
2051 *      2) allocating for current task (not interrupt).
2052 */
2053struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2054{
2055        struct mempolicy *pol = &default_policy;
2056        struct page *page;
2057        unsigned int cpuset_mems_cookie;
2058
2059        if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2060                pol = get_task_policy(current);
2061
2062retry_cpuset:
2063        cpuset_mems_cookie = read_mems_allowed_begin();
2064
2065        /*
2066         * No reference counting needed for current->mempolicy
2067         * nor system default_policy
2068         */
2069        if (pol->mode == MPOL_INTERLEAVE)
2070                page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2071        else
2072                page = __alloc_pages_nodemask(gfp, order,
2073                                policy_zonelist(gfp, pol, numa_node_id()),
2074                                policy_nodemask(gfp, pol));
2075
2076        if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2077                goto retry_cpuset;
2078
2079        return page;
2080}
2081EXPORT_SYMBOL(alloc_pages_current);
2082
2083int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2084{
2085        struct mempolicy *pol = mpol_dup(vma_policy(src));
2086
2087        if (IS_ERR(pol))
2088                return PTR_ERR(pol);
2089        dst->vm_policy = pol;
2090        return 0;
2091}
2092
2093/*
2094 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2095 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2096 * with the mems_allowed returned by cpuset_mems_allowed().  This
2097 * keeps mempolicies cpuset relative after its cpuset moves.  See
2098 * further kernel/cpuset.c update_nodemask().
2099 *
2100 * current's mempolicy may be rebinded by the other task(the task that changes
2101 * cpuset's mems), so we needn't do rebind work for current task.
2102 */
2103
2104/* Slow path of a mempolicy duplicate */
2105struct mempolicy *__mpol_dup(struct mempolicy *old)
2106{
2107        struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2108
2109        if (!new)
2110                return ERR_PTR(-ENOMEM);
2111
2112        /* task's mempolicy is protected by alloc_lock */
2113        if (old == current->mempolicy) {
2114                task_lock(current);
2115                *new = *old;
2116                task_unlock(current);
2117        } else
2118                *new = *old;
2119
2120        if (current_cpuset_is_being_rebound()) {
2121                nodemask_t mems = cpuset_mems_allowed(current);
2122                if (new->flags & MPOL_F_REBINDING)
2123                        mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2124                else
2125                        mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2126        }
2127        atomic_set(&new->refcnt, 1);
2128        return new;
2129}
2130
2131/* Slow path of a mempolicy comparison */
2132bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2133{
2134        if (!a || !b)
2135                return false;
2136        if (a->mode != b->mode)
2137                return false;
2138        if (a->flags != b->flags)
2139                return false;
2140        if (mpol_store_user_nodemask(a))
2141                if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2142                        return false;
2143
2144        switch (a->mode) {
2145        case MPOL_BIND:
2146                /* Fall through */
2147        case MPOL_INTERLEAVE:
2148                return !!nodes_equal(a->v.nodes, b->v.nodes);
2149        case MPOL_PREFERRED:
2150                return a->v.preferred_node == b->v.preferred_node;
2151        default:
2152                BUG();
2153                return false;
2154        }
2155}
2156
2157/*
2158 * Shared memory backing store policy support.
2159 *
2160 * Remember policies even when nobody has shared memory mapped.
2161 * The policies are kept in Red-Black tree linked from the inode.
2162 * They are protected by the sp->lock rwlock, which should be held
2163 * for any accesses to the tree.
2164 */
2165
2166/*
2167 * lookup first element intersecting start-end.  Caller holds sp->lock for
2168 * reading or for writing
2169 */
2170static struct sp_node *
2171sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2172{
2173        struct rb_node *n = sp->root.rb_node;
2174
2175        while (n) {
2176                struct sp_node *p = rb_entry(n, struct sp_node, nd);
2177
2178                if (start >= p->end)
2179                        n = n->rb_right;
2180                else if (end <= p->start)
2181                        n = n->rb_left;
2182                else
2183                        break;
2184        }
2185        if (!n)
2186                return NULL;
2187        for (;;) {
2188                struct sp_node *w = NULL;
2189                struct rb_node *prev = rb_prev(n);
2190                if (!prev)
2191                        break;
2192                w = rb_entry(prev, struct sp_node, nd);
2193                if (w->end <= start)
2194                        break;
2195                n = prev;
2196        }
2197        return rb_entry(n, struct sp_node, nd);
2198}
2199
2200/*
2201 * Insert a new shared policy into the list.  Caller holds sp->lock for
2202 * writing.
2203 */
2204static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2205{
2206        struct rb_node **p = &sp->root.rb_node;
2207        struct rb_node *parent = NULL;
2208        struct sp_node *nd;
2209
2210        while (*p) {
2211                parent = *p;
2212                nd = rb_entry(parent, struct sp_node, nd);
2213                if (new->start < nd->start)
2214                        p = &(*p)->rb_left;
2215                else if (new->end > nd->end)
2216                        p = &(*p)->rb_right;
2217                else
2218                        BUG();
2219        }
2220        rb_link_node(&new->nd, parent, p);
2221        rb_insert_color(&new->nd, &sp->root);
2222        pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2223                 new->policy ? new->policy->mode : 0);
2224}
2225
2226/* Find shared policy intersecting idx */
2227struct mempolicy *
2228mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2229{
2230        struct mempolicy *pol = NULL;
2231        struct sp_node *sn;
2232
2233        if (!sp->root.rb_node)
2234                return NULL;
2235        read_lock(&sp->lock);
2236        sn = sp_lookup(sp, idx, idx+1);
2237        if (sn) {
2238                mpol_get(sn->policy);
2239                pol = sn->policy;
2240        }
2241        read_unlock(&sp->lock);
2242        return pol;
2243}
2244
2245static void sp_free(struct sp_node *n)
2246{
2247        mpol_put(n->policy);
2248        kmem_cache_free(sn_cache, n);
2249}
2250
2251/**
2252 * mpol_misplaced - check whether current page node is valid in policy
2253 *
2254 * @page: page to be checked
2255 * @vma: vm area where page mapped
2256 * @addr: virtual address where page mapped
2257 *
2258 * Lookup current policy node id for vma,addr and "compare to" page's
2259 * node id.
2260 *
2261 * Returns:
2262 *      -1      - not misplaced, page is in the right node
2263 *      node    - node id where the page should be
2264 *
2265 * Policy determination "mimics" alloc_page_vma().
2266 * Called from fault path where we know the vma and faulting address.
2267 */
2268int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2269{
2270        struct mempolicy *pol;
2271        struct zoneref *z;
2272        int curnid = page_to_nid(page);
2273        unsigned long pgoff;
2274        int thiscpu = raw_smp_processor_id();
2275        int thisnid = cpu_to_node(thiscpu);
2276        int polnid = -1;
2277        int ret = -1;
2278
2279        BUG_ON(!vma);
2280
2281        pol = get_vma_policy(vma, addr);
2282        if (!(pol->flags & MPOL_F_MOF))
2283                goto out;
2284
2285        switch (pol->mode) {
2286        case MPOL_INTERLEAVE:
2287                BUG_ON(addr >= vma->vm_end);
2288                BUG_ON(addr < vma->vm_start);
2289
2290                pgoff = vma->vm_pgoff;
2291                pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2292                polnid = offset_il_node(pol, vma, pgoff);
2293                break;
2294
2295        case MPOL_PREFERRED:
2296                if (pol->flags & MPOL_F_LOCAL)
2297                        polnid = numa_node_id();
2298                else
2299                        polnid = pol->v.preferred_node;
2300                break;
2301
2302        case MPOL_BIND:
2303
2304                /*
2305                 * allows binding to multiple nodes.
2306                 * use current page if in policy nodemask,
2307                 * else select nearest allowed node, if any.
2308                 * If no allowed nodes, use current [!misplaced].
2309                 */
2310                if (node_isset(curnid, pol->v.nodes))
2311                        goto out;
2312                z = first_zones_zonelist(
2313                                node_zonelist(numa_node_id(), GFP_HIGHUSER),
2314                                gfp_zone(GFP_HIGHUSER),
2315                                &pol->v.nodes);
2316                polnid = z->zone->node;
2317                break;
2318
2319        default:
2320                BUG();
2321        }
2322
2323        /* Migrate the page towards the node whose CPU is referencing it */
2324        if (pol->flags & MPOL_F_MORON) {
2325                polnid = thisnid;
2326
2327                if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2328                        goto out;
2329        }
2330
2331        if (curnid != polnid)
2332                ret = polnid;
2333out:
2334        mpol_cond_put(pol);
2335
2336        return ret;
2337}
2338
2339/*
2340 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2341 * dropped after task->mempolicy is set to NULL so that any allocation done as
2342 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2343 * policy.
2344 */
2345void mpol_put_task_policy(struct task_struct *task)
2346{
2347        struct mempolicy *pol;
2348
2349        task_lock(task);
2350        pol = task->mempolicy;
2351        task->mempolicy = NULL;
2352        task_unlock(task);
2353        mpol_put(pol);
2354}
2355
2356static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2357{
2358        pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2359        rb_erase(&n->nd, &sp->root);
2360        sp_free(n);
2361}
2362
2363static void sp_node_init(struct sp_node *node, unsigned long start,
2364                        unsigned long end, struct mempolicy *pol)
2365{
2366        node->start = start;
2367        node->end = end;
2368        node->policy = pol;
2369}
2370
2371static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2372                                struct mempolicy *pol)
2373{
2374        struct sp_node *n;
2375        struct mempolicy *newpol;
2376
2377        n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2378        if (!n)
2379                return NULL;
2380
2381        newpol = mpol_dup(pol);
2382        if (IS_ERR(newpol)) {
2383                kmem_cache_free(sn_cache, n);
2384                return NULL;
2385        }
2386        newpol->flags |= MPOL_F_SHARED;
2387        sp_node_init(n, start, end, newpol);
2388
2389        return n;
2390}
2391
2392/* Replace a policy range. */
2393static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2394                                 unsigned long end, struct sp_node *new)
2395{
2396        struct sp_node *n;
2397        struct sp_node *n_new = NULL;
2398        struct mempolicy *mpol_new = NULL;
2399        int ret = 0;
2400
2401restart:
2402        write_lock(&sp->lock);
2403        n = sp_lookup(sp, start, end);
2404        /* Take care of old policies in the same range. */
2405        while (n && n->start < end) {
2406                struct rb_node *next = rb_next(&n->nd);
2407                if (n->start >= start) {
2408                        if (n->end <= end)
2409                                sp_delete(sp, n);
2410                        else
2411                                n->start = end;
2412                } else {
2413                        /* Old policy spanning whole new range. */
2414                        if (n->end > end) {
2415                                if (!n_new)
2416                                        goto alloc_new;
2417
2418                                *mpol_new = *n->policy;
2419                                atomic_set(&mpol_new->refcnt, 1);
2420                                sp_node_init(n_new, end, n->end, mpol_new);
2421                                n->end = start;
2422                                sp_insert(sp, n_new);
2423                                n_new = NULL;
2424                                mpol_new = NULL;
2425                                break;
2426                        } else
2427                                n->end = start;
2428                }
2429                if (!next)
2430                        break;
2431                n = rb_entry(next, struct sp_node, nd);
2432        }
2433        if (new)
2434                sp_insert(sp, new);
2435        write_unlock(&sp->lock);
2436        ret = 0;
2437
2438err_out:
2439        if (mpol_new)
2440                mpol_put(mpol_new);
2441        if (n_new)
2442                kmem_cache_free(sn_cache, n_new);
2443
2444        return ret;
2445
2446alloc_new:
2447        write_unlock(&sp->lock);
2448        ret = -ENOMEM;
2449        n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2450        if (!n_new)
2451                goto err_out;
2452        mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2453        if (!mpol_new)
2454                goto err_out;
2455        goto restart;
2456}
2457
2458/**
2459 * mpol_shared_policy_init - initialize shared policy for inode
2460 * @sp: pointer to inode shared policy
2461 * @mpol:  struct mempolicy to install
2462 *
2463 * Install non-NULL @mpol in inode's shared policy rb-tree.
2464 * On entry, the current task has a reference on a non-NULL @mpol.
2465 * This must be released on exit.
2466 * This is called at get_inode() calls and we can use GFP_KERNEL.
2467 */
2468void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2469{
2470        int ret;
2471
2472        sp->root = RB_ROOT;             /* empty tree == default mempolicy */
2473        rwlock_init(&sp->lock);
2474
2475        if (mpol) {
2476                struct vm_area_struct pvma;
2477                struct mempolicy *new;
2478                NODEMASK_SCRATCH(scratch);
2479
2480                if (!scratch)
2481                        goto put_mpol;
2482                /* contextualize the tmpfs mount point mempolicy */
2483                new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2484                if (IS_ERR(new))
2485                        goto free_scratch; /* no valid nodemask intersection */
2486
2487                task_lock(current);
2488                ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2489                task_unlock(current);
2490                if (ret)
2491                        goto put_new;
2492
2493                /* Create pseudo-vma that contains just the policy */
2494                memset(&pvma, 0, sizeof(struct vm_area_struct));
2495                pvma.vm_end = TASK_SIZE;        /* policy covers entire file */
2496                mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2497
2498put_new:
2499                mpol_put(new);                  /* drop initial ref */
2500free_scratch:
2501                NODEMASK_SCRATCH_FREE(scratch);
2502put_mpol:
2503                mpol_put(mpol); /* drop our incoming ref on sb mpol */
2504        }
2505}
2506
2507int mpol_set_shared_policy(struct shared_policy *info,
2508                        struct vm_area_struct *vma, struct mempolicy *npol)
2509{
2510        int err;
2511        struct sp_node *new = NULL;
2512        unsigned long sz = vma_pages(vma);
2513
2514        pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2515                 vma->vm_pgoff,
2516                 sz, npol ? npol->mode : -1,
2517                 npol ? npol->flags : -1,
2518                 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2519
2520        if (npol) {
2521                new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2522                if (!new)
2523                        return -ENOMEM;
2524        }
2525        err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2526        if (err && new)
2527                sp_free(new);
2528        return err;
2529}
2530
2531/* Free a backing policy store on inode delete. */
2532void mpol_free_shared_policy(struct shared_policy *p)
2533{
2534        struct sp_node *n;
2535        struct rb_node *next;
2536
2537        if (!p->root.rb_node)
2538                return;
2539        write_lock(&p->lock);
2540        next = rb_first(&p->root);
2541        while (next) {
2542                n = rb_entry(next, struct sp_node, nd);
2543                next = rb_next(&n->nd);
2544                sp_delete(p, n);
2545        }
2546        write_unlock(&p->lock);
2547}
2548
2549#ifdef CONFIG_NUMA_BALANCING
2550static int __initdata numabalancing_override;
2551
2552static void __init check_numabalancing_enable(void)
2553{
2554        bool numabalancing_default = false;
2555
2556        if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2557                numabalancing_default = true;
2558
2559        /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2560        if (numabalancing_override)
2561                set_numabalancing_state(numabalancing_override == 1);
2562
2563        if (num_online_nodes() > 1 && !numabalancing_override) {
2564                pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2565                        numabalancing_default ? "Enabling" : "Disabling");
2566                set_numabalancing_state(numabalancing_default);
2567        }
2568}
2569
2570static int __init setup_numabalancing(char *str)
2571{
2572        int ret = 0;
2573        if (!str)
2574                goto out;
2575
2576        if (!strcmp(str, "enable")) {
2577                numabalancing_override = 1;
2578                ret = 1;
2579        } else if (!strcmp(str, "disable")) {
2580                numabalancing_override = -1;
2581                ret = 1;
2582        }
2583out:
2584        if (!ret)
2585                pr_warn("Unable to parse numa_balancing=\n");
2586
2587        return ret;
2588}
2589__setup("numa_balancing=", setup_numabalancing);
2590#else
2591static inline void __init check_numabalancing_enable(void)
2592{
2593}
2594#endif /* CONFIG_NUMA_BALANCING */
2595
2596/* assumes fs == KERNEL_DS */
2597void __init numa_policy_init(void)
2598{
2599        nodemask_t interleave_nodes;
2600        unsigned long largest = 0;
2601        int nid, prefer = 0;
2602
2603        policy_cache = kmem_cache_create("numa_policy",
2604                                         sizeof(struct mempolicy),
2605                                         0, SLAB_PANIC, NULL);
2606
2607        sn_cache = kmem_cache_create("shared_policy_node",
2608                                     sizeof(struct sp_node),
2609                                     0, SLAB_PANIC, NULL);
2610
2611        for_each_node(nid) {
2612                preferred_node_policy[nid] = (struct mempolicy) {
2613                        .refcnt = ATOMIC_INIT(1),
2614                        .mode = MPOL_PREFERRED,
2615                        .flags = MPOL_F_MOF | MPOL_F_MORON,
2616                        .v = { .preferred_node = nid, },
2617                };
2618        }
2619
2620        /*
2621         * Set interleaving policy for system init. Interleaving is only
2622         * enabled across suitably sized nodes (default is >= 16MB), or
2623         * fall back to the largest node if they're all smaller.
2624         */
2625        nodes_clear(interleave_nodes);
2626        for_each_node_state(nid, N_MEMORY) {
2627                unsigned long total_pages = node_present_pages(nid);
2628
2629                /* Preserve the largest node */
2630                if (largest < total_pages) {
2631                        largest = total_pages;
2632                        prefer = nid;
2633                }
2634
2635                /* Interleave this node? */
2636                if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2637                        node_set(nid, interleave_nodes);
2638        }
2639
2640        /* All too small, use the largest */
2641        if (unlikely(nodes_empty(interleave_nodes)))
2642                node_set(prefer, interleave_nodes);
2643
2644        if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2645                pr_err("%s: interleaving failed\n", __func__);
2646
2647        check_numabalancing_enable();
2648}
2649
2650/* Reset policy of current process to default */
2651void numa_default_policy(void)
2652{
2653        do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2654}
2655
2656/*
2657 * Parse and format mempolicy from/to strings
2658 */
2659
2660/*
2661 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2662 */
2663static const char * const policy_modes[] =
2664{
2665        [MPOL_DEFAULT]    = "default",
2666        [MPOL_PREFERRED]  = "prefer",
2667        [MPOL_BIND]       = "bind",
2668        [MPOL_INTERLEAVE] = "interleave",
2669        [MPOL_LOCAL]      = "local",
2670};
2671
2672
2673#ifdef CONFIG_TMPFS
2674/**
2675 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2676 * @str:  string containing mempolicy to parse
2677 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2678 *
2679 * Format of input:
2680 *      <mode>[=<flags>][:<nodelist>]
2681 *
2682 * On success, returns 0, else 1
2683 */
2684int mpol_parse_str(char *str, struct mempolicy **mpol)
2685{
2686        struct mempolicy *new = NULL;
2687        unsigned short mode;
2688        unsigned short mode_flags;
2689        nodemask_t nodes;
2690        char *nodelist = strchr(str, ':');
2691        char *flags = strchr(str, '=');
2692        int err = 1;
2693
2694        if (nodelist) {
2695                /* NUL-terminate mode or flags string */
2696                *nodelist++ = '\0';
2697                if (nodelist_parse(nodelist, nodes))
2698                        goto out;
2699                if (!nodes_subset(nodes, node_states[N_MEMORY]))
2700                        goto out;
2701        } else
2702                nodes_clear(nodes);
2703
2704        if (flags)
2705                *flags++ = '\0';        /* terminate mode string */
2706
2707        for (mode = 0; mode < MPOL_MAX; mode++) {
2708                if (!strcmp(str, policy_modes[mode])) {
2709                        break;
2710                }
2711        }
2712        if (mode >= MPOL_MAX)
2713                goto out;
2714
2715        switch (mode) {
2716        case MPOL_PREFERRED:
2717                /*
2718                 * Insist on a nodelist of one node only
2719                 */
2720                if (nodelist) {
2721                        char *rest = nodelist;
2722                        while (isdigit(*rest))
2723                                rest++;
2724                        if (*rest)
2725                                goto out;
2726                }
2727                break;
2728        case MPOL_INTERLEAVE:
2729                /*
2730                 * Default to online nodes with memory if no nodelist
2731                 */
2732                if (!nodelist)
2733                        nodes = node_states[N_MEMORY];
2734                break;
2735        case MPOL_LOCAL:
2736                /*
2737                 * Don't allow a nodelist;  mpol_new() checks flags
2738                 */
2739                if (nodelist)
2740                        goto out;
2741                mode = MPOL_PREFERRED;
2742                break;
2743        case MPOL_DEFAULT:
2744                /*
2745                 * Insist on a empty nodelist
2746                 */
2747                if (!nodelist)
2748                        err = 0;
2749                goto out;
2750        case MPOL_BIND:
2751                /*
2752                 * Insist on a nodelist
2753                 */
2754                if (!nodelist)
2755                        goto out;
2756        }
2757
2758        mode_flags = 0;
2759        if (flags) {
2760                /*
2761                 * Currently, we only support two mutually exclusive
2762                 * mode flags.
2763                 */
2764                if (!strcmp(flags, "static"))
2765                        mode_flags |= MPOL_F_STATIC_NODES;
2766                else if (!strcmp(flags, "relative"))
2767                        mode_flags |= MPOL_F_RELATIVE_NODES;
2768                else
2769                        goto out;
2770        }
2771
2772        new = mpol_new(mode, mode_flags, &nodes);
2773        if (IS_ERR(new))
2774                goto out;
2775
2776        /*
2777         * Save nodes for mpol_to_str() to show the tmpfs mount options
2778         * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2779         */
2780        if (mode != MPOL_PREFERRED)
2781                new->v.nodes = nodes;
2782        else if (nodelist)
2783                new->v.preferred_node = first_node(nodes);
2784        else
2785                new->flags |= MPOL_F_LOCAL;
2786
2787        /*
2788         * Save nodes for contextualization: this will be used to "clone"
2789         * the mempolicy in a specific context [cpuset] at a later time.
2790         */
2791        new->w.user_nodemask = nodes;
2792
2793        err = 0;
2794
2795out:
2796        /* Restore string for error message */
2797        if (nodelist)
2798                *--nodelist = ':';
2799        if (flags)
2800                *--flags = '=';
2801        if (!err)
2802                *mpol = new;
2803        return err;
2804}
2805#endif /* CONFIG_TMPFS */
2806
2807/**
2808 * mpol_to_str - format a mempolicy structure for printing
2809 * @buffer:  to contain formatted mempolicy string
2810 * @maxlen:  length of @buffer
2811 * @pol:  pointer to mempolicy to be formatted
2812 *
2813 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2814 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2815 * longest flag, "relative", and to display at least a few node ids.
2816 */
2817void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2818{
2819        char *p = buffer;
2820        nodemask_t nodes = NODE_MASK_NONE;
2821        unsigned short mode = MPOL_DEFAULT;
2822        unsigned short flags = 0;
2823
2824        if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2825                mode = pol->mode;
2826                flags = pol->flags;
2827        }
2828
2829        switch (mode) {
2830        case MPOL_DEFAULT:
2831                break;
2832        case MPOL_PREFERRED:
2833                if (flags & MPOL_F_LOCAL)
2834                        mode = MPOL_LOCAL;
2835                else
2836                        node_set(pol->v.preferred_node, nodes);
2837                break;
2838        case MPOL_BIND:
2839        case MPOL_INTERLEAVE:
2840                nodes = pol->v.nodes;
2841                break;
2842        default:
2843                WARN_ON_ONCE(1);
2844                snprintf(p, maxlen, "unknown");
2845                return;
2846        }
2847
2848        p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2849
2850        if (flags & MPOL_MODE_FLAGS) {
2851                p += snprintf(p, buffer + maxlen - p, "=");
2852
2853                /*
2854                 * Currently, the only defined flags are mutually exclusive
2855                 */
2856                if (flags & MPOL_F_STATIC_NODES)
2857                        p += snprintf(p, buffer + maxlen - p, "static");
2858                else if (flags & MPOL_F_RELATIVE_NODES)
2859                        p += snprintf(p, buffer + maxlen - p, "relative");
2860        }
2861
2862        if (!nodes_empty(nodes))
2863                p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2864                               nodemask_pr_args(&nodes));
2865}
2866