linux/arch/tile/kernel/process.c
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/sched.h>
  16#include <linux/preempt.h>
  17#include <linux/module.h>
  18#include <linux/fs.h>
  19#include <linux/kprobes.h>
  20#include <linux/elfcore.h>
  21#include <linux/tick.h>
  22#include <linux/init.h>
  23#include <linux/mm.h>
  24#include <linux/compat.h>
  25#include <linux/nmi.h>
  26#include <linux/syscalls.h>
  27#include <linux/kernel.h>
  28#include <linux/tracehook.h>
  29#include <linux/signal.h>
  30#include <linux/delay.h>
  31#include <linux/context_tracking.h>
  32#include <asm/stack.h>
  33#include <asm/switch_to.h>
  34#include <asm/homecache.h>
  35#include <asm/syscalls.h>
  36#include <asm/traps.h>
  37#include <asm/setup.h>
  38#include <asm/uaccess.h>
  39#ifdef CONFIG_HARDWALL
  40#include <asm/hardwall.h>
  41#endif
  42#include <arch/chip.h>
  43#include <arch/abi.h>
  44#include <arch/sim_def.h>
  45
  46/*
  47 * Use the (x86) "idle=poll" option to prefer low latency when leaving the
  48 * idle loop over low power while in the idle loop, e.g. if we have
  49 * one thread per core and we want to get threads out of futex waits fast.
  50 */
  51static int __init idle_setup(char *str)
  52{
  53        if (!str)
  54                return -EINVAL;
  55
  56        if (!strcmp(str, "poll")) {
  57                pr_info("using polling idle threads\n");
  58                cpu_idle_poll_ctrl(true);
  59                return 0;
  60        } else if (!strcmp(str, "halt")) {
  61                return 0;
  62        }
  63        return -1;
  64}
  65early_param("idle", idle_setup);
  66
  67void arch_cpu_idle(void)
  68{
  69        __this_cpu_write(irq_stat.idle_timestamp, jiffies);
  70        _cpu_idle();
  71}
  72
  73/*
  74 * Release a thread_info structure
  75 */
  76void arch_release_thread_stack(unsigned long *stack)
  77{
  78        struct thread_info *info = (void *)stack;
  79        struct single_step_state *step_state = info->step_state;
  80
  81        if (step_state) {
  82
  83                /*
  84                 * FIXME: we don't munmap step_state->buffer
  85                 * because the mm_struct for this process (info->task->mm)
  86                 * has already been zeroed in exit_mm().  Keeping a
  87                 * reference to it here seems like a bad move, so this
  88                 * means we can't munmap() the buffer, and therefore if we
  89                 * ptrace multiple threads in a process, we will slowly
  90                 * leak user memory.  (Note that as soon as the last
  91                 * thread in a process dies, we will reclaim all user
  92                 * memory including single-step buffers in the usual way.)
  93                 * We should either assign a kernel VA to this buffer
  94                 * somehow, or we should associate the buffer(s) with the
  95                 * mm itself so we can clean them up that way.
  96                 */
  97                kfree(step_state);
  98        }
  99}
 100
 101static void save_arch_state(struct thread_struct *t);
 102
 103int copy_thread(unsigned long clone_flags, unsigned long sp,
 104                unsigned long arg, struct task_struct *p)
 105{
 106        struct pt_regs *childregs = task_pt_regs(p);
 107        unsigned long ksp;
 108        unsigned long *callee_regs;
 109
 110        /*
 111         * Set up the stack and stack pointer appropriately for the
 112         * new child to find itself woken up in __switch_to().
 113         * The callee-saved registers must be on the stack to be read;
 114         * the new task will then jump to assembly support to handle
 115         * calling schedule_tail(), etc., and (for userspace tasks)
 116         * returning to the context set up in the pt_regs.
 117         */
 118        ksp = (unsigned long) childregs;
 119        ksp -= C_ABI_SAVE_AREA_SIZE;   /* interrupt-entry save area */
 120        ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
 121        ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
 122        callee_regs = (unsigned long *)ksp;
 123        ksp -= C_ABI_SAVE_AREA_SIZE;   /* __switch_to() save area */
 124        ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
 125        p->thread.ksp = ksp;
 126
 127        /* Record the pid of the task that created this one. */
 128        p->thread.creator_pid = current->pid;
 129
 130        if (unlikely(p->flags & PF_KTHREAD)) {
 131                /* kernel thread */
 132                memset(childregs, 0, sizeof(struct pt_regs));
 133                memset(&callee_regs[2], 0,
 134                       (CALLEE_SAVED_REGS_COUNT - 2) * sizeof(unsigned long));
 135                callee_regs[0] = sp;   /* r30 = function */
 136                callee_regs[1] = arg;  /* r31 = arg */
 137                p->thread.pc = (unsigned long) ret_from_kernel_thread;
 138                return 0;
 139        }
 140
 141        /*
 142         * Start new thread in ret_from_fork so it schedules properly
 143         * and then return from interrupt like the parent.
 144         */
 145        p->thread.pc = (unsigned long) ret_from_fork;
 146
 147        /*
 148         * Do not clone step state from the parent; each thread
 149         * must make its own lazily.
 150         */
 151        task_thread_info(p)->step_state = NULL;
 152
 153#ifdef __tilegx__
 154        /*
 155         * Do not clone unalign jit fixup from the parent; each thread
 156         * must allocate its own on demand.
 157         */
 158        task_thread_info(p)->unalign_jit_base = NULL;
 159#endif
 160
 161        /*
 162         * Copy the registers onto the kernel stack so the
 163         * return-from-interrupt code will reload it into registers.
 164         */
 165        *childregs = *current_pt_regs();
 166        childregs->regs[0] = 0;         /* return value is zero */
 167        if (sp)
 168                childregs->sp = sp;  /* override with new user stack pointer */
 169        memcpy(callee_regs, &childregs->regs[CALLEE_SAVED_FIRST_REG],
 170               CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
 171
 172        /* Save user stack top pointer so we can ID the stack vm area later. */
 173        p->thread.usp0 = childregs->sp;
 174
 175        /*
 176         * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
 177         * which is passed in as arg #5 to sys_clone().
 178         */
 179        if (clone_flags & CLONE_SETTLS)
 180                childregs->tp = childregs->regs[4];
 181
 182
 183#if CHIP_HAS_TILE_DMA()
 184        /*
 185         * No DMA in the new thread.  We model this on the fact that
 186         * fork() clears the pending signals, alarms, and aio for the child.
 187         */
 188        memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
 189        memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
 190#endif
 191
 192        /* New thread has its miscellaneous processor state bits clear. */
 193        p->thread.proc_status = 0;
 194
 195#ifdef CONFIG_HARDWALL
 196        /* New thread does not own any networks. */
 197        memset(&p->thread.hardwall[0], 0,
 198               sizeof(struct hardwall_task) * HARDWALL_TYPES);
 199#endif
 200
 201
 202        /*
 203         * Start the new thread with the current architecture state
 204         * (user interrupt masks, etc.).
 205         */
 206        save_arch_state(&p->thread);
 207
 208        return 0;
 209}
 210
 211int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
 212{
 213        task_thread_info(tsk)->align_ctl = val;
 214        return 0;
 215}
 216
 217int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
 218{
 219        return put_user(task_thread_info(tsk)->align_ctl,
 220                        (unsigned int __user *)adr);
 221}
 222
 223static struct task_struct corrupt_current = { .comm = "<corrupt>" };
 224
 225/*
 226 * Return "current" if it looks plausible, or else a pointer to a dummy.
 227 * This can be helpful if we are just trying to emit a clean panic.
 228 */
 229struct task_struct *validate_current(void)
 230{
 231        struct task_struct *tsk = current;
 232        if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
 233                     (high_memory && (void *)tsk > high_memory) ||
 234                     ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
 235                pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
 236                tsk = &corrupt_current;
 237        }
 238        return tsk;
 239}
 240
 241/* Take and return the pointer to the previous task, for schedule_tail(). */
 242struct task_struct *sim_notify_fork(struct task_struct *prev)
 243{
 244        struct task_struct *tsk = current;
 245        __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
 246                     (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
 247        __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
 248                     (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
 249        return prev;
 250}
 251
 252int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
 253{
 254        struct pt_regs *ptregs = task_pt_regs(tsk);
 255        elf_core_copy_regs(regs, ptregs);
 256        return 1;
 257}
 258
 259#if CHIP_HAS_TILE_DMA()
 260
 261/* Allow user processes to access the DMA SPRs */
 262void grant_dma_mpls(void)
 263{
 264#if CONFIG_KERNEL_PL == 2
 265        __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
 266        __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
 267#else
 268        __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
 269        __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
 270#endif
 271}
 272
 273/* Forbid user processes from accessing the DMA SPRs */
 274void restrict_dma_mpls(void)
 275{
 276#if CONFIG_KERNEL_PL == 2
 277        __insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
 278        __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
 279#else
 280        __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
 281        __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
 282#endif
 283}
 284
 285/* Pause the DMA engine, then save off its state registers. */
 286static void save_tile_dma_state(struct tile_dma_state *dma)
 287{
 288        unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
 289        unsigned long post_suspend_state;
 290
 291        /* If we're running, suspend the engine. */
 292        if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
 293                __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
 294
 295        /*
 296         * Wait for the engine to idle, then save regs.  Note that we
 297         * want to record the "running" bit from before suspension,
 298         * and the "done" bit from after, so that we can properly
 299         * distinguish a case where the user suspended the engine from
 300         * the case where the kernel suspended as part of the context
 301         * swap.
 302         */
 303        do {
 304                post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
 305        } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
 306
 307        dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
 308        dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
 309        dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
 310        dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
 311        dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
 312        dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
 313        dma->byte = __insn_mfspr(SPR_DMA_BYTE);
 314        dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
 315                (post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
 316}
 317
 318/* Restart a DMA that was running before we were context-switched out. */
 319static void restore_tile_dma_state(struct thread_struct *t)
 320{
 321        const struct tile_dma_state *dma = &t->tile_dma_state;
 322
 323        /*
 324         * The only way to restore the done bit is to run a zero
 325         * length transaction.
 326         */
 327        if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
 328            !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
 329                __insn_mtspr(SPR_DMA_BYTE, 0);
 330                __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
 331                while (__insn_mfspr(SPR_DMA_USER_STATUS) &
 332                       SPR_DMA_STATUS__BUSY_MASK)
 333                        ;
 334        }
 335
 336        __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
 337        __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
 338        __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
 339        __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
 340        __insn_mtspr(SPR_DMA_STRIDE, dma->strides);
 341        __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
 342        __insn_mtspr(SPR_DMA_BYTE, dma->byte);
 343
 344        /*
 345         * Restart the engine if we were running and not done.
 346         * Clear a pending async DMA fault that we were waiting on return
 347         * to user space to execute, since we expect the DMA engine
 348         * to regenerate those faults for us now.  Note that we don't
 349         * try to clear the TIF_ASYNC_TLB flag, since it's relatively
 350         * harmless if set, and it covers both DMA and the SN processor.
 351         */
 352        if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
 353                t->dma_async_tlb.fault_num = 0;
 354                __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
 355        }
 356}
 357
 358#endif
 359
 360static void save_arch_state(struct thread_struct *t)
 361{
 362#if CHIP_HAS_SPLIT_INTR_MASK()
 363        t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
 364                ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
 365#else
 366        t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
 367#endif
 368        t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
 369        t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
 370        t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
 371        t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
 372        t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
 373        t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
 374        t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
 375        t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
 376#if !CHIP_HAS_FIXED_INTVEC_BASE()
 377        t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
 378#endif
 379        t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
 380#if CHIP_HAS_DSTREAM_PF()
 381        t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
 382#endif
 383}
 384
 385static void restore_arch_state(const struct thread_struct *t)
 386{
 387#if CHIP_HAS_SPLIT_INTR_MASK()
 388        __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
 389        __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
 390#else
 391        __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
 392#endif
 393        __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
 394        __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
 395        __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
 396        __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
 397        __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
 398        __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
 399        __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
 400        __insn_mtspr(SPR_PROC_STATUS, t->proc_status);
 401#if !CHIP_HAS_FIXED_INTVEC_BASE()
 402        __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
 403#endif
 404        __insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
 405#if CHIP_HAS_DSTREAM_PF()
 406        __insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
 407#endif
 408}
 409
 410
 411void _prepare_arch_switch(struct task_struct *next)
 412{
 413#if CHIP_HAS_TILE_DMA()
 414        struct tile_dma_state *dma = &current->thread.tile_dma_state;
 415        if (dma->enabled)
 416                save_tile_dma_state(dma);
 417#endif
 418}
 419
 420
 421struct task_struct *__sched _switch_to(struct task_struct *prev,
 422                                       struct task_struct *next)
 423{
 424        /* DMA state is already saved; save off other arch state. */
 425        save_arch_state(&prev->thread);
 426
 427#if CHIP_HAS_TILE_DMA()
 428        /*
 429         * Restore DMA in new task if desired.
 430         * Note that it is only safe to restart here since interrupts
 431         * are disabled, so we can't take any DMATLB miss or access
 432         * interrupts before we have finished switching stacks.
 433         */
 434        if (next->thread.tile_dma_state.enabled) {
 435                restore_tile_dma_state(&next->thread);
 436                grant_dma_mpls();
 437        } else {
 438                restrict_dma_mpls();
 439        }
 440#endif
 441
 442        /* Restore other arch state. */
 443        restore_arch_state(&next->thread);
 444
 445#ifdef CONFIG_HARDWALL
 446        /* Enable or disable access to the network registers appropriately. */
 447        hardwall_switch_tasks(prev, next);
 448#endif
 449
 450        /* Notify the simulator of task exit. */
 451        if (unlikely(prev->state == TASK_DEAD))
 452                __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_EXIT |
 453                             (prev->pid << _SIM_CONTROL_OPERATOR_BITS));
 454
 455        /*
 456         * Switch kernel SP, PC, and callee-saved registers.
 457         * In the context of the new task, return the old task pointer
 458         * (i.e. the task that actually called __switch_to).
 459         * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
 460         */
 461        return __switch_to(prev, next, next_current_ksp0(next));
 462}
 463
 464/*
 465 * This routine is called on return from interrupt if any of the
 466 * TIF_ALLWORK_MASK flags are set in thread_info->flags.  It is
 467 * entered with interrupts disabled so we don't miss an event that
 468 * modified the thread_info flags.  We loop until all the tested flags
 469 * are clear.  Note that the function is called on certain conditions
 470 * that are not listed in the loop condition here (e.g. SINGLESTEP)
 471 * which guarantees we will do those things once, and redo them if any
 472 * of the other work items is re-done, but won't continue looping if
 473 * all the other work is done.
 474 */
 475void prepare_exit_to_usermode(struct pt_regs *regs, u32 thread_info_flags)
 476{
 477        if (WARN_ON(!user_mode(regs)))
 478                return;
 479
 480        do {
 481                local_irq_enable();
 482
 483                if (thread_info_flags & _TIF_NEED_RESCHED)
 484                        schedule();
 485
 486#if CHIP_HAS_TILE_DMA()
 487                if (thread_info_flags & _TIF_ASYNC_TLB)
 488                        do_async_page_fault(regs);
 489#endif
 490
 491                if (thread_info_flags & _TIF_SIGPENDING)
 492                        do_signal(regs);
 493
 494                if (thread_info_flags & _TIF_NOTIFY_RESUME) {
 495                        clear_thread_flag(TIF_NOTIFY_RESUME);
 496                        tracehook_notify_resume(regs);
 497                }
 498
 499                local_irq_disable();
 500                thread_info_flags = READ_ONCE(current_thread_info()->flags);
 501
 502        } while (thread_info_flags & _TIF_WORK_MASK);
 503
 504        if (thread_info_flags & _TIF_SINGLESTEP) {
 505                single_step_once(regs);
 506#ifndef __tilegx__
 507                /*
 508                 * FIXME: on tilepro, since we enable interrupts in
 509                 * this routine, it's possible that we miss a signal
 510                 * or other asynchronous event.
 511                 */
 512                local_irq_disable();
 513#endif
 514        }
 515
 516        user_enter();
 517}
 518
 519unsigned long get_wchan(struct task_struct *p)
 520{
 521        struct KBacktraceIterator kbt;
 522
 523        if (!p || p == current || p->state == TASK_RUNNING)
 524                return 0;
 525
 526        for (KBacktraceIterator_init(&kbt, p, NULL);
 527             !KBacktraceIterator_end(&kbt);
 528             KBacktraceIterator_next(&kbt)) {
 529                if (!in_sched_functions(kbt.it.pc))
 530                        return kbt.it.pc;
 531        }
 532
 533        return 0;
 534}
 535
 536/* Flush thread state. */
 537void flush_thread(void)
 538{
 539        /* Nothing */
 540}
 541
 542/*
 543 * Free current thread data structures etc..
 544 */
 545void exit_thread(struct task_struct *tsk)
 546{
 547#ifdef CONFIG_HARDWALL
 548        /*
 549         * Remove the task from the list of tasks that are associated
 550         * with any live hardwalls.  (If the task that is exiting held
 551         * the last reference to a hardwall fd, it would already have
 552         * been released and deactivated at this point.)
 553         */
 554        hardwall_deactivate_all(tsk);
 555#endif
 556}
 557
 558void tile_show_regs(struct pt_regs *regs)
 559{
 560        int i;
 561#ifdef __tilegx__
 562        for (i = 0; i < 17; i++)
 563                pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
 564                       i, regs->regs[i], i+18, regs->regs[i+18],
 565                       i+36, regs->regs[i+36]);
 566        pr_err(" r17: "REGFMT" r35: "REGFMT" tp : "REGFMT"\n",
 567               regs->regs[17], regs->regs[35], regs->tp);
 568        pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
 569#else
 570        for (i = 0; i < 13; i++)
 571                pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
 572                       " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
 573                       i, regs->regs[i], i+14, regs->regs[i+14],
 574                       i+27, regs->regs[i+27], i+40, regs->regs[i+40]);
 575        pr_err(" r13: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
 576               regs->regs[13], regs->tp, regs->sp, regs->lr);
 577#endif
 578        pr_err(" pc : "REGFMT" ex1: %ld     faultnum: %ld flags:%s%s%s%s\n",
 579               regs->pc, regs->ex1, regs->faultnum,
 580               is_compat_task() ? " compat" : "",
 581               (regs->flags & PT_FLAGS_DISABLE_IRQ) ? " noirq" : "",
 582               !(regs->flags & PT_FLAGS_CALLER_SAVES) ? " nocallersave" : "",
 583               (regs->flags & PT_FLAGS_RESTORE_REGS) ? " restoreregs" : "");
 584}
 585
 586void show_regs(struct pt_regs *regs)
 587{
 588        struct KBacktraceIterator kbt;
 589
 590        show_regs_print_info(KERN_DEFAULT);
 591        tile_show_regs(regs);
 592
 593        KBacktraceIterator_init(&kbt, NULL, regs);
 594        tile_show_stack(&kbt);
 595}
 596
 597#ifdef __tilegx__
 598void nmi_raise_cpu_backtrace(struct cpumask *in_mask)
 599{
 600        struct cpumask mask;
 601        HV_Coord tile;
 602        unsigned int timeout;
 603        int cpu;
 604        HV_NMI_Info info[NR_CPUS];
 605
 606        /* Tentatively dump stack on remote tiles via NMI. */
 607        timeout = 100;
 608        cpumask_copy(&mask, in_mask);
 609        while (!cpumask_empty(&mask) && timeout) {
 610                for_each_cpu(cpu, &mask) {
 611                        tile.x = cpu_x(cpu);
 612                        tile.y = cpu_y(cpu);
 613                        info[cpu] = hv_send_nmi(tile, TILE_NMI_DUMP_STACK, 0);
 614                        if (info[cpu].result == HV_NMI_RESULT_OK)
 615                                cpumask_clear_cpu(cpu, &mask);
 616                }
 617
 618                mdelay(10);
 619                touch_softlockup_watchdog();
 620                timeout--;
 621        }
 622
 623        /* Warn about cpus stuck in ICS. */
 624        if (!cpumask_empty(&mask)) {
 625                for_each_cpu(cpu, &mask) {
 626
 627                        /* Clear the bit as if nmi_cpu_backtrace() ran. */
 628                        cpumask_clear_cpu(cpu, in_mask);
 629
 630                        switch (info[cpu].result) {
 631                        case HV_NMI_RESULT_FAIL_ICS:
 632                                pr_warn("Skipping stack dump of cpu %d in ICS at pc %#llx\n",
 633                                        cpu, info[cpu].pc);
 634                                break;
 635                        case HV_NMI_RESULT_FAIL_HV:
 636                                pr_warn("Skipping stack dump of cpu %d in hypervisor\n",
 637                                        cpu);
 638                                break;
 639                        case HV_ENOSYS:
 640                                WARN_ONCE(1, "Hypervisor too old to allow remote stack dumps.\n");
 641                                break;
 642                        default:  /* should not happen */
 643                                pr_warn("Skipping stack dump of cpu %d [%d,%#llx]\n",
 644                                        cpu, info[cpu].result, info[cpu].pc);
 645                                break;
 646                        }
 647                }
 648        }
 649}
 650
 651void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
 652{
 653        nmi_trigger_cpumask_backtrace(mask, exclude_self,
 654                                      nmi_raise_cpu_backtrace);
 655}
 656#endif /* __tilegx_ */
 657