linux/sound/firewire/fireworks/fireworks_command.c
<<
>>
Prefs
   1/*
   2 * fireworks_command.c - a part of driver for Fireworks based devices
   3 *
   4 * Copyright (c) 2013-2014 Takashi Sakamoto
   5 *
   6 * Licensed under the terms of the GNU General Public License, version 2.
   7 */
   8
   9#include "./fireworks.h"
  10
  11/*
  12 * This driver uses transaction version 1 or later to use extended hardware
  13 * information. Then too old devices are not available.
  14 *
  15 * Each commands are not required to have continuous sequence numbers. This
  16 * number is just used to match command and response.
  17 *
  18 * This module support a part of commands. Please see FFADO if you want to see
  19 * whole commands. But there are some commands which FFADO don't implement.
  20 *
  21 * Fireworks also supports AV/C general commands and AV/C Stream Format
  22 * Information commands. But this module don't use them.
  23 */
  24
  25#define KERNEL_SEQNUM_MIN       (SND_EFW_TRANSACTION_USER_SEQNUM_MAX + 2)
  26#define KERNEL_SEQNUM_MAX       ((u32)~0)
  27
  28/* for clock source and sampling rate */
  29struct efc_clock {
  30        u32 source;
  31        u32 sampling_rate;
  32        u32 index;
  33};
  34
  35/* command categories */
  36enum efc_category {
  37        EFC_CAT_HWINFO          = 0,
  38        EFC_CAT_TRANSPORT       = 2,
  39        EFC_CAT_HWCTL           = 3,
  40};
  41
  42/* hardware info category commands */
  43enum efc_cmd_hwinfo {
  44        EFC_CMD_HWINFO_GET_CAPS         = 0,
  45        EFC_CMD_HWINFO_GET_POLLED       = 1,
  46        EFC_CMD_HWINFO_SET_RESP_ADDR    = 2
  47};
  48
  49enum efc_cmd_transport {
  50        EFC_CMD_TRANSPORT_SET_TX_MODE   = 0
  51};
  52
  53/* hardware control category commands */
  54enum efc_cmd_hwctl {
  55        EFC_CMD_HWCTL_SET_CLOCK         = 0,
  56        EFC_CMD_HWCTL_GET_CLOCK         = 1,
  57        EFC_CMD_HWCTL_IDENTIFY          = 5
  58};
  59
  60/* return values in response */
  61enum efr_status {
  62        EFR_STATUS_OK                   = 0,
  63        EFR_STATUS_BAD                  = 1,
  64        EFR_STATUS_BAD_COMMAND          = 2,
  65        EFR_STATUS_COMM_ERR             = 3,
  66        EFR_STATUS_BAD_QUAD_COUNT       = 4,
  67        EFR_STATUS_UNSUPPORTED          = 5,
  68        EFR_STATUS_1394_TIMEOUT         = 6,
  69        EFR_STATUS_DSP_TIMEOUT          = 7,
  70        EFR_STATUS_BAD_RATE             = 8,
  71        EFR_STATUS_BAD_CLOCK            = 9,
  72        EFR_STATUS_BAD_CHANNEL          = 10,
  73        EFR_STATUS_BAD_PAN              = 11,
  74        EFR_STATUS_FLASH_BUSY           = 12,
  75        EFR_STATUS_BAD_MIRROR           = 13,
  76        EFR_STATUS_BAD_LED              = 14,
  77        EFR_STATUS_BAD_PARAMETER        = 15,
  78        EFR_STATUS_INCOMPLETE           = 0x80000000
  79};
  80
  81static const char *const efr_status_names[] = {
  82        [EFR_STATUS_OK]                 = "OK",
  83        [EFR_STATUS_BAD]                = "bad",
  84        [EFR_STATUS_BAD_COMMAND]        = "bad command",
  85        [EFR_STATUS_COMM_ERR]           = "comm err",
  86        [EFR_STATUS_BAD_QUAD_COUNT]     = "bad quad count",
  87        [EFR_STATUS_UNSUPPORTED]        = "unsupported",
  88        [EFR_STATUS_1394_TIMEOUT]       = "1394 timeout",
  89        [EFR_STATUS_DSP_TIMEOUT]        = "DSP timeout",
  90        [EFR_STATUS_BAD_RATE]           = "bad rate",
  91        [EFR_STATUS_BAD_CLOCK]          = "bad clock",
  92        [EFR_STATUS_BAD_CHANNEL]        = "bad channel",
  93        [EFR_STATUS_BAD_PAN]            = "bad pan",
  94        [EFR_STATUS_FLASH_BUSY]         = "flash busy",
  95        [EFR_STATUS_BAD_MIRROR]         = "bad mirror",
  96        [EFR_STATUS_BAD_LED]            = "bad LED",
  97        [EFR_STATUS_BAD_PARAMETER]      = "bad parameter",
  98        [EFR_STATUS_BAD_PARAMETER + 1]  = "incomplete"
  99};
 100
 101static int
 102efw_transaction(struct snd_efw *efw, unsigned int category,
 103                unsigned int command,
 104                const __be32 *params, unsigned int param_bytes,
 105                const __be32 *resp, unsigned int resp_bytes)
 106{
 107        struct snd_efw_transaction *header;
 108        __be32 *buf;
 109        u32 seqnum;
 110        unsigned int buf_bytes, cmd_bytes;
 111        int err;
 112
 113        /* calculate buffer size*/
 114        buf_bytes = sizeof(struct snd_efw_transaction) +
 115                    max(param_bytes, resp_bytes);
 116
 117        /* keep buffer */
 118        buf = kzalloc(buf_bytes, GFP_KERNEL);
 119        if (buf == NULL)
 120                return -ENOMEM;
 121
 122        /* to keep consistency of sequence number */
 123        spin_lock(&efw->lock);
 124        if ((efw->seqnum < KERNEL_SEQNUM_MIN) ||
 125            (efw->seqnum >= KERNEL_SEQNUM_MAX - 2))
 126                efw->seqnum = KERNEL_SEQNUM_MIN;
 127        else
 128                efw->seqnum += 2;
 129        seqnum = efw->seqnum;
 130        spin_unlock(&efw->lock);
 131
 132        /* fill transaction header fields */
 133        cmd_bytes = sizeof(struct snd_efw_transaction) + param_bytes;
 134        header = (struct snd_efw_transaction *)buf;
 135        header->length   = cpu_to_be32(cmd_bytes / sizeof(__be32));
 136        header->version  = cpu_to_be32(1);
 137        header->seqnum   = cpu_to_be32(seqnum);
 138        header->category = cpu_to_be32(category);
 139        header->command  = cpu_to_be32(command);
 140        header->status   = 0;
 141
 142        /* fill transaction command parameters */
 143        memcpy(header->params, params, param_bytes);
 144
 145        err = snd_efw_transaction_run(efw->unit, buf, cmd_bytes,
 146                                      buf, buf_bytes);
 147        if (err < 0)
 148                goto end;
 149
 150        /* check transaction header fields */
 151        if ((be32_to_cpu(header->version) < 1) ||
 152            (be32_to_cpu(header->category) != category) ||
 153            (be32_to_cpu(header->command) != command) ||
 154            (be32_to_cpu(header->status) != EFR_STATUS_OK)) {
 155                dev_err(&efw->unit->device, "EFW command failed [%u/%u]: %s\n",
 156                        be32_to_cpu(header->category),
 157                        be32_to_cpu(header->command),
 158                        efr_status_names[be32_to_cpu(header->status)]);
 159                err = -EIO;
 160                goto end;
 161        }
 162
 163        if (resp == NULL)
 164                goto end;
 165
 166        /* fill transaction response parameters */
 167        memset((void *)resp, 0, resp_bytes);
 168        resp_bytes = min_t(unsigned int, resp_bytes,
 169                           be32_to_cpu(header->length) * sizeof(__be32) -
 170                                sizeof(struct snd_efw_transaction));
 171        memcpy((void *)resp, &buf[6], resp_bytes);
 172end:
 173        kfree(buf);
 174        return err;
 175}
 176
 177/*
 178 * The address in host system for transaction response is changable when the
 179 * device supports. struct hwinfo.flags includes its flag. The default is
 180 * MEMORY_SPACE_EFW_RESPONSE.
 181 */
 182int snd_efw_command_set_resp_addr(struct snd_efw *efw,
 183                                  u16 addr_high, u32 addr_low)
 184{
 185        __be32 addr[2];
 186
 187        addr[0] = cpu_to_be32(addr_high);
 188        addr[1] = cpu_to_be32(addr_low);
 189
 190        if (!efw->resp_addr_changable)
 191                return -ENOSYS;
 192
 193        return efw_transaction(efw, EFC_CAT_HWCTL,
 194                               EFC_CMD_HWINFO_SET_RESP_ADDR,
 195                               addr, sizeof(addr), NULL, 0);
 196}
 197
 198/*
 199 * This is for timestamp processing. In Windows mode, all 32bit fields of second
 200 * CIP header in AMDTP transmit packet is used for 'presentation timestamp'. In
 201 * 'no data' packet the value of this field is 0x90ffffff.
 202 */
 203int snd_efw_command_set_tx_mode(struct snd_efw *efw,
 204                                enum snd_efw_transport_mode mode)
 205{
 206        __be32 param = cpu_to_be32(mode);
 207        return efw_transaction(efw, EFC_CAT_TRANSPORT,
 208                               EFC_CMD_TRANSPORT_SET_TX_MODE,
 209                               &param, sizeof(param), NULL, 0);
 210}
 211
 212int snd_efw_command_get_hwinfo(struct snd_efw *efw,
 213                               struct snd_efw_hwinfo *hwinfo)
 214{
 215        int err;
 216
 217        err  = efw_transaction(efw, EFC_CAT_HWINFO,
 218                               EFC_CMD_HWINFO_GET_CAPS,
 219                               NULL, 0, (__be32 *)hwinfo, sizeof(*hwinfo));
 220        if (err < 0)
 221                goto end;
 222
 223        be32_to_cpus(&hwinfo->flags);
 224        be32_to_cpus(&hwinfo->guid_hi);
 225        be32_to_cpus(&hwinfo->guid_lo);
 226        be32_to_cpus(&hwinfo->type);
 227        be32_to_cpus(&hwinfo->version);
 228        be32_to_cpus(&hwinfo->supported_clocks);
 229        be32_to_cpus(&hwinfo->amdtp_rx_pcm_channels);
 230        be32_to_cpus(&hwinfo->amdtp_tx_pcm_channels);
 231        be32_to_cpus(&hwinfo->phys_out);
 232        be32_to_cpus(&hwinfo->phys_in);
 233        be32_to_cpus(&hwinfo->phys_out_grp_count);
 234        be32_to_cpus(&hwinfo->phys_in_grp_count);
 235        be32_to_cpus(&hwinfo->midi_out_ports);
 236        be32_to_cpus(&hwinfo->midi_in_ports);
 237        be32_to_cpus(&hwinfo->max_sample_rate);
 238        be32_to_cpus(&hwinfo->min_sample_rate);
 239        be32_to_cpus(&hwinfo->dsp_version);
 240        be32_to_cpus(&hwinfo->arm_version);
 241        be32_to_cpus(&hwinfo->mixer_playback_channels);
 242        be32_to_cpus(&hwinfo->mixer_capture_channels);
 243        be32_to_cpus(&hwinfo->fpga_version);
 244        be32_to_cpus(&hwinfo->amdtp_rx_pcm_channels_2x);
 245        be32_to_cpus(&hwinfo->amdtp_tx_pcm_channels_2x);
 246        be32_to_cpus(&hwinfo->amdtp_rx_pcm_channels_4x);
 247        be32_to_cpus(&hwinfo->amdtp_tx_pcm_channels_4x);
 248
 249        /* ensure terminated */
 250        hwinfo->vendor_name[HWINFO_NAME_SIZE_BYTES - 1] = '\0';
 251        hwinfo->model_name[HWINFO_NAME_SIZE_BYTES  - 1] = '\0';
 252end:
 253        return err;
 254}
 255
 256int snd_efw_command_get_phys_meters(struct snd_efw *efw,
 257                                    struct snd_efw_phys_meters *meters,
 258                                    unsigned int len)
 259{
 260        u32 *buf = (u32 *)meters;
 261        unsigned int i;
 262        int err;
 263
 264        err = efw_transaction(efw, EFC_CAT_HWINFO,
 265                              EFC_CMD_HWINFO_GET_POLLED,
 266                              NULL, 0, (__be32 *)meters, len);
 267        if (err >= 0)
 268                for (i = 0; i < len / sizeof(u32); i++)
 269                        be32_to_cpus(&buf[i]);
 270
 271        return err;
 272}
 273
 274static int
 275command_get_clock(struct snd_efw *efw, struct efc_clock *clock)
 276{
 277        int err;
 278
 279        err = efw_transaction(efw, EFC_CAT_HWCTL,
 280                              EFC_CMD_HWCTL_GET_CLOCK,
 281                              NULL, 0,
 282                              (__be32 *)clock, sizeof(struct efc_clock));
 283        if (err >= 0) {
 284                be32_to_cpus(&clock->source);
 285                be32_to_cpus(&clock->sampling_rate);
 286                be32_to_cpus(&clock->index);
 287        }
 288
 289        return err;
 290}
 291
 292/* give UINT_MAX if set nothing */
 293static int
 294command_set_clock(struct snd_efw *efw,
 295                  unsigned int source, unsigned int rate)
 296{
 297        struct efc_clock clock = {0};
 298        int err;
 299
 300        /* check arguments */
 301        if ((source == UINT_MAX) && (rate == UINT_MAX)) {
 302                err = -EINVAL;
 303                goto end;
 304        }
 305
 306        /* get current status */
 307        err = command_get_clock(efw, &clock);
 308        if (err < 0)
 309                goto end;
 310
 311        /* no need */
 312        if ((clock.source == source) && (clock.sampling_rate == rate))
 313                goto end;
 314
 315        /* set params */
 316        if ((source != UINT_MAX) && (clock.source != source))
 317                clock.source = source;
 318        if ((rate != UINT_MAX) && (clock.sampling_rate != rate))
 319                clock.sampling_rate = rate;
 320        clock.index = 0;
 321
 322        cpu_to_be32s(&clock.source);
 323        cpu_to_be32s(&clock.sampling_rate);
 324        cpu_to_be32s(&clock.index);
 325
 326        err = efw_transaction(efw, EFC_CAT_HWCTL,
 327                              EFC_CMD_HWCTL_SET_CLOCK,
 328                              (__be32 *)&clock, sizeof(struct efc_clock),
 329                              NULL, 0);
 330        if (err < 0)
 331                goto end;
 332
 333        /*
 334         * With firmware version 5.8, just after changing clock state, these
 335         * parameters are not immediately retrieved by get command. In my
 336         * trial, there needs to be 100msec to get changed parameters.
 337         */
 338        msleep(150);
 339end:
 340        return err;
 341}
 342
 343int snd_efw_command_get_clock_source(struct snd_efw *efw,
 344                                     enum snd_efw_clock_source *source)
 345{
 346        int err;
 347        struct efc_clock clock = {0};
 348
 349        err = command_get_clock(efw, &clock);
 350        if (err >= 0)
 351                *source = clock.source;
 352
 353        return err;
 354}
 355
 356int snd_efw_command_get_sampling_rate(struct snd_efw *efw, unsigned int *rate)
 357{
 358        int err;
 359        struct efc_clock clock = {0};
 360
 361        err = command_get_clock(efw, &clock);
 362        if (err >= 0)
 363                *rate = clock.sampling_rate;
 364
 365        return err;
 366}
 367
 368int snd_efw_command_set_sampling_rate(struct snd_efw *efw, unsigned int rate)
 369{
 370        return command_set_clock(efw, UINT_MAX, rate);
 371}
 372
 373