linux/arch/powerpc/kernel/kprobes.c
<<
>>
Prefs
   1/*
   2 *  Kernel Probes (KProbes)
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2002, 2004
  19 *
  20 * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  21 *              Probes initial implementation ( includes contributions from
  22 *              Rusty Russell).
  23 * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  24 *              interface to access function arguments.
  25 * 2004-Nov     Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
  26 *              for PPC64
  27 */
  28
  29#include <linux/kprobes.h>
  30#include <linux/ptrace.h>
  31#include <linux/preempt.h>
  32#include <linux/extable.h>
  33#include <linux/kdebug.h>
  34#include <linux/slab.h>
  35#include <asm/code-patching.h>
  36#include <asm/cacheflush.h>
  37#include <asm/sstep.h>
  38#include <asm/uaccess.h>
  39
  40DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  41DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  42
  43struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
  44
  45int __kprobes arch_prepare_kprobe(struct kprobe *p)
  46{
  47        int ret = 0;
  48        kprobe_opcode_t insn = *p->addr;
  49
  50        if ((unsigned long)p->addr & 0x03) {
  51                printk("Attempt to register kprobe at an unaligned address\n");
  52                ret = -EINVAL;
  53        } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
  54                printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
  55                ret = -EINVAL;
  56        }
  57
  58        /* insn must be on a special executable page on ppc64.  This is
  59         * not explicitly required on ppc32 (right now), but it doesn't hurt */
  60        if (!ret) {
  61                p->ainsn.insn = get_insn_slot();
  62                if (!p->ainsn.insn)
  63                        ret = -ENOMEM;
  64        }
  65
  66        if (!ret) {
  67                memcpy(p->ainsn.insn, p->addr,
  68                                MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
  69                p->opcode = *p->addr;
  70                flush_icache_range((unsigned long)p->ainsn.insn,
  71                        (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
  72        }
  73
  74        p->ainsn.boostable = 0;
  75        return ret;
  76}
  77
  78void __kprobes arch_arm_kprobe(struct kprobe *p)
  79{
  80        *p->addr = BREAKPOINT_INSTRUCTION;
  81        flush_icache_range((unsigned long) p->addr,
  82                           (unsigned long) p->addr + sizeof(kprobe_opcode_t));
  83}
  84
  85void __kprobes arch_disarm_kprobe(struct kprobe *p)
  86{
  87        *p->addr = p->opcode;
  88        flush_icache_range((unsigned long) p->addr,
  89                           (unsigned long) p->addr + sizeof(kprobe_opcode_t));
  90}
  91
  92void __kprobes arch_remove_kprobe(struct kprobe *p)
  93{
  94        if (p->ainsn.insn) {
  95                free_insn_slot(p->ainsn.insn, 0);
  96                p->ainsn.insn = NULL;
  97        }
  98}
  99
 100static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
 101{
 102        enable_single_step(regs);
 103
 104        /*
 105         * On powerpc we should single step on the original
 106         * instruction even if the probed insn is a trap
 107         * variant as values in regs could play a part in
 108         * if the trap is taken or not
 109         */
 110        regs->nip = (unsigned long)p->ainsn.insn;
 111}
 112
 113static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 114{
 115        kcb->prev_kprobe.kp = kprobe_running();
 116        kcb->prev_kprobe.status = kcb->kprobe_status;
 117        kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
 118}
 119
 120static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 121{
 122        __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 123        kcb->kprobe_status = kcb->prev_kprobe.status;
 124        kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
 125}
 126
 127static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 128                                struct kprobe_ctlblk *kcb)
 129{
 130        __this_cpu_write(current_kprobe, p);
 131        kcb->kprobe_saved_msr = regs->msr;
 132}
 133
 134void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 135                                      struct pt_regs *regs)
 136{
 137        ri->ret_addr = (kprobe_opcode_t *)regs->link;
 138
 139        /* Replace the return addr with trampoline addr */
 140        regs->link = (unsigned long)kretprobe_trampoline;
 141}
 142
 143static int __kprobes kprobe_handler(struct pt_regs *regs)
 144{
 145        struct kprobe *p;
 146        int ret = 0;
 147        unsigned int *addr = (unsigned int *)regs->nip;
 148        struct kprobe_ctlblk *kcb;
 149
 150        /*
 151         * We don't want to be preempted for the entire
 152         * duration of kprobe processing
 153         */
 154        preempt_disable();
 155        kcb = get_kprobe_ctlblk();
 156
 157        /* Check we're not actually recursing */
 158        if (kprobe_running()) {
 159                p = get_kprobe(addr);
 160                if (p) {
 161                        kprobe_opcode_t insn = *p->ainsn.insn;
 162                        if (kcb->kprobe_status == KPROBE_HIT_SS &&
 163                                        is_trap(insn)) {
 164                                /* Turn off 'trace' bits */
 165                                regs->msr &= ~MSR_SINGLESTEP;
 166                                regs->msr |= kcb->kprobe_saved_msr;
 167                                goto no_kprobe;
 168                        }
 169                        /* We have reentered the kprobe_handler(), since
 170                         * another probe was hit while within the handler.
 171                         * We here save the original kprobes variables and
 172                         * just single step on the instruction of the new probe
 173                         * without calling any user handlers.
 174                         */
 175                        save_previous_kprobe(kcb);
 176                        set_current_kprobe(p, regs, kcb);
 177                        kcb->kprobe_saved_msr = regs->msr;
 178                        kprobes_inc_nmissed_count(p);
 179                        prepare_singlestep(p, regs);
 180                        kcb->kprobe_status = KPROBE_REENTER;
 181                        return 1;
 182                } else {
 183                        if (*addr != BREAKPOINT_INSTRUCTION) {
 184                                /* If trap variant, then it belongs not to us */
 185                                kprobe_opcode_t cur_insn = *addr;
 186                                if (is_trap(cur_insn))
 187                                        goto no_kprobe;
 188                                /* The breakpoint instruction was removed by
 189                                 * another cpu right after we hit, no further
 190                                 * handling of this interrupt is appropriate
 191                                 */
 192                                ret = 1;
 193                                goto no_kprobe;
 194                        }
 195                        p = __this_cpu_read(current_kprobe);
 196                        if (p->break_handler && p->break_handler(p, regs)) {
 197                                goto ss_probe;
 198                        }
 199                }
 200                goto no_kprobe;
 201        }
 202
 203        p = get_kprobe(addr);
 204        if (!p) {
 205                if (*addr != BREAKPOINT_INSTRUCTION) {
 206                        /*
 207                         * PowerPC has multiple variants of the "trap"
 208                         * instruction. If the current instruction is a
 209                         * trap variant, it could belong to someone else
 210                         */
 211                        kprobe_opcode_t cur_insn = *addr;
 212                        if (is_trap(cur_insn))
 213                                goto no_kprobe;
 214                        /*
 215                         * The breakpoint instruction was removed right
 216                         * after we hit it.  Another cpu has removed
 217                         * either a probepoint or a debugger breakpoint
 218                         * at this address.  In either case, no further
 219                         * handling of this interrupt is appropriate.
 220                         */
 221                        ret = 1;
 222                }
 223                /* Not one of ours: let kernel handle it */
 224                goto no_kprobe;
 225        }
 226
 227        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 228        set_current_kprobe(p, regs, kcb);
 229        if (p->pre_handler && p->pre_handler(p, regs))
 230                /* handler has already set things up, so skip ss setup */
 231                return 1;
 232
 233ss_probe:
 234        if (p->ainsn.boostable >= 0) {
 235                unsigned int insn = *p->ainsn.insn;
 236
 237                /* regs->nip is also adjusted if emulate_step returns 1 */
 238                ret = emulate_step(regs, insn);
 239                if (ret > 0) {
 240                        /*
 241                         * Once this instruction has been boosted
 242                         * successfully, set the boostable flag
 243                         */
 244                        if (unlikely(p->ainsn.boostable == 0))
 245                                p->ainsn.boostable = 1;
 246
 247                        if (p->post_handler)
 248                                p->post_handler(p, regs, 0);
 249
 250                        kcb->kprobe_status = KPROBE_HIT_SSDONE;
 251                        reset_current_kprobe();
 252                        preempt_enable_no_resched();
 253                        return 1;
 254                } else if (ret < 0) {
 255                        /*
 256                         * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
 257                         * So, we should never get here... but, its still
 258                         * good to catch them, just in case...
 259                         */
 260                        printk("Can't step on instruction %x\n", insn);
 261                        BUG();
 262                } else if (ret == 0)
 263                        /* This instruction can't be boosted */
 264                        p->ainsn.boostable = -1;
 265        }
 266        prepare_singlestep(p, regs);
 267        kcb->kprobe_status = KPROBE_HIT_SS;
 268        return 1;
 269
 270no_kprobe:
 271        preempt_enable_no_resched();
 272        return ret;
 273}
 274
 275/*
 276 * Function return probe trampoline:
 277 *      - init_kprobes() establishes a probepoint here
 278 *      - When the probed function returns, this probe
 279 *              causes the handlers to fire
 280 */
 281asm(".global kretprobe_trampoline\n"
 282        ".type kretprobe_trampoline, @function\n"
 283        "kretprobe_trampoline:\n"
 284        "nop\n"
 285        ".size kretprobe_trampoline, .-kretprobe_trampoline\n");
 286
 287/*
 288 * Called when the probe at kretprobe trampoline is hit
 289 */
 290static int __kprobes trampoline_probe_handler(struct kprobe *p,
 291                                                struct pt_regs *regs)
 292{
 293        struct kretprobe_instance *ri = NULL;
 294        struct hlist_head *head, empty_rp;
 295        struct hlist_node *tmp;
 296        unsigned long flags, orig_ret_address = 0;
 297        unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
 298
 299        INIT_HLIST_HEAD(&empty_rp);
 300        kretprobe_hash_lock(current, &head, &flags);
 301
 302        /*
 303         * It is possible to have multiple instances associated with a given
 304         * task either because an multiple functions in the call path
 305         * have a return probe installed on them, and/or more than one return
 306         * return probe was registered for a target function.
 307         *
 308         * We can handle this because:
 309         *     - instances are always inserted at the head of the list
 310         *     - when multiple return probes are registered for the same
 311         *       function, the first instance's ret_addr will point to the
 312         *       real return address, and all the rest will point to
 313         *       kretprobe_trampoline
 314         */
 315        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 316                if (ri->task != current)
 317                        /* another task is sharing our hash bucket */
 318                        continue;
 319
 320                if (ri->rp && ri->rp->handler)
 321                        ri->rp->handler(ri, regs);
 322
 323                orig_ret_address = (unsigned long)ri->ret_addr;
 324                recycle_rp_inst(ri, &empty_rp);
 325
 326                if (orig_ret_address != trampoline_address)
 327                        /*
 328                         * This is the real return address. Any other
 329                         * instances associated with this task are for
 330                         * other calls deeper on the call stack
 331                         */
 332                        break;
 333        }
 334
 335        kretprobe_assert(ri, orig_ret_address, trampoline_address);
 336        regs->nip = orig_ret_address;
 337
 338        reset_current_kprobe();
 339        kretprobe_hash_unlock(current, &flags);
 340        preempt_enable_no_resched();
 341
 342        hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 343                hlist_del(&ri->hlist);
 344                kfree(ri);
 345        }
 346        /*
 347         * By returning a non-zero value, we are telling
 348         * kprobe_handler() that we don't want the post_handler
 349         * to run (and have re-enabled preemption)
 350         */
 351        return 1;
 352}
 353
 354/*
 355 * Called after single-stepping.  p->addr is the address of the
 356 * instruction whose first byte has been replaced by the "breakpoint"
 357 * instruction.  To avoid the SMP problems that can occur when we
 358 * temporarily put back the original opcode to single-step, we
 359 * single-stepped a copy of the instruction.  The address of this
 360 * copy is p->ainsn.insn.
 361 */
 362static int __kprobes post_kprobe_handler(struct pt_regs *regs)
 363{
 364        struct kprobe *cur = kprobe_running();
 365        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 366
 367        if (!cur)
 368                return 0;
 369
 370        /* make sure we got here for instruction we have a kprobe on */
 371        if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
 372                return 0;
 373
 374        if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 375                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 376                cur->post_handler(cur, regs, 0);
 377        }
 378
 379        /* Adjust nip to after the single-stepped instruction */
 380        regs->nip = (unsigned long)cur->addr + 4;
 381        regs->msr |= kcb->kprobe_saved_msr;
 382
 383        /*Restore back the original saved kprobes variables and continue. */
 384        if (kcb->kprobe_status == KPROBE_REENTER) {
 385                restore_previous_kprobe(kcb);
 386                goto out;
 387        }
 388        reset_current_kprobe();
 389out:
 390        preempt_enable_no_resched();
 391
 392        /*
 393         * if somebody else is singlestepping across a probe point, msr
 394         * will have DE/SE set, in which case, continue the remaining processing
 395         * of do_debug, as if this is not a probe hit.
 396         */
 397        if (regs->msr & MSR_SINGLESTEP)
 398                return 0;
 399
 400        return 1;
 401}
 402
 403int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 404{
 405        struct kprobe *cur = kprobe_running();
 406        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 407        const struct exception_table_entry *entry;
 408
 409        switch(kcb->kprobe_status) {
 410        case KPROBE_HIT_SS:
 411        case KPROBE_REENTER:
 412                /*
 413                 * We are here because the instruction being single
 414                 * stepped caused a page fault. We reset the current
 415                 * kprobe and the nip points back to the probe address
 416                 * and allow the page fault handler to continue as a
 417                 * normal page fault.
 418                 */
 419                regs->nip = (unsigned long)cur->addr;
 420                regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
 421                regs->msr |= kcb->kprobe_saved_msr;
 422                if (kcb->kprobe_status == KPROBE_REENTER)
 423                        restore_previous_kprobe(kcb);
 424                else
 425                        reset_current_kprobe();
 426                preempt_enable_no_resched();
 427                break;
 428        case KPROBE_HIT_ACTIVE:
 429        case KPROBE_HIT_SSDONE:
 430                /*
 431                 * We increment the nmissed count for accounting,
 432                 * we can also use npre/npostfault count for accounting
 433                 * these specific fault cases.
 434                 */
 435                kprobes_inc_nmissed_count(cur);
 436
 437                /*
 438                 * We come here because instructions in the pre/post
 439                 * handler caused the page_fault, this could happen
 440                 * if handler tries to access user space by
 441                 * copy_from_user(), get_user() etc. Let the
 442                 * user-specified handler try to fix it first.
 443                 */
 444                if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 445                        return 1;
 446
 447                /*
 448                 * In case the user-specified fault handler returned
 449                 * zero, try to fix up.
 450                 */
 451                if ((entry = search_exception_tables(regs->nip)) != NULL) {
 452                        regs->nip = entry->fixup;
 453                        return 1;
 454                }
 455
 456                /*
 457                 * fixup_exception() could not handle it,
 458                 * Let do_page_fault() fix it.
 459                 */
 460                break;
 461        default:
 462                break;
 463        }
 464        return 0;
 465}
 466
 467/*
 468 * Wrapper routine to for handling exceptions.
 469 */
 470int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 471                                       unsigned long val, void *data)
 472{
 473        struct die_args *args = (struct die_args *)data;
 474        int ret = NOTIFY_DONE;
 475
 476        if (args->regs && user_mode(args->regs))
 477                return ret;
 478
 479        switch (val) {
 480        case DIE_BPT:
 481                if (kprobe_handler(args->regs))
 482                        ret = NOTIFY_STOP;
 483                break;
 484        case DIE_SSTEP:
 485                if (post_kprobe_handler(args->regs))
 486                        ret = NOTIFY_STOP;
 487                break;
 488        default:
 489                break;
 490        }
 491        return ret;
 492}
 493
 494unsigned long arch_deref_entry_point(void *entry)
 495{
 496        return ppc_global_function_entry(entry);
 497}
 498
 499int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 500{
 501        struct jprobe *jp = container_of(p, struct jprobe, kp);
 502        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 503
 504        memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
 505
 506        /* setup return addr to the jprobe handler routine */
 507        regs->nip = arch_deref_entry_point(jp->entry);
 508#ifdef PPC64_ELF_ABI_v2
 509        regs->gpr[12] = (unsigned long)jp->entry;
 510#elif defined(PPC64_ELF_ABI_v1)
 511        regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
 512#endif
 513
 514        return 1;
 515}
 516
 517void __used __kprobes jprobe_return(void)
 518{
 519        asm volatile("trap" ::: "memory");
 520}
 521
 522static void __used __kprobes jprobe_return_end(void)
 523{
 524};
 525
 526int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 527{
 528        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 529
 530        /*
 531         * FIXME - we should ideally be validating that we got here 'cos
 532         * of the "trap" in jprobe_return() above, before restoring the
 533         * saved regs...
 534         */
 535        memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
 536        preempt_enable_no_resched();
 537        return 1;
 538}
 539
 540static struct kprobe trampoline_p = {
 541        .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
 542        .pre_handler = trampoline_probe_handler
 543};
 544
 545int __init arch_init_kprobes(void)
 546{
 547        return register_kprobe(&trampoline_p);
 548}
 549
 550int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 551{
 552        if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
 553                return 1;
 554
 555        return 0;
 556}
 557