linux/mm/vmalloc.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
  24#include <linux/notifier.h>
  25#include <linux/rbtree.h>
  26#include <linux/radix-tree.h>
  27#include <linux/rcupdate.h>
  28#include <linux/pfn.h>
  29#include <linux/kmemleak.h>
  30#include <linux/atomic.h>
  31#include <linux/compiler.h>
  32#include <linux/llist.h>
  33#include <linux/bitops.h>
  34
  35#include <asm/uaccess.h>
  36#include <asm/tlbflush.h>
  37#include <asm/shmparam.h>
  38
  39#include "internal.h"
  40
  41struct vfree_deferred {
  42        struct llist_head list;
  43        struct work_struct wq;
  44};
  45static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  46
  47static void __vunmap(const void *, int);
  48
  49static void free_work(struct work_struct *w)
  50{
  51        struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  52        struct llist_node *llnode = llist_del_all(&p->list);
  53        while (llnode) {
  54                void *p = llnode;
  55                llnode = llist_next(llnode);
  56                __vunmap(p, 1);
  57        }
  58}
  59
  60/*** Page table manipulation functions ***/
  61
  62static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  63{
  64        pte_t *pte;
  65
  66        pte = pte_offset_kernel(pmd, addr);
  67        do {
  68                pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  69                WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  70        } while (pte++, addr += PAGE_SIZE, addr != end);
  71}
  72
  73static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  74{
  75        pmd_t *pmd;
  76        unsigned long next;
  77
  78        pmd = pmd_offset(pud, addr);
  79        do {
  80                next = pmd_addr_end(addr, end);
  81                if (pmd_clear_huge(pmd))
  82                        continue;
  83                if (pmd_none_or_clear_bad(pmd))
  84                        continue;
  85                vunmap_pte_range(pmd, addr, next);
  86        } while (pmd++, addr = next, addr != end);
  87}
  88
  89static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  90{
  91        pud_t *pud;
  92        unsigned long next;
  93
  94        pud = pud_offset(pgd, addr);
  95        do {
  96                next = pud_addr_end(addr, end);
  97                if (pud_clear_huge(pud))
  98                        continue;
  99                if (pud_none_or_clear_bad(pud))
 100                        continue;
 101                vunmap_pmd_range(pud, addr, next);
 102        } while (pud++, addr = next, addr != end);
 103}
 104
 105static void vunmap_page_range(unsigned long addr, unsigned long end)
 106{
 107        pgd_t *pgd;
 108        unsigned long next;
 109
 110        BUG_ON(addr >= end);
 111        pgd = pgd_offset_k(addr);
 112        do {
 113                next = pgd_addr_end(addr, end);
 114                if (pgd_none_or_clear_bad(pgd))
 115                        continue;
 116                vunmap_pud_range(pgd, addr, next);
 117        } while (pgd++, addr = next, addr != end);
 118}
 119
 120static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 121                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 122{
 123        pte_t *pte;
 124
 125        /*
 126         * nr is a running index into the array which helps higher level
 127         * callers keep track of where we're up to.
 128         */
 129
 130        pte = pte_alloc_kernel(pmd, addr);
 131        if (!pte)
 132                return -ENOMEM;
 133        do {
 134                struct page *page = pages[*nr];
 135
 136                if (WARN_ON(!pte_none(*pte)))
 137                        return -EBUSY;
 138                if (WARN_ON(!page))
 139                        return -ENOMEM;
 140                set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 141                (*nr)++;
 142        } while (pte++, addr += PAGE_SIZE, addr != end);
 143        return 0;
 144}
 145
 146static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 147                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 148{
 149        pmd_t *pmd;
 150        unsigned long next;
 151
 152        pmd = pmd_alloc(&init_mm, pud, addr);
 153        if (!pmd)
 154                return -ENOMEM;
 155        do {
 156                next = pmd_addr_end(addr, end);
 157                if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 158                        return -ENOMEM;
 159        } while (pmd++, addr = next, addr != end);
 160        return 0;
 161}
 162
 163static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
 164                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 165{
 166        pud_t *pud;
 167        unsigned long next;
 168
 169        pud = pud_alloc(&init_mm, pgd, addr);
 170        if (!pud)
 171                return -ENOMEM;
 172        do {
 173                next = pud_addr_end(addr, end);
 174                if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 175                        return -ENOMEM;
 176        } while (pud++, addr = next, addr != end);
 177        return 0;
 178}
 179
 180/*
 181 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 182 * will have pfns corresponding to the "pages" array.
 183 *
 184 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 185 */
 186static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 187                                   pgprot_t prot, struct page **pages)
 188{
 189        pgd_t *pgd;
 190        unsigned long next;
 191        unsigned long addr = start;
 192        int err = 0;
 193        int nr = 0;
 194
 195        BUG_ON(addr >= end);
 196        pgd = pgd_offset_k(addr);
 197        do {
 198                next = pgd_addr_end(addr, end);
 199                err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
 200                if (err)
 201                        return err;
 202        } while (pgd++, addr = next, addr != end);
 203
 204        return nr;
 205}
 206
 207static int vmap_page_range(unsigned long start, unsigned long end,
 208                           pgprot_t prot, struct page **pages)
 209{
 210        int ret;
 211
 212        ret = vmap_page_range_noflush(start, end, prot, pages);
 213        flush_cache_vmap(start, end);
 214        return ret;
 215}
 216
 217int is_vmalloc_or_module_addr(const void *x)
 218{
 219        /*
 220         * ARM, x86-64 and sparc64 put modules in a special place,
 221         * and fall back on vmalloc() if that fails. Others
 222         * just put it in the vmalloc space.
 223         */
 224#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 225        unsigned long addr = (unsigned long)x;
 226        if (addr >= MODULES_VADDR && addr < MODULES_END)
 227                return 1;
 228#endif
 229        return is_vmalloc_addr(x);
 230}
 231
 232/*
 233 * Walk a vmap address to the struct page it maps.
 234 */
 235struct page *vmalloc_to_page(const void *vmalloc_addr)
 236{
 237        unsigned long addr = (unsigned long) vmalloc_addr;
 238        struct page *page = NULL;
 239        pgd_t *pgd = pgd_offset_k(addr);
 240
 241        /*
 242         * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 243         * architectures that do not vmalloc module space
 244         */
 245        VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 246
 247        if (!pgd_none(*pgd)) {
 248                pud_t *pud = pud_offset(pgd, addr);
 249                if (!pud_none(*pud)) {
 250                        pmd_t *pmd = pmd_offset(pud, addr);
 251                        if (!pmd_none(*pmd)) {
 252                                pte_t *ptep, pte;
 253
 254                                ptep = pte_offset_map(pmd, addr);
 255                                pte = *ptep;
 256                                if (pte_present(pte))
 257                                        page = pte_page(pte);
 258                                pte_unmap(ptep);
 259                        }
 260                }
 261        }
 262        return page;
 263}
 264EXPORT_SYMBOL(vmalloc_to_page);
 265
 266/*
 267 * Map a vmalloc()-space virtual address to the physical page frame number.
 268 */
 269unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 270{
 271        return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 272}
 273EXPORT_SYMBOL(vmalloc_to_pfn);
 274
 275
 276/*** Global kva allocator ***/
 277
 278#define VM_VM_AREA      0x04
 279
 280static DEFINE_SPINLOCK(vmap_area_lock);
 281/* Export for kexec only */
 282LIST_HEAD(vmap_area_list);
 283static LLIST_HEAD(vmap_purge_list);
 284static struct rb_root vmap_area_root = RB_ROOT;
 285
 286/* The vmap cache globals are protected by vmap_area_lock */
 287static struct rb_node *free_vmap_cache;
 288static unsigned long cached_hole_size;
 289static unsigned long cached_vstart;
 290static unsigned long cached_align;
 291
 292static unsigned long vmap_area_pcpu_hole;
 293
 294static struct vmap_area *__find_vmap_area(unsigned long addr)
 295{
 296        struct rb_node *n = vmap_area_root.rb_node;
 297
 298        while (n) {
 299                struct vmap_area *va;
 300
 301                va = rb_entry(n, struct vmap_area, rb_node);
 302                if (addr < va->va_start)
 303                        n = n->rb_left;
 304                else if (addr >= va->va_end)
 305                        n = n->rb_right;
 306                else
 307                        return va;
 308        }
 309
 310        return NULL;
 311}
 312
 313static void __insert_vmap_area(struct vmap_area *va)
 314{
 315        struct rb_node **p = &vmap_area_root.rb_node;
 316        struct rb_node *parent = NULL;
 317        struct rb_node *tmp;
 318
 319        while (*p) {
 320                struct vmap_area *tmp_va;
 321
 322                parent = *p;
 323                tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 324                if (va->va_start < tmp_va->va_end)
 325                        p = &(*p)->rb_left;
 326                else if (va->va_end > tmp_va->va_start)
 327                        p = &(*p)->rb_right;
 328                else
 329                        BUG();
 330        }
 331
 332        rb_link_node(&va->rb_node, parent, p);
 333        rb_insert_color(&va->rb_node, &vmap_area_root);
 334
 335        /* address-sort this list */
 336        tmp = rb_prev(&va->rb_node);
 337        if (tmp) {
 338                struct vmap_area *prev;
 339                prev = rb_entry(tmp, struct vmap_area, rb_node);
 340                list_add_rcu(&va->list, &prev->list);
 341        } else
 342                list_add_rcu(&va->list, &vmap_area_list);
 343}
 344
 345static void purge_vmap_area_lazy(void);
 346
 347static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 348
 349/*
 350 * Allocate a region of KVA of the specified size and alignment, within the
 351 * vstart and vend.
 352 */
 353static struct vmap_area *alloc_vmap_area(unsigned long size,
 354                                unsigned long align,
 355                                unsigned long vstart, unsigned long vend,
 356                                int node, gfp_t gfp_mask)
 357{
 358        struct vmap_area *va;
 359        struct rb_node *n;
 360        unsigned long addr;
 361        int purged = 0;
 362        struct vmap_area *first;
 363
 364        BUG_ON(!size);
 365        BUG_ON(offset_in_page(size));
 366        BUG_ON(!is_power_of_2(align));
 367
 368        might_sleep_if(gfpflags_allow_blocking(gfp_mask));
 369
 370        va = kmalloc_node(sizeof(struct vmap_area),
 371                        gfp_mask & GFP_RECLAIM_MASK, node);
 372        if (unlikely(!va))
 373                return ERR_PTR(-ENOMEM);
 374
 375        /*
 376         * Only scan the relevant parts containing pointers to other objects
 377         * to avoid false negatives.
 378         */
 379        kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
 380
 381retry:
 382        spin_lock(&vmap_area_lock);
 383        /*
 384         * Invalidate cache if we have more permissive parameters.
 385         * cached_hole_size notes the largest hole noticed _below_
 386         * the vmap_area cached in free_vmap_cache: if size fits
 387         * into that hole, we want to scan from vstart to reuse
 388         * the hole instead of allocating above free_vmap_cache.
 389         * Note that __free_vmap_area may update free_vmap_cache
 390         * without updating cached_hole_size or cached_align.
 391         */
 392        if (!free_vmap_cache ||
 393                        size < cached_hole_size ||
 394                        vstart < cached_vstart ||
 395                        align < cached_align) {
 396nocache:
 397                cached_hole_size = 0;
 398                free_vmap_cache = NULL;
 399        }
 400        /* record if we encounter less permissive parameters */
 401        cached_vstart = vstart;
 402        cached_align = align;
 403
 404        /* find starting point for our search */
 405        if (free_vmap_cache) {
 406                first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 407                addr = ALIGN(first->va_end, align);
 408                if (addr < vstart)
 409                        goto nocache;
 410                if (addr + size < addr)
 411                        goto overflow;
 412
 413        } else {
 414                addr = ALIGN(vstart, align);
 415                if (addr + size < addr)
 416                        goto overflow;
 417
 418                n = vmap_area_root.rb_node;
 419                first = NULL;
 420
 421                while (n) {
 422                        struct vmap_area *tmp;
 423                        tmp = rb_entry(n, struct vmap_area, rb_node);
 424                        if (tmp->va_end >= addr) {
 425                                first = tmp;
 426                                if (tmp->va_start <= addr)
 427                                        break;
 428                                n = n->rb_left;
 429                        } else
 430                                n = n->rb_right;
 431                }
 432
 433                if (!first)
 434                        goto found;
 435        }
 436
 437        /* from the starting point, walk areas until a suitable hole is found */
 438        while (addr + size > first->va_start && addr + size <= vend) {
 439                if (addr + cached_hole_size < first->va_start)
 440                        cached_hole_size = first->va_start - addr;
 441                addr = ALIGN(first->va_end, align);
 442                if (addr + size < addr)
 443                        goto overflow;
 444
 445                if (list_is_last(&first->list, &vmap_area_list))
 446                        goto found;
 447
 448                first = list_next_entry(first, list);
 449        }
 450
 451found:
 452        if (addr + size > vend)
 453                goto overflow;
 454
 455        va->va_start = addr;
 456        va->va_end = addr + size;
 457        va->flags = 0;
 458        __insert_vmap_area(va);
 459        free_vmap_cache = &va->rb_node;
 460        spin_unlock(&vmap_area_lock);
 461
 462        BUG_ON(!IS_ALIGNED(va->va_start, align));
 463        BUG_ON(va->va_start < vstart);
 464        BUG_ON(va->va_end > vend);
 465
 466        return va;
 467
 468overflow:
 469        spin_unlock(&vmap_area_lock);
 470        if (!purged) {
 471                purge_vmap_area_lazy();
 472                purged = 1;
 473                goto retry;
 474        }
 475
 476        if (gfpflags_allow_blocking(gfp_mask)) {
 477                unsigned long freed = 0;
 478                blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
 479                if (freed > 0) {
 480                        purged = 0;
 481                        goto retry;
 482                }
 483        }
 484
 485        if (printk_ratelimit())
 486                pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
 487                        size);
 488        kfree(va);
 489        return ERR_PTR(-EBUSY);
 490}
 491
 492int register_vmap_purge_notifier(struct notifier_block *nb)
 493{
 494        return blocking_notifier_chain_register(&vmap_notify_list, nb);
 495}
 496EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
 497
 498int unregister_vmap_purge_notifier(struct notifier_block *nb)
 499{
 500        return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
 501}
 502EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
 503
 504static void __free_vmap_area(struct vmap_area *va)
 505{
 506        BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 507
 508        if (free_vmap_cache) {
 509                if (va->va_end < cached_vstart) {
 510                        free_vmap_cache = NULL;
 511                } else {
 512                        struct vmap_area *cache;
 513                        cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 514                        if (va->va_start <= cache->va_start) {
 515                                free_vmap_cache = rb_prev(&va->rb_node);
 516                                /*
 517                                 * We don't try to update cached_hole_size or
 518                                 * cached_align, but it won't go very wrong.
 519                                 */
 520                        }
 521                }
 522        }
 523        rb_erase(&va->rb_node, &vmap_area_root);
 524        RB_CLEAR_NODE(&va->rb_node);
 525        list_del_rcu(&va->list);
 526
 527        /*
 528         * Track the highest possible candidate for pcpu area
 529         * allocation.  Areas outside of vmalloc area can be returned
 530         * here too, consider only end addresses which fall inside
 531         * vmalloc area proper.
 532         */
 533        if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 534                vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 535
 536        kfree_rcu(va, rcu_head);
 537}
 538
 539/*
 540 * Free a region of KVA allocated by alloc_vmap_area
 541 */
 542static void free_vmap_area(struct vmap_area *va)
 543{
 544        spin_lock(&vmap_area_lock);
 545        __free_vmap_area(va);
 546        spin_unlock(&vmap_area_lock);
 547}
 548
 549/*
 550 * Clear the pagetable entries of a given vmap_area
 551 */
 552static void unmap_vmap_area(struct vmap_area *va)
 553{
 554        vunmap_page_range(va->va_start, va->va_end);
 555}
 556
 557static void vmap_debug_free_range(unsigned long start, unsigned long end)
 558{
 559        /*
 560         * Unmap page tables and force a TLB flush immediately if pagealloc
 561         * debugging is enabled.  This catches use after free bugs similarly to
 562         * those in linear kernel virtual address space after a page has been
 563         * freed.
 564         *
 565         * All the lazy freeing logic is still retained, in order to minimise
 566         * intrusiveness of this debugging feature.
 567         *
 568         * This is going to be *slow* (linear kernel virtual address debugging
 569         * doesn't do a broadcast TLB flush so it is a lot faster).
 570         */
 571        if (debug_pagealloc_enabled()) {
 572                vunmap_page_range(start, end);
 573                flush_tlb_kernel_range(start, end);
 574        }
 575}
 576
 577/*
 578 * lazy_max_pages is the maximum amount of virtual address space we gather up
 579 * before attempting to purge with a TLB flush.
 580 *
 581 * There is a tradeoff here: a larger number will cover more kernel page tables
 582 * and take slightly longer to purge, but it will linearly reduce the number of
 583 * global TLB flushes that must be performed. It would seem natural to scale
 584 * this number up linearly with the number of CPUs (because vmapping activity
 585 * could also scale linearly with the number of CPUs), however it is likely
 586 * that in practice, workloads might be constrained in other ways that mean
 587 * vmap activity will not scale linearly with CPUs. Also, I want to be
 588 * conservative and not introduce a big latency on huge systems, so go with
 589 * a less aggressive log scale. It will still be an improvement over the old
 590 * code, and it will be simple to change the scale factor if we find that it
 591 * becomes a problem on bigger systems.
 592 */
 593static unsigned long lazy_max_pages(void)
 594{
 595        unsigned int log;
 596
 597        log = fls(num_online_cpus());
 598
 599        return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 600}
 601
 602static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 603
 604/* for per-CPU blocks */
 605static void purge_fragmented_blocks_allcpus(void);
 606
 607/*
 608 * called before a call to iounmap() if the caller wants vm_area_struct's
 609 * immediately freed.
 610 */
 611void set_iounmap_nonlazy(void)
 612{
 613        atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 614}
 615
 616/*
 617 * Purges all lazily-freed vmap areas.
 618 *
 619 * If sync is 0 then don't purge if there is already a purge in progress.
 620 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 621 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 622 * their own TLB flushing).
 623 * Returns with *start = min(*start, lowest purged address)
 624 *              *end = max(*end, highest purged address)
 625 */
 626static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
 627                                        int sync, int force_flush)
 628{
 629        static DEFINE_SPINLOCK(purge_lock);
 630        struct llist_node *valist;
 631        struct vmap_area *va;
 632        struct vmap_area *n_va;
 633        int nr = 0;
 634
 635        /*
 636         * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
 637         * should not expect such behaviour. This just simplifies locking for
 638         * the case that isn't actually used at the moment anyway.
 639         */
 640        if (!sync && !force_flush) {
 641                if (!spin_trylock(&purge_lock))
 642                        return;
 643        } else
 644                spin_lock(&purge_lock);
 645
 646        if (sync)
 647                purge_fragmented_blocks_allcpus();
 648
 649        valist = llist_del_all(&vmap_purge_list);
 650        llist_for_each_entry(va, valist, purge_list) {
 651                if (va->va_start < *start)
 652                        *start = va->va_start;
 653                if (va->va_end > *end)
 654                        *end = va->va_end;
 655                nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
 656        }
 657
 658        if (nr)
 659                atomic_sub(nr, &vmap_lazy_nr);
 660
 661        if (nr || force_flush)
 662                flush_tlb_kernel_range(*start, *end);
 663
 664        if (nr) {
 665                spin_lock(&vmap_area_lock);
 666                llist_for_each_entry_safe(va, n_va, valist, purge_list)
 667                        __free_vmap_area(va);
 668                spin_unlock(&vmap_area_lock);
 669        }
 670        spin_unlock(&purge_lock);
 671}
 672
 673/*
 674 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 675 * is already purging.
 676 */
 677static void try_purge_vmap_area_lazy(void)
 678{
 679        unsigned long start = ULONG_MAX, end = 0;
 680
 681        __purge_vmap_area_lazy(&start, &end, 0, 0);
 682}
 683
 684/*
 685 * Kick off a purge of the outstanding lazy areas.
 686 */
 687static void purge_vmap_area_lazy(void)
 688{
 689        unsigned long start = ULONG_MAX, end = 0;
 690
 691        __purge_vmap_area_lazy(&start, &end, 1, 0);
 692}
 693
 694/*
 695 * Free a vmap area, caller ensuring that the area has been unmapped
 696 * and flush_cache_vunmap had been called for the correct range
 697 * previously.
 698 */
 699static void free_vmap_area_noflush(struct vmap_area *va)
 700{
 701        int nr_lazy;
 702
 703        nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
 704                                    &vmap_lazy_nr);
 705
 706        /* After this point, we may free va at any time */
 707        llist_add(&va->purge_list, &vmap_purge_list);
 708
 709        if (unlikely(nr_lazy > lazy_max_pages()))
 710                try_purge_vmap_area_lazy();
 711}
 712
 713/*
 714 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 715 * called for the correct range previously.
 716 */
 717static void free_unmap_vmap_area_noflush(struct vmap_area *va)
 718{
 719        unmap_vmap_area(va);
 720        free_vmap_area_noflush(va);
 721}
 722
 723/*
 724 * Free and unmap a vmap area
 725 */
 726static void free_unmap_vmap_area(struct vmap_area *va)
 727{
 728        flush_cache_vunmap(va->va_start, va->va_end);
 729        free_unmap_vmap_area_noflush(va);
 730}
 731
 732static struct vmap_area *find_vmap_area(unsigned long addr)
 733{
 734        struct vmap_area *va;
 735
 736        spin_lock(&vmap_area_lock);
 737        va = __find_vmap_area(addr);
 738        spin_unlock(&vmap_area_lock);
 739
 740        return va;
 741}
 742
 743static void free_unmap_vmap_area_addr(unsigned long addr)
 744{
 745        struct vmap_area *va;
 746
 747        va = find_vmap_area(addr);
 748        BUG_ON(!va);
 749        free_unmap_vmap_area(va);
 750}
 751
 752
 753/*** Per cpu kva allocator ***/
 754
 755/*
 756 * vmap space is limited especially on 32 bit architectures. Ensure there is
 757 * room for at least 16 percpu vmap blocks per CPU.
 758 */
 759/*
 760 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 761 * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
 762 * instead (we just need a rough idea)
 763 */
 764#if BITS_PER_LONG == 32
 765#define VMALLOC_SPACE           (128UL*1024*1024)
 766#else
 767#define VMALLOC_SPACE           (128UL*1024*1024*1024)
 768#endif
 769
 770#define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
 771#define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
 772#define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
 773#define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
 774#define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
 775#define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
 776#define VMAP_BBMAP_BITS         \
 777                VMAP_MIN(VMAP_BBMAP_BITS_MAX,   \
 778                VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
 779                        VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 780
 781#define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
 782
 783static bool vmap_initialized __read_mostly = false;
 784
 785struct vmap_block_queue {
 786        spinlock_t lock;
 787        struct list_head free;
 788};
 789
 790struct vmap_block {
 791        spinlock_t lock;
 792        struct vmap_area *va;
 793        unsigned long free, dirty;
 794        unsigned long dirty_min, dirty_max; /*< dirty range */
 795        struct list_head free_list;
 796        struct rcu_head rcu_head;
 797        struct list_head purge;
 798};
 799
 800/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 801static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 802
 803/*
 804 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 805 * in the free path. Could get rid of this if we change the API to return a
 806 * "cookie" from alloc, to be passed to free. But no big deal yet.
 807 */
 808static DEFINE_SPINLOCK(vmap_block_tree_lock);
 809static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 810
 811/*
 812 * We should probably have a fallback mechanism to allocate virtual memory
 813 * out of partially filled vmap blocks. However vmap block sizing should be
 814 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 815 * big problem.
 816 */
 817
 818static unsigned long addr_to_vb_idx(unsigned long addr)
 819{
 820        addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 821        addr /= VMAP_BLOCK_SIZE;
 822        return addr;
 823}
 824
 825static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
 826{
 827        unsigned long addr;
 828
 829        addr = va_start + (pages_off << PAGE_SHIFT);
 830        BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
 831        return (void *)addr;
 832}
 833
 834/**
 835 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 836 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 837 * @order:    how many 2^order pages should be occupied in newly allocated block
 838 * @gfp_mask: flags for the page level allocator
 839 *
 840 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
 841 */
 842static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
 843{
 844        struct vmap_block_queue *vbq;
 845        struct vmap_block *vb;
 846        struct vmap_area *va;
 847        unsigned long vb_idx;
 848        int node, err;
 849        void *vaddr;
 850
 851        node = numa_node_id();
 852
 853        vb = kmalloc_node(sizeof(struct vmap_block),
 854                        gfp_mask & GFP_RECLAIM_MASK, node);
 855        if (unlikely(!vb))
 856                return ERR_PTR(-ENOMEM);
 857
 858        va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 859                                        VMALLOC_START, VMALLOC_END,
 860                                        node, gfp_mask);
 861        if (IS_ERR(va)) {
 862                kfree(vb);
 863                return ERR_CAST(va);
 864        }
 865
 866        err = radix_tree_preload(gfp_mask);
 867        if (unlikely(err)) {
 868                kfree(vb);
 869                free_vmap_area(va);
 870                return ERR_PTR(err);
 871        }
 872
 873        vaddr = vmap_block_vaddr(va->va_start, 0);
 874        spin_lock_init(&vb->lock);
 875        vb->va = va;
 876        /* At least something should be left free */
 877        BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
 878        vb->free = VMAP_BBMAP_BITS - (1UL << order);
 879        vb->dirty = 0;
 880        vb->dirty_min = VMAP_BBMAP_BITS;
 881        vb->dirty_max = 0;
 882        INIT_LIST_HEAD(&vb->free_list);
 883
 884        vb_idx = addr_to_vb_idx(va->va_start);
 885        spin_lock(&vmap_block_tree_lock);
 886        err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 887        spin_unlock(&vmap_block_tree_lock);
 888        BUG_ON(err);
 889        radix_tree_preload_end();
 890
 891        vbq = &get_cpu_var(vmap_block_queue);
 892        spin_lock(&vbq->lock);
 893        list_add_tail_rcu(&vb->free_list, &vbq->free);
 894        spin_unlock(&vbq->lock);
 895        put_cpu_var(vmap_block_queue);
 896
 897        return vaddr;
 898}
 899
 900static void free_vmap_block(struct vmap_block *vb)
 901{
 902        struct vmap_block *tmp;
 903        unsigned long vb_idx;
 904
 905        vb_idx = addr_to_vb_idx(vb->va->va_start);
 906        spin_lock(&vmap_block_tree_lock);
 907        tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 908        spin_unlock(&vmap_block_tree_lock);
 909        BUG_ON(tmp != vb);
 910
 911        free_vmap_area_noflush(vb->va);
 912        kfree_rcu(vb, rcu_head);
 913}
 914
 915static void purge_fragmented_blocks(int cpu)
 916{
 917        LIST_HEAD(purge);
 918        struct vmap_block *vb;
 919        struct vmap_block *n_vb;
 920        struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 921
 922        rcu_read_lock();
 923        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 924
 925                if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 926                        continue;
 927
 928                spin_lock(&vb->lock);
 929                if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 930                        vb->free = 0; /* prevent further allocs after releasing lock */
 931                        vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 932                        vb->dirty_min = 0;
 933                        vb->dirty_max = VMAP_BBMAP_BITS;
 934                        spin_lock(&vbq->lock);
 935                        list_del_rcu(&vb->free_list);
 936                        spin_unlock(&vbq->lock);
 937                        spin_unlock(&vb->lock);
 938                        list_add_tail(&vb->purge, &purge);
 939                } else
 940                        spin_unlock(&vb->lock);
 941        }
 942        rcu_read_unlock();
 943
 944        list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 945                list_del(&vb->purge);
 946                free_vmap_block(vb);
 947        }
 948}
 949
 950static void purge_fragmented_blocks_allcpus(void)
 951{
 952        int cpu;
 953
 954        for_each_possible_cpu(cpu)
 955                purge_fragmented_blocks(cpu);
 956}
 957
 958static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 959{
 960        struct vmap_block_queue *vbq;
 961        struct vmap_block *vb;
 962        void *vaddr = NULL;
 963        unsigned int order;
 964
 965        BUG_ON(offset_in_page(size));
 966        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 967        if (WARN_ON(size == 0)) {
 968                /*
 969                 * Allocating 0 bytes isn't what caller wants since
 970                 * get_order(0) returns funny result. Just warn and terminate
 971                 * early.
 972                 */
 973                return NULL;
 974        }
 975        order = get_order(size);
 976
 977        rcu_read_lock();
 978        vbq = &get_cpu_var(vmap_block_queue);
 979        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 980                unsigned long pages_off;
 981
 982                spin_lock(&vb->lock);
 983                if (vb->free < (1UL << order)) {
 984                        spin_unlock(&vb->lock);
 985                        continue;
 986                }
 987
 988                pages_off = VMAP_BBMAP_BITS - vb->free;
 989                vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
 990                vb->free -= 1UL << order;
 991                if (vb->free == 0) {
 992                        spin_lock(&vbq->lock);
 993                        list_del_rcu(&vb->free_list);
 994                        spin_unlock(&vbq->lock);
 995                }
 996
 997                spin_unlock(&vb->lock);
 998                break;
 999        }
1000
1001        put_cpu_var(vmap_block_queue);
1002        rcu_read_unlock();
1003
1004        /* Allocate new block if nothing was found */
1005        if (!vaddr)
1006                vaddr = new_vmap_block(order, gfp_mask);
1007
1008        return vaddr;
1009}
1010
1011static void vb_free(const void *addr, unsigned long size)
1012{
1013        unsigned long offset;
1014        unsigned long vb_idx;
1015        unsigned int order;
1016        struct vmap_block *vb;
1017
1018        BUG_ON(offset_in_page(size));
1019        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1020
1021        flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1022
1023        order = get_order(size);
1024
1025        offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1026        offset >>= PAGE_SHIFT;
1027
1028        vb_idx = addr_to_vb_idx((unsigned long)addr);
1029        rcu_read_lock();
1030        vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1031        rcu_read_unlock();
1032        BUG_ON(!vb);
1033
1034        vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1035
1036        spin_lock(&vb->lock);
1037
1038        /* Expand dirty range */
1039        vb->dirty_min = min(vb->dirty_min, offset);
1040        vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1041
1042        vb->dirty += 1UL << order;
1043        if (vb->dirty == VMAP_BBMAP_BITS) {
1044                BUG_ON(vb->free);
1045                spin_unlock(&vb->lock);
1046                free_vmap_block(vb);
1047        } else
1048                spin_unlock(&vb->lock);
1049}
1050
1051/**
1052 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1053 *
1054 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1055 * to amortize TLB flushing overheads. What this means is that any page you
1056 * have now, may, in a former life, have been mapped into kernel virtual
1057 * address by the vmap layer and so there might be some CPUs with TLB entries
1058 * still referencing that page (additional to the regular 1:1 kernel mapping).
1059 *
1060 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1061 * be sure that none of the pages we have control over will have any aliases
1062 * from the vmap layer.
1063 */
1064void vm_unmap_aliases(void)
1065{
1066        unsigned long start = ULONG_MAX, end = 0;
1067        int cpu;
1068        int flush = 0;
1069
1070        if (unlikely(!vmap_initialized))
1071                return;
1072
1073        for_each_possible_cpu(cpu) {
1074                struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1075                struct vmap_block *vb;
1076
1077                rcu_read_lock();
1078                list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1079                        spin_lock(&vb->lock);
1080                        if (vb->dirty) {
1081                                unsigned long va_start = vb->va->va_start;
1082                                unsigned long s, e;
1083
1084                                s = va_start + (vb->dirty_min << PAGE_SHIFT);
1085                                e = va_start + (vb->dirty_max << PAGE_SHIFT);
1086
1087                                start = min(s, start);
1088                                end   = max(e, end);
1089
1090                                flush = 1;
1091                        }
1092                        spin_unlock(&vb->lock);
1093                }
1094                rcu_read_unlock();
1095        }
1096
1097        __purge_vmap_area_lazy(&start, &end, 1, flush);
1098}
1099EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1100
1101/**
1102 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1103 * @mem: the pointer returned by vm_map_ram
1104 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1105 */
1106void vm_unmap_ram(const void *mem, unsigned int count)
1107{
1108        unsigned long size = (unsigned long)count << PAGE_SHIFT;
1109        unsigned long addr = (unsigned long)mem;
1110
1111        BUG_ON(!addr);
1112        BUG_ON(addr < VMALLOC_START);
1113        BUG_ON(addr > VMALLOC_END);
1114        BUG_ON(!PAGE_ALIGNED(addr));
1115
1116        debug_check_no_locks_freed(mem, size);
1117        vmap_debug_free_range(addr, addr+size);
1118
1119        if (likely(count <= VMAP_MAX_ALLOC))
1120                vb_free(mem, size);
1121        else
1122                free_unmap_vmap_area_addr(addr);
1123}
1124EXPORT_SYMBOL(vm_unmap_ram);
1125
1126/**
1127 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1128 * @pages: an array of pointers to the pages to be mapped
1129 * @count: number of pages
1130 * @node: prefer to allocate data structures on this node
1131 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1132 *
1133 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1134 * faster than vmap so it's good.  But if you mix long-life and short-life
1135 * objects with vm_map_ram(), it could consume lots of address space through
1136 * fragmentation (especially on a 32bit machine).  You could see failures in
1137 * the end.  Please use this function for short-lived objects.
1138 *
1139 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1140 */
1141void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1142{
1143        unsigned long size = (unsigned long)count << PAGE_SHIFT;
1144        unsigned long addr;
1145        void *mem;
1146
1147        if (likely(count <= VMAP_MAX_ALLOC)) {
1148                mem = vb_alloc(size, GFP_KERNEL);
1149                if (IS_ERR(mem))
1150                        return NULL;
1151                addr = (unsigned long)mem;
1152        } else {
1153                struct vmap_area *va;
1154                va = alloc_vmap_area(size, PAGE_SIZE,
1155                                VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1156                if (IS_ERR(va))
1157                        return NULL;
1158
1159                addr = va->va_start;
1160                mem = (void *)addr;
1161        }
1162        if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1163                vm_unmap_ram(mem, count);
1164                return NULL;
1165        }
1166        return mem;
1167}
1168EXPORT_SYMBOL(vm_map_ram);
1169
1170static struct vm_struct *vmlist __initdata;
1171/**
1172 * vm_area_add_early - add vmap area early during boot
1173 * @vm: vm_struct to add
1174 *
1175 * This function is used to add fixed kernel vm area to vmlist before
1176 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1177 * should contain proper values and the other fields should be zero.
1178 *
1179 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1180 */
1181void __init vm_area_add_early(struct vm_struct *vm)
1182{
1183        struct vm_struct *tmp, **p;
1184
1185        BUG_ON(vmap_initialized);
1186        for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1187                if (tmp->addr >= vm->addr) {
1188                        BUG_ON(tmp->addr < vm->addr + vm->size);
1189                        break;
1190                } else
1191                        BUG_ON(tmp->addr + tmp->size > vm->addr);
1192        }
1193        vm->next = *p;
1194        *p = vm;
1195}
1196
1197/**
1198 * vm_area_register_early - register vmap area early during boot
1199 * @vm: vm_struct to register
1200 * @align: requested alignment
1201 *
1202 * This function is used to register kernel vm area before
1203 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1204 * proper values on entry and other fields should be zero.  On return,
1205 * vm->addr contains the allocated address.
1206 *
1207 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1208 */
1209void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1210{
1211        static size_t vm_init_off __initdata;
1212        unsigned long addr;
1213
1214        addr = ALIGN(VMALLOC_START + vm_init_off, align);
1215        vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1216
1217        vm->addr = (void *)addr;
1218
1219        vm_area_add_early(vm);
1220}
1221
1222void __init vmalloc_init(void)
1223{
1224        struct vmap_area *va;
1225        struct vm_struct *tmp;
1226        int i;
1227
1228        for_each_possible_cpu(i) {
1229                struct vmap_block_queue *vbq;
1230                struct vfree_deferred *p;
1231
1232                vbq = &per_cpu(vmap_block_queue, i);
1233                spin_lock_init(&vbq->lock);
1234                INIT_LIST_HEAD(&vbq->free);
1235                p = &per_cpu(vfree_deferred, i);
1236                init_llist_head(&p->list);
1237                INIT_WORK(&p->wq, free_work);
1238        }
1239
1240        /* Import existing vmlist entries. */
1241        for (tmp = vmlist; tmp; tmp = tmp->next) {
1242                va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1243                va->flags = VM_VM_AREA;
1244                va->va_start = (unsigned long)tmp->addr;
1245                va->va_end = va->va_start + tmp->size;
1246                va->vm = tmp;
1247                __insert_vmap_area(va);
1248        }
1249
1250        vmap_area_pcpu_hole = VMALLOC_END;
1251
1252        vmap_initialized = true;
1253}
1254
1255/**
1256 * map_kernel_range_noflush - map kernel VM area with the specified pages
1257 * @addr: start of the VM area to map
1258 * @size: size of the VM area to map
1259 * @prot: page protection flags to use
1260 * @pages: pages to map
1261 *
1262 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1263 * specify should have been allocated using get_vm_area() and its
1264 * friends.
1265 *
1266 * NOTE:
1267 * This function does NOT do any cache flushing.  The caller is
1268 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1269 * before calling this function.
1270 *
1271 * RETURNS:
1272 * The number of pages mapped on success, -errno on failure.
1273 */
1274int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1275                             pgprot_t prot, struct page **pages)
1276{
1277        return vmap_page_range_noflush(addr, addr + size, prot, pages);
1278}
1279
1280/**
1281 * unmap_kernel_range_noflush - unmap kernel VM area
1282 * @addr: start of the VM area to unmap
1283 * @size: size of the VM area to unmap
1284 *
1285 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1286 * specify should have been allocated using get_vm_area() and its
1287 * friends.
1288 *
1289 * NOTE:
1290 * This function does NOT do any cache flushing.  The caller is
1291 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1292 * before calling this function and flush_tlb_kernel_range() after.
1293 */
1294void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1295{
1296        vunmap_page_range(addr, addr + size);
1297}
1298EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1299
1300/**
1301 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1302 * @addr: start of the VM area to unmap
1303 * @size: size of the VM area to unmap
1304 *
1305 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1306 * the unmapping and tlb after.
1307 */
1308void unmap_kernel_range(unsigned long addr, unsigned long size)
1309{
1310        unsigned long end = addr + size;
1311
1312        flush_cache_vunmap(addr, end);
1313        vunmap_page_range(addr, end);
1314        flush_tlb_kernel_range(addr, end);
1315}
1316EXPORT_SYMBOL_GPL(unmap_kernel_range);
1317
1318int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1319{
1320        unsigned long addr = (unsigned long)area->addr;
1321        unsigned long end = addr + get_vm_area_size(area);
1322        int err;
1323
1324        err = vmap_page_range(addr, end, prot, pages);
1325
1326        return err > 0 ? 0 : err;
1327}
1328EXPORT_SYMBOL_GPL(map_vm_area);
1329
1330static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1331                              unsigned long flags, const void *caller)
1332{
1333        spin_lock(&vmap_area_lock);
1334        vm->flags = flags;
1335        vm->addr = (void *)va->va_start;
1336        vm->size = va->va_end - va->va_start;
1337        vm->caller = caller;
1338        va->vm = vm;
1339        va->flags |= VM_VM_AREA;
1340        spin_unlock(&vmap_area_lock);
1341}
1342
1343static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1344{
1345        /*
1346         * Before removing VM_UNINITIALIZED,
1347         * we should make sure that vm has proper values.
1348         * Pair with smp_rmb() in show_numa_info().
1349         */
1350        smp_wmb();
1351        vm->flags &= ~VM_UNINITIALIZED;
1352}
1353
1354static struct vm_struct *__get_vm_area_node(unsigned long size,
1355                unsigned long align, unsigned long flags, unsigned long start,
1356                unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1357{
1358        struct vmap_area *va;
1359        struct vm_struct *area;
1360
1361        BUG_ON(in_interrupt());
1362        size = PAGE_ALIGN(size);
1363        if (unlikely(!size))
1364                return NULL;
1365
1366        if (flags & VM_IOREMAP)
1367                align = 1ul << clamp_t(int, get_count_order_long(size),
1368                                       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1369
1370        area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1371        if (unlikely(!area))
1372                return NULL;
1373
1374        if (!(flags & VM_NO_GUARD))
1375                size += PAGE_SIZE;
1376
1377        va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1378        if (IS_ERR(va)) {
1379                kfree(area);
1380                return NULL;
1381        }
1382
1383        setup_vmalloc_vm(area, va, flags, caller);
1384
1385        return area;
1386}
1387
1388struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1389                                unsigned long start, unsigned long end)
1390{
1391        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1392                                  GFP_KERNEL, __builtin_return_address(0));
1393}
1394EXPORT_SYMBOL_GPL(__get_vm_area);
1395
1396struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1397                                       unsigned long start, unsigned long end,
1398                                       const void *caller)
1399{
1400        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1401                                  GFP_KERNEL, caller);
1402}
1403
1404/**
1405 *      get_vm_area  -  reserve a contiguous kernel virtual area
1406 *      @size:          size of the area
1407 *      @flags:         %VM_IOREMAP for I/O mappings or VM_ALLOC
1408 *
1409 *      Search an area of @size in the kernel virtual mapping area,
1410 *      and reserved it for out purposes.  Returns the area descriptor
1411 *      on success or %NULL on failure.
1412 */
1413struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1414{
1415        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1416                                  NUMA_NO_NODE, GFP_KERNEL,
1417                                  __builtin_return_address(0));
1418}
1419
1420struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1421                                const void *caller)
1422{
1423        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1424                                  NUMA_NO_NODE, GFP_KERNEL, caller);
1425}
1426
1427/**
1428 *      find_vm_area  -  find a continuous kernel virtual area
1429 *      @addr:          base address
1430 *
1431 *      Search for the kernel VM area starting at @addr, and return it.
1432 *      It is up to the caller to do all required locking to keep the returned
1433 *      pointer valid.
1434 */
1435struct vm_struct *find_vm_area(const void *addr)
1436{
1437        struct vmap_area *va;
1438
1439        va = find_vmap_area((unsigned long)addr);
1440        if (va && va->flags & VM_VM_AREA)
1441                return va->vm;
1442
1443        return NULL;
1444}
1445
1446/**
1447 *      remove_vm_area  -  find and remove a continuous kernel virtual area
1448 *      @addr:          base address
1449 *
1450 *      Search for the kernel VM area starting at @addr, and remove it.
1451 *      This function returns the found VM area, but using it is NOT safe
1452 *      on SMP machines, except for its size or flags.
1453 */
1454struct vm_struct *remove_vm_area(const void *addr)
1455{
1456        struct vmap_area *va;
1457
1458        va = find_vmap_area((unsigned long)addr);
1459        if (va && va->flags & VM_VM_AREA) {
1460                struct vm_struct *vm = va->vm;
1461
1462                spin_lock(&vmap_area_lock);
1463                va->vm = NULL;
1464                va->flags &= ~VM_VM_AREA;
1465                spin_unlock(&vmap_area_lock);
1466
1467                vmap_debug_free_range(va->va_start, va->va_end);
1468                kasan_free_shadow(vm);
1469                free_unmap_vmap_area(va);
1470
1471                return vm;
1472        }
1473        return NULL;
1474}
1475
1476static void __vunmap(const void *addr, int deallocate_pages)
1477{
1478        struct vm_struct *area;
1479
1480        if (!addr)
1481                return;
1482
1483        if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1484                        addr))
1485                return;
1486
1487        area = remove_vm_area(addr);
1488        if (unlikely(!area)) {
1489                WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1490                                addr);
1491                return;
1492        }
1493
1494        debug_check_no_locks_freed(addr, get_vm_area_size(area));
1495        debug_check_no_obj_freed(addr, get_vm_area_size(area));
1496
1497        if (deallocate_pages) {
1498                int i;
1499
1500                for (i = 0; i < area->nr_pages; i++) {
1501                        struct page *page = area->pages[i];
1502
1503                        BUG_ON(!page);
1504                        __free_pages(page, 0);
1505                }
1506
1507                kvfree(area->pages);
1508        }
1509
1510        kfree(area);
1511        return;
1512}
1513 
1514/**
1515 *      vfree  -  release memory allocated by vmalloc()
1516 *      @addr:          memory base address
1517 *
1518 *      Free the virtually continuous memory area starting at @addr, as
1519 *      obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1520 *      NULL, no operation is performed.
1521 *
1522 *      Must not be called in NMI context (strictly speaking, only if we don't
1523 *      have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1524 *      conventions for vfree() arch-depenedent would be a really bad idea)
1525 *
1526 *      NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1527 */
1528void vfree(const void *addr)
1529{
1530        BUG_ON(in_nmi());
1531
1532        kmemleak_free(addr);
1533
1534        if (!addr)
1535                return;
1536        if (unlikely(in_interrupt())) {
1537                struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1538                if (llist_add((struct llist_node *)addr, &p->list))
1539                        schedule_work(&p->wq);
1540        } else
1541                __vunmap(addr, 1);
1542}
1543EXPORT_SYMBOL(vfree);
1544
1545/**
1546 *      vunmap  -  release virtual mapping obtained by vmap()
1547 *      @addr:          memory base address
1548 *
1549 *      Free the virtually contiguous memory area starting at @addr,
1550 *      which was created from the page array passed to vmap().
1551 *
1552 *      Must not be called in interrupt context.
1553 */
1554void vunmap(const void *addr)
1555{
1556        BUG_ON(in_interrupt());
1557        might_sleep();
1558        if (addr)
1559                __vunmap(addr, 0);
1560}
1561EXPORT_SYMBOL(vunmap);
1562
1563/**
1564 *      vmap  -  map an array of pages into virtually contiguous space
1565 *      @pages:         array of page pointers
1566 *      @count:         number of pages to map
1567 *      @flags:         vm_area->flags
1568 *      @prot:          page protection for the mapping
1569 *
1570 *      Maps @count pages from @pages into contiguous kernel virtual
1571 *      space.
1572 */
1573void *vmap(struct page **pages, unsigned int count,
1574                unsigned long flags, pgprot_t prot)
1575{
1576        struct vm_struct *area;
1577        unsigned long size;             /* In bytes */
1578
1579        might_sleep();
1580
1581        if (count > totalram_pages)
1582                return NULL;
1583
1584        size = (unsigned long)count << PAGE_SHIFT;
1585        area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1586        if (!area)
1587                return NULL;
1588
1589        if (map_vm_area(area, prot, pages)) {
1590                vunmap(area->addr);
1591                return NULL;
1592        }
1593
1594        return area->addr;
1595}
1596EXPORT_SYMBOL(vmap);
1597
1598static void *__vmalloc_node(unsigned long size, unsigned long align,
1599                            gfp_t gfp_mask, pgprot_t prot,
1600                            int node, const void *caller);
1601static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1602                                 pgprot_t prot, int node)
1603{
1604        struct page **pages;
1605        unsigned int nr_pages, array_size, i;
1606        const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1607        const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1608
1609        nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1610        array_size = (nr_pages * sizeof(struct page *));
1611
1612        area->nr_pages = nr_pages;
1613        /* Please note that the recursion is strictly bounded. */
1614        if (array_size > PAGE_SIZE) {
1615                pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1616                                PAGE_KERNEL, node, area->caller);
1617        } else {
1618                pages = kmalloc_node(array_size, nested_gfp, node);
1619        }
1620        area->pages = pages;
1621        if (!area->pages) {
1622                remove_vm_area(area->addr);
1623                kfree(area);
1624                return NULL;
1625        }
1626
1627        for (i = 0; i < area->nr_pages; i++) {
1628                struct page *page;
1629
1630                if (node == NUMA_NO_NODE)
1631                        page = alloc_page(alloc_mask);
1632                else
1633                        page = alloc_pages_node(node, alloc_mask, 0);
1634
1635                if (unlikely(!page)) {
1636                        /* Successfully allocated i pages, free them in __vunmap() */
1637                        area->nr_pages = i;
1638                        goto fail;
1639                }
1640                area->pages[i] = page;
1641                if (gfpflags_allow_blocking(gfp_mask))
1642                        cond_resched();
1643        }
1644
1645        if (map_vm_area(area, prot, pages))
1646                goto fail;
1647        return area->addr;
1648
1649fail:
1650        warn_alloc(gfp_mask,
1651                          "vmalloc: allocation failure, allocated %ld of %ld bytes",
1652                          (area->nr_pages*PAGE_SIZE), area->size);
1653        vfree(area->addr);
1654        return NULL;
1655}
1656
1657/**
1658 *      __vmalloc_node_range  -  allocate virtually contiguous memory
1659 *      @size:          allocation size
1660 *      @align:         desired alignment
1661 *      @start:         vm area range start
1662 *      @end:           vm area range end
1663 *      @gfp_mask:      flags for the page level allocator
1664 *      @prot:          protection mask for the allocated pages
1665 *      @vm_flags:      additional vm area flags (e.g. %VM_NO_GUARD)
1666 *      @node:          node to use for allocation or NUMA_NO_NODE
1667 *      @caller:        caller's return address
1668 *
1669 *      Allocate enough pages to cover @size from the page level
1670 *      allocator with @gfp_mask flags.  Map them into contiguous
1671 *      kernel virtual space, using a pagetable protection of @prot.
1672 */
1673void *__vmalloc_node_range(unsigned long size, unsigned long align,
1674                        unsigned long start, unsigned long end, gfp_t gfp_mask,
1675                        pgprot_t prot, unsigned long vm_flags, int node,
1676                        const void *caller)
1677{
1678        struct vm_struct *area;
1679        void *addr;
1680        unsigned long real_size = size;
1681
1682        size = PAGE_ALIGN(size);
1683        if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1684                goto fail;
1685
1686        area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1687                                vm_flags, start, end, node, gfp_mask, caller);
1688        if (!area)
1689                goto fail;
1690
1691        addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1692        if (!addr)
1693                return NULL;
1694
1695        /*
1696         * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1697         * flag. It means that vm_struct is not fully initialized.
1698         * Now, it is fully initialized, so remove this flag here.
1699         */
1700        clear_vm_uninitialized_flag(area);
1701
1702        /*
1703         * A ref_count = 2 is needed because vm_struct allocated in
1704         * __get_vm_area_node() contains a reference to the virtual address of
1705         * the vmalloc'ed block.
1706         */
1707        kmemleak_alloc(addr, real_size, 2, gfp_mask);
1708
1709        return addr;
1710
1711fail:
1712        warn_alloc(gfp_mask,
1713                          "vmalloc: allocation failure: %lu bytes", real_size);
1714        return NULL;
1715}
1716
1717/**
1718 *      __vmalloc_node  -  allocate virtually contiguous memory
1719 *      @size:          allocation size
1720 *      @align:         desired alignment
1721 *      @gfp_mask:      flags for the page level allocator
1722 *      @prot:          protection mask for the allocated pages
1723 *      @node:          node to use for allocation or NUMA_NO_NODE
1724 *      @caller:        caller's return address
1725 *
1726 *      Allocate enough pages to cover @size from the page level
1727 *      allocator with @gfp_mask flags.  Map them into contiguous
1728 *      kernel virtual space, using a pagetable protection of @prot.
1729 */
1730static void *__vmalloc_node(unsigned long size, unsigned long align,
1731                            gfp_t gfp_mask, pgprot_t prot,
1732                            int node, const void *caller)
1733{
1734        return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1735                                gfp_mask, prot, 0, node, caller);
1736}
1737
1738void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1739{
1740        return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1741                                __builtin_return_address(0));
1742}
1743EXPORT_SYMBOL(__vmalloc);
1744
1745static inline void *__vmalloc_node_flags(unsigned long size,
1746                                        int node, gfp_t flags)
1747{
1748        return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1749                                        node, __builtin_return_address(0));
1750}
1751
1752/**
1753 *      vmalloc  -  allocate virtually contiguous memory
1754 *      @size:          allocation size
1755 *      Allocate enough pages to cover @size from the page level
1756 *      allocator and map them into contiguous kernel virtual space.
1757 *
1758 *      For tight control over page level allocator and protection flags
1759 *      use __vmalloc() instead.
1760 */
1761void *vmalloc(unsigned long size)
1762{
1763        return __vmalloc_node_flags(size, NUMA_NO_NODE,
1764                                    GFP_KERNEL | __GFP_HIGHMEM);
1765}
1766EXPORT_SYMBOL(vmalloc);
1767
1768/**
1769 *      vzalloc - allocate virtually contiguous memory with zero fill
1770 *      @size:  allocation size
1771 *      Allocate enough pages to cover @size from the page level
1772 *      allocator and map them into contiguous kernel virtual space.
1773 *      The memory allocated is set to zero.
1774 *
1775 *      For tight control over page level allocator and protection flags
1776 *      use __vmalloc() instead.
1777 */
1778void *vzalloc(unsigned long size)
1779{
1780        return __vmalloc_node_flags(size, NUMA_NO_NODE,
1781                                GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1782}
1783EXPORT_SYMBOL(vzalloc);
1784
1785/**
1786 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1787 * @size: allocation size
1788 *
1789 * The resulting memory area is zeroed so it can be mapped to userspace
1790 * without leaking data.
1791 */
1792void *vmalloc_user(unsigned long size)
1793{
1794        struct vm_struct *area;
1795        void *ret;
1796
1797        ret = __vmalloc_node(size, SHMLBA,
1798                             GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1799                             PAGE_KERNEL, NUMA_NO_NODE,
1800                             __builtin_return_address(0));
1801        if (ret) {
1802                area = find_vm_area(ret);
1803                area->flags |= VM_USERMAP;
1804        }
1805        return ret;
1806}
1807EXPORT_SYMBOL(vmalloc_user);
1808
1809/**
1810 *      vmalloc_node  -  allocate memory on a specific node
1811 *      @size:          allocation size
1812 *      @node:          numa node
1813 *
1814 *      Allocate enough pages to cover @size from the page level
1815 *      allocator and map them into contiguous kernel virtual space.
1816 *
1817 *      For tight control over page level allocator and protection flags
1818 *      use __vmalloc() instead.
1819 */
1820void *vmalloc_node(unsigned long size, int node)
1821{
1822        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1823                                        node, __builtin_return_address(0));
1824}
1825EXPORT_SYMBOL(vmalloc_node);
1826
1827/**
1828 * vzalloc_node - allocate memory on a specific node with zero fill
1829 * @size:       allocation size
1830 * @node:       numa node
1831 *
1832 * Allocate enough pages to cover @size from the page level
1833 * allocator and map them into contiguous kernel virtual space.
1834 * The memory allocated is set to zero.
1835 *
1836 * For tight control over page level allocator and protection flags
1837 * use __vmalloc_node() instead.
1838 */
1839void *vzalloc_node(unsigned long size, int node)
1840{
1841        return __vmalloc_node_flags(size, node,
1842                         GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1843}
1844EXPORT_SYMBOL(vzalloc_node);
1845
1846#ifndef PAGE_KERNEL_EXEC
1847# define PAGE_KERNEL_EXEC PAGE_KERNEL
1848#endif
1849
1850/**
1851 *      vmalloc_exec  -  allocate virtually contiguous, executable memory
1852 *      @size:          allocation size
1853 *
1854 *      Kernel-internal function to allocate enough pages to cover @size
1855 *      the page level allocator and map them into contiguous and
1856 *      executable kernel virtual space.
1857 *
1858 *      For tight control over page level allocator and protection flags
1859 *      use __vmalloc() instead.
1860 */
1861
1862void *vmalloc_exec(unsigned long size)
1863{
1864        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1865                              NUMA_NO_NODE, __builtin_return_address(0));
1866}
1867
1868#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1869#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1870#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1871#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1872#else
1873#define GFP_VMALLOC32 GFP_KERNEL
1874#endif
1875
1876/**
1877 *      vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1878 *      @size:          allocation size
1879 *
1880 *      Allocate enough 32bit PA addressable pages to cover @size from the
1881 *      page level allocator and map them into contiguous kernel virtual space.
1882 */
1883void *vmalloc_32(unsigned long size)
1884{
1885        return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1886                              NUMA_NO_NODE, __builtin_return_address(0));
1887}
1888EXPORT_SYMBOL(vmalloc_32);
1889
1890/**
1891 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1892 *      @size:          allocation size
1893 *
1894 * The resulting memory area is 32bit addressable and zeroed so it can be
1895 * mapped to userspace without leaking data.
1896 */
1897void *vmalloc_32_user(unsigned long size)
1898{
1899        struct vm_struct *area;
1900        void *ret;
1901
1902        ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1903                             NUMA_NO_NODE, __builtin_return_address(0));
1904        if (ret) {
1905                area = find_vm_area(ret);
1906                area->flags |= VM_USERMAP;
1907        }
1908        return ret;
1909}
1910EXPORT_SYMBOL(vmalloc_32_user);
1911
1912/*
1913 * small helper routine , copy contents to buf from addr.
1914 * If the page is not present, fill zero.
1915 */
1916
1917static int aligned_vread(char *buf, char *addr, unsigned long count)
1918{
1919        struct page *p;
1920        int copied = 0;
1921
1922        while (count) {
1923                unsigned long offset, length;
1924
1925                offset = offset_in_page(addr);
1926                length = PAGE_SIZE - offset;
1927                if (length > count)
1928                        length = count;
1929                p = vmalloc_to_page(addr);
1930                /*
1931                 * To do safe access to this _mapped_ area, we need
1932                 * lock. But adding lock here means that we need to add
1933                 * overhead of vmalloc()/vfree() calles for this _debug_
1934                 * interface, rarely used. Instead of that, we'll use
1935                 * kmap() and get small overhead in this access function.
1936                 */
1937                if (p) {
1938                        /*
1939                         * we can expect USER0 is not used (see vread/vwrite's
1940                         * function description)
1941                         */
1942                        void *map = kmap_atomic(p);
1943                        memcpy(buf, map + offset, length);
1944                        kunmap_atomic(map);
1945                } else
1946                        memset(buf, 0, length);
1947
1948                addr += length;
1949                buf += length;
1950                copied += length;
1951                count -= length;
1952        }
1953        return copied;
1954}
1955
1956static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1957{
1958        struct page *p;
1959        int copied = 0;
1960
1961        while (count) {
1962                unsigned long offset, length;
1963
1964                offset = offset_in_page(addr);
1965                length = PAGE_SIZE - offset;
1966                if (length > count)
1967                        length = count;
1968                p = vmalloc_to_page(addr);
1969                /*
1970                 * To do safe access to this _mapped_ area, we need
1971                 * lock. But adding lock here means that we need to add
1972                 * overhead of vmalloc()/vfree() calles for this _debug_
1973                 * interface, rarely used. Instead of that, we'll use
1974                 * kmap() and get small overhead in this access function.
1975                 */
1976                if (p) {
1977                        /*
1978                         * we can expect USER0 is not used (see vread/vwrite's
1979                         * function description)
1980                         */
1981                        void *map = kmap_atomic(p);
1982                        memcpy(map + offset, buf, length);
1983                        kunmap_atomic(map);
1984                }
1985                addr += length;
1986                buf += length;
1987                copied += length;
1988                count -= length;
1989        }
1990        return copied;
1991}
1992
1993/**
1994 *      vread() -  read vmalloc area in a safe way.
1995 *      @buf:           buffer for reading data
1996 *      @addr:          vm address.
1997 *      @count:         number of bytes to be read.
1998 *
1999 *      Returns # of bytes which addr and buf should be increased.
2000 *      (same number to @count). Returns 0 if [addr...addr+count) doesn't
2001 *      includes any intersect with alive vmalloc area.
2002 *
2003 *      This function checks that addr is a valid vmalloc'ed area, and
2004 *      copy data from that area to a given buffer. If the given memory range
2005 *      of [addr...addr+count) includes some valid address, data is copied to
2006 *      proper area of @buf. If there are memory holes, they'll be zero-filled.
2007 *      IOREMAP area is treated as memory hole and no copy is done.
2008 *
2009 *      If [addr...addr+count) doesn't includes any intersects with alive
2010 *      vm_struct area, returns 0. @buf should be kernel's buffer.
2011 *
2012 *      Note: In usual ops, vread() is never necessary because the caller
2013 *      should know vmalloc() area is valid and can use memcpy().
2014 *      This is for routines which have to access vmalloc area without
2015 *      any informaion, as /dev/kmem.
2016 *
2017 */
2018
2019long vread(char *buf, char *addr, unsigned long count)
2020{
2021        struct vmap_area *va;
2022        struct vm_struct *vm;
2023        char *vaddr, *buf_start = buf;
2024        unsigned long buflen = count;
2025        unsigned long n;
2026
2027        /* Don't allow overflow */
2028        if ((unsigned long) addr + count < count)
2029                count = -(unsigned long) addr;
2030
2031        spin_lock(&vmap_area_lock);
2032        list_for_each_entry(va, &vmap_area_list, list) {
2033                if (!count)
2034                        break;
2035
2036                if (!(va->flags & VM_VM_AREA))
2037                        continue;
2038
2039                vm = va->vm;
2040                vaddr = (char *) vm->addr;
2041                if (addr >= vaddr + get_vm_area_size(vm))
2042                        continue;
2043                while (addr < vaddr) {
2044                        if (count == 0)
2045                                goto finished;
2046                        *buf = '\0';
2047                        buf++;
2048                        addr++;
2049                        count--;
2050                }
2051                n = vaddr + get_vm_area_size(vm) - addr;
2052                if (n > count)
2053                        n = count;
2054                if (!(vm->flags & VM_IOREMAP))
2055                        aligned_vread(buf, addr, n);
2056                else /* IOREMAP area is treated as memory hole */
2057                        memset(buf, 0, n);
2058                buf += n;
2059                addr += n;
2060                count -= n;
2061        }
2062finished:
2063        spin_unlock(&vmap_area_lock);
2064
2065        if (buf == buf_start)
2066                return 0;
2067        /* zero-fill memory holes */
2068        if (buf != buf_start + buflen)
2069                memset(buf, 0, buflen - (buf - buf_start));
2070
2071        return buflen;
2072}
2073
2074/**
2075 *      vwrite() -  write vmalloc area in a safe way.
2076 *      @buf:           buffer for source data
2077 *      @addr:          vm address.
2078 *      @count:         number of bytes to be read.
2079 *
2080 *      Returns # of bytes which addr and buf should be incresed.
2081 *      (same number to @count).
2082 *      If [addr...addr+count) doesn't includes any intersect with valid
2083 *      vmalloc area, returns 0.
2084 *
2085 *      This function checks that addr is a valid vmalloc'ed area, and
2086 *      copy data from a buffer to the given addr. If specified range of
2087 *      [addr...addr+count) includes some valid address, data is copied from
2088 *      proper area of @buf. If there are memory holes, no copy to hole.
2089 *      IOREMAP area is treated as memory hole and no copy is done.
2090 *
2091 *      If [addr...addr+count) doesn't includes any intersects with alive
2092 *      vm_struct area, returns 0. @buf should be kernel's buffer.
2093 *
2094 *      Note: In usual ops, vwrite() is never necessary because the caller
2095 *      should know vmalloc() area is valid and can use memcpy().
2096 *      This is for routines which have to access vmalloc area without
2097 *      any informaion, as /dev/kmem.
2098 */
2099
2100long vwrite(char *buf, char *addr, unsigned long count)
2101{
2102        struct vmap_area *va;
2103        struct vm_struct *vm;
2104        char *vaddr;
2105        unsigned long n, buflen;
2106        int copied = 0;
2107
2108        /* Don't allow overflow */
2109        if ((unsigned long) addr + count < count)
2110                count = -(unsigned long) addr;
2111        buflen = count;
2112
2113        spin_lock(&vmap_area_lock);
2114        list_for_each_entry(va, &vmap_area_list, list) {
2115                if (!count)
2116                        break;
2117
2118                if (!(va->flags & VM_VM_AREA))
2119                        continue;
2120
2121                vm = va->vm;
2122                vaddr = (char *) vm->addr;
2123                if (addr >= vaddr + get_vm_area_size(vm))
2124                        continue;
2125                while (addr < vaddr) {
2126                        if (count == 0)
2127                                goto finished;
2128                        buf++;
2129                        addr++;
2130                        count--;
2131                }
2132                n = vaddr + get_vm_area_size(vm) - addr;
2133                if (n > count)
2134                        n = count;
2135                if (!(vm->flags & VM_IOREMAP)) {
2136                        aligned_vwrite(buf, addr, n);
2137                        copied++;
2138                }
2139                buf += n;
2140                addr += n;
2141                count -= n;
2142        }
2143finished:
2144        spin_unlock(&vmap_area_lock);
2145        if (!copied)
2146                return 0;
2147        return buflen;
2148}
2149
2150/**
2151 *      remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2152 *      @vma:           vma to cover
2153 *      @uaddr:         target user address to start at
2154 *      @kaddr:         virtual address of vmalloc kernel memory
2155 *      @size:          size of map area
2156 *
2157 *      Returns:        0 for success, -Exxx on failure
2158 *
2159 *      This function checks that @kaddr is a valid vmalloc'ed area,
2160 *      and that it is big enough to cover the range starting at
2161 *      @uaddr in @vma. Will return failure if that criteria isn't
2162 *      met.
2163 *
2164 *      Similar to remap_pfn_range() (see mm/memory.c)
2165 */
2166int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2167                                void *kaddr, unsigned long size)
2168{
2169        struct vm_struct *area;
2170
2171        size = PAGE_ALIGN(size);
2172
2173        if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2174                return -EINVAL;
2175
2176        area = find_vm_area(kaddr);
2177        if (!area)
2178                return -EINVAL;
2179
2180        if (!(area->flags & VM_USERMAP))
2181                return -EINVAL;
2182
2183        if (kaddr + size > area->addr + area->size)
2184                return -EINVAL;
2185
2186        do {
2187                struct page *page = vmalloc_to_page(kaddr);
2188                int ret;
2189
2190                ret = vm_insert_page(vma, uaddr, page);
2191                if (ret)
2192                        return ret;
2193
2194                uaddr += PAGE_SIZE;
2195                kaddr += PAGE_SIZE;
2196                size -= PAGE_SIZE;
2197        } while (size > 0);
2198
2199        vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2200
2201        return 0;
2202}
2203EXPORT_SYMBOL(remap_vmalloc_range_partial);
2204
2205/**
2206 *      remap_vmalloc_range  -  map vmalloc pages to userspace
2207 *      @vma:           vma to cover (map full range of vma)
2208 *      @addr:          vmalloc memory
2209 *      @pgoff:         number of pages into addr before first page to map
2210 *
2211 *      Returns:        0 for success, -Exxx on failure
2212 *
2213 *      This function checks that addr is a valid vmalloc'ed area, and
2214 *      that it is big enough to cover the vma. Will return failure if
2215 *      that criteria isn't met.
2216 *
2217 *      Similar to remap_pfn_range() (see mm/memory.c)
2218 */
2219int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2220                                                unsigned long pgoff)
2221{
2222        return remap_vmalloc_range_partial(vma, vma->vm_start,
2223                                           addr + (pgoff << PAGE_SHIFT),
2224                                           vma->vm_end - vma->vm_start);
2225}
2226EXPORT_SYMBOL(remap_vmalloc_range);
2227
2228/*
2229 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2230 * have one.
2231 */
2232void __weak vmalloc_sync_all(void)
2233{
2234}
2235
2236
2237static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2238{
2239        pte_t ***p = data;
2240
2241        if (p) {
2242                *(*p) = pte;
2243                (*p)++;
2244        }
2245        return 0;
2246}
2247
2248/**
2249 *      alloc_vm_area - allocate a range of kernel address space
2250 *      @size:          size of the area
2251 *      @ptes:          returns the PTEs for the address space
2252 *
2253 *      Returns:        NULL on failure, vm_struct on success
2254 *
2255 *      This function reserves a range of kernel address space, and
2256 *      allocates pagetables to map that range.  No actual mappings
2257 *      are created.
2258 *
2259 *      If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2260 *      allocated for the VM area are returned.
2261 */
2262struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2263{
2264        struct vm_struct *area;
2265
2266        area = get_vm_area_caller(size, VM_IOREMAP,
2267                                __builtin_return_address(0));
2268        if (area == NULL)
2269                return NULL;
2270
2271        /*
2272         * This ensures that page tables are constructed for this region
2273         * of kernel virtual address space and mapped into init_mm.
2274         */
2275        if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2276                                size, f, ptes ? &ptes : NULL)) {
2277                free_vm_area(area);
2278                return NULL;
2279        }
2280
2281        return area;
2282}
2283EXPORT_SYMBOL_GPL(alloc_vm_area);
2284
2285void free_vm_area(struct vm_struct *area)
2286{
2287        struct vm_struct *ret;
2288        ret = remove_vm_area(area->addr);
2289        BUG_ON(ret != area);
2290        kfree(area);
2291}
2292EXPORT_SYMBOL_GPL(free_vm_area);
2293
2294#ifdef CONFIG_SMP
2295static struct vmap_area *node_to_va(struct rb_node *n)
2296{
2297        return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2298}
2299
2300/**
2301 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2302 * @end: target address
2303 * @pnext: out arg for the next vmap_area
2304 * @pprev: out arg for the previous vmap_area
2305 *
2306 * Returns: %true if either or both of next and prev are found,
2307 *          %false if no vmap_area exists
2308 *
2309 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2310 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2311 */
2312static bool pvm_find_next_prev(unsigned long end,
2313                               struct vmap_area **pnext,
2314                               struct vmap_area **pprev)
2315{
2316        struct rb_node *n = vmap_area_root.rb_node;
2317        struct vmap_area *va = NULL;
2318
2319        while (n) {
2320                va = rb_entry(n, struct vmap_area, rb_node);
2321                if (end < va->va_end)
2322                        n = n->rb_left;
2323                else if (end > va->va_end)
2324                        n = n->rb_right;
2325                else
2326                        break;
2327        }
2328
2329        if (!va)
2330                return false;
2331
2332        if (va->va_end > end) {
2333                *pnext = va;
2334                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2335        } else {
2336                *pprev = va;
2337                *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2338        }
2339        return true;
2340}
2341
2342/**
2343 * pvm_determine_end - find the highest aligned address between two vmap_areas
2344 * @pnext: in/out arg for the next vmap_area
2345 * @pprev: in/out arg for the previous vmap_area
2346 * @align: alignment
2347 *
2348 * Returns: determined end address
2349 *
2350 * Find the highest aligned address between *@pnext and *@pprev below
2351 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2352 * down address is between the end addresses of the two vmap_areas.
2353 *
2354 * Please note that the address returned by this function may fall
2355 * inside *@pnext vmap_area.  The caller is responsible for checking
2356 * that.
2357 */
2358static unsigned long pvm_determine_end(struct vmap_area **pnext,
2359                                       struct vmap_area **pprev,
2360                                       unsigned long align)
2361{
2362        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2363        unsigned long addr;
2364
2365        if (*pnext)
2366                addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2367        else
2368                addr = vmalloc_end;
2369
2370        while (*pprev && (*pprev)->va_end > addr) {
2371                *pnext = *pprev;
2372                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2373        }
2374
2375        return addr;
2376}
2377
2378/**
2379 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2380 * @offsets: array containing offset of each area
2381 * @sizes: array containing size of each area
2382 * @nr_vms: the number of areas to allocate
2383 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2384 *
2385 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2386 *          vm_structs on success, %NULL on failure
2387 *
2388 * Percpu allocator wants to use congruent vm areas so that it can
2389 * maintain the offsets among percpu areas.  This function allocates
2390 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2391 * be scattered pretty far, distance between two areas easily going up
2392 * to gigabytes.  To avoid interacting with regular vmallocs, these
2393 * areas are allocated from top.
2394 *
2395 * Despite its complicated look, this allocator is rather simple.  It
2396 * does everything top-down and scans areas from the end looking for
2397 * matching slot.  While scanning, if any of the areas overlaps with
2398 * existing vmap_area, the base address is pulled down to fit the
2399 * area.  Scanning is repeated till all the areas fit and then all
2400 * necessary data structres are inserted and the result is returned.
2401 */
2402struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2403                                     const size_t *sizes, int nr_vms,
2404                                     size_t align)
2405{
2406        const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2407        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2408        struct vmap_area **vas, *prev, *next;
2409        struct vm_struct **vms;
2410        int area, area2, last_area, term_area;
2411        unsigned long base, start, end, last_end;
2412        bool purged = false;
2413
2414        /* verify parameters and allocate data structures */
2415        BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2416        for (last_area = 0, area = 0; area < nr_vms; area++) {
2417                start = offsets[area];
2418                end = start + sizes[area];
2419
2420                /* is everything aligned properly? */
2421                BUG_ON(!IS_ALIGNED(offsets[area], align));
2422                BUG_ON(!IS_ALIGNED(sizes[area], align));
2423
2424                /* detect the area with the highest address */
2425                if (start > offsets[last_area])
2426                        last_area = area;
2427
2428                for (area2 = 0; area2 < nr_vms; area2++) {
2429                        unsigned long start2 = offsets[area2];
2430                        unsigned long end2 = start2 + sizes[area2];
2431
2432                        if (area2 == area)
2433                                continue;
2434
2435                        BUG_ON(start2 >= start && start2 < end);
2436                        BUG_ON(end2 <= end && end2 > start);
2437                }
2438        }
2439        last_end = offsets[last_area] + sizes[last_area];
2440
2441        if (vmalloc_end - vmalloc_start < last_end) {
2442                WARN_ON(true);
2443                return NULL;
2444        }
2445
2446        vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2447        vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2448        if (!vas || !vms)
2449                goto err_free2;
2450
2451        for (area = 0; area < nr_vms; area++) {
2452                vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2453                vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2454                if (!vas[area] || !vms[area])
2455                        goto err_free;
2456        }
2457retry:
2458        spin_lock(&vmap_area_lock);
2459
2460        /* start scanning - we scan from the top, begin with the last area */
2461        area = term_area = last_area;
2462        start = offsets[area];
2463        end = start + sizes[area];
2464
2465        if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2466                base = vmalloc_end - last_end;
2467                goto found;
2468        }
2469        base = pvm_determine_end(&next, &prev, align) - end;
2470
2471        while (true) {
2472                BUG_ON(next && next->va_end <= base + end);
2473                BUG_ON(prev && prev->va_end > base + end);
2474
2475                /*
2476                 * base might have underflowed, add last_end before
2477                 * comparing.
2478                 */
2479                if (base + last_end < vmalloc_start + last_end) {
2480                        spin_unlock(&vmap_area_lock);
2481                        if (!purged) {
2482                                purge_vmap_area_lazy();
2483                                purged = true;
2484                                goto retry;
2485                        }
2486                        goto err_free;
2487                }
2488
2489                /*
2490                 * If next overlaps, move base downwards so that it's
2491                 * right below next and then recheck.
2492                 */
2493                if (next && next->va_start < base + end) {
2494                        base = pvm_determine_end(&next, &prev, align) - end;
2495                        term_area = area;
2496                        continue;
2497                }
2498
2499                /*
2500                 * If prev overlaps, shift down next and prev and move
2501                 * base so that it's right below new next and then
2502                 * recheck.
2503                 */
2504                if (prev && prev->va_end > base + start)  {
2505                        next = prev;
2506                        prev = node_to_va(rb_prev(&next->rb_node));
2507                        base = pvm_determine_end(&next, &prev, align) - end;
2508                        term_area = area;
2509                        continue;
2510                }
2511
2512                /*
2513                 * This area fits, move on to the previous one.  If
2514                 * the previous one is the terminal one, we're done.
2515                 */
2516                area = (area + nr_vms - 1) % nr_vms;
2517                if (area == term_area)
2518                        break;
2519                start = offsets[area];
2520                end = start + sizes[area];
2521                pvm_find_next_prev(base + end, &next, &prev);
2522        }
2523found:
2524        /* we've found a fitting base, insert all va's */
2525        for (area = 0; area < nr_vms; area++) {
2526                struct vmap_area *va = vas[area];
2527
2528                va->va_start = base + offsets[area];
2529                va->va_end = va->va_start + sizes[area];
2530                __insert_vmap_area(va);
2531        }
2532
2533        vmap_area_pcpu_hole = base + offsets[last_area];
2534
2535        spin_unlock(&vmap_area_lock);
2536
2537        /* insert all vm's */
2538        for (area = 0; area < nr_vms; area++)
2539                setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2540                                 pcpu_get_vm_areas);
2541
2542        kfree(vas);
2543        return vms;
2544
2545err_free:
2546        for (area = 0; area < nr_vms; area++) {
2547                kfree(vas[area]);
2548                kfree(vms[area]);
2549        }
2550err_free2:
2551        kfree(vas);
2552        kfree(vms);
2553        return NULL;
2554}
2555
2556/**
2557 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2558 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2559 * @nr_vms: the number of allocated areas
2560 *
2561 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2562 */
2563void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2564{
2565        int i;
2566
2567        for (i = 0; i < nr_vms; i++)
2568                free_vm_area(vms[i]);
2569        kfree(vms);
2570}
2571#endif  /* CONFIG_SMP */
2572
2573#ifdef CONFIG_PROC_FS
2574static void *s_start(struct seq_file *m, loff_t *pos)
2575        __acquires(&vmap_area_lock)
2576{
2577        loff_t n = *pos;
2578        struct vmap_area *va;
2579
2580        spin_lock(&vmap_area_lock);
2581        va = list_first_entry(&vmap_area_list, typeof(*va), list);
2582        while (n > 0 && &va->list != &vmap_area_list) {
2583                n--;
2584                va = list_next_entry(va, list);
2585        }
2586        if (!n && &va->list != &vmap_area_list)
2587                return va;
2588
2589        return NULL;
2590
2591}
2592
2593static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2594{
2595        struct vmap_area *va = p, *next;
2596
2597        ++*pos;
2598        next = list_next_entry(va, list);
2599        if (&next->list != &vmap_area_list)
2600                return next;
2601
2602        return NULL;
2603}
2604
2605static void s_stop(struct seq_file *m, void *p)
2606        __releases(&vmap_area_lock)
2607{
2608        spin_unlock(&vmap_area_lock);
2609}
2610
2611static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2612{
2613        if (IS_ENABLED(CONFIG_NUMA)) {
2614                unsigned int nr, *counters = m->private;
2615
2616                if (!counters)
2617                        return;
2618
2619                if (v->flags & VM_UNINITIALIZED)
2620                        return;
2621                /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2622                smp_rmb();
2623
2624                memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2625
2626                for (nr = 0; nr < v->nr_pages; nr++)
2627                        counters[page_to_nid(v->pages[nr])]++;
2628
2629                for_each_node_state(nr, N_HIGH_MEMORY)
2630                        if (counters[nr])
2631                                seq_printf(m, " N%u=%u", nr, counters[nr]);
2632        }
2633}
2634
2635static int s_show(struct seq_file *m, void *p)
2636{
2637        struct vmap_area *va = p;
2638        struct vm_struct *v;
2639
2640        /*
2641         * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2642         * behalf of vmap area is being tear down or vm_map_ram allocation.
2643         */
2644        if (!(va->flags & VM_VM_AREA))
2645                return 0;
2646
2647        v = va->vm;
2648
2649        seq_printf(m, "0x%pK-0x%pK %7ld",
2650                v->addr, v->addr + v->size, v->size);
2651
2652        if (v->caller)
2653                seq_printf(m, " %pS", v->caller);
2654
2655        if (v->nr_pages)
2656                seq_printf(m, " pages=%d", v->nr_pages);
2657
2658        if (v->phys_addr)
2659                seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2660
2661        if (v->flags & VM_IOREMAP)
2662                seq_puts(m, " ioremap");
2663
2664        if (v->flags & VM_ALLOC)
2665                seq_puts(m, " vmalloc");
2666
2667        if (v->flags & VM_MAP)
2668                seq_puts(m, " vmap");
2669
2670        if (v->flags & VM_USERMAP)
2671                seq_puts(m, " user");
2672
2673        if (is_vmalloc_addr(v->pages))
2674                seq_puts(m, " vpages");
2675
2676        show_numa_info(m, v);
2677        seq_putc(m, '\n');
2678        return 0;
2679}
2680
2681static const struct seq_operations vmalloc_op = {
2682        .start = s_start,
2683        .next = s_next,
2684        .stop = s_stop,
2685        .show = s_show,
2686};
2687
2688static int vmalloc_open(struct inode *inode, struct file *file)
2689{
2690        if (IS_ENABLED(CONFIG_NUMA))
2691                return seq_open_private(file, &vmalloc_op,
2692                                        nr_node_ids * sizeof(unsigned int));
2693        else
2694                return seq_open(file, &vmalloc_op);
2695}
2696
2697static const struct file_operations proc_vmalloc_operations = {
2698        .open           = vmalloc_open,
2699        .read           = seq_read,
2700        .llseek         = seq_lseek,
2701        .release        = seq_release_private,
2702};
2703
2704static int __init proc_vmalloc_init(void)
2705{
2706        proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2707        return 0;
2708}
2709module_init(proc_vmalloc_init);
2710
2711#endif
2712
2713