linux/mm/page-writeback.c
<<
>>
Prefs
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002    Andrew Morton
  11 *              Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
  37#include <linux/timer.h>
  38#include <linux/sched/rt.h>
  39#include <linux/mm_inline.h>
  40#include <trace/events/writeback.h>
  41
  42#include "internal.h"
  43
  44/*
  45 * Sleep at most 200ms at a time in balance_dirty_pages().
  46 */
  47#define MAX_PAUSE               max(HZ/5, 1)
  48
  49/*
  50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  51 * by raising pause time to max_pause when falls below it.
  52 */
  53#define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
  54
  55/*
  56 * Estimate write bandwidth at 200ms intervals.
  57 */
  58#define BANDWIDTH_INTERVAL      max(HZ/5, 1)
  59
  60#define RATELIMIT_CALC_SHIFT    10
  61
  62/*
  63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  64 * will look to see if it needs to force writeback or throttling.
  65 */
  66static long ratelimit_pages = 32;
  67
  68/* The following parameters are exported via /proc/sys/vm */
  69
  70/*
  71 * Start background writeback (via writeback threads) at this percentage
  72 */
  73int dirty_background_ratio = 10;
  74
  75/*
  76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  77 * dirty_background_ratio * the amount of dirtyable memory
  78 */
  79unsigned long dirty_background_bytes;
  80
  81/*
  82 * free highmem will not be subtracted from the total free memory
  83 * for calculating free ratios if vm_highmem_is_dirtyable is true
  84 */
  85int vm_highmem_is_dirtyable;
  86
  87/*
  88 * The generator of dirty data starts writeback at this percentage
  89 */
  90int vm_dirty_ratio = 20;
  91
  92/*
  93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  94 * vm_dirty_ratio * the amount of dirtyable memory
  95 */
  96unsigned long vm_dirty_bytes;
  97
  98/*
  99 * The interval between `kupdate'-style writebacks
 100 */
 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 102
 103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 104
 105/*
 106 * The longest time for which data is allowed to remain dirty
 107 */
 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 109
 110/*
 111 * Flag that makes the machine dump writes/reads and block dirtyings.
 112 */
 113int block_dump;
 114
 115/*
 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 117 * a full sync is triggered after this time elapses without any disk activity.
 118 */
 119int laptop_mode;
 120
 121EXPORT_SYMBOL(laptop_mode);
 122
 123/* End of sysctl-exported parameters */
 124
 125struct wb_domain global_wb_domain;
 126
 127/* consolidated parameters for balance_dirty_pages() and its subroutines */
 128struct dirty_throttle_control {
 129#ifdef CONFIG_CGROUP_WRITEBACK
 130        struct wb_domain        *dom;
 131        struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
 132#endif
 133        struct bdi_writeback    *wb;
 134        struct fprop_local_percpu *wb_completions;
 135
 136        unsigned long           avail;          /* dirtyable */
 137        unsigned long           dirty;          /* file_dirty + write + nfs */
 138        unsigned long           thresh;         /* dirty threshold */
 139        unsigned long           bg_thresh;      /* dirty background threshold */
 140
 141        unsigned long           wb_dirty;       /* per-wb counterparts */
 142        unsigned long           wb_thresh;
 143        unsigned long           wb_bg_thresh;
 144
 145        unsigned long           pos_ratio;
 146};
 147
 148/*
 149 * Length of period for aging writeout fractions of bdis. This is an
 150 * arbitrarily chosen number. The longer the period, the slower fractions will
 151 * reflect changes in current writeout rate.
 152 */
 153#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 154
 155#ifdef CONFIG_CGROUP_WRITEBACK
 156
 157#define GDTC_INIT(__wb)         .wb = (__wb),                           \
 158                                .dom = &global_wb_domain,               \
 159                                .wb_completions = &(__wb)->completions
 160
 161#define GDTC_INIT_NO_WB         .dom = &global_wb_domain
 162
 163#define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
 164                                .dom = mem_cgroup_wb_domain(__wb),      \
 165                                .wb_completions = &(__wb)->memcg_completions, \
 166                                .gdtc = __gdtc
 167
 168static bool mdtc_valid(struct dirty_throttle_control *dtc)
 169{
 170        return dtc->dom;
 171}
 172
 173static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 174{
 175        return dtc->dom;
 176}
 177
 178static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 179{
 180        return mdtc->gdtc;
 181}
 182
 183static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 184{
 185        return &wb->memcg_completions;
 186}
 187
 188static void wb_min_max_ratio(struct bdi_writeback *wb,
 189                             unsigned long *minp, unsigned long *maxp)
 190{
 191        unsigned long this_bw = wb->avg_write_bandwidth;
 192        unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 193        unsigned long long min = wb->bdi->min_ratio;
 194        unsigned long long max = wb->bdi->max_ratio;
 195
 196        /*
 197         * @wb may already be clean by the time control reaches here and
 198         * the total may not include its bw.
 199         */
 200        if (this_bw < tot_bw) {
 201                if (min) {
 202                        min *= this_bw;
 203                        do_div(min, tot_bw);
 204                }
 205                if (max < 100) {
 206                        max *= this_bw;
 207                        do_div(max, tot_bw);
 208                }
 209        }
 210
 211        *minp = min;
 212        *maxp = max;
 213}
 214
 215#else   /* CONFIG_CGROUP_WRITEBACK */
 216
 217#define GDTC_INIT(__wb)         .wb = (__wb),                           \
 218                                .wb_completions = &(__wb)->completions
 219#define GDTC_INIT_NO_WB
 220#define MDTC_INIT(__wb, __gdtc)
 221
 222static bool mdtc_valid(struct dirty_throttle_control *dtc)
 223{
 224        return false;
 225}
 226
 227static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 228{
 229        return &global_wb_domain;
 230}
 231
 232static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 233{
 234        return NULL;
 235}
 236
 237static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 238{
 239        return NULL;
 240}
 241
 242static void wb_min_max_ratio(struct bdi_writeback *wb,
 243                             unsigned long *minp, unsigned long *maxp)
 244{
 245        *minp = wb->bdi->min_ratio;
 246        *maxp = wb->bdi->max_ratio;
 247}
 248
 249#endif  /* CONFIG_CGROUP_WRITEBACK */
 250
 251/*
 252 * In a memory zone, there is a certain amount of pages we consider
 253 * available for the page cache, which is essentially the number of
 254 * free and reclaimable pages, minus some zone reserves to protect
 255 * lowmem and the ability to uphold the zone's watermarks without
 256 * requiring writeback.
 257 *
 258 * This number of dirtyable pages is the base value of which the
 259 * user-configurable dirty ratio is the effictive number of pages that
 260 * are allowed to be actually dirtied.  Per individual zone, or
 261 * globally by using the sum of dirtyable pages over all zones.
 262 *
 263 * Because the user is allowed to specify the dirty limit globally as
 264 * absolute number of bytes, calculating the per-zone dirty limit can
 265 * require translating the configured limit into a percentage of
 266 * global dirtyable memory first.
 267 */
 268
 269/**
 270 * node_dirtyable_memory - number of dirtyable pages in a node
 271 * @pgdat: the node
 272 *
 273 * Returns the node's number of pages potentially available for dirty
 274 * page cache.  This is the base value for the per-node dirty limits.
 275 */
 276static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
 277{
 278        unsigned long nr_pages = 0;
 279        int z;
 280
 281        for (z = 0; z < MAX_NR_ZONES; z++) {
 282                struct zone *zone = pgdat->node_zones + z;
 283
 284                if (!populated_zone(zone))
 285                        continue;
 286
 287                nr_pages += zone_page_state(zone, NR_FREE_PAGES);
 288        }
 289
 290        /*
 291         * Pages reserved for the kernel should not be considered
 292         * dirtyable, to prevent a situation where reclaim has to
 293         * clean pages in order to balance the zones.
 294         */
 295        nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
 296
 297        nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
 298        nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
 299
 300        return nr_pages;
 301}
 302
 303static unsigned long highmem_dirtyable_memory(unsigned long total)
 304{
 305#ifdef CONFIG_HIGHMEM
 306        int node;
 307        unsigned long x = 0;
 308        int i;
 309
 310        for_each_node_state(node, N_HIGH_MEMORY) {
 311                for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
 312                        struct zone *z;
 313                        unsigned long nr_pages;
 314
 315                        if (!is_highmem_idx(i))
 316                                continue;
 317
 318                        z = &NODE_DATA(node)->node_zones[i];
 319                        if (!populated_zone(z))
 320                                continue;
 321
 322                        nr_pages = zone_page_state(z, NR_FREE_PAGES);
 323                        /* watch for underflows */
 324                        nr_pages -= min(nr_pages, high_wmark_pages(z));
 325                        nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
 326                        nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
 327                        x += nr_pages;
 328                }
 329        }
 330
 331        /*
 332         * Unreclaimable memory (kernel memory or anonymous memory
 333         * without swap) can bring down the dirtyable pages below
 334         * the zone's dirty balance reserve and the above calculation
 335         * will underflow.  However we still want to add in nodes
 336         * which are below threshold (negative values) to get a more
 337         * accurate calculation but make sure that the total never
 338         * underflows.
 339         */
 340        if ((long)x < 0)
 341                x = 0;
 342
 343        /*
 344         * Make sure that the number of highmem pages is never larger
 345         * than the number of the total dirtyable memory. This can only
 346         * occur in very strange VM situations but we want to make sure
 347         * that this does not occur.
 348         */
 349        return min(x, total);
 350#else
 351        return 0;
 352#endif
 353}
 354
 355/**
 356 * global_dirtyable_memory - number of globally dirtyable pages
 357 *
 358 * Returns the global number of pages potentially available for dirty
 359 * page cache.  This is the base value for the global dirty limits.
 360 */
 361static unsigned long global_dirtyable_memory(void)
 362{
 363        unsigned long x;
 364
 365        x = global_page_state(NR_FREE_PAGES);
 366        /*
 367         * Pages reserved for the kernel should not be considered
 368         * dirtyable, to prevent a situation where reclaim has to
 369         * clean pages in order to balance the zones.
 370         */
 371        x -= min(x, totalreserve_pages);
 372
 373        x += global_node_page_state(NR_INACTIVE_FILE);
 374        x += global_node_page_state(NR_ACTIVE_FILE);
 375
 376        if (!vm_highmem_is_dirtyable)
 377                x -= highmem_dirtyable_memory(x);
 378
 379        return x + 1;   /* Ensure that we never return 0 */
 380}
 381
 382/**
 383 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 384 * @dtc: dirty_throttle_control of interest
 385 *
 386 * Calculate @dtc->thresh and ->bg_thresh considering
 387 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 388 * must ensure that @dtc->avail is set before calling this function.  The
 389 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 390 * real-time tasks.
 391 */
 392static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 393{
 394        const unsigned long available_memory = dtc->avail;
 395        struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 396        unsigned long bytes = vm_dirty_bytes;
 397        unsigned long bg_bytes = dirty_background_bytes;
 398        /* convert ratios to per-PAGE_SIZE for higher precision */
 399        unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
 400        unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
 401        unsigned long thresh;
 402        unsigned long bg_thresh;
 403        struct task_struct *tsk;
 404
 405        /* gdtc is !NULL iff @dtc is for memcg domain */
 406        if (gdtc) {
 407                unsigned long global_avail = gdtc->avail;
 408
 409                /*
 410                 * The byte settings can't be applied directly to memcg
 411                 * domains.  Convert them to ratios by scaling against
 412                 * globally available memory.  As the ratios are in
 413                 * per-PAGE_SIZE, they can be obtained by dividing bytes by
 414                 * number of pages.
 415                 */
 416                if (bytes)
 417                        ratio = min(DIV_ROUND_UP(bytes, global_avail),
 418                                    PAGE_SIZE);
 419                if (bg_bytes)
 420                        bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
 421                                       PAGE_SIZE);
 422                bytes = bg_bytes = 0;
 423        }
 424
 425        if (bytes)
 426                thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 427        else
 428                thresh = (ratio * available_memory) / PAGE_SIZE;
 429
 430        if (bg_bytes)
 431                bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 432        else
 433                bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
 434
 435        if (bg_thresh >= thresh)
 436                bg_thresh = thresh / 2;
 437        tsk = current;
 438        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 439                bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
 440                thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
 441        }
 442        dtc->thresh = thresh;
 443        dtc->bg_thresh = bg_thresh;
 444
 445        /* we should eventually report the domain in the TP */
 446        if (!gdtc)
 447                trace_global_dirty_state(bg_thresh, thresh);
 448}
 449
 450/**
 451 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 452 * @pbackground: out parameter for bg_thresh
 453 * @pdirty: out parameter for thresh
 454 *
 455 * Calculate bg_thresh and thresh for global_wb_domain.  See
 456 * domain_dirty_limits() for details.
 457 */
 458void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 459{
 460        struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 461
 462        gdtc.avail = global_dirtyable_memory();
 463        domain_dirty_limits(&gdtc);
 464
 465        *pbackground = gdtc.bg_thresh;
 466        *pdirty = gdtc.thresh;
 467}
 468
 469/**
 470 * node_dirty_limit - maximum number of dirty pages allowed in a node
 471 * @pgdat: the node
 472 *
 473 * Returns the maximum number of dirty pages allowed in a node, based
 474 * on the node's dirtyable memory.
 475 */
 476static unsigned long node_dirty_limit(struct pglist_data *pgdat)
 477{
 478        unsigned long node_memory = node_dirtyable_memory(pgdat);
 479        struct task_struct *tsk = current;
 480        unsigned long dirty;
 481
 482        if (vm_dirty_bytes)
 483                dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 484                        node_memory / global_dirtyable_memory();
 485        else
 486                dirty = vm_dirty_ratio * node_memory / 100;
 487
 488        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 489                dirty += dirty / 4;
 490
 491        return dirty;
 492}
 493
 494/**
 495 * node_dirty_ok - tells whether a node is within its dirty limits
 496 * @pgdat: the node to check
 497 *
 498 * Returns %true when the dirty pages in @pgdat are within the node's
 499 * dirty limit, %false if the limit is exceeded.
 500 */
 501bool node_dirty_ok(struct pglist_data *pgdat)
 502{
 503        unsigned long limit = node_dirty_limit(pgdat);
 504        unsigned long nr_pages = 0;
 505
 506        nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
 507        nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
 508        nr_pages += node_page_state(pgdat, NR_WRITEBACK);
 509
 510        return nr_pages <= limit;
 511}
 512
 513int dirty_background_ratio_handler(struct ctl_table *table, int write,
 514                void __user *buffer, size_t *lenp,
 515                loff_t *ppos)
 516{
 517        int ret;
 518
 519        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 520        if (ret == 0 && write)
 521                dirty_background_bytes = 0;
 522        return ret;
 523}
 524
 525int dirty_background_bytes_handler(struct ctl_table *table, int write,
 526                void __user *buffer, size_t *lenp,
 527                loff_t *ppos)
 528{
 529        int ret;
 530
 531        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 532        if (ret == 0 && write)
 533                dirty_background_ratio = 0;
 534        return ret;
 535}
 536
 537int dirty_ratio_handler(struct ctl_table *table, int write,
 538                void __user *buffer, size_t *lenp,
 539                loff_t *ppos)
 540{
 541        int old_ratio = vm_dirty_ratio;
 542        int ret;
 543
 544        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 545        if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 546                writeback_set_ratelimit();
 547                vm_dirty_bytes = 0;
 548        }
 549        return ret;
 550}
 551
 552int dirty_bytes_handler(struct ctl_table *table, int write,
 553                void __user *buffer, size_t *lenp,
 554                loff_t *ppos)
 555{
 556        unsigned long old_bytes = vm_dirty_bytes;
 557        int ret;
 558
 559        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 560        if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 561                writeback_set_ratelimit();
 562                vm_dirty_ratio = 0;
 563        }
 564        return ret;
 565}
 566
 567static unsigned long wp_next_time(unsigned long cur_time)
 568{
 569        cur_time += VM_COMPLETIONS_PERIOD_LEN;
 570        /* 0 has a special meaning... */
 571        if (!cur_time)
 572                return 1;
 573        return cur_time;
 574}
 575
 576static void wb_domain_writeout_inc(struct wb_domain *dom,
 577                                   struct fprop_local_percpu *completions,
 578                                   unsigned int max_prop_frac)
 579{
 580        __fprop_inc_percpu_max(&dom->completions, completions,
 581                               max_prop_frac);
 582        /* First event after period switching was turned off? */
 583        if (!unlikely(dom->period_time)) {
 584                /*
 585                 * We can race with other __bdi_writeout_inc calls here but
 586                 * it does not cause any harm since the resulting time when
 587                 * timer will fire and what is in writeout_period_time will be
 588                 * roughly the same.
 589                 */
 590                dom->period_time = wp_next_time(jiffies);
 591                mod_timer(&dom->period_timer, dom->period_time);
 592        }
 593}
 594
 595/*
 596 * Increment @wb's writeout completion count and the global writeout
 597 * completion count. Called from test_clear_page_writeback().
 598 */
 599static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 600{
 601        struct wb_domain *cgdom;
 602
 603        __inc_wb_stat(wb, WB_WRITTEN);
 604        wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 605                               wb->bdi->max_prop_frac);
 606
 607        cgdom = mem_cgroup_wb_domain(wb);
 608        if (cgdom)
 609                wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 610                                       wb->bdi->max_prop_frac);
 611}
 612
 613void wb_writeout_inc(struct bdi_writeback *wb)
 614{
 615        unsigned long flags;
 616
 617        local_irq_save(flags);
 618        __wb_writeout_inc(wb);
 619        local_irq_restore(flags);
 620}
 621EXPORT_SYMBOL_GPL(wb_writeout_inc);
 622
 623/*
 624 * On idle system, we can be called long after we scheduled because we use
 625 * deferred timers so count with missed periods.
 626 */
 627static void writeout_period(unsigned long t)
 628{
 629        struct wb_domain *dom = (void *)t;
 630        int miss_periods = (jiffies - dom->period_time) /
 631                                                 VM_COMPLETIONS_PERIOD_LEN;
 632
 633        if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 634                dom->period_time = wp_next_time(dom->period_time +
 635                                miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 636                mod_timer(&dom->period_timer, dom->period_time);
 637        } else {
 638                /*
 639                 * Aging has zeroed all fractions. Stop wasting CPU on period
 640                 * updates.
 641                 */
 642                dom->period_time = 0;
 643        }
 644}
 645
 646int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 647{
 648        memset(dom, 0, sizeof(*dom));
 649
 650        spin_lock_init(&dom->lock);
 651
 652        init_timer_deferrable(&dom->period_timer);
 653        dom->period_timer.function = writeout_period;
 654        dom->period_timer.data = (unsigned long)dom;
 655
 656        dom->dirty_limit_tstamp = jiffies;
 657
 658        return fprop_global_init(&dom->completions, gfp);
 659}
 660
 661#ifdef CONFIG_CGROUP_WRITEBACK
 662void wb_domain_exit(struct wb_domain *dom)
 663{
 664        del_timer_sync(&dom->period_timer);
 665        fprop_global_destroy(&dom->completions);
 666}
 667#endif
 668
 669/*
 670 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 671 * registered backing devices, which, for obvious reasons, can not
 672 * exceed 100%.
 673 */
 674static unsigned int bdi_min_ratio;
 675
 676int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 677{
 678        int ret = 0;
 679
 680        spin_lock_bh(&bdi_lock);
 681        if (min_ratio > bdi->max_ratio) {
 682                ret = -EINVAL;
 683        } else {
 684                min_ratio -= bdi->min_ratio;
 685                if (bdi_min_ratio + min_ratio < 100) {
 686                        bdi_min_ratio += min_ratio;
 687                        bdi->min_ratio += min_ratio;
 688                } else {
 689                        ret = -EINVAL;
 690                }
 691        }
 692        spin_unlock_bh(&bdi_lock);
 693
 694        return ret;
 695}
 696
 697int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 698{
 699        int ret = 0;
 700
 701        if (max_ratio > 100)
 702                return -EINVAL;
 703
 704        spin_lock_bh(&bdi_lock);
 705        if (bdi->min_ratio > max_ratio) {
 706                ret = -EINVAL;
 707        } else {
 708                bdi->max_ratio = max_ratio;
 709                bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 710        }
 711        spin_unlock_bh(&bdi_lock);
 712
 713        return ret;
 714}
 715EXPORT_SYMBOL(bdi_set_max_ratio);
 716
 717static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 718                                           unsigned long bg_thresh)
 719{
 720        return (thresh + bg_thresh) / 2;
 721}
 722
 723static unsigned long hard_dirty_limit(struct wb_domain *dom,
 724                                      unsigned long thresh)
 725{
 726        return max(thresh, dom->dirty_limit);
 727}
 728
 729/*
 730 * Memory which can be further allocated to a memcg domain is capped by
 731 * system-wide clean memory excluding the amount being used in the domain.
 732 */
 733static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 734                            unsigned long filepages, unsigned long headroom)
 735{
 736        struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 737        unsigned long clean = filepages - min(filepages, mdtc->dirty);
 738        unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 739        unsigned long other_clean = global_clean - min(global_clean, clean);
 740
 741        mdtc->avail = filepages + min(headroom, other_clean);
 742}
 743
 744/**
 745 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 746 * @dtc: dirty_throttle_context of interest
 747 *
 748 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
 749 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 750 *
 751 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 752 * when sleeping max_pause per page is not enough to keep the dirty pages under
 753 * control. For example, when the device is completely stalled due to some error
 754 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 755 * In the other normal situations, it acts more gently by throttling the tasks
 756 * more (rather than completely block them) when the wb dirty pages go high.
 757 *
 758 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 759 * - starving fast devices
 760 * - piling up dirty pages (that will take long time to sync) on slow devices
 761 *
 762 * The wb's share of dirty limit will be adapting to its throughput and
 763 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 764 */
 765static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 766{
 767        struct wb_domain *dom = dtc_dom(dtc);
 768        unsigned long thresh = dtc->thresh;
 769        u64 wb_thresh;
 770        long numerator, denominator;
 771        unsigned long wb_min_ratio, wb_max_ratio;
 772
 773        /*
 774         * Calculate this BDI's share of the thresh ratio.
 775         */
 776        fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 777                              &numerator, &denominator);
 778
 779        wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 780        wb_thresh *= numerator;
 781        do_div(wb_thresh, denominator);
 782
 783        wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 784
 785        wb_thresh += (thresh * wb_min_ratio) / 100;
 786        if (wb_thresh > (thresh * wb_max_ratio) / 100)
 787                wb_thresh = thresh * wb_max_ratio / 100;
 788
 789        return wb_thresh;
 790}
 791
 792unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 793{
 794        struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 795                                               .thresh = thresh };
 796        return __wb_calc_thresh(&gdtc);
 797}
 798
 799/*
 800 *                           setpoint - dirty 3
 801 *        f(dirty) := 1.0 + (----------------)
 802 *                           limit - setpoint
 803 *
 804 * it's a 3rd order polynomial that subjects to
 805 *
 806 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 807 * (2) f(setpoint) = 1.0 => the balance point
 808 * (3) f(limit)    = 0   => the hard limit
 809 * (4) df/dx      <= 0   => negative feedback control
 810 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 811 *     => fast response on large errors; small oscillation near setpoint
 812 */
 813static long long pos_ratio_polynom(unsigned long setpoint,
 814                                          unsigned long dirty,
 815                                          unsigned long limit)
 816{
 817        long long pos_ratio;
 818        long x;
 819
 820        x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 821                      (limit - setpoint) | 1);
 822        pos_ratio = x;
 823        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 824        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 825        pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 826
 827        return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 828}
 829
 830/*
 831 * Dirty position control.
 832 *
 833 * (o) global/bdi setpoints
 834 *
 835 * We want the dirty pages be balanced around the global/wb setpoints.
 836 * When the number of dirty pages is higher/lower than the setpoint, the
 837 * dirty position control ratio (and hence task dirty ratelimit) will be
 838 * decreased/increased to bring the dirty pages back to the setpoint.
 839 *
 840 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 841 *
 842 *     if (dirty < setpoint) scale up   pos_ratio
 843 *     if (dirty > setpoint) scale down pos_ratio
 844 *
 845 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 846 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 847 *
 848 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 849 *
 850 * (o) global control line
 851 *
 852 *     ^ pos_ratio
 853 *     |
 854 *     |            |<===== global dirty control scope ======>|
 855 * 2.0 .............*
 856 *     |            .*
 857 *     |            . *
 858 *     |            .   *
 859 *     |            .     *
 860 *     |            .        *
 861 *     |            .            *
 862 * 1.0 ................................*
 863 *     |            .                  .     *
 864 *     |            .                  .          *
 865 *     |            .                  .              *
 866 *     |            .                  .                 *
 867 *     |            .                  .                    *
 868 *   0 +------------.------------------.----------------------*------------->
 869 *           freerun^          setpoint^                 limit^   dirty pages
 870 *
 871 * (o) wb control line
 872 *
 873 *     ^ pos_ratio
 874 *     |
 875 *     |            *
 876 *     |              *
 877 *     |                *
 878 *     |                  *
 879 *     |                    * |<=========== span ============>|
 880 * 1.0 .......................*
 881 *     |                      . *
 882 *     |                      .   *
 883 *     |                      .     *
 884 *     |                      .       *
 885 *     |                      .         *
 886 *     |                      .           *
 887 *     |                      .             *
 888 *     |                      .               *
 889 *     |                      .                 *
 890 *     |                      .                   *
 891 *     |                      .                     *
 892 * 1/4 ...............................................* * * * * * * * * * * *
 893 *     |                      .                         .
 894 *     |                      .                           .
 895 *     |                      .                             .
 896 *   0 +----------------------.-------------------------------.------------->
 897 *                wb_setpoint^                    x_intercept^
 898 *
 899 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 900 * be smoothly throttled down to normal if it starts high in situations like
 901 * - start writing to a slow SD card and a fast disk at the same time. The SD
 902 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 903 * - the wb dirty thresh drops quickly due to change of JBOD workload
 904 */
 905static void wb_position_ratio(struct dirty_throttle_control *dtc)
 906{
 907        struct bdi_writeback *wb = dtc->wb;
 908        unsigned long write_bw = wb->avg_write_bandwidth;
 909        unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 910        unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 911        unsigned long wb_thresh = dtc->wb_thresh;
 912        unsigned long x_intercept;
 913        unsigned long setpoint;         /* dirty pages' target balance point */
 914        unsigned long wb_setpoint;
 915        unsigned long span;
 916        long long pos_ratio;            /* for scaling up/down the rate limit */
 917        long x;
 918
 919        dtc->pos_ratio = 0;
 920
 921        if (unlikely(dtc->dirty >= limit))
 922                return;
 923
 924        /*
 925         * global setpoint
 926         *
 927         * See comment for pos_ratio_polynom().
 928         */
 929        setpoint = (freerun + limit) / 2;
 930        pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 931
 932        /*
 933         * The strictlimit feature is a tool preventing mistrusted filesystems
 934         * from growing a large number of dirty pages before throttling. For
 935         * such filesystems balance_dirty_pages always checks wb counters
 936         * against wb limits. Even if global "nr_dirty" is under "freerun".
 937         * This is especially important for fuse which sets bdi->max_ratio to
 938         * 1% by default. Without strictlimit feature, fuse writeback may
 939         * consume arbitrary amount of RAM because it is accounted in
 940         * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 941         *
 942         * Here, in wb_position_ratio(), we calculate pos_ratio based on
 943         * two values: wb_dirty and wb_thresh. Let's consider an example:
 944         * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 945         * limits are set by default to 10% and 20% (background and throttle).
 946         * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 947         * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 948         * about ~6K pages (as the average of background and throttle wb
 949         * limits). The 3rd order polynomial will provide positive feedback if
 950         * wb_dirty is under wb_setpoint and vice versa.
 951         *
 952         * Note, that we cannot use global counters in these calculations
 953         * because we want to throttle process writing to a strictlimit wb
 954         * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 955         * in the example above).
 956         */
 957        if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 958                long long wb_pos_ratio;
 959
 960                if (dtc->wb_dirty < 8) {
 961                        dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 962                                           2 << RATELIMIT_CALC_SHIFT);
 963                        return;
 964                }
 965
 966                if (dtc->wb_dirty >= wb_thresh)
 967                        return;
 968
 969                wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 970                                                    dtc->wb_bg_thresh);
 971
 972                if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 973                        return;
 974
 975                wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 976                                                 wb_thresh);
 977
 978                /*
 979                 * Typically, for strictlimit case, wb_setpoint << setpoint
 980                 * and pos_ratio >> wb_pos_ratio. In the other words global
 981                 * state ("dirty") is not limiting factor and we have to
 982                 * make decision based on wb counters. But there is an
 983                 * important case when global pos_ratio should get precedence:
 984                 * global limits are exceeded (e.g. due to activities on other
 985                 * wb's) while given strictlimit wb is below limit.
 986                 *
 987                 * "pos_ratio * wb_pos_ratio" would work for the case above,
 988                 * but it would look too non-natural for the case of all
 989                 * activity in the system coming from a single strictlimit wb
 990                 * with bdi->max_ratio == 100%.
 991                 *
 992                 * Note that min() below somewhat changes the dynamics of the
 993                 * control system. Normally, pos_ratio value can be well over 3
 994                 * (when globally we are at freerun and wb is well below wb
 995                 * setpoint). Now the maximum pos_ratio in the same situation
 996                 * is 2. We might want to tweak this if we observe the control
 997                 * system is too slow to adapt.
 998                 */
 999                dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1000                return;
1001        }
1002
1003        /*
1004         * We have computed basic pos_ratio above based on global situation. If
1005         * the wb is over/under its share of dirty pages, we want to scale
1006         * pos_ratio further down/up. That is done by the following mechanism.
1007         */
1008
1009        /*
1010         * wb setpoint
1011         *
1012         *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1013         *
1014         *                        x_intercept - wb_dirty
1015         *                     := --------------------------
1016         *                        x_intercept - wb_setpoint
1017         *
1018         * The main wb control line is a linear function that subjects to
1019         *
1020         * (1) f(wb_setpoint) = 1.0
1021         * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1022         *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1023         *
1024         * For single wb case, the dirty pages are observed to fluctuate
1025         * regularly within range
1026         *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1027         * for various filesystems, where (2) can yield in a reasonable 12.5%
1028         * fluctuation range for pos_ratio.
1029         *
1030         * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1031         * own size, so move the slope over accordingly and choose a slope that
1032         * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1033         */
1034        if (unlikely(wb_thresh > dtc->thresh))
1035                wb_thresh = dtc->thresh;
1036        /*
1037         * It's very possible that wb_thresh is close to 0 not because the
1038         * device is slow, but that it has remained inactive for long time.
1039         * Honour such devices a reasonable good (hopefully IO efficient)
1040         * threshold, so that the occasional writes won't be blocked and active
1041         * writes can rampup the threshold quickly.
1042         */
1043        wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1044        /*
1045         * scale global setpoint to wb's:
1046         *      wb_setpoint = setpoint * wb_thresh / thresh
1047         */
1048        x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1049        wb_setpoint = setpoint * (u64)x >> 16;
1050        /*
1051         * Use span=(8*write_bw) in single wb case as indicated by
1052         * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1053         *
1054         *        wb_thresh                    thresh - wb_thresh
1055         * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1056         *         thresh                           thresh
1057         */
1058        span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1059        x_intercept = wb_setpoint + span;
1060
1061        if (dtc->wb_dirty < x_intercept - span / 4) {
1062                pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1063                                      (x_intercept - wb_setpoint) | 1);
1064        } else
1065                pos_ratio /= 4;
1066
1067        /*
1068         * wb reserve area, safeguard against dirty pool underrun and disk idle
1069         * It may push the desired control point of global dirty pages higher
1070         * than setpoint.
1071         */
1072        x_intercept = wb_thresh / 2;
1073        if (dtc->wb_dirty < x_intercept) {
1074                if (dtc->wb_dirty > x_intercept / 8)
1075                        pos_ratio = div_u64(pos_ratio * x_intercept,
1076                                            dtc->wb_dirty);
1077                else
1078                        pos_ratio *= 8;
1079        }
1080
1081        dtc->pos_ratio = pos_ratio;
1082}
1083
1084static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1085                                      unsigned long elapsed,
1086                                      unsigned long written)
1087{
1088        const unsigned long period = roundup_pow_of_two(3 * HZ);
1089        unsigned long avg = wb->avg_write_bandwidth;
1090        unsigned long old = wb->write_bandwidth;
1091        u64 bw;
1092
1093        /*
1094         * bw = written * HZ / elapsed
1095         *
1096         *                   bw * elapsed + write_bandwidth * (period - elapsed)
1097         * write_bandwidth = ---------------------------------------------------
1098         *                                          period
1099         *
1100         * @written may have decreased due to account_page_redirty().
1101         * Avoid underflowing @bw calculation.
1102         */
1103        bw = written - min(written, wb->written_stamp);
1104        bw *= HZ;
1105        if (unlikely(elapsed > period)) {
1106                do_div(bw, elapsed);
1107                avg = bw;
1108                goto out;
1109        }
1110        bw += (u64)wb->write_bandwidth * (period - elapsed);
1111        bw >>= ilog2(period);
1112
1113        /*
1114         * one more level of smoothing, for filtering out sudden spikes
1115         */
1116        if (avg > old && old >= (unsigned long)bw)
1117                avg -= (avg - old) >> 3;
1118
1119        if (avg < old && old <= (unsigned long)bw)
1120                avg += (old - avg) >> 3;
1121
1122out:
1123        /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1124        avg = max(avg, 1LU);
1125        if (wb_has_dirty_io(wb)) {
1126                long delta = avg - wb->avg_write_bandwidth;
1127                WARN_ON_ONCE(atomic_long_add_return(delta,
1128                                        &wb->bdi->tot_write_bandwidth) <= 0);
1129        }
1130        wb->write_bandwidth = bw;
1131        wb->avg_write_bandwidth = avg;
1132}
1133
1134static void update_dirty_limit(struct dirty_throttle_control *dtc)
1135{
1136        struct wb_domain *dom = dtc_dom(dtc);
1137        unsigned long thresh = dtc->thresh;
1138        unsigned long limit = dom->dirty_limit;
1139
1140        /*
1141         * Follow up in one step.
1142         */
1143        if (limit < thresh) {
1144                limit = thresh;
1145                goto update;
1146        }
1147
1148        /*
1149         * Follow down slowly. Use the higher one as the target, because thresh
1150         * may drop below dirty. This is exactly the reason to introduce
1151         * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1152         */
1153        thresh = max(thresh, dtc->dirty);
1154        if (limit > thresh) {
1155                limit -= (limit - thresh) >> 5;
1156                goto update;
1157        }
1158        return;
1159update:
1160        dom->dirty_limit = limit;
1161}
1162
1163static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1164                                    unsigned long now)
1165{
1166        struct wb_domain *dom = dtc_dom(dtc);
1167
1168        /*
1169         * check locklessly first to optimize away locking for the most time
1170         */
1171        if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1172                return;
1173
1174        spin_lock(&dom->lock);
1175        if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1176                update_dirty_limit(dtc);
1177                dom->dirty_limit_tstamp = now;
1178        }
1179        spin_unlock(&dom->lock);
1180}
1181
1182/*
1183 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1184 *
1185 * Normal wb tasks will be curbed at or below it in long term.
1186 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1187 */
1188static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1189                                      unsigned long dirtied,
1190                                      unsigned long elapsed)
1191{
1192        struct bdi_writeback *wb = dtc->wb;
1193        unsigned long dirty = dtc->dirty;
1194        unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1195        unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1196        unsigned long setpoint = (freerun + limit) / 2;
1197        unsigned long write_bw = wb->avg_write_bandwidth;
1198        unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1199        unsigned long dirty_rate;
1200        unsigned long task_ratelimit;
1201        unsigned long balanced_dirty_ratelimit;
1202        unsigned long step;
1203        unsigned long x;
1204        unsigned long shift;
1205
1206        /*
1207         * The dirty rate will match the writeout rate in long term, except
1208         * when dirty pages are truncated by userspace or re-dirtied by FS.
1209         */
1210        dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1211
1212        /*
1213         * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1214         */
1215        task_ratelimit = (u64)dirty_ratelimit *
1216                                        dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1217        task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1218
1219        /*
1220         * A linear estimation of the "balanced" throttle rate. The theory is,
1221         * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1222         * dirty_rate will be measured to be (N * task_ratelimit). So the below
1223         * formula will yield the balanced rate limit (write_bw / N).
1224         *
1225         * Note that the expanded form is not a pure rate feedback:
1226         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1227         * but also takes pos_ratio into account:
1228         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1229         *
1230         * (1) is not realistic because pos_ratio also takes part in balancing
1231         * the dirty rate.  Consider the state
1232         *      pos_ratio = 0.5                                              (3)
1233         *      rate = 2 * (write_bw / N)                                    (4)
1234         * If (1) is used, it will stuck in that state! Because each dd will
1235         * be throttled at
1236         *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1237         * yielding
1238         *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1239         * put (6) into (1) we get
1240         *      rate_(i+1) = rate_(i)                                        (7)
1241         *
1242         * So we end up using (2) to always keep
1243         *      rate_(i+1) ~= (write_bw / N)                                 (8)
1244         * regardless of the value of pos_ratio. As long as (8) is satisfied,
1245         * pos_ratio is able to drive itself to 1.0, which is not only where
1246         * the dirty count meet the setpoint, but also where the slope of
1247         * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1248         */
1249        balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1250                                           dirty_rate | 1);
1251        /*
1252         * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1253         */
1254        if (unlikely(balanced_dirty_ratelimit > write_bw))
1255                balanced_dirty_ratelimit = write_bw;
1256
1257        /*
1258         * We could safely do this and return immediately:
1259         *
1260         *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1261         *
1262         * However to get a more stable dirty_ratelimit, the below elaborated
1263         * code makes use of task_ratelimit to filter out singular points and
1264         * limit the step size.
1265         *
1266         * The below code essentially only uses the relative value of
1267         *
1268         *      task_ratelimit - dirty_ratelimit
1269         *      = (pos_ratio - 1) * dirty_ratelimit
1270         *
1271         * which reflects the direction and size of dirty position error.
1272         */
1273
1274        /*
1275         * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1276         * task_ratelimit is on the same side of dirty_ratelimit, too.
1277         * For example, when
1278         * - dirty_ratelimit > balanced_dirty_ratelimit
1279         * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1280         * lowering dirty_ratelimit will help meet both the position and rate
1281         * control targets. Otherwise, don't update dirty_ratelimit if it will
1282         * only help meet the rate target. After all, what the users ultimately
1283         * feel and care are stable dirty rate and small position error.
1284         *
1285         * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1286         * and filter out the singular points of balanced_dirty_ratelimit. Which
1287         * keeps jumping around randomly and can even leap far away at times
1288         * due to the small 200ms estimation period of dirty_rate (we want to
1289         * keep that period small to reduce time lags).
1290         */
1291        step = 0;
1292
1293        /*
1294         * For strictlimit case, calculations above were based on wb counters
1295         * and limits (starting from pos_ratio = wb_position_ratio() and up to
1296         * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1297         * Hence, to calculate "step" properly, we have to use wb_dirty as
1298         * "dirty" and wb_setpoint as "setpoint".
1299         *
1300         * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1301         * it's possible that wb_thresh is close to zero due to inactivity
1302         * of backing device.
1303         */
1304        if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1305                dirty = dtc->wb_dirty;
1306                if (dtc->wb_dirty < 8)
1307                        setpoint = dtc->wb_dirty + 1;
1308                else
1309                        setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1310        }
1311
1312        if (dirty < setpoint) {
1313                x = min3(wb->balanced_dirty_ratelimit,
1314                         balanced_dirty_ratelimit, task_ratelimit);
1315                if (dirty_ratelimit < x)
1316                        step = x - dirty_ratelimit;
1317        } else {
1318                x = max3(wb->balanced_dirty_ratelimit,
1319                         balanced_dirty_ratelimit, task_ratelimit);
1320                if (dirty_ratelimit > x)
1321                        step = dirty_ratelimit - x;
1322        }
1323
1324        /*
1325         * Don't pursue 100% rate matching. It's impossible since the balanced
1326         * rate itself is constantly fluctuating. So decrease the track speed
1327         * when it gets close to the target. Helps eliminate pointless tremors.
1328         */
1329        shift = dirty_ratelimit / (2 * step + 1);
1330        if (shift < BITS_PER_LONG)
1331                step = DIV_ROUND_UP(step >> shift, 8);
1332        else
1333                step = 0;
1334
1335        if (dirty_ratelimit < balanced_dirty_ratelimit)
1336                dirty_ratelimit += step;
1337        else
1338                dirty_ratelimit -= step;
1339
1340        wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1341        wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1342
1343        trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1344}
1345
1346static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1347                                  struct dirty_throttle_control *mdtc,
1348                                  unsigned long start_time,
1349                                  bool update_ratelimit)
1350{
1351        struct bdi_writeback *wb = gdtc->wb;
1352        unsigned long now = jiffies;
1353        unsigned long elapsed = now - wb->bw_time_stamp;
1354        unsigned long dirtied;
1355        unsigned long written;
1356
1357        lockdep_assert_held(&wb->list_lock);
1358
1359        /*
1360         * rate-limit, only update once every 200ms.
1361         */
1362        if (elapsed < BANDWIDTH_INTERVAL)
1363                return;
1364
1365        dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1366        written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1367
1368        /*
1369         * Skip quiet periods when disk bandwidth is under-utilized.
1370         * (at least 1s idle time between two flusher runs)
1371         */
1372        if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1373                goto snapshot;
1374
1375        if (update_ratelimit) {
1376                domain_update_bandwidth(gdtc, now);
1377                wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1378
1379                /*
1380                 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1381                 * compiler has no way to figure that out.  Help it.
1382                 */
1383                if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1384                        domain_update_bandwidth(mdtc, now);
1385                        wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1386                }
1387        }
1388        wb_update_write_bandwidth(wb, elapsed, written);
1389
1390snapshot:
1391        wb->dirtied_stamp = dirtied;
1392        wb->written_stamp = written;
1393        wb->bw_time_stamp = now;
1394}
1395
1396void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1397{
1398        struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1399
1400        __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1401}
1402
1403/*
1404 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1405 * will look to see if it needs to start dirty throttling.
1406 *
1407 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1408 * global_page_state() too often. So scale it near-sqrt to the safety margin
1409 * (the number of pages we may dirty without exceeding the dirty limits).
1410 */
1411static unsigned long dirty_poll_interval(unsigned long dirty,
1412                                         unsigned long thresh)
1413{
1414        if (thresh > dirty)
1415                return 1UL << (ilog2(thresh - dirty) >> 1);
1416
1417        return 1;
1418}
1419
1420static unsigned long wb_max_pause(struct bdi_writeback *wb,
1421                                  unsigned long wb_dirty)
1422{
1423        unsigned long bw = wb->avg_write_bandwidth;
1424        unsigned long t;
1425
1426        /*
1427         * Limit pause time for small memory systems. If sleeping for too long
1428         * time, a small pool of dirty/writeback pages may go empty and disk go
1429         * idle.
1430         *
1431         * 8 serves as the safety ratio.
1432         */
1433        t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1434        t++;
1435
1436        return min_t(unsigned long, t, MAX_PAUSE);
1437}
1438
1439static long wb_min_pause(struct bdi_writeback *wb,
1440                         long max_pause,
1441                         unsigned long task_ratelimit,
1442                         unsigned long dirty_ratelimit,
1443                         int *nr_dirtied_pause)
1444{
1445        long hi = ilog2(wb->avg_write_bandwidth);
1446        long lo = ilog2(wb->dirty_ratelimit);
1447        long t;         /* target pause */
1448        long pause;     /* estimated next pause */
1449        int pages;      /* target nr_dirtied_pause */
1450
1451        /* target for 10ms pause on 1-dd case */
1452        t = max(1, HZ / 100);
1453
1454        /*
1455         * Scale up pause time for concurrent dirtiers in order to reduce CPU
1456         * overheads.
1457         *
1458         * (N * 10ms) on 2^N concurrent tasks.
1459         */
1460        if (hi > lo)
1461                t += (hi - lo) * (10 * HZ) / 1024;
1462
1463        /*
1464         * This is a bit convoluted. We try to base the next nr_dirtied_pause
1465         * on the much more stable dirty_ratelimit. However the next pause time
1466         * will be computed based on task_ratelimit and the two rate limits may
1467         * depart considerably at some time. Especially if task_ratelimit goes
1468         * below dirty_ratelimit/2 and the target pause is max_pause, the next
1469         * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1470         * result task_ratelimit won't be executed faithfully, which could
1471         * eventually bring down dirty_ratelimit.
1472         *
1473         * We apply two rules to fix it up:
1474         * 1) try to estimate the next pause time and if necessary, use a lower
1475         *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1476         *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1477         * 2) limit the target pause time to max_pause/2, so that the normal
1478         *    small fluctuations of task_ratelimit won't trigger rule (1) and
1479         *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1480         */
1481        t = min(t, 1 + max_pause / 2);
1482        pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1483
1484        /*
1485         * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1486         * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1487         * When the 16 consecutive reads are often interrupted by some dirty
1488         * throttling pause during the async writes, cfq will go into idles
1489         * (deadline is fine). So push nr_dirtied_pause as high as possible
1490         * until reaches DIRTY_POLL_THRESH=32 pages.
1491         */
1492        if (pages < DIRTY_POLL_THRESH) {
1493                t = max_pause;
1494                pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1495                if (pages > DIRTY_POLL_THRESH) {
1496                        pages = DIRTY_POLL_THRESH;
1497                        t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1498                }
1499        }
1500
1501        pause = HZ * pages / (task_ratelimit + 1);
1502        if (pause > max_pause) {
1503                t = max_pause;
1504                pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1505        }
1506
1507        *nr_dirtied_pause = pages;
1508        /*
1509         * The minimal pause time will normally be half the target pause time.
1510         */
1511        return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1512}
1513
1514static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1515{
1516        struct bdi_writeback *wb = dtc->wb;
1517        unsigned long wb_reclaimable;
1518
1519        /*
1520         * wb_thresh is not treated as some limiting factor as
1521         * dirty_thresh, due to reasons
1522         * - in JBOD setup, wb_thresh can fluctuate a lot
1523         * - in a system with HDD and USB key, the USB key may somehow
1524         *   go into state (wb_dirty >> wb_thresh) either because
1525         *   wb_dirty starts high, or because wb_thresh drops low.
1526         *   In this case we don't want to hard throttle the USB key
1527         *   dirtiers for 100 seconds until wb_dirty drops under
1528         *   wb_thresh. Instead the auxiliary wb control line in
1529         *   wb_position_ratio() will let the dirtier task progress
1530         *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1531         */
1532        dtc->wb_thresh = __wb_calc_thresh(dtc);
1533        dtc->wb_bg_thresh = dtc->thresh ?
1534                div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1535
1536        /*
1537         * In order to avoid the stacked BDI deadlock we need
1538         * to ensure we accurately count the 'dirty' pages when
1539         * the threshold is low.
1540         *
1541         * Otherwise it would be possible to get thresh+n pages
1542         * reported dirty, even though there are thresh-m pages
1543         * actually dirty; with m+n sitting in the percpu
1544         * deltas.
1545         */
1546        if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1547                wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1548                dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1549        } else {
1550                wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1551                dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1552        }
1553}
1554
1555/*
1556 * balance_dirty_pages() must be called by processes which are generating dirty
1557 * data.  It looks at the number of dirty pages in the machine and will force
1558 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1559 * If we're over `background_thresh' then the writeback threads are woken to
1560 * perform some writeout.
1561 */
1562static void balance_dirty_pages(struct address_space *mapping,
1563                                struct bdi_writeback *wb,
1564                                unsigned long pages_dirtied)
1565{
1566        struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1567        struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1568        struct dirty_throttle_control * const gdtc = &gdtc_stor;
1569        struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1570                                                     &mdtc_stor : NULL;
1571        struct dirty_throttle_control *sdtc;
1572        unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1573        long period;
1574        long pause;
1575        long max_pause;
1576        long min_pause;
1577        int nr_dirtied_pause;
1578        bool dirty_exceeded = false;
1579        unsigned long task_ratelimit;
1580        unsigned long dirty_ratelimit;
1581        struct backing_dev_info *bdi = wb->bdi;
1582        bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1583        unsigned long start_time = jiffies;
1584
1585        for (;;) {
1586                unsigned long now = jiffies;
1587                unsigned long dirty, thresh, bg_thresh;
1588                unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1589                unsigned long m_thresh = 0;
1590                unsigned long m_bg_thresh = 0;
1591
1592                /*
1593                 * Unstable writes are a feature of certain networked
1594                 * filesystems (i.e. NFS) in which data may have been
1595                 * written to the server's write cache, but has not yet
1596                 * been flushed to permanent storage.
1597                 */
1598                nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1599                                        global_node_page_state(NR_UNSTABLE_NFS);
1600                gdtc->avail = global_dirtyable_memory();
1601                gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1602
1603                domain_dirty_limits(gdtc);
1604
1605                if (unlikely(strictlimit)) {
1606                        wb_dirty_limits(gdtc);
1607
1608                        dirty = gdtc->wb_dirty;
1609                        thresh = gdtc->wb_thresh;
1610                        bg_thresh = gdtc->wb_bg_thresh;
1611                } else {
1612                        dirty = gdtc->dirty;
1613                        thresh = gdtc->thresh;
1614                        bg_thresh = gdtc->bg_thresh;
1615                }
1616
1617                if (mdtc) {
1618                        unsigned long filepages, headroom, writeback;
1619
1620                        /*
1621                         * If @wb belongs to !root memcg, repeat the same
1622                         * basic calculations for the memcg domain.
1623                         */
1624                        mem_cgroup_wb_stats(wb, &filepages, &headroom,
1625                                            &mdtc->dirty, &writeback);
1626                        mdtc->dirty += writeback;
1627                        mdtc_calc_avail(mdtc, filepages, headroom);
1628
1629                        domain_dirty_limits(mdtc);
1630
1631                        if (unlikely(strictlimit)) {
1632                                wb_dirty_limits(mdtc);
1633                                m_dirty = mdtc->wb_dirty;
1634                                m_thresh = mdtc->wb_thresh;
1635                                m_bg_thresh = mdtc->wb_bg_thresh;
1636                        } else {
1637                                m_dirty = mdtc->dirty;
1638                                m_thresh = mdtc->thresh;
1639                                m_bg_thresh = mdtc->bg_thresh;
1640                        }
1641                }
1642
1643                /*
1644                 * Throttle it only when the background writeback cannot
1645                 * catch-up. This avoids (excessively) small writeouts
1646                 * when the wb limits are ramping up in case of !strictlimit.
1647                 *
1648                 * In strictlimit case make decision based on the wb counters
1649                 * and limits. Small writeouts when the wb limits are ramping
1650                 * up are the price we consciously pay for strictlimit-ing.
1651                 *
1652                 * If memcg domain is in effect, @dirty should be under
1653                 * both global and memcg freerun ceilings.
1654                 */
1655                if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1656                    (!mdtc ||
1657                     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1658                        unsigned long intv = dirty_poll_interval(dirty, thresh);
1659                        unsigned long m_intv = ULONG_MAX;
1660
1661                        current->dirty_paused_when = now;
1662                        current->nr_dirtied = 0;
1663                        if (mdtc)
1664                                m_intv = dirty_poll_interval(m_dirty, m_thresh);
1665                        current->nr_dirtied_pause = min(intv, m_intv);
1666                        break;
1667                }
1668
1669                if (unlikely(!writeback_in_progress(wb)))
1670                        wb_start_background_writeback(wb);
1671
1672                /*
1673                 * Calculate global domain's pos_ratio and select the
1674                 * global dtc by default.
1675                 */
1676                if (!strictlimit)
1677                        wb_dirty_limits(gdtc);
1678
1679                dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1680                        ((gdtc->dirty > gdtc->thresh) || strictlimit);
1681
1682                wb_position_ratio(gdtc);
1683                sdtc = gdtc;
1684
1685                if (mdtc) {
1686                        /*
1687                         * If memcg domain is in effect, calculate its
1688                         * pos_ratio.  @wb should satisfy constraints from
1689                         * both global and memcg domains.  Choose the one
1690                         * w/ lower pos_ratio.
1691                         */
1692                        if (!strictlimit)
1693                                wb_dirty_limits(mdtc);
1694
1695                        dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1696                                ((mdtc->dirty > mdtc->thresh) || strictlimit);
1697
1698                        wb_position_ratio(mdtc);
1699                        if (mdtc->pos_ratio < gdtc->pos_ratio)
1700                                sdtc = mdtc;
1701                }
1702
1703                if (dirty_exceeded && !wb->dirty_exceeded)
1704                        wb->dirty_exceeded = 1;
1705
1706                if (time_is_before_jiffies(wb->bw_time_stamp +
1707                                           BANDWIDTH_INTERVAL)) {
1708                        spin_lock(&wb->list_lock);
1709                        __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1710                        spin_unlock(&wb->list_lock);
1711                }
1712
1713                /* throttle according to the chosen dtc */
1714                dirty_ratelimit = wb->dirty_ratelimit;
1715                task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1716                                                        RATELIMIT_CALC_SHIFT;
1717                max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1718                min_pause = wb_min_pause(wb, max_pause,
1719                                         task_ratelimit, dirty_ratelimit,
1720                                         &nr_dirtied_pause);
1721
1722                if (unlikely(task_ratelimit == 0)) {
1723                        period = max_pause;
1724                        pause = max_pause;
1725                        goto pause;
1726                }
1727                period = HZ * pages_dirtied / task_ratelimit;
1728                pause = period;
1729                if (current->dirty_paused_when)
1730                        pause -= now - current->dirty_paused_when;
1731                /*
1732                 * For less than 1s think time (ext3/4 may block the dirtier
1733                 * for up to 800ms from time to time on 1-HDD; so does xfs,
1734                 * however at much less frequency), try to compensate it in
1735                 * future periods by updating the virtual time; otherwise just
1736                 * do a reset, as it may be a light dirtier.
1737                 */
1738                if (pause < min_pause) {
1739                        trace_balance_dirty_pages(wb,
1740                                                  sdtc->thresh,
1741                                                  sdtc->bg_thresh,
1742                                                  sdtc->dirty,
1743                                                  sdtc->wb_thresh,
1744                                                  sdtc->wb_dirty,
1745                                                  dirty_ratelimit,
1746                                                  task_ratelimit,
1747                                                  pages_dirtied,
1748                                                  period,
1749                                                  min(pause, 0L),
1750                                                  start_time);
1751                        if (pause < -HZ) {
1752                                current->dirty_paused_when = now;
1753                                current->nr_dirtied = 0;
1754                        } else if (period) {
1755                                current->dirty_paused_when += period;
1756                                current->nr_dirtied = 0;
1757                        } else if (current->nr_dirtied_pause <= pages_dirtied)
1758                                current->nr_dirtied_pause += pages_dirtied;
1759                        break;
1760                }
1761                if (unlikely(pause > max_pause)) {
1762                        /* for occasional dropped task_ratelimit */
1763                        now += min(pause - max_pause, max_pause);
1764                        pause = max_pause;
1765                }
1766
1767pause:
1768                trace_balance_dirty_pages(wb,
1769                                          sdtc->thresh,
1770                                          sdtc->bg_thresh,
1771                                          sdtc->dirty,
1772                                          sdtc->wb_thresh,
1773                                          sdtc->wb_dirty,
1774                                          dirty_ratelimit,
1775                                          task_ratelimit,
1776                                          pages_dirtied,
1777                                          period,
1778                                          pause,
1779                                          start_time);
1780                __set_current_state(TASK_KILLABLE);
1781                io_schedule_timeout(pause);
1782
1783                current->dirty_paused_when = now + pause;
1784                current->nr_dirtied = 0;
1785                current->nr_dirtied_pause = nr_dirtied_pause;
1786
1787                /*
1788                 * This is typically equal to (dirty < thresh) and can also
1789                 * keep "1000+ dd on a slow USB stick" under control.
1790                 */
1791                if (task_ratelimit)
1792                        break;
1793
1794                /*
1795                 * In the case of an unresponding NFS server and the NFS dirty
1796                 * pages exceeds dirty_thresh, give the other good wb's a pipe
1797                 * to go through, so that tasks on them still remain responsive.
1798                 *
1799                 * In theory 1 page is enough to keep the comsumer-producer
1800                 * pipe going: the flusher cleans 1 page => the task dirties 1
1801                 * more page. However wb_dirty has accounting errors.  So use
1802                 * the larger and more IO friendly wb_stat_error.
1803                 */
1804                if (sdtc->wb_dirty <= wb_stat_error(wb))
1805                        break;
1806
1807                if (fatal_signal_pending(current))
1808                        break;
1809        }
1810
1811        if (!dirty_exceeded && wb->dirty_exceeded)
1812                wb->dirty_exceeded = 0;
1813
1814        if (writeback_in_progress(wb))
1815                return;
1816
1817        /*
1818         * In laptop mode, we wait until hitting the higher threshold before
1819         * starting background writeout, and then write out all the way down
1820         * to the lower threshold.  So slow writers cause minimal disk activity.
1821         *
1822         * In normal mode, we start background writeout at the lower
1823         * background_thresh, to keep the amount of dirty memory low.
1824         */
1825        if (laptop_mode)
1826                return;
1827
1828        if (nr_reclaimable > gdtc->bg_thresh)
1829                wb_start_background_writeback(wb);
1830}
1831
1832static DEFINE_PER_CPU(int, bdp_ratelimits);
1833
1834/*
1835 * Normal tasks are throttled by
1836 *      loop {
1837 *              dirty tsk->nr_dirtied_pause pages;
1838 *              take a snap in balance_dirty_pages();
1839 *      }
1840 * However there is a worst case. If every task exit immediately when dirtied
1841 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1842 * called to throttle the page dirties. The solution is to save the not yet
1843 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1844 * randomly into the running tasks. This works well for the above worst case,
1845 * as the new task will pick up and accumulate the old task's leaked dirty
1846 * count and eventually get throttled.
1847 */
1848DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1849
1850/**
1851 * balance_dirty_pages_ratelimited - balance dirty memory state
1852 * @mapping: address_space which was dirtied
1853 *
1854 * Processes which are dirtying memory should call in here once for each page
1855 * which was newly dirtied.  The function will periodically check the system's
1856 * dirty state and will initiate writeback if needed.
1857 *
1858 * On really big machines, get_writeback_state is expensive, so try to avoid
1859 * calling it too often (ratelimiting).  But once we're over the dirty memory
1860 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1861 * from overshooting the limit by (ratelimit_pages) each.
1862 */
1863void balance_dirty_pages_ratelimited(struct address_space *mapping)
1864{
1865        struct inode *inode = mapping->host;
1866        struct backing_dev_info *bdi = inode_to_bdi(inode);
1867        struct bdi_writeback *wb = NULL;
1868        int ratelimit;
1869        int *p;
1870
1871        if (!bdi_cap_account_dirty(bdi))
1872                return;
1873
1874        if (inode_cgwb_enabled(inode))
1875                wb = wb_get_create_current(bdi, GFP_KERNEL);
1876        if (!wb)
1877                wb = &bdi->wb;
1878
1879        ratelimit = current->nr_dirtied_pause;
1880        if (wb->dirty_exceeded)
1881                ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1882
1883        preempt_disable();
1884        /*
1885         * This prevents one CPU to accumulate too many dirtied pages without
1886         * calling into balance_dirty_pages(), which can happen when there are
1887         * 1000+ tasks, all of them start dirtying pages at exactly the same
1888         * time, hence all honoured too large initial task->nr_dirtied_pause.
1889         */
1890        p =  this_cpu_ptr(&bdp_ratelimits);
1891        if (unlikely(current->nr_dirtied >= ratelimit))
1892                *p = 0;
1893        else if (unlikely(*p >= ratelimit_pages)) {
1894                *p = 0;
1895                ratelimit = 0;
1896        }
1897        /*
1898         * Pick up the dirtied pages by the exited tasks. This avoids lots of
1899         * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1900         * the dirty throttling and livelock other long-run dirtiers.
1901         */
1902        p = this_cpu_ptr(&dirty_throttle_leaks);
1903        if (*p > 0 && current->nr_dirtied < ratelimit) {
1904                unsigned long nr_pages_dirtied;
1905                nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1906                *p -= nr_pages_dirtied;
1907                current->nr_dirtied += nr_pages_dirtied;
1908        }
1909        preempt_enable();
1910
1911        if (unlikely(current->nr_dirtied >= ratelimit))
1912                balance_dirty_pages(mapping, wb, current->nr_dirtied);
1913
1914        wb_put(wb);
1915}
1916EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1917
1918/**
1919 * wb_over_bg_thresh - does @wb need to be written back?
1920 * @wb: bdi_writeback of interest
1921 *
1922 * Determines whether background writeback should keep writing @wb or it's
1923 * clean enough.  Returns %true if writeback should continue.
1924 */
1925bool wb_over_bg_thresh(struct bdi_writeback *wb)
1926{
1927        struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1928        struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1929        struct dirty_throttle_control * const gdtc = &gdtc_stor;
1930        struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1931                                                     &mdtc_stor : NULL;
1932
1933        /*
1934         * Similar to balance_dirty_pages() but ignores pages being written
1935         * as we're trying to decide whether to put more under writeback.
1936         */
1937        gdtc->avail = global_dirtyable_memory();
1938        gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1939                      global_node_page_state(NR_UNSTABLE_NFS);
1940        domain_dirty_limits(gdtc);
1941
1942        if (gdtc->dirty > gdtc->bg_thresh)
1943                return true;
1944
1945        if (wb_stat(wb, WB_RECLAIMABLE) >
1946            wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1947                return true;
1948
1949        if (mdtc) {
1950                unsigned long filepages, headroom, writeback;
1951
1952                mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1953                                    &writeback);
1954                mdtc_calc_avail(mdtc, filepages, headroom);
1955                domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1956
1957                if (mdtc->dirty > mdtc->bg_thresh)
1958                        return true;
1959
1960                if (wb_stat(wb, WB_RECLAIMABLE) >
1961                    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1962                        return true;
1963        }
1964
1965        return false;
1966}
1967
1968/*
1969 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1970 */
1971int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1972        void __user *buffer, size_t *length, loff_t *ppos)
1973{
1974        proc_dointvec(table, write, buffer, length, ppos);
1975        return 0;
1976}
1977
1978#ifdef CONFIG_BLOCK
1979void laptop_mode_timer_fn(unsigned long data)
1980{
1981        struct request_queue *q = (struct request_queue *)data;
1982        int nr_pages = global_node_page_state(NR_FILE_DIRTY) +
1983                global_node_page_state(NR_UNSTABLE_NFS);
1984        struct bdi_writeback *wb;
1985
1986        /*
1987         * We want to write everything out, not just down to the dirty
1988         * threshold
1989         */
1990        if (!bdi_has_dirty_io(&q->backing_dev_info))
1991                return;
1992
1993        rcu_read_lock();
1994        list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1995                if (wb_has_dirty_io(wb))
1996                        wb_start_writeback(wb, nr_pages, true,
1997                                           WB_REASON_LAPTOP_TIMER);
1998        rcu_read_unlock();
1999}
2000
2001/*
2002 * We've spun up the disk and we're in laptop mode: schedule writeback
2003 * of all dirty data a few seconds from now.  If the flush is already scheduled
2004 * then push it back - the user is still using the disk.
2005 */
2006void laptop_io_completion(struct backing_dev_info *info)
2007{
2008        mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2009}
2010
2011/*
2012 * We're in laptop mode and we've just synced. The sync's writes will have
2013 * caused another writeback to be scheduled by laptop_io_completion.
2014 * Nothing needs to be written back anymore, so we unschedule the writeback.
2015 */
2016void laptop_sync_completion(void)
2017{
2018        struct backing_dev_info *bdi;
2019
2020        rcu_read_lock();
2021
2022        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2023                del_timer(&bdi->laptop_mode_wb_timer);
2024
2025        rcu_read_unlock();
2026}
2027#endif
2028
2029/*
2030 * If ratelimit_pages is too high then we can get into dirty-data overload
2031 * if a large number of processes all perform writes at the same time.
2032 * If it is too low then SMP machines will call the (expensive)
2033 * get_writeback_state too often.
2034 *
2035 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2036 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2037 * thresholds.
2038 */
2039
2040void writeback_set_ratelimit(void)
2041{
2042        struct wb_domain *dom = &global_wb_domain;
2043        unsigned long background_thresh;
2044        unsigned long dirty_thresh;
2045
2046        global_dirty_limits(&background_thresh, &dirty_thresh);
2047        dom->dirty_limit = dirty_thresh;
2048        ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2049        if (ratelimit_pages < 16)
2050                ratelimit_pages = 16;
2051}
2052
2053static int page_writeback_cpu_online(unsigned int cpu)
2054{
2055        writeback_set_ratelimit();
2056        return 0;
2057}
2058
2059/*
2060 * Called early on to tune the page writeback dirty limits.
2061 *
2062 * We used to scale dirty pages according to how total memory
2063 * related to pages that could be allocated for buffers (by
2064 * comparing nr_free_buffer_pages() to vm_total_pages.
2065 *
2066 * However, that was when we used "dirty_ratio" to scale with
2067 * all memory, and we don't do that any more. "dirty_ratio"
2068 * is now applied to total non-HIGHPAGE memory (by subtracting
2069 * totalhigh_pages from vm_total_pages), and as such we can't
2070 * get into the old insane situation any more where we had
2071 * large amounts of dirty pages compared to a small amount of
2072 * non-HIGHMEM memory.
2073 *
2074 * But we might still want to scale the dirty_ratio by how
2075 * much memory the box has..
2076 */
2077void __init page_writeback_init(void)
2078{
2079        BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2080
2081        cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2082                          page_writeback_cpu_online, NULL);
2083        cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2084                          page_writeback_cpu_online);
2085}
2086
2087/**
2088 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2089 * @mapping: address space structure to write
2090 * @start: starting page index
2091 * @end: ending page index (inclusive)
2092 *
2093 * This function scans the page range from @start to @end (inclusive) and tags
2094 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2095 * that write_cache_pages (or whoever calls this function) will then use
2096 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2097 * used to avoid livelocking of writeback by a process steadily creating new
2098 * dirty pages in the file (thus it is important for this function to be quick
2099 * so that it can tag pages faster than a dirtying process can create them).
2100 */
2101/*
2102 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2103 */
2104void tag_pages_for_writeback(struct address_space *mapping,
2105                             pgoff_t start, pgoff_t end)
2106{
2107#define WRITEBACK_TAG_BATCH 4096
2108        unsigned long tagged;
2109
2110        do {
2111                spin_lock_irq(&mapping->tree_lock);
2112                tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2113                                &start, end, WRITEBACK_TAG_BATCH,
2114                                PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2115                spin_unlock_irq(&mapping->tree_lock);
2116                WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2117                cond_resched();
2118                /* We check 'start' to handle wrapping when end == ~0UL */
2119        } while (tagged >= WRITEBACK_TAG_BATCH && start);
2120}
2121EXPORT_SYMBOL(tag_pages_for_writeback);
2122
2123/**
2124 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2125 * @mapping: address space structure to write
2126 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2127 * @writepage: function called for each page
2128 * @data: data passed to writepage function
2129 *
2130 * If a page is already under I/O, write_cache_pages() skips it, even
2131 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2132 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2133 * and msync() need to guarantee that all the data which was dirty at the time
2134 * the call was made get new I/O started against them.  If wbc->sync_mode is
2135 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2136 * existing IO to complete.
2137 *
2138 * To avoid livelocks (when other process dirties new pages), we first tag
2139 * pages which should be written back with TOWRITE tag and only then start
2140 * writing them. For data-integrity sync we have to be careful so that we do
2141 * not miss some pages (e.g., because some other process has cleared TOWRITE
2142 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2143 * by the process clearing the DIRTY tag (and submitting the page for IO).
2144 */
2145int write_cache_pages(struct address_space *mapping,
2146                      struct writeback_control *wbc, writepage_t writepage,
2147                      void *data)
2148{
2149        int ret = 0;
2150        int done = 0;
2151        struct pagevec pvec;
2152        int nr_pages;
2153        pgoff_t uninitialized_var(writeback_index);
2154        pgoff_t index;
2155        pgoff_t end;            /* Inclusive */
2156        pgoff_t done_index;
2157        int cycled;
2158        int range_whole = 0;
2159        int tag;
2160
2161        pagevec_init(&pvec, 0);
2162        if (wbc->range_cyclic) {
2163                writeback_index = mapping->writeback_index; /* prev offset */
2164                index = writeback_index;
2165                if (index == 0)
2166                        cycled = 1;
2167                else
2168                        cycled = 0;
2169                end = -1;
2170        } else {
2171                index = wbc->range_start >> PAGE_SHIFT;
2172                end = wbc->range_end >> PAGE_SHIFT;
2173                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2174                        range_whole = 1;
2175                cycled = 1; /* ignore range_cyclic tests */
2176        }
2177        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2178                tag = PAGECACHE_TAG_TOWRITE;
2179        else
2180                tag = PAGECACHE_TAG_DIRTY;
2181retry:
2182        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2183                tag_pages_for_writeback(mapping, index, end);
2184        done_index = index;
2185        while (!done && (index <= end)) {
2186                int i;
2187
2188                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2189                              min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2190                if (nr_pages == 0)
2191                        break;
2192
2193                for (i = 0; i < nr_pages; i++) {
2194                        struct page *page = pvec.pages[i];
2195
2196                        /*
2197                         * At this point, the page may be truncated or
2198                         * invalidated (changing page->mapping to NULL), or
2199                         * even swizzled back from swapper_space to tmpfs file
2200                         * mapping. However, page->index will not change
2201                         * because we have a reference on the page.
2202                         */
2203                        if (page->index > end) {
2204                                /*
2205                                 * can't be range_cyclic (1st pass) because
2206                                 * end == -1 in that case.
2207                                 */
2208                                done = 1;
2209                                break;
2210                        }
2211
2212                        done_index = page->index;
2213
2214                        lock_page(page);
2215
2216                        /*
2217                         * Page truncated or invalidated. We can freely skip it
2218                         * then, even for data integrity operations: the page
2219                         * has disappeared concurrently, so there could be no
2220                         * real expectation of this data interity operation
2221                         * even if there is now a new, dirty page at the same
2222                         * pagecache address.
2223                         */
2224                        if (unlikely(page->mapping != mapping)) {
2225continue_unlock:
2226                                unlock_page(page);
2227                                continue;
2228                        }
2229
2230                        if (!PageDirty(page)) {
2231                                /* someone wrote it for us */
2232                                goto continue_unlock;
2233                        }
2234
2235                        if (PageWriteback(page)) {
2236                                if (wbc->sync_mode != WB_SYNC_NONE)
2237                                        wait_on_page_writeback(page);
2238                                else
2239                                        goto continue_unlock;
2240                        }
2241
2242                        BUG_ON(PageWriteback(page));
2243                        if (!clear_page_dirty_for_io(page))
2244                                goto continue_unlock;
2245
2246                        trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2247                        ret = (*writepage)(page, wbc, data);
2248                        if (unlikely(ret)) {
2249                                if (ret == AOP_WRITEPAGE_ACTIVATE) {
2250                                        unlock_page(page);
2251                                        ret = 0;
2252                                } else {
2253                                        /*
2254                                         * done_index is set past this page,
2255                                         * so media errors will not choke
2256                                         * background writeout for the entire
2257                                         * file. This has consequences for
2258                                         * range_cyclic semantics (ie. it may
2259                                         * not be suitable for data integrity
2260                                         * writeout).
2261                                         */
2262                                        done_index = page->index + 1;
2263                                        done = 1;
2264                                        break;
2265                                }
2266                        }
2267
2268                        /*
2269                         * We stop writing back only if we are not doing
2270                         * integrity sync. In case of integrity sync we have to
2271                         * keep going until we have written all the pages
2272                         * we tagged for writeback prior to entering this loop.
2273                         */
2274                        if (--wbc->nr_to_write <= 0 &&
2275                            wbc->sync_mode == WB_SYNC_NONE) {
2276                                done = 1;
2277                                break;
2278                        }
2279                }
2280                pagevec_release(&pvec);
2281                cond_resched();
2282        }
2283        if (!cycled && !done) {
2284                /*
2285                 * range_cyclic:
2286                 * We hit the last page and there is more work to be done: wrap
2287                 * back to the start of the file
2288                 */
2289                cycled = 1;
2290                index = 0;
2291                end = writeback_index - 1;
2292                goto retry;
2293        }
2294        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2295                mapping->writeback_index = done_index;
2296
2297        return ret;
2298}
2299EXPORT_SYMBOL(write_cache_pages);
2300
2301/*
2302 * Function used by generic_writepages to call the real writepage
2303 * function and set the mapping flags on error
2304 */
2305static int __writepage(struct page *page, struct writeback_control *wbc,
2306                       void *data)
2307{
2308        struct address_space *mapping = data;
2309        int ret = mapping->a_ops->writepage(page, wbc);
2310        mapping_set_error(mapping, ret);
2311        return ret;
2312}
2313
2314/**
2315 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2316 * @mapping: address space structure to write
2317 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2318 *
2319 * This is a library function, which implements the writepages()
2320 * address_space_operation.
2321 */
2322int generic_writepages(struct address_space *mapping,
2323                       struct writeback_control *wbc)
2324{
2325        struct blk_plug plug;
2326        int ret;
2327
2328        /* deal with chardevs and other special file */
2329        if (!mapping->a_ops->writepage)
2330                return 0;
2331
2332        blk_start_plug(&plug);
2333        ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2334        blk_finish_plug(&plug);
2335        return ret;
2336}
2337
2338EXPORT_SYMBOL(generic_writepages);
2339
2340int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2341{
2342        int ret;
2343
2344        if (wbc->nr_to_write <= 0)
2345                return 0;
2346        if (mapping->a_ops->writepages)
2347                ret = mapping->a_ops->writepages(mapping, wbc);
2348        else
2349                ret = generic_writepages(mapping, wbc);
2350        return ret;
2351}
2352
2353/**
2354 * write_one_page - write out a single page and optionally wait on I/O
2355 * @page: the page to write
2356 * @wait: if true, wait on writeout
2357 *
2358 * The page must be locked by the caller and will be unlocked upon return.
2359 *
2360 * write_one_page() returns a negative error code if I/O failed.
2361 */
2362int write_one_page(struct page *page, int wait)
2363{
2364        struct address_space *mapping = page->mapping;
2365        int ret = 0;
2366        struct writeback_control wbc = {
2367                .sync_mode = WB_SYNC_ALL,
2368                .nr_to_write = 1,
2369        };
2370
2371        BUG_ON(!PageLocked(page));
2372
2373        if (wait)
2374                wait_on_page_writeback(page);
2375
2376        if (clear_page_dirty_for_io(page)) {
2377                get_page(page);
2378                ret = mapping->a_ops->writepage(page, &wbc);
2379                if (ret == 0 && wait) {
2380                        wait_on_page_writeback(page);
2381                        if (PageError(page))
2382                                ret = -EIO;
2383                }
2384                put_page(page);
2385        } else {
2386                unlock_page(page);
2387        }
2388        return ret;
2389}
2390EXPORT_SYMBOL(write_one_page);
2391
2392/*
2393 * For address_spaces which do not use buffers nor write back.
2394 */
2395int __set_page_dirty_no_writeback(struct page *page)
2396{
2397        if (!PageDirty(page))
2398                return !TestSetPageDirty(page);
2399        return 0;
2400}
2401
2402/*
2403 * Helper function for set_page_dirty family.
2404 *
2405 * Caller must hold lock_page_memcg().
2406 *
2407 * NOTE: This relies on being atomic wrt interrupts.
2408 */
2409void account_page_dirtied(struct page *page, struct address_space *mapping)
2410{
2411        struct inode *inode = mapping->host;
2412
2413        trace_writeback_dirty_page(page, mapping);
2414
2415        if (mapping_cap_account_dirty(mapping)) {
2416                struct bdi_writeback *wb;
2417
2418                inode_attach_wb(inode, page);
2419                wb = inode_to_wb(inode);
2420
2421                mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2422                __inc_node_page_state(page, NR_FILE_DIRTY);
2423                __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2424                __inc_node_page_state(page, NR_DIRTIED);
2425                __inc_wb_stat(wb, WB_RECLAIMABLE);
2426                __inc_wb_stat(wb, WB_DIRTIED);
2427                task_io_account_write(PAGE_SIZE);
2428                current->nr_dirtied++;
2429                this_cpu_inc(bdp_ratelimits);
2430        }
2431}
2432EXPORT_SYMBOL(account_page_dirtied);
2433
2434/*
2435 * Helper function for deaccounting dirty page without writeback.
2436 *
2437 * Caller must hold lock_page_memcg().
2438 */
2439void account_page_cleaned(struct page *page, struct address_space *mapping,
2440                          struct bdi_writeback *wb)
2441{
2442        if (mapping_cap_account_dirty(mapping)) {
2443                mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2444                dec_node_page_state(page, NR_FILE_DIRTY);
2445                dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2446                dec_wb_stat(wb, WB_RECLAIMABLE);
2447                task_io_account_cancelled_write(PAGE_SIZE);
2448        }
2449}
2450
2451/*
2452 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2453 * its radix tree.
2454 *
2455 * This is also used when a single buffer is being dirtied: we want to set the
2456 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2457 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2458 *
2459 * The caller must ensure this doesn't race with truncation.  Most will simply
2460 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2461 * the pte lock held, which also locks out truncation.
2462 */
2463int __set_page_dirty_nobuffers(struct page *page)
2464{
2465        lock_page_memcg(page);
2466        if (!TestSetPageDirty(page)) {
2467                struct address_space *mapping = page_mapping(page);
2468                unsigned long flags;
2469
2470                if (!mapping) {
2471                        unlock_page_memcg(page);
2472                        return 1;
2473                }
2474
2475                spin_lock_irqsave(&mapping->tree_lock, flags);
2476                BUG_ON(page_mapping(page) != mapping);
2477                WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2478                account_page_dirtied(page, mapping);
2479                radix_tree_tag_set(&mapping->page_tree, page_index(page),
2480                                   PAGECACHE_TAG_DIRTY);
2481                spin_unlock_irqrestore(&mapping->tree_lock, flags);
2482                unlock_page_memcg(page);
2483
2484                if (mapping->host) {
2485                        /* !PageAnon && !swapper_space */
2486                        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2487                }
2488                return 1;
2489        }
2490        unlock_page_memcg(page);
2491        return 0;
2492}
2493EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2494
2495/*
2496 * Call this whenever redirtying a page, to de-account the dirty counters
2497 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2498 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2499 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2500 * control.
2501 */
2502void account_page_redirty(struct page *page)
2503{
2504        struct address_space *mapping = page->mapping;
2505
2506        if (mapping && mapping_cap_account_dirty(mapping)) {
2507                struct inode *inode = mapping->host;
2508                struct bdi_writeback *wb;
2509                bool locked;
2510
2511                wb = unlocked_inode_to_wb_begin(inode, &locked);
2512                current->nr_dirtied--;
2513                dec_node_page_state(page, NR_DIRTIED);
2514                dec_wb_stat(wb, WB_DIRTIED);
2515                unlocked_inode_to_wb_end(inode, locked);
2516        }
2517}
2518EXPORT_SYMBOL(account_page_redirty);
2519
2520/*
2521 * When a writepage implementation decides that it doesn't want to write this
2522 * page for some reason, it should redirty the locked page via
2523 * redirty_page_for_writepage() and it should then unlock the page and return 0
2524 */
2525int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2526{
2527        int ret;
2528
2529        wbc->pages_skipped++;
2530        ret = __set_page_dirty_nobuffers(page);
2531        account_page_redirty(page);
2532        return ret;
2533}
2534EXPORT_SYMBOL(redirty_page_for_writepage);
2535
2536/*
2537 * Dirty a page.
2538 *
2539 * For pages with a mapping this should be done under the page lock
2540 * for the benefit of asynchronous memory errors who prefer a consistent
2541 * dirty state. This rule can be broken in some special cases,
2542 * but should be better not to.
2543 *
2544 * If the mapping doesn't provide a set_page_dirty a_op, then
2545 * just fall through and assume that it wants buffer_heads.
2546 */
2547int set_page_dirty(struct page *page)
2548{
2549        struct address_space *mapping = page_mapping(page);
2550
2551        page = compound_head(page);
2552        if (likely(mapping)) {
2553                int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2554                /*
2555                 * readahead/lru_deactivate_page could remain
2556                 * PG_readahead/PG_reclaim due to race with end_page_writeback
2557                 * About readahead, if the page is written, the flags would be
2558                 * reset. So no problem.
2559                 * About lru_deactivate_page, if the page is redirty, the flag
2560                 * will be reset. So no problem. but if the page is used by readahead
2561                 * it will confuse readahead and make it restart the size rampup
2562                 * process. But it's a trivial problem.
2563                 */
2564                if (PageReclaim(page))
2565                        ClearPageReclaim(page);
2566#ifdef CONFIG_BLOCK
2567                if (!spd)
2568                        spd = __set_page_dirty_buffers;
2569#endif
2570                return (*spd)(page);
2571        }
2572        if (!PageDirty(page)) {
2573                if (!TestSetPageDirty(page))
2574                        return 1;
2575        }
2576        return 0;
2577}
2578EXPORT_SYMBOL(set_page_dirty);
2579
2580/*
2581 * set_page_dirty() is racy if the caller has no reference against
2582 * page->mapping->host, and if the page is unlocked.  This is because another
2583 * CPU could truncate the page off the mapping and then free the mapping.
2584 *
2585 * Usually, the page _is_ locked, or the caller is a user-space process which
2586 * holds a reference on the inode by having an open file.
2587 *
2588 * In other cases, the page should be locked before running set_page_dirty().
2589 */
2590int set_page_dirty_lock(struct page *page)
2591{
2592        int ret;
2593
2594        lock_page(page);
2595        ret = set_page_dirty(page);
2596        unlock_page(page);
2597        return ret;
2598}
2599EXPORT_SYMBOL(set_page_dirty_lock);
2600
2601/*
2602 * This cancels just the dirty bit on the kernel page itself, it does NOT
2603 * actually remove dirty bits on any mmap's that may be around. It also
2604 * leaves the page tagged dirty, so any sync activity will still find it on
2605 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2606 * look at the dirty bits in the VM.
2607 *
2608 * Doing this should *normally* only ever be done when a page is truncated,
2609 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2610 * this when it notices that somebody has cleaned out all the buffers on a
2611 * page without actually doing it through the VM. Can you say "ext3 is
2612 * horribly ugly"? Thought you could.
2613 */
2614void cancel_dirty_page(struct page *page)
2615{
2616        struct address_space *mapping = page_mapping(page);
2617
2618        if (mapping_cap_account_dirty(mapping)) {
2619                struct inode *inode = mapping->host;
2620                struct bdi_writeback *wb;
2621                bool locked;
2622
2623                lock_page_memcg(page);
2624                wb = unlocked_inode_to_wb_begin(inode, &locked);
2625
2626                if (TestClearPageDirty(page))
2627                        account_page_cleaned(page, mapping, wb);
2628
2629                unlocked_inode_to_wb_end(inode, locked);
2630                unlock_page_memcg(page);
2631        } else {
2632                ClearPageDirty(page);
2633        }
2634}
2635EXPORT_SYMBOL(cancel_dirty_page);
2636
2637/*
2638 * Clear a page's dirty flag, while caring for dirty memory accounting.
2639 * Returns true if the page was previously dirty.
2640 *
2641 * This is for preparing to put the page under writeout.  We leave the page
2642 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2643 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2644 * implementation will run either set_page_writeback() or set_page_dirty(),
2645 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2646 * back into sync.
2647 *
2648 * This incoherency between the page's dirty flag and radix-tree tag is
2649 * unfortunate, but it only exists while the page is locked.
2650 */
2651int clear_page_dirty_for_io(struct page *page)
2652{
2653        struct address_space *mapping = page_mapping(page);
2654        int ret = 0;
2655
2656        BUG_ON(!PageLocked(page));
2657
2658        if (mapping && mapping_cap_account_dirty(mapping)) {
2659                struct inode *inode = mapping->host;
2660                struct bdi_writeback *wb;
2661                bool locked;
2662
2663                /*
2664                 * Yes, Virginia, this is indeed insane.
2665                 *
2666                 * We use this sequence to make sure that
2667                 *  (a) we account for dirty stats properly
2668                 *  (b) we tell the low-level filesystem to
2669                 *      mark the whole page dirty if it was
2670                 *      dirty in a pagetable. Only to then
2671                 *  (c) clean the page again and return 1 to
2672                 *      cause the writeback.
2673                 *
2674                 * This way we avoid all nasty races with the
2675                 * dirty bit in multiple places and clearing
2676                 * them concurrently from different threads.
2677                 *
2678                 * Note! Normally the "set_page_dirty(page)"
2679                 * has no effect on the actual dirty bit - since
2680                 * that will already usually be set. But we
2681                 * need the side effects, and it can help us
2682                 * avoid races.
2683                 *
2684                 * We basically use the page "master dirty bit"
2685                 * as a serialization point for all the different
2686                 * threads doing their things.
2687                 */
2688                if (page_mkclean(page))
2689                        set_page_dirty(page);
2690                /*
2691                 * We carefully synchronise fault handlers against
2692                 * installing a dirty pte and marking the page dirty
2693                 * at this point.  We do this by having them hold the
2694                 * page lock while dirtying the page, and pages are
2695                 * always locked coming in here, so we get the desired
2696                 * exclusion.
2697                 */
2698                wb = unlocked_inode_to_wb_begin(inode, &locked);
2699                if (TestClearPageDirty(page)) {
2700                        mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2701                        dec_node_page_state(page, NR_FILE_DIRTY);
2702                        dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2703                        dec_wb_stat(wb, WB_RECLAIMABLE);
2704                        ret = 1;
2705                }
2706                unlocked_inode_to_wb_end(inode, locked);
2707                return ret;
2708        }
2709        return TestClearPageDirty(page);
2710}
2711EXPORT_SYMBOL(clear_page_dirty_for_io);
2712
2713int test_clear_page_writeback(struct page *page)
2714{
2715        struct address_space *mapping = page_mapping(page);
2716        int ret;
2717
2718        lock_page_memcg(page);
2719        if (mapping && mapping_use_writeback_tags(mapping)) {
2720                struct inode *inode = mapping->host;
2721                struct backing_dev_info *bdi = inode_to_bdi(inode);
2722                unsigned long flags;
2723
2724                spin_lock_irqsave(&mapping->tree_lock, flags);
2725                ret = TestClearPageWriteback(page);
2726                if (ret) {
2727                        radix_tree_tag_clear(&mapping->page_tree,
2728                                                page_index(page),
2729                                                PAGECACHE_TAG_WRITEBACK);
2730                        if (bdi_cap_account_writeback(bdi)) {
2731                                struct bdi_writeback *wb = inode_to_wb(inode);
2732
2733                                __dec_wb_stat(wb, WB_WRITEBACK);
2734                                __wb_writeout_inc(wb);
2735                        }
2736                }
2737
2738                if (mapping->host && !mapping_tagged(mapping,
2739                                                     PAGECACHE_TAG_WRITEBACK))
2740                        sb_clear_inode_writeback(mapping->host);
2741
2742                spin_unlock_irqrestore(&mapping->tree_lock, flags);
2743        } else {
2744                ret = TestClearPageWriteback(page);
2745        }
2746        if (ret) {
2747                mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2748                dec_node_page_state(page, NR_WRITEBACK);
2749                dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2750                inc_node_page_state(page, NR_WRITTEN);
2751        }
2752        unlock_page_memcg(page);
2753        return ret;
2754}
2755
2756int __test_set_page_writeback(struct page *page, bool keep_write)
2757{
2758        struct address_space *mapping = page_mapping(page);
2759        int ret;
2760
2761        lock_page_memcg(page);
2762        if (mapping && mapping_use_writeback_tags(mapping)) {
2763                struct inode *inode = mapping->host;
2764                struct backing_dev_info *bdi = inode_to_bdi(inode);
2765                unsigned long flags;
2766
2767                spin_lock_irqsave(&mapping->tree_lock, flags);
2768                ret = TestSetPageWriteback(page);
2769                if (!ret) {
2770                        bool on_wblist;
2771
2772                        on_wblist = mapping_tagged(mapping,
2773                                                   PAGECACHE_TAG_WRITEBACK);
2774
2775                        radix_tree_tag_set(&mapping->page_tree,
2776                                                page_index(page),
2777                                                PAGECACHE_TAG_WRITEBACK);
2778                        if (bdi_cap_account_writeback(bdi))
2779                                __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2780
2781                        /*
2782                         * We can come through here when swapping anonymous
2783                         * pages, so we don't necessarily have an inode to track
2784                         * for sync.
2785                         */
2786                        if (mapping->host && !on_wblist)
2787                                sb_mark_inode_writeback(mapping->host);
2788                }
2789                if (!PageDirty(page))
2790                        radix_tree_tag_clear(&mapping->page_tree,
2791                                                page_index(page),
2792                                                PAGECACHE_TAG_DIRTY);
2793                if (!keep_write)
2794                        radix_tree_tag_clear(&mapping->page_tree,
2795                                                page_index(page),
2796                                                PAGECACHE_TAG_TOWRITE);
2797                spin_unlock_irqrestore(&mapping->tree_lock, flags);
2798        } else {
2799                ret = TestSetPageWriteback(page);
2800        }
2801        if (!ret) {
2802                mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2803                inc_node_page_state(page, NR_WRITEBACK);
2804                inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2805        }
2806        unlock_page_memcg(page);
2807        return ret;
2808
2809}
2810EXPORT_SYMBOL(__test_set_page_writeback);
2811
2812/*
2813 * Return true if any of the pages in the mapping are marked with the
2814 * passed tag.
2815 */
2816int mapping_tagged(struct address_space *mapping, int tag)
2817{
2818        return radix_tree_tagged(&mapping->page_tree, tag);
2819}
2820EXPORT_SYMBOL(mapping_tagged);
2821
2822/**
2823 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2824 * @page:       The page to wait on.
2825 *
2826 * This function determines if the given page is related to a backing device
2827 * that requires page contents to be held stable during writeback.  If so, then
2828 * it will wait for any pending writeback to complete.
2829 */
2830void wait_for_stable_page(struct page *page)
2831{
2832        if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2833                wait_on_page_writeback(page);
2834}
2835EXPORT_SYMBOL_GPL(wait_for_stable_page);
2836