linux/arch/powerpc/kernel/eeh.c
<<
>>
Prefs
   1/*
   2 * Copyright IBM Corporation 2001, 2005, 2006
   3 * Copyright Dave Engebretsen & Todd Inglett 2001
   4 * Copyright Linas Vepstas 2005, 2006
   5 * Copyright 2001-2012 IBM Corporation.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
  22 */
  23
  24#include <linux/delay.h>
  25#include <linux/debugfs.h>
  26#include <linux/sched.h>
  27#include <linux/init.h>
  28#include <linux/list.h>
  29#include <linux/pci.h>
  30#include <linux/iommu.h>
  31#include <linux/proc_fs.h>
  32#include <linux/rbtree.h>
  33#include <linux/reboot.h>
  34#include <linux/seq_file.h>
  35#include <linux/spinlock.h>
  36#include <linux/export.h>
  37#include <linux/of.h>
  38
  39#include <linux/atomic.h>
  40#include <asm/debug.h>
  41#include <asm/eeh.h>
  42#include <asm/eeh_event.h>
  43#include <asm/io.h>
  44#include <asm/iommu.h>
  45#include <asm/machdep.h>
  46#include <asm/ppc-pci.h>
  47#include <asm/rtas.h>
  48
  49
  50/** Overview:
  51 *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
  52 *  dealing with PCI bus errors that can't be dealt with within the
  53 *  usual PCI framework, except by check-stopping the CPU.  Systems
  54 *  that are designed for high-availability/reliability cannot afford
  55 *  to crash due to a "mere" PCI error, thus the need for EEH.
  56 *  An EEH-capable bridge operates by converting a detected error
  57 *  into a "slot freeze", taking the PCI adapter off-line, making
  58 *  the slot behave, from the OS'es point of view, as if the slot
  59 *  were "empty": all reads return 0xff's and all writes are silently
  60 *  ignored.  EEH slot isolation events can be triggered by parity
  61 *  errors on the address or data busses (e.g. during posted writes),
  62 *  which in turn might be caused by low voltage on the bus, dust,
  63 *  vibration, humidity, radioactivity or plain-old failed hardware.
  64 *
  65 *  Note, however, that one of the leading causes of EEH slot
  66 *  freeze events are buggy device drivers, buggy device microcode,
  67 *  or buggy device hardware.  This is because any attempt by the
  68 *  device to bus-master data to a memory address that is not
  69 *  assigned to the device will trigger a slot freeze.   (The idea
  70 *  is to prevent devices-gone-wild from corrupting system memory).
  71 *  Buggy hardware/drivers will have a miserable time co-existing
  72 *  with EEH.
  73 *
  74 *  Ideally, a PCI device driver, when suspecting that an isolation
  75 *  event has occurred (e.g. by reading 0xff's), will then ask EEH
  76 *  whether this is the case, and then take appropriate steps to
  77 *  reset the PCI slot, the PCI device, and then resume operations.
  78 *  However, until that day,  the checking is done here, with the
  79 *  eeh_check_failure() routine embedded in the MMIO macros.  If
  80 *  the slot is found to be isolated, an "EEH Event" is synthesized
  81 *  and sent out for processing.
  82 */
  83
  84/* If a device driver keeps reading an MMIO register in an interrupt
  85 * handler after a slot isolation event, it might be broken.
  86 * This sets the threshold for how many read attempts we allow
  87 * before printing an error message.
  88 */
  89#define EEH_MAX_FAILS   2100000
  90
  91/* Time to wait for a PCI slot to report status, in milliseconds */
  92#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
  93
  94/*
  95 * EEH probe mode support, which is part of the flags,
  96 * is to support multiple platforms for EEH. Some platforms
  97 * like pSeries do PCI emunation based on device tree.
  98 * However, other platforms like powernv probe PCI devices
  99 * from hardware. The flag is used to distinguish that.
 100 * In addition, struct eeh_ops::probe would be invoked for
 101 * particular OF node or PCI device so that the corresponding
 102 * PE would be created there.
 103 */
 104int eeh_subsystem_flags;
 105EXPORT_SYMBOL(eeh_subsystem_flags);
 106
 107/*
 108 * EEH allowed maximal frozen times. If one particular PE's
 109 * frozen count in last hour exceeds this limit, the PE will
 110 * be forced to be offline permanently.
 111 */
 112int eeh_max_freezes = 5;
 113
 114/* Platform dependent EEH operations */
 115struct eeh_ops *eeh_ops = NULL;
 116
 117/* Lock to avoid races due to multiple reports of an error */
 118DEFINE_RAW_SPINLOCK(confirm_error_lock);
 119EXPORT_SYMBOL_GPL(confirm_error_lock);
 120
 121/* Lock to protect passed flags */
 122static DEFINE_MUTEX(eeh_dev_mutex);
 123
 124/* Buffer for reporting pci register dumps. Its here in BSS, and
 125 * not dynamically alloced, so that it ends up in RMO where RTAS
 126 * can access it.
 127 */
 128#define EEH_PCI_REGS_LOG_LEN 8192
 129static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
 130
 131/*
 132 * The struct is used to maintain the EEH global statistic
 133 * information. Besides, the EEH global statistics will be
 134 * exported to user space through procfs
 135 */
 136struct eeh_stats {
 137        u64 no_device;          /* PCI device not found         */
 138        u64 no_dn;              /* OF node not found            */
 139        u64 no_cfg_addr;        /* Config address not found     */
 140        u64 ignored_check;      /* EEH check skipped            */
 141        u64 total_mmio_ffs;     /* Total EEH checks             */
 142        u64 false_positives;    /* Unnecessary EEH checks       */
 143        u64 slot_resets;        /* PE reset                     */
 144};
 145
 146static struct eeh_stats eeh_stats;
 147
 148static int __init eeh_setup(char *str)
 149{
 150        if (!strcmp(str, "off"))
 151                eeh_add_flag(EEH_FORCE_DISABLED);
 152        else if (!strcmp(str, "early_log"))
 153                eeh_add_flag(EEH_EARLY_DUMP_LOG);
 154
 155        return 1;
 156}
 157__setup("eeh=", eeh_setup);
 158
 159/*
 160 * This routine captures assorted PCI configuration space data
 161 * for the indicated PCI device, and puts them into a buffer
 162 * for RTAS error logging.
 163 */
 164static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
 165{
 166        struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 167        u32 cfg;
 168        int cap, i;
 169        int n = 0, l = 0;
 170        char buffer[128];
 171
 172        n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
 173                       edev->phb->global_number, pdn->busno,
 174                       PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
 175        pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
 176                edev->phb->global_number, pdn->busno,
 177                PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
 178
 179        eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
 180        n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
 181        pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
 182
 183        eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
 184        n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
 185        pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
 186
 187        /* Gather bridge-specific registers */
 188        if (edev->mode & EEH_DEV_BRIDGE) {
 189                eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
 190                n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
 191                pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
 192
 193                eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
 194                n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
 195                pr_warn("EEH: Bridge control: %04x\n", cfg);
 196        }
 197
 198        /* Dump out the PCI-X command and status regs */
 199        cap = edev->pcix_cap;
 200        if (cap) {
 201                eeh_ops->read_config(pdn, cap, 4, &cfg);
 202                n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
 203                pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
 204
 205                eeh_ops->read_config(pdn, cap+4, 4, &cfg);
 206                n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
 207                pr_warn("EEH: PCI-X status: %08x\n", cfg);
 208        }
 209
 210        /* If PCI-E capable, dump PCI-E cap 10 */
 211        cap = edev->pcie_cap;
 212        if (cap) {
 213                n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
 214                pr_warn("EEH: PCI-E capabilities and status follow:\n");
 215
 216                for (i=0; i<=8; i++) {
 217                        eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
 218                        n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
 219
 220                        if ((i % 4) == 0) {
 221                                if (i != 0)
 222                                        pr_warn("%s\n", buffer);
 223
 224                                l = scnprintf(buffer, sizeof(buffer),
 225                                              "EEH: PCI-E %02x: %08x ",
 226                                              4*i, cfg);
 227                        } else {
 228                                l += scnprintf(buffer+l, sizeof(buffer)-l,
 229                                               "%08x ", cfg);
 230                        }
 231
 232                }
 233
 234                pr_warn("%s\n", buffer);
 235        }
 236
 237        /* If AER capable, dump it */
 238        cap = edev->aer_cap;
 239        if (cap) {
 240                n += scnprintf(buf+n, len-n, "pci-e AER:\n");
 241                pr_warn("EEH: PCI-E AER capability register set follows:\n");
 242
 243                for (i=0; i<=13; i++) {
 244                        eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
 245                        n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
 246
 247                        if ((i % 4) == 0) {
 248                                if (i != 0)
 249                                        pr_warn("%s\n", buffer);
 250
 251                                l = scnprintf(buffer, sizeof(buffer),
 252                                              "EEH: PCI-E AER %02x: %08x ",
 253                                              4*i, cfg);
 254                        } else {
 255                                l += scnprintf(buffer+l, sizeof(buffer)-l,
 256                                               "%08x ", cfg);
 257                        }
 258                }
 259
 260                pr_warn("%s\n", buffer);
 261        }
 262
 263        return n;
 264}
 265
 266static void *eeh_dump_pe_log(void *data, void *flag)
 267{
 268        struct eeh_pe *pe = data;
 269        struct eeh_dev *edev, *tmp;
 270        size_t *plen = flag;
 271
 272        eeh_pe_for_each_dev(pe, edev, tmp)
 273                *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
 274                                          EEH_PCI_REGS_LOG_LEN - *plen);
 275
 276        return NULL;
 277}
 278
 279/**
 280 * eeh_slot_error_detail - Generate combined log including driver log and error log
 281 * @pe: EEH PE
 282 * @severity: temporary or permanent error log
 283 *
 284 * This routine should be called to generate the combined log, which
 285 * is comprised of driver log and error log. The driver log is figured
 286 * out from the config space of the corresponding PCI device, while
 287 * the error log is fetched through platform dependent function call.
 288 */
 289void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
 290{
 291        size_t loglen = 0;
 292
 293        /*
 294         * When the PHB is fenced or dead, it's pointless to collect
 295         * the data from PCI config space because it should return
 296         * 0xFF's. For ER, we still retrieve the data from the PCI
 297         * config space.
 298         *
 299         * For pHyp, we have to enable IO for log retrieval. Otherwise,
 300         * 0xFF's is always returned from PCI config space.
 301         */
 302        if (!(pe->type & EEH_PE_PHB)) {
 303                if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG))
 304                        eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
 305
 306                /*
 307                 * The config space of some PCI devices can't be accessed
 308                 * when their PEs are in frozen state. Otherwise, fenced
 309                 * PHB might be seen. Those PEs are identified with flag
 310                 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
 311                 * is set automatically when the PE is put to EEH_PE_ISOLATED.
 312                 *
 313                 * Restoring BARs possibly triggers PCI config access in
 314                 * (OPAL) firmware and then causes fenced PHB. If the
 315                 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
 316                 * pointless to restore BARs and dump config space.
 317                 */
 318                eeh_ops->configure_bridge(pe);
 319                if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
 320                        eeh_pe_restore_bars(pe);
 321
 322                        pci_regs_buf[0] = 0;
 323                        eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
 324                }
 325        }
 326
 327        eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
 328}
 329
 330/**
 331 * eeh_token_to_phys - Convert EEH address token to phys address
 332 * @token: I/O token, should be address in the form 0xA....
 333 *
 334 * This routine should be called to convert virtual I/O address
 335 * to physical one.
 336 */
 337static inline unsigned long eeh_token_to_phys(unsigned long token)
 338{
 339        pte_t *ptep;
 340        unsigned long pa;
 341        int hugepage_shift;
 342
 343        /*
 344         * We won't find hugepages here(this is iomem). Hence we are not
 345         * worried about _PAGE_SPLITTING/collapse. Also we will not hit
 346         * page table free, because of init_mm.
 347         */
 348        ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token,
 349                                           NULL, &hugepage_shift);
 350        if (!ptep)
 351                return token;
 352        WARN_ON(hugepage_shift);
 353        pa = pte_pfn(*ptep) << PAGE_SHIFT;
 354
 355        return pa | (token & (PAGE_SIZE-1));
 356}
 357
 358/*
 359 * On PowerNV platform, we might already have fenced PHB there.
 360 * For that case, it's meaningless to recover frozen PE. Intead,
 361 * We have to handle fenced PHB firstly.
 362 */
 363static int eeh_phb_check_failure(struct eeh_pe *pe)
 364{
 365        struct eeh_pe *phb_pe;
 366        unsigned long flags;
 367        int ret;
 368
 369        if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
 370                return -EPERM;
 371
 372        /* Find the PHB PE */
 373        phb_pe = eeh_phb_pe_get(pe->phb);
 374        if (!phb_pe) {
 375                pr_warn("%s Can't find PE for PHB#%d\n",
 376                        __func__, pe->phb->global_number);
 377                return -EEXIST;
 378        }
 379
 380        /* If the PHB has been in problematic state */
 381        eeh_serialize_lock(&flags);
 382        if (phb_pe->state & EEH_PE_ISOLATED) {
 383                ret = 0;
 384                goto out;
 385        }
 386
 387        /* Check PHB state */
 388        ret = eeh_ops->get_state(phb_pe, NULL);
 389        if ((ret < 0) ||
 390            (ret == EEH_STATE_NOT_SUPPORT) ||
 391            (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
 392            (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
 393                ret = 0;
 394                goto out;
 395        }
 396
 397        /* Isolate the PHB and send event */
 398        eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
 399        eeh_serialize_unlock(flags);
 400
 401        pr_err("EEH: PHB#%x failure detected, location: %s\n",
 402                phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
 403        dump_stack();
 404        eeh_send_failure_event(phb_pe);
 405
 406        return 1;
 407out:
 408        eeh_serialize_unlock(flags);
 409        return ret;
 410}
 411
 412/**
 413 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
 414 * @edev: eeh device
 415 *
 416 * Check for an EEH failure for the given device node.  Call this
 417 * routine if the result of a read was all 0xff's and you want to
 418 * find out if this is due to an EEH slot freeze.  This routine
 419 * will query firmware for the EEH status.
 420 *
 421 * Returns 0 if there has not been an EEH error; otherwise returns
 422 * a non-zero value and queues up a slot isolation event notification.
 423 *
 424 * It is safe to call this routine in an interrupt context.
 425 */
 426int eeh_dev_check_failure(struct eeh_dev *edev)
 427{
 428        int ret;
 429        int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
 430        unsigned long flags;
 431        struct pci_dn *pdn;
 432        struct pci_dev *dev;
 433        struct eeh_pe *pe, *parent_pe, *phb_pe;
 434        int rc = 0;
 435        const char *location = NULL;
 436
 437        eeh_stats.total_mmio_ffs++;
 438
 439        if (!eeh_enabled())
 440                return 0;
 441
 442        if (!edev) {
 443                eeh_stats.no_dn++;
 444                return 0;
 445        }
 446        dev = eeh_dev_to_pci_dev(edev);
 447        pe = eeh_dev_to_pe(edev);
 448
 449        /* Access to IO BARs might get this far and still not want checking. */
 450        if (!pe) {
 451                eeh_stats.ignored_check++;
 452                pr_debug("EEH: Ignored check for %s\n",
 453                        eeh_pci_name(dev));
 454                return 0;
 455        }
 456
 457        if (!pe->addr && !pe->config_addr) {
 458                eeh_stats.no_cfg_addr++;
 459                return 0;
 460        }
 461
 462        /*
 463         * On PowerNV platform, we might already have fenced PHB
 464         * there and we need take care of that firstly.
 465         */
 466        ret = eeh_phb_check_failure(pe);
 467        if (ret > 0)
 468                return ret;
 469
 470        /*
 471         * If the PE isn't owned by us, we shouldn't check the
 472         * state. Instead, let the owner handle it if the PE has
 473         * been frozen.
 474         */
 475        if (eeh_pe_passed(pe))
 476                return 0;
 477
 478        /* If we already have a pending isolation event for this
 479         * slot, we know it's bad already, we don't need to check.
 480         * Do this checking under a lock; as multiple PCI devices
 481         * in one slot might report errors simultaneously, and we
 482         * only want one error recovery routine running.
 483         */
 484        eeh_serialize_lock(&flags);
 485        rc = 1;
 486        if (pe->state & EEH_PE_ISOLATED) {
 487                pe->check_count++;
 488                if (pe->check_count % EEH_MAX_FAILS == 0) {
 489                        pdn = eeh_dev_to_pdn(edev);
 490                        if (pdn->node)
 491                                location = of_get_property(pdn->node, "ibm,loc-code", NULL);
 492                        printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
 493                                "location=%s driver=%s pci addr=%s\n",
 494                                pe->check_count,
 495                                location ? location : "unknown",
 496                                eeh_driver_name(dev), eeh_pci_name(dev));
 497                        printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
 498                                eeh_driver_name(dev));
 499                        dump_stack();
 500                }
 501                goto dn_unlock;
 502        }
 503
 504        /*
 505         * Now test for an EEH failure.  This is VERY expensive.
 506         * Note that the eeh_config_addr may be a parent device
 507         * in the case of a device behind a bridge, or it may be
 508         * function zero of a multi-function device.
 509         * In any case they must share a common PHB.
 510         */
 511        ret = eeh_ops->get_state(pe, NULL);
 512
 513        /* Note that config-io to empty slots may fail;
 514         * they are empty when they don't have children.
 515         * We will punt with the following conditions: Failure to get
 516         * PE's state, EEH not support and Permanently unavailable
 517         * state, PE is in good state.
 518         */
 519        if ((ret < 0) ||
 520            (ret == EEH_STATE_NOT_SUPPORT) ||
 521            ((ret & active_flags) == active_flags)) {
 522                eeh_stats.false_positives++;
 523                pe->false_positives++;
 524                rc = 0;
 525                goto dn_unlock;
 526        }
 527
 528        /*
 529         * It should be corner case that the parent PE has been
 530         * put into frozen state as well. We should take care
 531         * that at first.
 532         */
 533        parent_pe = pe->parent;
 534        while (parent_pe) {
 535                /* Hit the ceiling ? */
 536                if (parent_pe->type & EEH_PE_PHB)
 537                        break;
 538
 539                /* Frozen parent PE ? */
 540                ret = eeh_ops->get_state(parent_pe, NULL);
 541                if (ret > 0 &&
 542                    (ret & active_flags) != active_flags)
 543                        pe = parent_pe;
 544
 545                /* Next parent level */
 546                parent_pe = parent_pe->parent;
 547        }
 548
 549        eeh_stats.slot_resets++;
 550
 551        /* Avoid repeated reports of this failure, including problems
 552         * with other functions on this device, and functions under
 553         * bridges.
 554         */
 555        eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
 556        eeh_serialize_unlock(flags);
 557
 558        /* Most EEH events are due to device driver bugs.  Having
 559         * a stack trace will help the device-driver authors figure
 560         * out what happened.  So print that out.
 561         */
 562        phb_pe = eeh_phb_pe_get(pe->phb);
 563        pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
 564               pe->phb->global_number, pe->addr);
 565        pr_err("EEH: PE location: %s, PHB location: %s\n",
 566               eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
 567        dump_stack();
 568
 569        eeh_send_failure_event(pe);
 570
 571        return 1;
 572
 573dn_unlock:
 574        eeh_serialize_unlock(flags);
 575        return rc;
 576}
 577
 578EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
 579
 580/**
 581 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
 582 * @token: I/O address
 583 *
 584 * Check for an EEH failure at the given I/O address. Call this
 585 * routine if the result of a read was all 0xff's and you want to
 586 * find out if this is due to an EEH slot freeze event. This routine
 587 * will query firmware for the EEH status.
 588 *
 589 * Note this routine is safe to call in an interrupt context.
 590 */
 591int eeh_check_failure(const volatile void __iomem *token)
 592{
 593        unsigned long addr;
 594        struct eeh_dev *edev;
 595
 596        /* Finding the phys addr + pci device; this is pretty quick. */
 597        addr = eeh_token_to_phys((unsigned long __force) token);
 598        edev = eeh_addr_cache_get_dev(addr);
 599        if (!edev) {
 600                eeh_stats.no_device++;
 601                return 0;
 602        }
 603
 604        return eeh_dev_check_failure(edev);
 605}
 606EXPORT_SYMBOL(eeh_check_failure);
 607
 608
 609/**
 610 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
 611 * @pe: EEH PE
 612 *
 613 * This routine should be called to reenable frozen MMIO or DMA
 614 * so that it would work correctly again. It's useful while doing
 615 * recovery or log collection on the indicated device.
 616 */
 617int eeh_pci_enable(struct eeh_pe *pe, int function)
 618{
 619        int active_flag, rc;
 620
 621        /*
 622         * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
 623         * Also, it's pointless to enable them on unfrozen PE. So
 624         * we have to check before enabling IO or DMA.
 625         */
 626        switch (function) {
 627        case EEH_OPT_THAW_MMIO:
 628                active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
 629                break;
 630        case EEH_OPT_THAW_DMA:
 631                active_flag = EEH_STATE_DMA_ACTIVE;
 632                break;
 633        case EEH_OPT_DISABLE:
 634        case EEH_OPT_ENABLE:
 635        case EEH_OPT_FREEZE_PE:
 636                active_flag = 0;
 637                break;
 638        default:
 639                pr_warn("%s: Invalid function %d\n",
 640                        __func__, function);
 641                return -EINVAL;
 642        }
 643
 644        /*
 645         * Check if IO or DMA has been enabled before
 646         * enabling them.
 647         */
 648        if (active_flag) {
 649                rc = eeh_ops->get_state(pe, NULL);
 650                if (rc < 0)
 651                        return rc;
 652
 653                /* Needn't enable it at all */
 654                if (rc == EEH_STATE_NOT_SUPPORT)
 655                        return 0;
 656
 657                /* It's already enabled */
 658                if (rc & active_flag)
 659                        return 0;
 660        }
 661
 662
 663        /* Issue the request */
 664        rc = eeh_ops->set_option(pe, function);
 665        if (rc)
 666                pr_warn("%s: Unexpected state change %d on "
 667                        "PHB#%d-PE#%x, err=%d\n",
 668                        __func__, function, pe->phb->global_number,
 669                        pe->addr, rc);
 670
 671        /* Check if the request is finished successfully */
 672        if (active_flag) {
 673                rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
 674                if (rc < 0)
 675                        return rc;
 676
 677                if (rc & active_flag)
 678                        return 0;
 679
 680                return -EIO;
 681        }
 682
 683        return rc;
 684}
 685
 686static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
 687{
 688        struct eeh_dev *edev = data;
 689        struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
 690        struct pci_dev *dev = userdata;
 691
 692        /*
 693         * The caller should have disabled and saved the
 694         * state for the specified device
 695         */
 696        if (!pdev || pdev == dev)
 697                return NULL;
 698
 699        /* Ensure we have D0 power state */
 700        pci_set_power_state(pdev, PCI_D0);
 701
 702        /* Save device state */
 703        pci_save_state(pdev);
 704
 705        /*
 706         * Disable device to avoid any DMA traffic and
 707         * interrupt from the device
 708         */
 709        pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
 710
 711        return NULL;
 712}
 713
 714static void *eeh_restore_dev_state(void *data, void *userdata)
 715{
 716        struct eeh_dev *edev = data;
 717        struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 718        struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
 719        struct pci_dev *dev = userdata;
 720
 721        if (!pdev)
 722                return NULL;
 723
 724        /* Apply customization from firmware */
 725        if (pdn && eeh_ops->restore_config)
 726                eeh_ops->restore_config(pdn);
 727
 728        /* The caller should restore state for the specified device */
 729        if (pdev != dev)
 730                pci_restore_state(pdev);
 731
 732        return NULL;
 733}
 734
 735/**
 736 * pcibios_set_pcie_reset_state - Set PCI-E reset state
 737 * @dev: pci device struct
 738 * @state: reset state to enter
 739 *
 740 * Return value:
 741 *      0 if success
 742 */
 743int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
 744{
 745        struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
 746        struct eeh_pe *pe = eeh_dev_to_pe(edev);
 747
 748        if (!pe) {
 749                pr_err("%s: No PE found on PCI device %s\n",
 750                        __func__, pci_name(dev));
 751                return -EINVAL;
 752        }
 753
 754        switch (state) {
 755        case pcie_deassert_reset:
 756                eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
 757                eeh_unfreeze_pe(pe, false);
 758                if (!(pe->type & EEH_PE_VF))
 759                        eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
 760                eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
 761                eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
 762                break;
 763        case pcie_hot_reset:
 764                eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
 765                eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
 766                eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
 767                if (!(pe->type & EEH_PE_VF))
 768                        eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
 769                eeh_ops->reset(pe, EEH_RESET_HOT);
 770                break;
 771        case pcie_warm_reset:
 772                eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
 773                eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
 774                eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
 775                if (!(pe->type & EEH_PE_VF))
 776                        eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
 777                eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
 778                break;
 779        default:
 780                eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
 781                return -EINVAL;
 782        };
 783
 784        return 0;
 785}
 786
 787/**
 788 * eeh_set_pe_freset - Check the required reset for the indicated device
 789 * @data: EEH device
 790 * @flag: return value
 791 *
 792 * Each device might have its preferred reset type: fundamental or
 793 * hot reset. The routine is used to collected the information for
 794 * the indicated device and its children so that the bunch of the
 795 * devices could be reset properly.
 796 */
 797static void *eeh_set_dev_freset(void *data, void *flag)
 798{
 799        struct pci_dev *dev;
 800        unsigned int *freset = (unsigned int *)flag;
 801        struct eeh_dev *edev = (struct eeh_dev *)data;
 802
 803        dev = eeh_dev_to_pci_dev(edev);
 804        if (dev)
 805                *freset |= dev->needs_freset;
 806
 807        return NULL;
 808}
 809
 810/**
 811 * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
 812 * @pe: EEH PE
 813 *
 814 * Assert the PCI #RST line for 1/4 second.
 815 */
 816static void eeh_reset_pe_once(struct eeh_pe *pe)
 817{
 818        unsigned int freset = 0;
 819
 820        /* Determine type of EEH reset required for
 821         * Partitionable Endpoint, a hot-reset (1)
 822         * or a fundamental reset (3).
 823         * A fundamental reset required by any device under
 824         * Partitionable Endpoint trumps hot-reset.
 825         */
 826        eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
 827
 828        if (freset)
 829                eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
 830        else
 831                eeh_ops->reset(pe, EEH_RESET_HOT);
 832
 833        eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
 834}
 835
 836/**
 837 * eeh_reset_pe - Reset the indicated PE
 838 * @pe: EEH PE
 839 *
 840 * This routine should be called to reset indicated device, including
 841 * PE. A PE might include multiple PCI devices and sometimes PCI bridges
 842 * might be involved as well.
 843 */
 844int eeh_reset_pe(struct eeh_pe *pe)
 845{
 846        int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
 847        int i, state, ret;
 848
 849        /* Mark as reset and block config space */
 850        eeh_pe_state_mark(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
 851
 852        /* Take three shots at resetting the bus */
 853        for (i = 0; i < 3; i++) {
 854                eeh_reset_pe_once(pe);
 855
 856                /*
 857                 * EEH_PE_ISOLATED is expected to be removed after
 858                 * BAR restore.
 859                 */
 860                state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
 861                if ((state & flags) == flags) {
 862                        ret = 0;
 863                        goto out;
 864                }
 865
 866                if (state < 0) {
 867                        pr_warn("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
 868                                __func__, pe->phb->global_number, pe->addr);
 869                        ret = -ENOTRECOVERABLE;
 870                        goto out;
 871                }
 872
 873                /* We might run out of credits */
 874                ret = -EIO;
 875                pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
 876                        __func__, state, pe->phb->global_number, pe->addr, (i + 1));
 877        }
 878
 879out:
 880        eeh_pe_state_clear(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
 881        return ret;
 882}
 883
 884/**
 885 * eeh_save_bars - Save device bars
 886 * @edev: PCI device associated EEH device
 887 *
 888 * Save the values of the device bars. Unlike the restore
 889 * routine, this routine is *not* recursive. This is because
 890 * PCI devices are added individually; but, for the restore,
 891 * an entire slot is reset at a time.
 892 */
 893void eeh_save_bars(struct eeh_dev *edev)
 894{
 895        struct pci_dn *pdn;
 896        int i;
 897
 898        pdn = eeh_dev_to_pdn(edev);
 899        if (!pdn)
 900                return;
 901
 902        for (i = 0; i < 16; i++)
 903                eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
 904
 905        /*
 906         * For PCI bridges including root port, we need enable bus
 907         * master explicitly. Otherwise, it can't fetch IODA table
 908         * entries correctly. So we cache the bit in advance so that
 909         * we can restore it after reset, either PHB range or PE range.
 910         */
 911        if (edev->mode & EEH_DEV_BRIDGE)
 912                edev->config_space[1] |= PCI_COMMAND_MASTER;
 913}
 914
 915/**
 916 * eeh_ops_register - Register platform dependent EEH operations
 917 * @ops: platform dependent EEH operations
 918 *
 919 * Register the platform dependent EEH operation callback
 920 * functions. The platform should call this function before
 921 * any other EEH operations.
 922 */
 923int __init eeh_ops_register(struct eeh_ops *ops)
 924{
 925        if (!ops->name) {
 926                pr_warn("%s: Invalid EEH ops name for %p\n",
 927                        __func__, ops);
 928                return -EINVAL;
 929        }
 930
 931        if (eeh_ops && eeh_ops != ops) {
 932                pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
 933                        __func__, eeh_ops->name, ops->name);
 934                return -EEXIST;
 935        }
 936
 937        eeh_ops = ops;
 938
 939        return 0;
 940}
 941
 942/**
 943 * eeh_ops_unregister - Unreigster platform dependent EEH operations
 944 * @name: name of EEH platform operations
 945 *
 946 * Unregister the platform dependent EEH operation callback
 947 * functions.
 948 */
 949int __exit eeh_ops_unregister(const char *name)
 950{
 951        if (!name || !strlen(name)) {
 952                pr_warn("%s: Invalid EEH ops name\n",
 953                        __func__);
 954                return -EINVAL;
 955        }
 956
 957        if (eeh_ops && !strcmp(eeh_ops->name, name)) {
 958                eeh_ops = NULL;
 959                return 0;
 960        }
 961
 962        return -EEXIST;
 963}
 964
 965static int eeh_reboot_notifier(struct notifier_block *nb,
 966                               unsigned long action, void *unused)
 967{
 968        eeh_clear_flag(EEH_ENABLED);
 969        return NOTIFY_DONE;
 970}
 971
 972static struct notifier_block eeh_reboot_nb = {
 973        .notifier_call = eeh_reboot_notifier,
 974};
 975
 976/**
 977 * eeh_init - EEH initialization
 978 *
 979 * Initialize EEH by trying to enable it for all of the adapters in the system.
 980 * As a side effect we can determine here if eeh is supported at all.
 981 * Note that we leave EEH on so failed config cycles won't cause a machine
 982 * check.  If a user turns off EEH for a particular adapter they are really
 983 * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
 984 * grant access to a slot if EEH isn't enabled, and so we always enable
 985 * EEH for all slots/all devices.
 986 *
 987 * The eeh-force-off option disables EEH checking globally, for all slots.
 988 * Even if force-off is set, the EEH hardware is still enabled, so that
 989 * newer systems can boot.
 990 */
 991int eeh_init(void)
 992{
 993        struct pci_controller *hose, *tmp;
 994        struct pci_dn *pdn;
 995        static int cnt = 0;
 996        int ret = 0;
 997
 998        /*
 999         * We have to delay the initialization on PowerNV after
1000         * the PCI hierarchy tree has been built because the PEs
1001         * are figured out based on PCI devices instead of device
1002         * tree nodes
1003         */
1004        if (machine_is(powernv) && cnt++ <= 0)
1005                return ret;
1006
1007        /* Register reboot notifier */
1008        ret = register_reboot_notifier(&eeh_reboot_nb);
1009        if (ret) {
1010                pr_warn("%s: Failed to register notifier (%d)\n",
1011                        __func__, ret);
1012                return ret;
1013        }
1014
1015        /* call platform initialization function */
1016        if (!eeh_ops) {
1017                pr_warn("%s: Platform EEH operation not found\n",
1018                        __func__);
1019                return -EEXIST;
1020        } else if ((ret = eeh_ops->init()))
1021                return ret;
1022
1023        /* Initialize EEH event */
1024        ret = eeh_event_init();
1025        if (ret)
1026                return ret;
1027
1028        /* Enable EEH for all adapters */
1029        list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1030                pdn = hose->pci_data;
1031                traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1032        }
1033
1034        /*
1035         * Call platform post-initialization. Actually, It's good chance
1036         * to inform platform that EEH is ready to supply service if the
1037         * I/O cache stuff has been built up.
1038         */
1039        if (eeh_ops->post_init) {
1040                ret = eeh_ops->post_init();
1041                if (ret)
1042                        return ret;
1043        }
1044
1045        if (eeh_enabled())
1046                pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1047        else
1048                pr_info("EEH: No capable adapters found\n");
1049
1050        return ret;
1051}
1052
1053core_initcall_sync(eeh_init);
1054
1055/**
1056 * eeh_add_device_early - Enable EEH for the indicated device node
1057 * @pdn: PCI device node for which to set up EEH
1058 *
1059 * This routine must be used to perform EEH initialization for PCI
1060 * devices that were added after system boot (e.g. hotplug, dlpar).
1061 * This routine must be called before any i/o is performed to the
1062 * adapter (inluding any config-space i/o).
1063 * Whether this actually enables EEH or not for this device depends
1064 * on the CEC architecture, type of the device, on earlier boot
1065 * command-line arguments & etc.
1066 */
1067void eeh_add_device_early(struct pci_dn *pdn)
1068{
1069        struct pci_controller *phb;
1070        struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1071
1072        if (!edev)
1073                return;
1074
1075        if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1076                return;
1077
1078        /* USB Bus children of PCI devices will not have BUID's */
1079        phb = edev->phb;
1080        if (NULL == phb ||
1081            (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1082                return;
1083
1084        eeh_ops->probe(pdn, NULL);
1085}
1086
1087/**
1088 * eeh_add_device_tree_early - Enable EEH for the indicated device
1089 * @pdn: PCI device node
1090 *
1091 * This routine must be used to perform EEH initialization for the
1092 * indicated PCI device that was added after system boot (e.g.
1093 * hotplug, dlpar).
1094 */
1095void eeh_add_device_tree_early(struct pci_dn *pdn)
1096{
1097        struct pci_dn *n;
1098
1099        if (!pdn)
1100                return;
1101
1102        list_for_each_entry(n, &pdn->child_list, list)
1103                eeh_add_device_tree_early(n);
1104        eeh_add_device_early(pdn);
1105}
1106EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1107
1108/**
1109 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1110 * @dev: pci device for which to set up EEH
1111 *
1112 * This routine must be used to complete EEH initialization for PCI
1113 * devices that were added after system boot (e.g. hotplug, dlpar).
1114 */
1115void eeh_add_device_late(struct pci_dev *dev)
1116{
1117        struct pci_dn *pdn;
1118        struct eeh_dev *edev;
1119
1120        if (!dev || !eeh_enabled())
1121                return;
1122
1123        pr_debug("EEH: Adding device %s\n", pci_name(dev));
1124
1125        pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1126        edev = pdn_to_eeh_dev(pdn);
1127        if (edev->pdev == dev) {
1128                pr_debug("EEH: Already referenced !\n");
1129                return;
1130        }
1131
1132        /*
1133         * The EEH cache might not be removed correctly because of
1134         * unbalanced kref to the device during unplug time, which
1135         * relies on pcibios_release_device(). So we have to remove
1136         * that here explicitly.
1137         */
1138        if (edev->pdev) {
1139                eeh_rmv_from_parent_pe(edev);
1140                eeh_addr_cache_rmv_dev(edev->pdev);
1141                eeh_sysfs_remove_device(edev->pdev);
1142                edev->mode &= ~EEH_DEV_SYSFS;
1143
1144                /*
1145                 * We definitely should have the PCI device removed
1146                 * though it wasn't correctly. So we needn't call
1147                 * into error handler afterwards.
1148                 */
1149                edev->mode |= EEH_DEV_NO_HANDLER;
1150
1151                edev->pdev = NULL;
1152                dev->dev.archdata.edev = NULL;
1153        }
1154
1155        if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1156                eeh_ops->probe(pdn, NULL);
1157
1158        edev->pdev = dev;
1159        dev->dev.archdata.edev = edev;
1160
1161        eeh_addr_cache_insert_dev(dev);
1162}
1163
1164/**
1165 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1166 * @bus: PCI bus
1167 *
1168 * This routine must be used to perform EEH initialization for PCI
1169 * devices which are attached to the indicated PCI bus. The PCI bus
1170 * is added after system boot through hotplug or dlpar.
1171 */
1172void eeh_add_device_tree_late(struct pci_bus *bus)
1173{
1174        struct pci_dev *dev;
1175
1176        list_for_each_entry(dev, &bus->devices, bus_list) {
1177                eeh_add_device_late(dev);
1178                if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1179                        struct pci_bus *subbus = dev->subordinate;
1180                        if (subbus)
1181                                eeh_add_device_tree_late(subbus);
1182                }
1183        }
1184}
1185EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1186
1187/**
1188 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1189 * @bus: PCI bus
1190 *
1191 * This routine must be used to add EEH sysfs files for PCI
1192 * devices which are attached to the indicated PCI bus. The PCI bus
1193 * is added after system boot through hotplug or dlpar.
1194 */
1195void eeh_add_sysfs_files(struct pci_bus *bus)
1196{
1197        struct pci_dev *dev;
1198
1199        list_for_each_entry(dev, &bus->devices, bus_list) {
1200                eeh_sysfs_add_device(dev);
1201                if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1202                        struct pci_bus *subbus = dev->subordinate;
1203                        if (subbus)
1204                                eeh_add_sysfs_files(subbus);
1205                }
1206        }
1207}
1208EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1209
1210/**
1211 * eeh_remove_device - Undo EEH setup for the indicated pci device
1212 * @dev: pci device to be removed
1213 *
1214 * This routine should be called when a device is removed from
1215 * a running system (e.g. by hotplug or dlpar).  It unregisters
1216 * the PCI device from the EEH subsystem.  I/O errors affecting
1217 * this device will no longer be detected after this call; thus,
1218 * i/o errors affecting this slot may leave this device unusable.
1219 */
1220void eeh_remove_device(struct pci_dev *dev)
1221{
1222        struct eeh_dev *edev;
1223
1224        if (!dev || !eeh_enabled())
1225                return;
1226        edev = pci_dev_to_eeh_dev(dev);
1227
1228        /* Unregister the device with the EEH/PCI address search system */
1229        pr_debug("EEH: Removing device %s\n", pci_name(dev));
1230
1231        if (!edev || !edev->pdev || !edev->pe) {
1232                pr_debug("EEH: Not referenced !\n");
1233                return;
1234        }
1235
1236        /*
1237         * During the hotplug for EEH error recovery, we need the EEH
1238         * device attached to the parent PE in order for BAR restore
1239         * a bit later. So we keep it for BAR restore and remove it
1240         * from the parent PE during the BAR resotre.
1241         */
1242        edev->pdev = NULL;
1243
1244        /*
1245         * The flag "in_error" is used to trace EEH devices for VFs
1246         * in error state or not. It's set in eeh_report_error(). If
1247         * it's not set, eeh_report_{reset,resume}() won't be called
1248         * for the VF EEH device.
1249         */
1250        edev->in_error = false;
1251        dev->dev.archdata.edev = NULL;
1252        if (!(edev->pe->state & EEH_PE_KEEP))
1253                eeh_rmv_from_parent_pe(edev);
1254        else
1255                edev->mode |= EEH_DEV_DISCONNECTED;
1256
1257        /*
1258         * We're removing from the PCI subsystem, that means
1259         * the PCI device driver can't support EEH or not
1260         * well. So we rely on hotplug completely to do recovery
1261         * for the specific PCI device.
1262         */
1263        edev->mode |= EEH_DEV_NO_HANDLER;
1264
1265        eeh_addr_cache_rmv_dev(dev);
1266        eeh_sysfs_remove_device(dev);
1267        edev->mode &= ~EEH_DEV_SYSFS;
1268}
1269
1270int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1271{
1272        int ret;
1273
1274        ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1275        if (ret) {
1276                pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1277                        __func__, ret, pe->phb->global_number, pe->addr);
1278                return ret;
1279        }
1280
1281        ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1282        if (ret) {
1283                pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1284                        __func__, ret, pe->phb->global_number, pe->addr);
1285                return ret;
1286        }
1287
1288        /* Clear software isolated state */
1289        if (sw_state && (pe->state & EEH_PE_ISOLATED))
1290                eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1291
1292        return ret;
1293}
1294
1295
1296static struct pci_device_id eeh_reset_ids[] = {
1297        { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE     */
1298        { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1299        { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1300        { 0 }
1301};
1302
1303static int eeh_pe_change_owner(struct eeh_pe *pe)
1304{
1305        struct eeh_dev *edev, *tmp;
1306        struct pci_dev *pdev;
1307        struct pci_device_id *id;
1308        int flags, ret;
1309
1310        /* Check PE state */
1311        flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1312        ret = eeh_ops->get_state(pe, NULL);
1313        if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1314                return 0;
1315
1316        /* Unfrozen PE, nothing to do */
1317        if ((ret & flags) == flags)
1318                return 0;
1319
1320        /* Frozen PE, check if it needs PE level reset */
1321        eeh_pe_for_each_dev(pe, edev, tmp) {
1322                pdev = eeh_dev_to_pci_dev(edev);
1323                if (!pdev)
1324                        continue;
1325
1326                for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1327                        if (id->vendor != PCI_ANY_ID &&
1328                            id->vendor != pdev->vendor)
1329                                continue;
1330                        if (id->device != PCI_ANY_ID &&
1331                            id->device != pdev->device)
1332                                continue;
1333                        if (id->subvendor != PCI_ANY_ID &&
1334                            id->subvendor != pdev->subsystem_vendor)
1335                                continue;
1336                        if (id->subdevice != PCI_ANY_ID &&
1337                            id->subdevice != pdev->subsystem_device)
1338                                continue;
1339
1340                        return eeh_pe_reset_and_recover(pe);
1341                }
1342        }
1343
1344        return eeh_unfreeze_pe(pe, true);
1345}
1346
1347/**
1348 * eeh_dev_open - Increase count of pass through devices for PE
1349 * @pdev: PCI device
1350 *
1351 * Increase count of passed through devices for the indicated
1352 * PE. In the result, the EEH errors detected on the PE won't be
1353 * reported. The PE owner will be responsible for detection
1354 * and recovery.
1355 */
1356int eeh_dev_open(struct pci_dev *pdev)
1357{
1358        struct eeh_dev *edev;
1359        int ret = -ENODEV;
1360
1361        mutex_lock(&eeh_dev_mutex);
1362
1363        /* No PCI device ? */
1364        if (!pdev)
1365                goto out;
1366
1367        /* No EEH device or PE ? */
1368        edev = pci_dev_to_eeh_dev(pdev);
1369        if (!edev || !edev->pe)
1370                goto out;
1371
1372        /*
1373         * The PE might have been put into frozen state, but we
1374         * didn't detect that yet. The passed through PCI devices
1375         * in frozen PE won't work properly. Clear the frozen state
1376         * in advance.
1377         */
1378        ret = eeh_pe_change_owner(edev->pe);
1379        if (ret)
1380                goto out;
1381
1382        /* Increase PE's pass through count */
1383        atomic_inc(&edev->pe->pass_dev_cnt);
1384        mutex_unlock(&eeh_dev_mutex);
1385
1386        return 0;
1387out:
1388        mutex_unlock(&eeh_dev_mutex);
1389        return ret;
1390}
1391EXPORT_SYMBOL_GPL(eeh_dev_open);
1392
1393/**
1394 * eeh_dev_release - Decrease count of pass through devices for PE
1395 * @pdev: PCI device
1396 *
1397 * Decrease count of pass through devices for the indicated PE. If
1398 * there is no passed through device in PE, the EEH errors detected
1399 * on the PE will be reported and handled as usual.
1400 */
1401void eeh_dev_release(struct pci_dev *pdev)
1402{
1403        struct eeh_dev *edev;
1404
1405        mutex_lock(&eeh_dev_mutex);
1406
1407        /* No PCI device ? */
1408        if (!pdev)
1409                goto out;
1410
1411        /* No EEH device ? */
1412        edev = pci_dev_to_eeh_dev(pdev);
1413        if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1414                goto out;
1415
1416        /* Decrease PE's pass through count */
1417        WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1418        eeh_pe_change_owner(edev->pe);
1419out:
1420        mutex_unlock(&eeh_dev_mutex);
1421}
1422EXPORT_SYMBOL(eeh_dev_release);
1423
1424#ifdef CONFIG_IOMMU_API
1425
1426static int dev_has_iommu_table(struct device *dev, void *data)
1427{
1428        struct pci_dev *pdev = to_pci_dev(dev);
1429        struct pci_dev **ppdev = data;
1430
1431        if (!dev)
1432                return 0;
1433
1434        if (dev->iommu_group) {
1435                *ppdev = pdev;
1436                return 1;
1437        }
1438
1439        return 0;
1440}
1441
1442/**
1443 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1444 * @group: IOMMU group
1445 *
1446 * The routine is called to convert IOMMU group to EEH PE.
1447 */
1448struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1449{
1450        struct pci_dev *pdev = NULL;
1451        struct eeh_dev *edev;
1452        int ret;
1453
1454        /* No IOMMU group ? */
1455        if (!group)
1456                return NULL;
1457
1458        ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1459        if (!ret || !pdev)
1460                return NULL;
1461
1462        /* No EEH device or PE ? */
1463        edev = pci_dev_to_eeh_dev(pdev);
1464        if (!edev || !edev->pe)
1465                return NULL;
1466
1467        return edev->pe;
1468}
1469EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1470
1471#endif /* CONFIG_IOMMU_API */
1472
1473/**
1474 * eeh_pe_set_option - Set options for the indicated PE
1475 * @pe: EEH PE
1476 * @option: requested option
1477 *
1478 * The routine is called to enable or disable EEH functionality
1479 * on the indicated PE, to enable IO or DMA for the frozen PE.
1480 */
1481int eeh_pe_set_option(struct eeh_pe *pe, int option)
1482{
1483        int ret = 0;
1484
1485        /* Invalid PE ? */
1486        if (!pe)
1487                return -ENODEV;
1488
1489        /*
1490         * EEH functionality could possibly be disabled, just
1491         * return error for the case. And the EEH functinality
1492         * isn't expected to be disabled on one specific PE.
1493         */
1494        switch (option) {
1495        case EEH_OPT_ENABLE:
1496                if (eeh_enabled()) {
1497                        ret = eeh_pe_change_owner(pe);
1498                        break;
1499                }
1500                ret = -EIO;
1501                break;
1502        case EEH_OPT_DISABLE:
1503                break;
1504        case EEH_OPT_THAW_MMIO:
1505        case EEH_OPT_THAW_DMA:
1506        case EEH_OPT_FREEZE_PE:
1507                if (!eeh_ops || !eeh_ops->set_option) {
1508                        ret = -ENOENT;
1509                        break;
1510                }
1511
1512                ret = eeh_pci_enable(pe, option);
1513                break;
1514        default:
1515                pr_debug("%s: Option %d out of range (%d, %d)\n",
1516                        __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1517                ret = -EINVAL;
1518        }
1519
1520        return ret;
1521}
1522EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1523
1524/**
1525 * eeh_pe_get_state - Retrieve PE's state
1526 * @pe: EEH PE
1527 *
1528 * Retrieve the PE's state, which includes 3 aspects: enabled
1529 * DMA, enabled IO and asserted reset.
1530 */
1531int eeh_pe_get_state(struct eeh_pe *pe)
1532{
1533        int result, ret = 0;
1534        bool rst_active, dma_en, mmio_en;
1535
1536        /* Existing PE ? */
1537        if (!pe)
1538                return -ENODEV;
1539
1540        if (!eeh_ops || !eeh_ops->get_state)
1541                return -ENOENT;
1542
1543        /*
1544         * If the parent PE is owned by the host kernel and is undergoing
1545         * error recovery, we should return the PE state as temporarily
1546         * unavailable so that the error recovery on the guest is suspended
1547         * until the recovery completes on the host.
1548         */
1549        if (pe->parent &&
1550            !(pe->state & EEH_PE_REMOVED) &&
1551            (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1552                return EEH_PE_STATE_UNAVAIL;
1553
1554        result = eeh_ops->get_state(pe, NULL);
1555        rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1556        dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1557        mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1558
1559        if (rst_active)
1560                ret = EEH_PE_STATE_RESET;
1561        else if (dma_en && mmio_en)
1562                ret = EEH_PE_STATE_NORMAL;
1563        else if (!dma_en && !mmio_en)
1564                ret = EEH_PE_STATE_STOPPED_IO_DMA;
1565        else if (!dma_en && mmio_en)
1566                ret = EEH_PE_STATE_STOPPED_DMA;
1567        else
1568                ret = EEH_PE_STATE_UNAVAIL;
1569
1570        return ret;
1571}
1572EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1573
1574static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1575{
1576        struct eeh_dev *edev, *tmp;
1577        struct pci_dev *pdev;
1578        int ret = 0;
1579
1580        /* Restore config space */
1581        eeh_pe_restore_bars(pe);
1582
1583        /*
1584         * Reenable PCI devices as the devices passed
1585         * through are always enabled before the reset.
1586         */
1587        eeh_pe_for_each_dev(pe, edev, tmp) {
1588                pdev = eeh_dev_to_pci_dev(edev);
1589                if (!pdev)
1590                        continue;
1591
1592                ret = pci_reenable_device(pdev);
1593                if (ret) {
1594                        pr_warn("%s: Failure %d reenabling %s\n",
1595                                __func__, ret, pci_name(pdev));
1596                        return ret;
1597                }
1598        }
1599
1600        /* The PE is still in frozen state */
1601        return eeh_unfreeze_pe(pe, true);
1602}
1603
1604/**
1605 * eeh_pe_reset - Issue PE reset according to specified type
1606 * @pe: EEH PE
1607 * @option: reset type
1608 *
1609 * The routine is called to reset the specified PE with the
1610 * indicated type, either fundamental reset or hot reset.
1611 * PE reset is the most important part for error recovery.
1612 */
1613int eeh_pe_reset(struct eeh_pe *pe, int option)
1614{
1615        int ret = 0;
1616
1617        /* Invalid PE ? */
1618        if (!pe)
1619                return -ENODEV;
1620
1621        if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1622                return -ENOENT;
1623
1624        switch (option) {
1625        case EEH_RESET_DEACTIVATE:
1626                ret = eeh_ops->reset(pe, option);
1627                eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1628                if (ret)
1629                        break;
1630
1631                ret = eeh_pe_reenable_devices(pe);
1632                break;
1633        case EEH_RESET_HOT:
1634        case EEH_RESET_FUNDAMENTAL:
1635                /*
1636                 * Proactively freeze the PE to drop all MMIO access
1637                 * during reset, which should be banned as it's always
1638                 * cause recursive EEH error.
1639                 */
1640                eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1641
1642                eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1643                ret = eeh_ops->reset(pe, option);
1644                break;
1645        default:
1646                pr_debug("%s: Unsupported option %d\n",
1647                        __func__, option);
1648                ret = -EINVAL;
1649        }
1650
1651        return ret;
1652}
1653EXPORT_SYMBOL_GPL(eeh_pe_reset);
1654
1655/**
1656 * eeh_pe_configure - Configure PCI bridges after PE reset
1657 * @pe: EEH PE
1658 *
1659 * The routine is called to restore the PCI config space for
1660 * those PCI devices, especially PCI bridges affected by PE
1661 * reset issued previously.
1662 */
1663int eeh_pe_configure(struct eeh_pe *pe)
1664{
1665        int ret = 0;
1666
1667        /* Invalid PE ? */
1668        if (!pe)
1669                return -ENODEV;
1670
1671        return ret;
1672}
1673EXPORT_SYMBOL_GPL(eeh_pe_configure);
1674
1675/**
1676 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1677 * @pe: the indicated PE
1678 * @type: error type
1679 * @function: error function
1680 * @addr: address
1681 * @mask: address mask
1682 *
1683 * The routine is called to inject the specified PCI error, which
1684 * is determined by @type and @function, to the indicated PE for
1685 * testing purpose.
1686 */
1687int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1688                      unsigned long addr, unsigned long mask)
1689{
1690        /* Invalid PE ? */
1691        if (!pe)
1692                return -ENODEV;
1693
1694        /* Unsupported operation ? */
1695        if (!eeh_ops || !eeh_ops->err_inject)
1696                return -ENOENT;
1697
1698        /* Check on PCI error type */
1699        if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1700                return -EINVAL;
1701
1702        /* Check on PCI error function */
1703        if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1704                return -EINVAL;
1705
1706        return eeh_ops->err_inject(pe, type, func, addr, mask);
1707}
1708EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1709
1710static int proc_eeh_show(struct seq_file *m, void *v)
1711{
1712        if (!eeh_enabled()) {
1713                seq_printf(m, "EEH Subsystem is globally disabled\n");
1714                seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1715        } else {
1716                seq_printf(m, "EEH Subsystem is enabled\n");
1717                seq_printf(m,
1718                                "no device=%llu\n"
1719                                "no device node=%llu\n"
1720                                "no config address=%llu\n"
1721                                "check not wanted=%llu\n"
1722                                "eeh_total_mmio_ffs=%llu\n"
1723                                "eeh_false_positives=%llu\n"
1724                                "eeh_slot_resets=%llu\n",
1725                                eeh_stats.no_device,
1726                                eeh_stats.no_dn,
1727                                eeh_stats.no_cfg_addr,
1728                                eeh_stats.ignored_check,
1729                                eeh_stats.total_mmio_ffs,
1730                                eeh_stats.false_positives,
1731                                eeh_stats.slot_resets);
1732        }
1733
1734        return 0;
1735}
1736
1737static int proc_eeh_open(struct inode *inode, struct file *file)
1738{
1739        return single_open(file, proc_eeh_show, NULL);
1740}
1741
1742static const struct file_operations proc_eeh_operations = {
1743        .open      = proc_eeh_open,
1744        .read      = seq_read,
1745        .llseek    = seq_lseek,
1746        .release   = single_release,
1747};
1748
1749#ifdef CONFIG_DEBUG_FS
1750static int eeh_enable_dbgfs_set(void *data, u64 val)
1751{
1752        if (val)
1753                eeh_clear_flag(EEH_FORCE_DISABLED);
1754        else
1755                eeh_add_flag(EEH_FORCE_DISABLED);
1756
1757        /* Notify the backend */
1758        if (eeh_ops->post_init)
1759                eeh_ops->post_init();
1760
1761        return 0;
1762}
1763
1764static int eeh_enable_dbgfs_get(void *data, u64 *val)
1765{
1766        if (eeh_enabled())
1767                *val = 0x1ul;
1768        else
1769                *val = 0x0ul;
1770        return 0;
1771}
1772
1773static int eeh_freeze_dbgfs_set(void *data, u64 val)
1774{
1775        eeh_max_freezes = val;
1776        return 0;
1777}
1778
1779static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1780{
1781        *val = eeh_max_freezes;
1782        return 0;
1783}
1784
1785DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1786                        eeh_enable_dbgfs_set, "0x%llx\n");
1787DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1788                        eeh_freeze_dbgfs_set, "0x%llx\n");
1789#endif
1790
1791static int __init eeh_init_proc(void)
1792{
1793        if (machine_is(pseries) || machine_is(powernv)) {
1794                proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1795#ifdef CONFIG_DEBUG_FS
1796                debugfs_create_file("eeh_enable", 0600,
1797                                    powerpc_debugfs_root, NULL,
1798                                    &eeh_enable_dbgfs_ops);
1799                debugfs_create_file("eeh_max_freezes", 0600,
1800                                    powerpc_debugfs_root, NULL,
1801                                    &eeh_freeze_dbgfs_ops);
1802#endif
1803        }
1804
1805        return 0;
1806}
1807__initcall(eeh_init_proc);
1808