linux/mm/nommu.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/nommu.c
   3 *
   4 *  Replacement code for mm functions to support CPU's that don't
   5 *  have any form of memory management unit (thus no virtual memory).
   6 *
   7 *  See Documentation/nommu-mmap.txt
   8 *
   9 *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
  10 *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
  11 *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
  12 *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
  13 *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
  14 */
  15
  16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  17
  18#include <linux/export.h>
  19#include <linux/mm.h>
  20#include <linux/vmacache.h>
  21#include <linux/mman.h>
  22#include <linux/swap.h>
  23#include <linux/file.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <linux/slab.h>
  27#include <linux/vmalloc.h>
  28#include <linux/blkdev.h>
  29#include <linux/backing-dev.h>
  30#include <linux/compiler.h>
  31#include <linux/mount.h>
  32#include <linux/personality.h>
  33#include <linux/security.h>
  34#include <linux/syscalls.h>
  35#include <linux/audit.h>
  36#include <linux/printk.h>
  37
  38#include <asm/uaccess.h>
  39#include <asm/tlb.h>
  40#include <asm/tlbflush.h>
  41#include <asm/mmu_context.h>
  42#include "internal.h"
  43
  44void *high_memory;
  45EXPORT_SYMBOL(high_memory);
  46struct page *mem_map;
  47unsigned long max_mapnr;
  48EXPORT_SYMBOL(max_mapnr);
  49unsigned long highest_memmap_pfn;
  50int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
  51int heap_stack_gap = 0;
  52
  53atomic_long_t mmap_pages_allocated;
  54
  55EXPORT_SYMBOL(mem_map);
  56
  57/* list of mapped, potentially shareable regions */
  58static struct kmem_cache *vm_region_jar;
  59struct rb_root nommu_region_tree = RB_ROOT;
  60DECLARE_RWSEM(nommu_region_sem);
  61
  62const struct vm_operations_struct generic_file_vm_ops = {
  63};
  64
  65/*
  66 * Return the total memory allocated for this pointer, not
  67 * just what the caller asked for.
  68 *
  69 * Doesn't have to be accurate, i.e. may have races.
  70 */
  71unsigned int kobjsize(const void *objp)
  72{
  73        struct page *page;
  74
  75        /*
  76         * If the object we have should not have ksize performed on it,
  77         * return size of 0
  78         */
  79        if (!objp || !virt_addr_valid(objp))
  80                return 0;
  81
  82        page = virt_to_head_page(objp);
  83
  84        /*
  85         * If the allocator sets PageSlab, we know the pointer came from
  86         * kmalloc().
  87         */
  88        if (PageSlab(page))
  89                return ksize(objp);
  90
  91        /*
  92         * If it's not a compound page, see if we have a matching VMA
  93         * region. This test is intentionally done in reverse order,
  94         * so if there's no VMA, we still fall through and hand back
  95         * PAGE_SIZE for 0-order pages.
  96         */
  97        if (!PageCompound(page)) {
  98                struct vm_area_struct *vma;
  99
 100                vma = find_vma(current->mm, (unsigned long)objp);
 101                if (vma)
 102                        return vma->vm_end - vma->vm_start;
 103        }
 104
 105        /*
 106         * The ksize() function is only guaranteed to work for pointers
 107         * returned by kmalloc(). So handle arbitrary pointers here.
 108         */
 109        return PAGE_SIZE << compound_order(page);
 110}
 111
 112static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 113                      unsigned long start, unsigned long nr_pages,
 114                      unsigned int foll_flags, struct page **pages,
 115                      struct vm_area_struct **vmas, int *nonblocking)
 116{
 117        struct vm_area_struct *vma;
 118        unsigned long vm_flags;
 119        int i;
 120
 121        /* calculate required read or write permissions.
 122         * If FOLL_FORCE is set, we only require the "MAY" flags.
 123         */
 124        vm_flags  = (foll_flags & FOLL_WRITE) ?
 125                        (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
 126        vm_flags &= (foll_flags & FOLL_FORCE) ?
 127                        (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
 128
 129        for (i = 0; i < nr_pages; i++) {
 130                vma = find_vma(mm, start);
 131                if (!vma)
 132                        goto finish_or_fault;
 133
 134                /* protect what we can, including chardevs */
 135                if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
 136                    !(vm_flags & vma->vm_flags))
 137                        goto finish_or_fault;
 138
 139                if (pages) {
 140                        pages[i] = virt_to_page(start);
 141                        if (pages[i])
 142                                get_page(pages[i]);
 143                }
 144                if (vmas)
 145                        vmas[i] = vma;
 146                start = (start + PAGE_SIZE) & PAGE_MASK;
 147        }
 148
 149        return i;
 150
 151finish_or_fault:
 152        return i ? : -EFAULT;
 153}
 154
 155/*
 156 * get a list of pages in an address range belonging to the specified process
 157 * and indicate the VMA that covers each page
 158 * - this is potentially dodgy as we may end incrementing the page count of a
 159 *   slab page or a secondary page from a compound page
 160 * - don't permit access to VMAs that don't support it, such as I/O mappings
 161 */
 162long get_user_pages(unsigned long start, unsigned long nr_pages,
 163                    unsigned int gup_flags, struct page **pages,
 164                    struct vm_area_struct **vmas)
 165{
 166        return __get_user_pages(current, current->mm, start, nr_pages,
 167                                gup_flags, pages, vmas, NULL);
 168}
 169EXPORT_SYMBOL(get_user_pages);
 170
 171long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
 172                            unsigned int gup_flags, struct page **pages,
 173                            int *locked)
 174{
 175        return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
 176}
 177EXPORT_SYMBOL(get_user_pages_locked);
 178
 179long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
 180                               unsigned long start, unsigned long nr_pages,
 181                               struct page **pages, unsigned int gup_flags)
 182{
 183        long ret;
 184        down_read(&mm->mmap_sem);
 185        ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
 186                                NULL, NULL);
 187        up_read(&mm->mmap_sem);
 188        return ret;
 189}
 190EXPORT_SYMBOL(__get_user_pages_unlocked);
 191
 192long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
 193                             struct page **pages, unsigned int gup_flags)
 194{
 195        return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
 196                                         pages, gup_flags);
 197}
 198EXPORT_SYMBOL(get_user_pages_unlocked);
 199
 200/**
 201 * follow_pfn - look up PFN at a user virtual address
 202 * @vma: memory mapping
 203 * @address: user virtual address
 204 * @pfn: location to store found PFN
 205 *
 206 * Only IO mappings and raw PFN mappings are allowed.
 207 *
 208 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 209 */
 210int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 211        unsigned long *pfn)
 212{
 213        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
 214                return -EINVAL;
 215
 216        *pfn = address >> PAGE_SHIFT;
 217        return 0;
 218}
 219EXPORT_SYMBOL(follow_pfn);
 220
 221LIST_HEAD(vmap_area_list);
 222
 223void vfree(const void *addr)
 224{
 225        kfree(addr);
 226}
 227EXPORT_SYMBOL(vfree);
 228
 229void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
 230{
 231        /*
 232         *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
 233         * returns only a logical address.
 234         */
 235        return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
 236}
 237EXPORT_SYMBOL(__vmalloc);
 238
 239void *vmalloc_user(unsigned long size)
 240{
 241        void *ret;
 242
 243        ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 244                        PAGE_KERNEL);
 245        if (ret) {
 246                struct vm_area_struct *vma;
 247
 248                down_write(&current->mm->mmap_sem);
 249                vma = find_vma(current->mm, (unsigned long)ret);
 250                if (vma)
 251                        vma->vm_flags |= VM_USERMAP;
 252                up_write(&current->mm->mmap_sem);
 253        }
 254
 255        return ret;
 256}
 257EXPORT_SYMBOL(vmalloc_user);
 258
 259struct page *vmalloc_to_page(const void *addr)
 260{
 261        return virt_to_page(addr);
 262}
 263EXPORT_SYMBOL(vmalloc_to_page);
 264
 265unsigned long vmalloc_to_pfn(const void *addr)
 266{
 267        return page_to_pfn(virt_to_page(addr));
 268}
 269EXPORT_SYMBOL(vmalloc_to_pfn);
 270
 271long vread(char *buf, char *addr, unsigned long count)
 272{
 273        /* Don't allow overflow */
 274        if ((unsigned long) buf + count < count)
 275                count = -(unsigned long) buf;
 276
 277        memcpy(buf, addr, count);
 278        return count;
 279}
 280
 281long vwrite(char *buf, char *addr, unsigned long count)
 282{
 283        /* Don't allow overflow */
 284        if ((unsigned long) addr + count < count)
 285                count = -(unsigned long) addr;
 286
 287        memcpy(addr, buf, count);
 288        return count;
 289}
 290
 291/*
 292 *      vmalloc  -  allocate virtually contiguous memory
 293 *
 294 *      @size:          allocation size
 295 *
 296 *      Allocate enough pages to cover @size from the page level
 297 *      allocator and map them into contiguous kernel virtual space.
 298 *
 299 *      For tight control over page level allocator and protection flags
 300 *      use __vmalloc() instead.
 301 */
 302void *vmalloc(unsigned long size)
 303{
 304       return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
 305}
 306EXPORT_SYMBOL(vmalloc);
 307
 308/*
 309 *      vzalloc - allocate virtually contiguous memory with zero fill
 310 *
 311 *      @size:          allocation size
 312 *
 313 *      Allocate enough pages to cover @size from the page level
 314 *      allocator and map them into contiguous kernel virtual space.
 315 *      The memory allocated is set to zero.
 316 *
 317 *      For tight control over page level allocator and protection flags
 318 *      use __vmalloc() instead.
 319 */
 320void *vzalloc(unsigned long size)
 321{
 322        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 323                        PAGE_KERNEL);
 324}
 325EXPORT_SYMBOL(vzalloc);
 326
 327/**
 328 * vmalloc_node - allocate memory on a specific node
 329 * @size:       allocation size
 330 * @node:       numa node
 331 *
 332 * Allocate enough pages to cover @size from the page level
 333 * allocator and map them into contiguous kernel virtual space.
 334 *
 335 * For tight control over page level allocator and protection flags
 336 * use __vmalloc() instead.
 337 */
 338void *vmalloc_node(unsigned long size, int node)
 339{
 340        return vmalloc(size);
 341}
 342EXPORT_SYMBOL(vmalloc_node);
 343
 344/**
 345 * vzalloc_node - allocate memory on a specific node with zero fill
 346 * @size:       allocation size
 347 * @node:       numa node
 348 *
 349 * Allocate enough pages to cover @size from the page level
 350 * allocator and map them into contiguous kernel virtual space.
 351 * The memory allocated is set to zero.
 352 *
 353 * For tight control over page level allocator and protection flags
 354 * use __vmalloc() instead.
 355 */
 356void *vzalloc_node(unsigned long size, int node)
 357{
 358        return vzalloc(size);
 359}
 360EXPORT_SYMBOL(vzalloc_node);
 361
 362#ifndef PAGE_KERNEL_EXEC
 363# define PAGE_KERNEL_EXEC PAGE_KERNEL
 364#endif
 365
 366/**
 367 *      vmalloc_exec  -  allocate virtually contiguous, executable memory
 368 *      @size:          allocation size
 369 *
 370 *      Kernel-internal function to allocate enough pages to cover @size
 371 *      the page level allocator and map them into contiguous and
 372 *      executable kernel virtual space.
 373 *
 374 *      For tight control over page level allocator and protection flags
 375 *      use __vmalloc() instead.
 376 */
 377
 378void *vmalloc_exec(unsigned long size)
 379{
 380        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
 381}
 382
 383/**
 384 * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 385 *      @size:          allocation size
 386 *
 387 *      Allocate enough 32bit PA addressable pages to cover @size from the
 388 *      page level allocator and map them into contiguous kernel virtual space.
 389 */
 390void *vmalloc_32(unsigned long size)
 391{
 392        return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
 393}
 394EXPORT_SYMBOL(vmalloc_32);
 395
 396/**
 397 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
 398 *      @size:          allocation size
 399 *
 400 * The resulting memory area is 32bit addressable and zeroed so it can be
 401 * mapped to userspace without leaking data.
 402 *
 403 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
 404 * remap_vmalloc_range() are permissible.
 405 */
 406void *vmalloc_32_user(unsigned long size)
 407{
 408        /*
 409         * We'll have to sort out the ZONE_DMA bits for 64-bit,
 410         * but for now this can simply use vmalloc_user() directly.
 411         */
 412        return vmalloc_user(size);
 413}
 414EXPORT_SYMBOL(vmalloc_32_user);
 415
 416void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
 417{
 418        BUG();
 419        return NULL;
 420}
 421EXPORT_SYMBOL(vmap);
 422
 423void vunmap(const void *addr)
 424{
 425        BUG();
 426}
 427EXPORT_SYMBOL(vunmap);
 428
 429void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
 430{
 431        BUG();
 432        return NULL;
 433}
 434EXPORT_SYMBOL(vm_map_ram);
 435
 436void vm_unmap_ram(const void *mem, unsigned int count)
 437{
 438        BUG();
 439}
 440EXPORT_SYMBOL(vm_unmap_ram);
 441
 442void vm_unmap_aliases(void)
 443{
 444}
 445EXPORT_SYMBOL_GPL(vm_unmap_aliases);
 446
 447/*
 448 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 449 * have one.
 450 */
 451void __weak vmalloc_sync_all(void)
 452{
 453}
 454
 455/**
 456 *      alloc_vm_area - allocate a range of kernel address space
 457 *      @size:          size of the area
 458 *
 459 *      Returns:        NULL on failure, vm_struct on success
 460 *
 461 *      This function reserves a range of kernel address space, and
 462 *      allocates pagetables to map that range.  No actual mappings
 463 *      are created.  If the kernel address space is not shared
 464 *      between processes, it syncs the pagetable across all
 465 *      processes.
 466 */
 467struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
 468{
 469        BUG();
 470        return NULL;
 471}
 472EXPORT_SYMBOL_GPL(alloc_vm_area);
 473
 474void free_vm_area(struct vm_struct *area)
 475{
 476        BUG();
 477}
 478EXPORT_SYMBOL_GPL(free_vm_area);
 479
 480int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
 481                   struct page *page)
 482{
 483        return -EINVAL;
 484}
 485EXPORT_SYMBOL(vm_insert_page);
 486
 487/*
 488 *  sys_brk() for the most part doesn't need the global kernel
 489 *  lock, except when an application is doing something nasty
 490 *  like trying to un-brk an area that has already been mapped
 491 *  to a regular file.  in this case, the unmapping will need
 492 *  to invoke file system routines that need the global lock.
 493 */
 494SYSCALL_DEFINE1(brk, unsigned long, brk)
 495{
 496        struct mm_struct *mm = current->mm;
 497
 498        if (brk < mm->start_brk || brk > mm->context.end_brk)
 499                return mm->brk;
 500
 501        if (mm->brk == brk)
 502                return mm->brk;
 503
 504        /*
 505         * Always allow shrinking brk
 506         */
 507        if (brk <= mm->brk) {
 508                mm->brk = brk;
 509                return brk;
 510        }
 511
 512        /*
 513         * Ok, looks good - let it rip.
 514         */
 515        flush_icache_range(mm->brk, brk);
 516        return mm->brk = brk;
 517}
 518
 519/*
 520 * initialise the VMA and region record slabs
 521 */
 522void __init mmap_init(void)
 523{
 524        int ret;
 525
 526        ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
 527        VM_BUG_ON(ret);
 528        vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
 529}
 530
 531/*
 532 * validate the region tree
 533 * - the caller must hold the region lock
 534 */
 535#ifdef CONFIG_DEBUG_NOMMU_REGIONS
 536static noinline void validate_nommu_regions(void)
 537{
 538        struct vm_region *region, *last;
 539        struct rb_node *p, *lastp;
 540
 541        lastp = rb_first(&nommu_region_tree);
 542        if (!lastp)
 543                return;
 544
 545        last = rb_entry(lastp, struct vm_region, vm_rb);
 546        BUG_ON(last->vm_end <= last->vm_start);
 547        BUG_ON(last->vm_top < last->vm_end);
 548
 549        while ((p = rb_next(lastp))) {
 550                region = rb_entry(p, struct vm_region, vm_rb);
 551                last = rb_entry(lastp, struct vm_region, vm_rb);
 552
 553                BUG_ON(region->vm_end <= region->vm_start);
 554                BUG_ON(region->vm_top < region->vm_end);
 555                BUG_ON(region->vm_start < last->vm_top);
 556
 557                lastp = p;
 558        }
 559}
 560#else
 561static void validate_nommu_regions(void)
 562{
 563}
 564#endif
 565
 566/*
 567 * add a region into the global tree
 568 */
 569static void add_nommu_region(struct vm_region *region)
 570{
 571        struct vm_region *pregion;
 572        struct rb_node **p, *parent;
 573
 574        validate_nommu_regions();
 575
 576        parent = NULL;
 577        p = &nommu_region_tree.rb_node;
 578        while (*p) {
 579                parent = *p;
 580                pregion = rb_entry(parent, struct vm_region, vm_rb);
 581                if (region->vm_start < pregion->vm_start)
 582                        p = &(*p)->rb_left;
 583                else if (region->vm_start > pregion->vm_start)
 584                        p = &(*p)->rb_right;
 585                else if (pregion == region)
 586                        return;
 587                else
 588                        BUG();
 589        }
 590
 591        rb_link_node(&region->vm_rb, parent, p);
 592        rb_insert_color(&region->vm_rb, &nommu_region_tree);
 593
 594        validate_nommu_regions();
 595}
 596
 597/*
 598 * delete a region from the global tree
 599 */
 600static void delete_nommu_region(struct vm_region *region)
 601{
 602        BUG_ON(!nommu_region_tree.rb_node);
 603
 604        validate_nommu_regions();
 605        rb_erase(&region->vm_rb, &nommu_region_tree);
 606        validate_nommu_regions();
 607}
 608
 609/*
 610 * free a contiguous series of pages
 611 */
 612static void free_page_series(unsigned long from, unsigned long to)
 613{
 614        for (; from < to; from += PAGE_SIZE) {
 615                struct page *page = virt_to_page(from);
 616
 617                atomic_long_dec(&mmap_pages_allocated);
 618                put_page(page);
 619        }
 620}
 621
 622/*
 623 * release a reference to a region
 624 * - the caller must hold the region semaphore for writing, which this releases
 625 * - the region may not have been added to the tree yet, in which case vm_top
 626 *   will equal vm_start
 627 */
 628static void __put_nommu_region(struct vm_region *region)
 629        __releases(nommu_region_sem)
 630{
 631        BUG_ON(!nommu_region_tree.rb_node);
 632
 633        if (--region->vm_usage == 0) {
 634                if (region->vm_top > region->vm_start)
 635                        delete_nommu_region(region);
 636                up_write(&nommu_region_sem);
 637
 638                if (region->vm_file)
 639                        fput(region->vm_file);
 640
 641                /* IO memory and memory shared directly out of the pagecache
 642                 * from ramfs/tmpfs mustn't be released here */
 643                if (region->vm_flags & VM_MAPPED_COPY)
 644                        free_page_series(region->vm_start, region->vm_top);
 645                kmem_cache_free(vm_region_jar, region);
 646        } else {
 647                up_write(&nommu_region_sem);
 648        }
 649}
 650
 651/*
 652 * release a reference to a region
 653 */
 654static void put_nommu_region(struct vm_region *region)
 655{
 656        down_write(&nommu_region_sem);
 657        __put_nommu_region(region);
 658}
 659
 660/*
 661 * update protection on a vma
 662 */
 663static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
 664{
 665#ifdef CONFIG_MPU
 666        struct mm_struct *mm = vma->vm_mm;
 667        long start = vma->vm_start & PAGE_MASK;
 668        while (start < vma->vm_end) {
 669                protect_page(mm, start, flags);
 670                start += PAGE_SIZE;
 671        }
 672        update_protections(mm);
 673#endif
 674}
 675
 676/*
 677 * add a VMA into a process's mm_struct in the appropriate place in the list
 678 * and tree and add to the address space's page tree also if not an anonymous
 679 * page
 680 * - should be called with mm->mmap_sem held writelocked
 681 */
 682static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
 683{
 684        struct vm_area_struct *pvma, *prev;
 685        struct address_space *mapping;
 686        struct rb_node **p, *parent, *rb_prev;
 687
 688        BUG_ON(!vma->vm_region);
 689
 690        mm->map_count++;
 691        vma->vm_mm = mm;
 692
 693        protect_vma(vma, vma->vm_flags);
 694
 695        /* add the VMA to the mapping */
 696        if (vma->vm_file) {
 697                mapping = vma->vm_file->f_mapping;
 698
 699                i_mmap_lock_write(mapping);
 700                flush_dcache_mmap_lock(mapping);
 701                vma_interval_tree_insert(vma, &mapping->i_mmap);
 702                flush_dcache_mmap_unlock(mapping);
 703                i_mmap_unlock_write(mapping);
 704        }
 705
 706        /* add the VMA to the tree */
 707        parent = rb_prev = NULL;
 708        p = &mm->mm_rb.rb_node;
 709        while (*p) {
 710                parent = *p;
 711                pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
 712
 713                /* sort by: start addr, end addr, VMA struct addr in that order
 714                 * (the latter is necessary as we may get identical VMAs) */
 715                if (vma->vm_start < pvma->vm_start)
 716                        p = &(*p)->rb_left;
 717                else if (vma->vm_start > pvma->vm_start) {
 718                        rb_prev = parent;
 719                        p = &(*p)->rb_right;
 720                } else if (vma->vm_end < pvma->vm_end)
 721                        p = &(*p)->rb_left;
 722                else if (vma->vm_end > pvma->vm_end) {
 723                        rb_prev = parent;
 724                        p = &(*p)->rb_right;
 725                } else if (vma < pvma)
 726                        p = &(*p)->rb_left;
 727                else if (vma > pvma) {
 728                        rb_prev = parent;
 729                        p = &(*p)->rb_right;
 730                } else
 731                        BUG();
 732        }
 733
 734        rb_link_node(&vma->vm_rb, parent, p);
 735        rb_insert_color(&vma->vm_rb, &mm->mm_rb);
 736
 737        /* add VMA to the VMA list also */
 738        prev = NULL;
 739        if (rb_prev)
 740                prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 741
 742        __vma_link_list(mm, vma, prev, parent);
 743}
 744
 745/*
 746 * delete a VMA from its owning mm_struct and address space
 747 */
 748static void delete_vma_from_mm(struct vm_area_struct *vma)
 749{
 750        int i;
 751        struct address_space *mapping;
 752        struct mm_struct *mm = vma->vm_mm;
 753        struct task_struct *curr = current;
 754
 755        protect_vma(vma, 0);
 756
 757        mm->map_count--;
 758        for (i = 0; i < VMACACHE_SIZE; i++) {
 759                /* if the vma is cached, invalidate the entire cache */
 760                if (curr->vmacache[i] == vma) {
 761                        vmacache_invalidate(mm);
 762                        break;
 763                }
 764        }
 765
 766        /* remove the VMA from the mapping */
 767        if (vma->vm_file) {
 768                mapping = vma->vm_file->f_mapping;
 769
 770                i_mmap_lock_write(mapping);
 771                flush_dcache_mmap_lock(mapping);
 772                vma_interval_tree_remove(vma, &mapping->i_mmap);
 773                flush_dcache_mmap_unlock(mapping);
 774                i_mmap_unlock_write(mapping);
 775        }
 776
 777        /* remove from the MM's tree and list */
 778        rb_erase(&vma->vm_rb, &mm->mm_rb);
 779
 780        if (vma->vm_prev)
 781                vma->vm_prev->vm_next = vma->vm_next;
 782        else
 783                mm->mmap = vma->vm_next;
 784
 785        if (vma->vm_next)
 786                vma->vm_next->vm_prev = vma->vm_prev;
 787}
 788
 789/*
 790 * destroy a VMA record
 791 */
 792static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
 793{
 794        if (vma->vm_ops && vma->vm_ops->close)
 795                vma->vm_ops->close(vma);
 796        if (vma->vm_file)
 797                fput(vma->vm_file);
 798        put_nommu_region(vma->vm_region);
 799        kmem_cache_free(vm_area_cachep, vma);
 800}
 801
 802/*
 803 * look up the first VMA in which addr resides, NULL if none
 804 * - should be called with mm->mmap_sem at least held readlocked
 805 */
 806struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 807{
 808        struct vm_area_struct *vma;
 809
 810        /* check the cache first */
 811        vma = vmacache_find(mm, addr);
 812        if (likely(vma))
 813                return vma;
 814
 815        /* trawl the list (there may be multiple mappings in which addr
 816         * resides) */
 817        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 818                if (vma->vm_start > addr)
 819                        return NULL;
 820                if (vma->vm_end > addr) {
 821                        vmacache_update(addr, vma);
 822                        return vma;
 823                }
 824        }
 825
 826        return NULL;
 827}
 828EXPORT_SYMBOL(find_vma);
 829
 830/*
 831 * find a VMA
 832 * - we don't extend stack VMAs under NOMMU conditions
 833 */
 834struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
 835{
 836        return find_vma(mm, addr);
 837}
 838
 839/*
 840 * expand a stack to a given address
 841 * - not supported under NOMMU conditions
 842 */
 843int expand_stack(struct vm_area_struct *vma, unsigned long address)
 844{
 845        return -ENOMEM;
 846}
 847
 848/*
 849 * look up the first VMA exactly that exactly matches addr
 850 * - should be called with mm->mmap_sem at least held readlocked
 851 */
 852static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
 853                                             unsigned long addr,
 854                                             unsigned long len)
 855{
 856        struct vm_area_struct *vma;
 857        unsigned long end = addr + len;
 858
 859        /* check the cache first */
 860        vma = vmacache_find_exact(mm, addr, end);
 861        if (vma)
 862                return vma;
 863
 864        /* trawl the list (there may be multiple mappings in which addr
 865         * resides) */
 866        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 867                if (vma->vm_start < addr)
 868                        continue;
 869                if (vma->vm_start > addr)
 870                        return NULL;
 871                if (vma->vm_end == end) {
 872                        vmacache_update(addr, vma);
 873                        return vma;
 874                }
 875        }
 876
 877        return NULL;
 878}
 879
 880/*
 881 * determine whether a mapping should be permitted and, if so, what sort of
 882 * mapping we're capable of supporting
 883 */
 884static int validate_mmap_request(struct file *file,
 885                                 unsigned long addr,
 886                                 unsigned long len,
 887                                 unsigned long prot,
 888                                 unsigned long flags,
 889                                 unsigned long pgoff,
 890                                 unsigned long *_capabilities)
 891{
 892        unsigned long capabilities, rlen;
 893        int ret;
 894
 895        /* do the simple checks first */
 896        if (flags & MAP_FIXED)
 897                return -EINVAL;
 898
 899        if ((flags & MAP_TYPE) != MAP_PRIVATE &&
 900            (flags & MAP_TYPE) != MAP_SHARED)
 901                return -EINVAL;
 902
 903        if (!len)
 904                return -EINVAL;
 905
 906        /* Careful about overflows.. */
 907        rlen = PAGE_ALIGN(len);
 908        if (!rlen || rlen > TASK_SIZE)
 909                return -ENOMEM;
 910
 911        /* offset overflow? */
 912        if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
 913                return -EOVERFLOW;
 914
 915        if (file) {
 916                /* files must support mmap */
 917                if (!file->f_op->mmap)
 918                        return -ENODEV;
 919
 920                /* work out if what we've got could possibly be shared
 921                 * - we support chardevs that provide their own "memory"
 922                 * - we support files/blockdevs that are memory backed
 923                 */
 924                if (file->f_op->mmap_capabilities) {
 925                        capabilities = file->f_op->mmap_capabilities(file);
 926                } else {
 927                        /* no explicit capabilities set, so assume some
 928                         * defaults */
 929                        switch (file_inode(file)->i_mode & S_IFMT) {
 930                        case S_IFREG:
 931                        case S_IFBLK:
 932                                capabilities = NOMMU_MAP_COPY;
 933                                break;
 934
 935                        case S_IFCHR:
 936                                capabilities =
 937                                        NOMMU_MAP_DIRECT |
 938                                        NOMMU_MAP_READ |
 939                                        NOMMU_MAP_WRITE;
 940                                break;
 941
 942                        default:
 943                                return -EINVAL;
 944                        }
 945                }
 946
 947                /* eliminate any capabilities that we can't support on this
 948                 * device */
 949                if (!file->f_op->get_unmapped_area)
 950                        capabilities &= ~NOMMU_MAP_DIRECT;
 951                if (!(file->f_mode & FMODE_CAN_READ))
 952                        capabilities &= ~NOMMU_MAP_COPY;
 953
 954                /* The file shall have been opened with read permission. */
 955                if (!(file->f_mode & FMODE_READ))
 956                        return -EACCES;
 957
 958                if (flags & MAP_SHARED) {
 959                        /* do checks for writing, appending and locking */
 960                        if ((prot & PROT_WRITE) &&
 961                            !(file->f_mode & FMODE_WRITE))
 962                                return -EACCES;
 963
 964                        if (IS_APPEND(file_inode(file)) &&
 965                            (file->f_mode & FMODE_WRITE))
 966                                return -EACCES;
 967
 968                        if (locks_verify_locked(file))
 969                                return -EAGAIN;
 970
 971                        if (!(capabilities & NOMMU_MAP_DIRECT))
 972                                return -ENODEV;
 973
 974                        /* we mustn't privatise shared mappings */
 975                        capabilities &= ~NOMMU_MAP_COPY;
 976                } else {
 977                        /* we're going to read the file into private memory we
 978                         * allocate */
 979                        if (!(capabilities & NOMMU_MAP_COPY))
 980                                return -ENODEV;
 981
 982                        /* we don't permit a private writable mapping to be
 983                         * shared with the backing device */
 984                        if (prot & PROT_WRITE)
 985                                capabilities &= ~NOMMU_MAP_DIRECT;
 986                }
 987
 988                if (capabilities & NOMMU_MAP_DIRECT) {
 989                        if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
 990                            ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
 991                            ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
 992                            ) {
 993                                capabilities &= ~NOMMU_MAP_DIRECT;
 994                                if (flags & MAP_SHARED) {
 995                                        pr_warn("MAP_SHARED not completely supported on !MMU\n");
 996                                        return -EINVAL;
 997                                }
 998                        }
 999                }
1000
1001                /* handle executable mappings and implied executable
1002                 * mappings */
1003                if (path_noexec(&file->f_path)) {
1004                        if (prot & PROT_EXEC)
1005                                return -EPERM;
1006                } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1007                        /* handle implication of PROT_EXEC by PROT_READ */
1008                        if (current->personality & READ_IMPLIES_EXEC) {
1009                                if (capabilities & NOMMU_MAP_EXEC)
1010                                        prot |= PROT_EXEC;
1011                        }
1012                } else if ((prot & PROT_READ) &&
1013                         (prot & PROT_EXEC) &&
1014                         !(capabilities & NOMMU_MAP_EXEC)
1015                         ) {
1016                        /* backing file is not executable, try to copy */
1017                        capabilities &= ~NOMMU_MAP_DIRECT;
1018                }
1019        } else {
1020                /* anonymous mappings are always memory backed and can be
1021                 * privately mapped
1022                 */
1023                capabilities = NOMMU_MAP_COPY;
1024
1025                /* handle PROT_EXEC implication by PROT_READ */
1026                if ((prot & PROT_READ) &&
1027                    (current->personality & READ_IMPLIES_EXEC))
1028                        prot |= PROT_EXEC;
1029        }
1030
1031        /* allow the security API to have its say */
1032        ret = security_mmap_addr(addr);
1033        if (ret < 0)
1034                return ret;
1035
1036        /* looks okay */
1037        *_capabilities = capabilities;
1038        return 0;
1039}
1040
1041/*
1042 * we've determined that we can make the mapping, now translate what we
1043 * now know into VMA flags
1044 */
1045static unsigned long determine_vm_flags(struct file *file,
1046                                        unsigned long prot,
1047                                        unsigned long flags,
1048                                        unsigned long capabilities)
1049{
1050        unsigned long vm_flags;
1051
1052        vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1053        /* vm_flags |= mm->def_flags; */
1054
1055        if (!(capabilities & NOMMU_MAP_DIRECT)) {
1056                /* attempt to share read-only copies of mapped file chunks */
1057                vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1058                if (file && !(prot & PROT_WRITE))
1059                        vm_flags |= VM_MAYSHARE;
1060        } else {
1061                /* overlay a shareable mapping on the backing device or inode
1062                 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1063                 * romfs/cramfs */
1064                vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1065                if (flags & MAP_SHARED)
1066                        vm_flags |= VM_SHARED;
1067        }
1068
1069        /* refuse to let anyone share private mappings with this process if
1070         * it's being traced - otherwise breakpoints set in it may interfere
1071         * with another untraced process
1072         */
1073        if ((flags & MAP_PRIVATE) && current->ptrace)
1074                vm_flags &= ~VM_MAYSHARE;
1075
1076        return vm_flags;
1077}
1078
1079/*
1080 * set up a shared mapping on a file (the driver or filesystem provides and
1081 * pins the storage)
1082 */
1083static int do_mmap_shared_file(struct vm_area_struct *vma)
1084{
1085        int ret;
1086
1087        ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1088        if (ret == 0) {
1089                vma->vm_region->vm_top = vma->vm_region->vm_end;
1090                return 0;
1091        }
1092        if (ret != -ENOSYS)
1093                return ret;
1094
1095        /* getting -ENOSYS indicates that direct mmap isn't possible (as
1096         * opposed to tried but failed) so we can only give a suitable error as
1097         * it's not possible to make a private copy if MAP_SHARED was given */
1098        return -ENODEV;
1099}
1100
1101/*
1102 * set up a private mapping or an anonymous shared mapping
1103 */
1104static int do_mmap_private(struct vm_area_struct *vma,
1105                           struct vm_region *region,
1106                           unsigned long len,
1107                           unsigned long capabilities)
1108{
1109        unsigned long total, point;
1110        void *base;
1111        int ret, order;
1112
1113        /* invoke the file's mapping function so that it can keep track of
1114         * shared mappings on devices or memory
1115         * - VM_MAYSHARE will be set if it may attempt to share
1116         */
1117        if (capabilities & NOMMU_MAP_DIRECT) {
1118                ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1119                if (ret == 0) {
1120                        /* shouldn't return success if we're not sharing */
1121                        BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1122                        vma->vm_region->vm_top = vma->vm_region->vm_end;
1123                        return 0;
1124                }
1125                if (ret != -ENOSYS)
1126                        return ret;
1127
1128                /* getting an ENOSYS error indicates that direct mmap isn't
1129                 * possible (as opposed to tried but failed) so we'll try to
1130                 * make a private copy of the data and map that instead */
1131        }
1132
1133
1134        /* allocate some memory to hold the mapping
1135         * - note that this may not return a page-aligned address if the object
1136         *   we're allocating is smaller than a page
1137         */
1138        order = get_order(len);
1139        total = 1 << order;
1140        point = len >> PAGE_SHIFT;
1141
1142        /* we don't want to allocate a power-of-2 sized page set */
1143        if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1144                total = point;
1145
1146        base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1147        if (!base)
1148                goto enomem;
1149
1150        atomic_long_add(total, &mmap_pages_allocated);
1151
1152        region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1153        region->vm_start = (unsigned long) base;
1154        region->vm_end   = region->vm_start + len;
1155        region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1156
1157        vma->vm_start = region->vm_start;
1158        vma->vm_end   = region->vm_start + len;
1159
1160        if (vma->vm_file) {
1161                /* read the contents of a file into the copy */
1162                mm_segment_t old_fs;
1163                loff_t fpos;
1164
1165                fpos = vma->vm_pgoff;
1166                fpos <<= PAGE_SHIFT;
1167
1168                old_fs = get_fs();
1169                set_fs(KERNEL_DS);
1170                ret = __vfs_read(vma->vm_file, base, len, &fpos);
1171                set_fs(old_fs);
1172
1173                if (ret < 0)
1174                        goto error_free;
1175
1176                /* clear the last little bit */
1177                if (ret < len)
1178                        memset(base + ret, 0, len - ret);
1179
1180        }
1181
1182        return 0;
1183
1184error_free:
1185        free_page_series(region->vm_start, region->vm_top);
1186        region->vm_start = vma->vm_start = 0;
1187        region->vm_end   = vma->vm_end = 0;
1188        region->vm_top   = 0;
1189        return ret;
1190
1191enomem:
1192        pr_err("Allocation of length %lu from process %d (%s) failed\n",
1193               len, current->pid, current->comm);
1194        show_free_areas(0);
1195        return -ENOMEM;
1196}
1197
1198/*
1199 * handle mapping creation for uClinux
1200 */
1201unsigned long do_mmap(struct file *file,
1202                        unsigned long addr,
1203                        unsigned long len,
1204                        unsigned long prot,
1205                        unsigned long flags,
1206                        vm_flags_t vm_flags,
1207                        unsigned long pgoff,
1208                        unsigned long *populate)
1209{
1210        struct vm_area_struct *vma;
1211        struct vm_region *region;
1212        struct rb_node *rb;
1213        unsigned long capabilities, result;
1214        int ret;
1215
1216        *populate = 0;
1217
1218        /* decide whether we should attempt the mapping, and if so what sort of
1219         * mapping */
1220        ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1221                                    &capabilities);
1222        if (ret < 0)
1223                return ret;
1224
1225        /* we ignore the address hint */
1226        addr = 0;
1227        len = PAGE_ALIGN(len);
1228
1229        /* we've determined that we can make the mapping, now translate what we
1230         * now know into VMA flags */
1231        vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1232
1233        /* we're going to need to record the mapping */
1234        region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1235        if (!region)
1236                goto error_getting_region;
1237
1238        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1239        if (!vma)
1240                goto error_getting_vma;
1241
1242        region->vm_usage = 1;
1243        region->vm_flags = vm_flags;
1244        region->vm_pgoff = pgoff;
1245
1246        INIT_LIST_HEAD(&vma->anon_vma_chain);
1247        vma->vm_flags = vm_flags;
1248        vma->vm_pgoff = pgoff;
1249
1250        if (file) {
1251                region->vm_file = get_file(file);
1252                vma->vm_file = get_file(file);
1253        }
1254
1255        down_write(&nommu_region_sem);
1256
1257        /* if we want to share, we need to check for regions created by other
1258         * mmap() calls that overlap with our proposed mapping
1259         * - we can only share with a superset match on most regular files
1260         * - shared mappings on character devices and memory backed files are
1261         *   permitted to overlap inexactly as far as we are concerned for in
1262         *   these cases, sharing is handled in the driver or filesystem rather
1263         *   than here
1264         */
1265        if (vm_flags & VM_MAYSHARE) {
1266                struct vm_region *pregion;
1267                unsigned long pglen, rpglen, pgend, rpgend, start;
1268
1269                pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1270                pgend = pgoff + pglen;
1271
1272                for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1273                        pregion = rb_entry(rb, struct vm_region, vm_rb);
1274
1275                        if (!(pregion->vm_flags & VM_MAYSHARE))
1276                                continue;
1277
1278                        /* search for overlapping mappings on the same file */
1279                        if (file_inode(pregion->vm_file) !=
1280                            file_inode(file))
1281                                continue;
1282
1283                        if (pregion->vm_pgoff >= pgend)
1284                                continue;
1285
1286                        rpglen = pregion->vm_end - pregion->vm_start;
1287                        rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1288                        rpgend = pregion->vm_pgoff + rpglen;
1289                        if (pgoff >= rpgend)
1290                                continue;
1291
1292                        /* handle inexactly overlapping matches between
1293                         * mappings */
1294                        if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1295                            !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1296                                /* new mapping is not a subset of the region */
1297                                if (!(capabilities & NOMMU_MAP_DIRECT))
1298                                        goto sharing_violation;
1299                                continue;
1300                        }
1301
1302                        /* we've found a region we can share */
1303                        pregion->vm_usage++;
1304                        vma->vm_region = pregion;
1305                        start = pregion->vm_start;
1306                        start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1307                        vma->vm_start = start;
1308                        vma->vm_end = start + len;
1309
1310                        if (pregion->vm_flags & VM_MAPPED_COPY)
1311                                vma->vm_flags |= VM_MAPPED_COPY;
1312                        else {
1313                                ret = do_mmap_shared_file(vma);
1314                                if (ret < 0) {
1315                                        vma->vm_region = NULL;
1316                                        vma->vm_start = 0;
1317                                        vma->vm_end = 0;
1318                                        pregion->vm_usage--;
1319                                        pregion = NULL;
1320                                        goto error_just_free;
1321                                }
1322                        }
1323                        fput(region->vm_file);
1324                        kmem_cache_free(vm_region_jar, region);
1325                        region = pregion;
1326                        result = start;
1327                        goto share;
1328                }
1329
1330                /* obtain the address at which to make a shared mapping
1331                 * - this is the hook for quasi-memory character devices to
1332                 *   tell us the location of a shared mapping
1333                 */
1334                if (capabilities & NOMMU_MAP_DIRECT) {
1335                        addr = file->f_op->get_unmapped_area(file, addr, len,
1336                                                             pgoff, flags);
1337                        if (IS_ERR_VALUE(addr)) {
1338                                ret = addr;
1339                                if (ret != -ENOSYS)
1340                                        goto error_just_free;
1341
1342                                /* the driver refused to tell us where to site
1343                                 * the mapping so we'll have to attempt to copy
1344                                 * it */
1345                                ret = -ENODEV;
1346                                if (!(capabilities & NOMMU_MAP_COPY))
1347                                        goto error_just_free;
1348
1349                                capabilities &= ~NOMMU_MAP_DIRECT;
1350                        } else {
1351                                vma->vm_start = region->vm_start = addr;
1352                                vma->vm_end = region->vm_end = addr + len;
1353                        }
1354                }
1355        }
1356
1357        vma->vm_region = region;
1358
1359        /* set up the mapping
1360         * - the region is filled in if NOMMU_MAP_DIRECT is still set
1361         */
1362        if (file && vma->vm_flags & VM_SHARED)
1363                ret = do_mmap_shared_file(vma);
1364        else
1365                ret = do_mmap_private(vma, region, len, capabilities);
1366        if (ret < 0)
1367                goto error_just_free;
1368        add_nommu_region(region);
1369
1370        /* clear anonymous mappings that don't ask for uninitialized data */
1371        if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1372                memset((void *)region->vm_start, 0,
1373                       region->vm_end - region->vm_start);
1374
1375        /* okay... we have a mapping; now we have to register it */
1376        result = vma->vm_start;
1377
1378        current->mm->total_vm += len >> PAGE_SHIFT;
1379
1380share:
1381        add_vma_to_mm(current->mm, vma);
1382
1383        /* we flush the region from the icache only when the first executable
1384         * mapping of it is made  */
1385        if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1386                flush_icache_range(region->vm_start, region->vm_end);
1387                region->vm_icache_flushed = true;
1388        }
1389
1390        up_write(&nommu_region_sem);
1391
1392        return result;
1393
1394error_just_free:
1395        up_write(&nommu_region_sem);
1396error:
1397        if (region->vm_file)
1398                fput(region->vm_file);
1399        kmem_cache_free(vm_region_jar, region);
1400        if (vma->vm_file)
1401                fput(vma->vm_file);
1402        kmem_cache_free(vm_area_cachep, vma);
1403        return ret;
1404
1405sharing_violation:
1406        up_write(&nommu_region_sem);
1407        pr_warn("Attempt to share mismatched mappings\n");
1408        ret = -EINVAL;
1409        goto error;
1410
1411error_getting_vma:
1412        kmem_cache_free(vm_region_jar, region);
1413        pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1414                        len, current->pid);
1415        show_free_areas(0);
1416        return -ENOMEM;
1417
1418error_getting_region:
1419        pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1420                        len, current->pid);
1421        show_free_areas(0);
1422        return -ENOMEM;
1423}
1424
1425SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1426                unsigned long, prot, unsigned long, flags,
1427                unsigned long, fd, unsigned long, pgoff)
1428{
1429        struct file *file = NULL;
1430        unsigned long retval = -EBADF;
1431
1432        audit_mmap_fd(fd, flags);
1433        if (!(flags & MAP_ANONYMOUS)) {
1434                file = fget(fd);
1435                if (!file)
1436                        goto out;
1437        }
1438
1439        flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1440
1441        retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1442
1443        if (file)
1444                fput(file);
1445out:
1446        return retval;
1447}
1448
1449#ifdef __ARCH_WANT_SYS_OLD_MMAP
1450struct mmap_arg_struct {
1451        unsigned long addr;
1452        unsigned long len;
1453        unsigned long prot;
1454        unsigned long flags;
1455        unsigned long fd;
1456        unsigned long offset;
1457};
1458
1459SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1460{
1461        struct mmap_arg_struct a;
1462
1463        if (copy_from_user(&a, arg, sizeof(a)))
1464                return -EFAULT;
1465        if (offset_in_page(a.offset))
1466                return -EINVAL;
1467
1468        return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1469                              a.offset >> PAGE_SHIFT);
1470}
1471#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1472
1473/*
1474 * split a vma into two pieces at address 'addr', a new vma is allocated either
1475 * for the first part or the tail.
1476 */
1477int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1478              unsigned long addr, int new_below)
1479{
1480        struct vm_area_struct *new;
1481        struct vm_region *region;
1482        unsigned long npages;
1483
1484        /* we're only permitted to split anonymous regions (these should have
1485         * only a single usage on the region) */
1486        if (vma->vm_file)
1487                return -ENOMEM;
1488
1489        if (mm->map_count >= sysctl_max_map_count)
1490                return -ENOMEM;
1491
1492        region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1493        if (!region)
1494                return -ENOMEM;
1495
1496        new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1497        if (!new) {
1498                kmem_cache_free(vm_region_jar, region);
1499                return -ENOMEM;
1500        }
1501
1502        /* most fields are the same, copy all, and then fixup */
1503        *new = *vma;
1504        *region = *vma->vm_region;
1505        new->vm_region = region;
1506
1507        npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1508
1509        if (new_below) {
1510                region->vm_top = region->vm_end = new->vm_end = addr;
1511        } else {
1512                region->vm_start = new->vm_start = addr;
1513                region->vm_pgoff = new->vm_pgoff += npages;
1514        }
1515
1516        if (new->vm_ops && new->vm_ops->open)
1517                new->vm_ops->open(new);
1518
1519        delete_vma_from_mm(vma);
1520        down_write(&nommu_region_sem);
1521        delete_nommu_region(vma->vm_region);
1522        if (new_below) {
1523                vma->vm_region->vm_start = vma->vm_start = addr;
1524                vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1525        } else {
1526                vma->vm_region->vm_end = vma->vm_end = addr;
1527                vma->vm_region->vm_top = addr;
1528        }
1529        add_nommu_region(vma->vm_region);
1530        add_nommu_region(new->vm_region);
1531        up_write(&nommu_region_sem);
1532        add_vma_to_mm(mm, vma);
1533        add_vma_to_mm(mm, new);
1534        return 0;
1535}
1536
1537/*
1538 * shrink a VMA by removing the specified chunk from either the beginning or
1539 * the end
1540 */
1541static int shrink_vma(struct mm_struct *mm,
1542                      struct vm_area_struct *vma,
1543                      unsigned long from, unsigned long to)
1544{
1545        struct vm_region *region;
1546
1547        /* adjust the VMA's pointers, which may reposition it in the MM's tree
1548         * and list */
1549        delete_vma_from_mm(vma);
1550        if (from > vma->vm_start)
1551                vma->vm_end = from;
1552        else
1553                vma->vm_start = to;
1554        add_vma_to_mm(mm, vma);
1555
1556        /* cut the backing region down to size */
1557        region = vma->vm_region;
1558        BUG_ON(region->vm_usage != 1);
1559
1560        down_write(&nommu_region_sem);
1561        delete_nommu_region(region);
1562        if (from > region->vm_start) {
1563                to = region->vm_top;
1564                region->vm_top = region->vm_end = from;
1565        } else {
1566                region->vm_start = to;
1567        }
1568        add_nommu_region(region);
1569        up_write(&nommu_region_sem);
1570
1571        free_page_series(from, to);
1572        return 0;
1573}
1574
1575/*
1576 * release a mapping
1577 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1578 *   VMA, though it need not cover the whole VMA
1579 */
1580int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1581{
1582        struct vm_area_struct *vma;
1583        unsigned long end;
1584        int ret;
1585
1586        len = PAGE_ALIGN(len);
1587        if (len == 0)
1588                return -EINVAL;
1589
1590        end = start + len;
1591
1592        /* find the first potentially overlapping VMA */
1593        vma = find_vma(mm, start);
1594        if (!vma) {
1595                static int limit;
1596                if (limit < 5) {
1597                        pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1598                                        current->pid, current->comm,
1599                                        start, start + len - 1);
1600                        limit++;
1601                }
1602                return -EINVAL;
1603        }
1604
1605        /* we're allowed to split an anonymous VMA but not a file-backed one */
1606        if (vma->vm_file) {
1607                do {
1608                        if (start > vma->vm_start)
1609                                return -EINVAL;
1610                        if (end == vma->vm_end)
1611                                goto erase_whole_vma;
1612                        vma = vma->vm_next;
1613                } while (vma);
1614                return -EINVAL;
1615        } else {
1616                /* the chunk must be a subset of the VMA found */
1617                if (start == vma->vm_start && end == vma->vm_end)
1618                        goto erase_whole_vma;
1619                if (start < vma->vm_start || end > vma->vm_end)
1620                        return -EINVAL;
1621                if (offset_in_page(start))
1622                        return -EINVAL;
1623                if (end != vma->vm_end && offset_in_page(end))
1624                        return -EINVAL;
1625                if (start != vma->vm_start && end != vma->vm_end) {
1626                        ret = split_vma(mm, vma, start, 1);
1627                        if (ret < 0)
1628                                return ret;
1629                }
1630                return shrink_vma(mm, vma, start, end);
1631        }
1632
1633erase_whole_vma:
1634        delete_vma_from_mm(vma);
1635        delete_vma(mm, vma);
1636        return 0;
1637}
1638EXPORT_SYMBOL(do_munmap);
1639
1640int vm_munmap(unsigned long addr, size_t len)
1641{
1642        struct mm_struct *mm = current->mm;
1643        int ret;
1644
1645        down_write(&mm->mmap_sem);
1646        ret = do_munmap(mm, addr, len);
1647        up_write(&mm->mmap_sem);
1648        return ret;
1649}
1650EXPORT_SYMBOL(vm_munmap);
1651
1652SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1653{
1654        return vm_munmap(addr, len);
1655}
1656
1657/*
1658 * release all the mappings made in a process's VM space
1659 */
1660void exit_mmap(struct mm_struct *mm)
1661{
1662        struct vm_area_struct *vma;
1663
1664        if (!mm)
1665                return;
1666
1667        mm->total_vm = 0;
1668
1669        while ((vma = mm->mmap)) {
1670                mm->mmap = vma->vm_next;
1671                delete_vma_from_mm(vma);
1672                delete_vma(mm, vma);
1673                cond_resched();
1674        }
1675}
1676
1677int vm_brk(unsigned long addr, unsigned long len)
1678{
1679        return -ENOMEM;
1680}
1681
1682/*
1683 * expand (or shrink) an existing mapping, potentially moving it at the same
1684 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1685 *
1686 * under NOMMU conditions, we only permit changing a mapping's size, and only
1687 * as long as it stays within the region allocated by do_mmap_private() and the
1688 * block is not shareable
1689 *
1690 * MREMAP_FIXED is not supported under NOMMU conditions
1691 */
1692static unsigned long do_mremap(unsigned long addr,
1693                        unsigned long old_len, unsigned long new_len,
1694                        unsigned long flags, unsigned long new_addr)
1695{
1696        struct vm_area_struct *vma;
1697
1698        /* insanity checks first */
1699        old_len = PAGE_ALIGN(old_len);
1700        new_len = PAGE_ALIGN(new_len);
1701        if (old_len == 0 || new_len == 0)
1702                return (unsigned long) -EINVAL;
1703
1704        if (offset_in_page(addr))
1705                return -EINVAL;
1706
1707        if (flags & MREMAP_FIXED && new_addr != addr)
1708                return (unsigned long) -EINVAL;
1709
1710        vma = find_vma_exact(current->mm, addr, old_len);
1711        if (!vma)
1712                return (unsigned long) -EINVAL;
1713
1714        if (vma->vm_end != vma->vm_start + old_len)
1715                return (unsigned long) -EFAULT;
1716
1717        if (vma->vm_flags & VM_MAYSHARE)
1718                return (unsigned long) -EPERM;
1719
1720        if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1721                return (unsigned long) -ENOMEM;
1722
1723        /* all checks complete - do it */
1724        vma->vm_end = vma->vm_start + new_len;
1725        return vma->vm_start;
1726}
1727
1728SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1729                unsigned long, new_len, unsigned long, flags,
1730                unsigned long, new_addr)
1731{
1732        unsigned long ret;
1733
1734        down_write(&current->mm->mmap_sem);
1735        ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1736        up_write(&current->mm->mmap_sem);
1737        return ret;
1738}
1739
1740struct page *follow_page_mask(struct vm_area_struct *vma,
1741                              unsigned long address, unsigned int flags,
1742                              unsigned int *page_mask)
1743{
1744        *page_mask = 0;
1745        return NULL;
1746}
1747
1748int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1749                unsigned long pfn, unsigned long size, pgprot_t prot)
1750{
1751        if (addr != (pfn << PAGE_SHIFT))
1752                return -EINVAL;
1753
1754        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1755        return 0;
1756}
1757EXPORT_SYMBOL(remap_pfn_range);
1758
1759int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1760{
1761        unsigned long pfn = start >> PAGE_SHIFT;
1762        unsigned long vm_len = vma->vm_end - vma->vm_start;
1763
1764        pfn += vma->vm_pgoff;
1765        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1766}
1767EXPORT_SYMBOL(vm_iomap_memory);
1768
1769int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1770                        unsigned long pgoff)
1771{
1772        unsigned int size = vma->vm_end - vma->vm_start;
1773
1774        if (!(vma->vm_flags & VM_USERMAP))
1775                return -EINVAL;
1776
1777        vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1778        vma->vm_end = vma->vm_start + size;
1779
1780        return 0;
1781}
1782EXPORT_SYMBOL(remap_vmalloc_range);
1783
1784unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1785        unsigned long len, unsigned long pgoff, unsigned long flags)
1786{
1787        return -ENOMEM;
1788}
1789
1790void unmap_mapping_range(struct address_space *mapping,
1791                         loff_t const holebegin, loff_t const holelen,
1792                         int even_cows)
1793{
1794}
1795EXPORT_SYMBOL(unmap_mapping_range);
1796
1797int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1798{
1799        BUG();
1800        return 0;
1801}
1802EXPORT_SYMBOL(filemap_fault);
1803
1804void filemap_map_pages(struct fault_env *fe,
1805                pgoff_t start_pgoff, pgoff_t end_pgoff)
1806{
1807        BUG();
1808}
1809EXPORT_SYMBOL(filemap_map_pages);
1810
1811static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1812                unsigned long addr, void *buf, int len, unsigned int gup_flags)
1813{
1814        struct vm_area_struct *vma;
1815        int write = gup_flags & FOLL_WRITE;
1816
1817        down_read(&mm->mmap_sem);
1818
1819        /* the access must start within one of the target process's mappings */
1820        vma = find_vma(mm, addr);
1821        if (vma) {
1822                /* don't overrun this mapping */
1823                if (addr + len >= vma->vm_end)
1824                        len = vma->vm_end - addr;
1825
1826                /* only read or write mappings where it is permitted */
1827                if (write && vma->vm_flags & VM_MAYWRITE)
1828                        copy_to_user_page(vma, NULL, addr,
1829                                         (void *) addr, buf, len);
1830                else if (!write && vma->vm_flags & VM_MAYREAD)
1831                        copy_from_user_page(vma, NULL, addr,
1832                                            buf, (void *) addr, len);
1833                else
1834                        len = 0;
1835        } else {
1836                len = 0;
1837        }
1838
1839        up_read(&mm->mmap_sem);
1840
1841        return len;
1842}
1843
1844/**
1845 * @access_remote_vm - access another process' address space
1846 * @mm:         the mm_struct of the target address space
1847 * @addr:       start address to access
1848 * @buf:        source or destination buffer
1849 * @len:        number of bytes to transfer
1850 * @gup_flags:  flags modifying lookup behaviour
1851 *
1852 * The caller must hold a reference on @mm.
1853 */
1854int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1855                void *buf, int len, unsigned int gup_flags)
1856{
1857        return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1858}
1859
1860/*
1861 * Access another process' address space.
1862 * - source/target buffer must be kernel space
1863 */
1864int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1865                unsigned int gup_flags)
1866{
1867        struct mm_struct *mm;
1868
1869        if (addr + len < addr)
1870                return 0;
1871
1872        mm = get_task_mm(tsk);
1873        if (!mm)
1874                return 0;
1875
1876        len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1877
1878        mmput(mm);
1879        return len;
1880}
1881
1882/**
1883 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1884 * @inode: The inode to check
1885 * @size: The current filesize of the inode
1886 * @newsize: The proposed filesize of the inode
1887 *
1888 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1889 * make sure that that any outstanding VMAs aren't broken and then shrink the
1890 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1891 * automatically grant mappings that are too large.
1892 */
1893int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1894                                size_t newsize)
1895{
1896        struct vm_area_struct *vma;
1897        struct vm_region *region;
1898        pgoff_t low, high;
1899        size_t r_size, r_top;
1900
1901        low = newsize >> PAGE_SHIFT;
1902        high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1903
1904        down_write(&nommu_region_sem);
1905        i_mmap_lock_read(inode->i_mapping);
1906
1907        /* search for VMAs that fall within the dead zone */
1908        vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1909                /* found one - only interested if it's shared out of the page
1910                 * cache */
1911                if (vma->vm_flags & VM_SHARED) {
1912                        i_mmap_unlock_read(inode->i_mapping);
1913                        up_write(&nommu_region_sem);
1914                        return -ETXTBSY; /* not quite true, but near enough */
1915                }
1916        }
1917
1918        /* reduce any regions that overlap the dead zone - if in existence,
1919         * these will be pointed to by VMAs that don't overlap the dead zone
1920         *
1921         * we don't check for any regions that start beyond the EOF as there
1922         * shouldn't be any
1923         */
1924        vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1925                if (!(vma->vm_flags & VM_SHARED))
1926                        continue;
1927
1928                region = vma->vm_region;
1929                r_size = region->vm_top - region->vm_start;
1930                r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1931
1932                if (r_top > newsize) {
1933                        region->vm_top -= r_top - newsize;
1934                        if (region->vm_end > region->vm_top)
1935                                region->vm_end = region->vm_top;
1936                }
1937        }
1938
1939        i_mmap_unlock_read(inode->i_mapping);
1940        up_write(&nommu_region_sem);
1941        return 0;
1942}
1943
1944/*
1945 * Initialise sysctl_user_reserve_kbytes.
1946 *
1947 * This is intended to prevent a user from starting a single memory hogging
1948 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1949 * mode.
1950 *
1951 * The default value is min(3% of free memory, 128MB)
1952 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1953 */
1954static int __meminit init_user_reserve(void)
1955{
1956        unsigned long free_kbytes;
1957
1958        free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1959
1960        sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1961        return 0;
1962}
1963subsys_initcall(init_user_reserve);
1964
1965/*
1966 * Initialise sysctl_admin_reserve_kbytes.
1967 *
1968 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1969 * to log in and kill a memory hogging process.
1970 *
1971 * Systems with more than 256MB will reserve 8MB, enough to recover
1972 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1973 * only reserve 3% of free pages by default.
1974 */
1975static int __meminit init_admin_reserve(void)
1976{
1977        unsigned long free_kbytes;
1978
1979        free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1980
1981        sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1982        return 0;
1983}
1984subsys_initcall(init_admin_reserve);
1985