linux/drivers/cpufreq/intel_pstate.c
<<
>>
Prefs
   1/*
   2 * intel_pstate.c: Native P state management for Intel processors
   3 *
   4 * (C) Copyright 2012 Intel Corporation
   5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; version 2
  10 * of the License.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/kernel.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/module.h>
  18#include <linux/ktime.h>
  19#include <linux/hrtimer.h>
  20#include <linux/tick.h>
  21#include <linux/slab.h>
  22#include <linux/sched.h>
  23#include <linux/list.h>
  24#include <linux/cpu.h>
  25#include <linux/cpufreq.h>
  26#include <linux/sysfs.h>
  27#include <linux/types.h>
  28#include <linux/fs.h>
  29#include <linux/debugfs.h>
  30#include <linux/acpi.h>
  31#include <linux/vmalloc.h>
  32#include <trace/events/power.h>
  33
  34#include <asm/div64.h>
  35#include <asm/msr.h>
  36#include <asm/cpu_device_id.h>
  37#include <asm/cpufeature.h>
  38#include <asm/intel-family.h>
  39
  40#define ATOM_RATIOS             0x66a
  41#define ATOM_VIDS               0x66b
  42#define ATOM_TURBO_RATIOS       0x66c
  43#define ATOM_TURBO_VIDS         0x66d
  44
  45#ifdef CONFIG_ACPI
  46#include <acpi/processor.h>
  47#endif
  48
  49#define FRAC_BITS 8
  50#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
  51#define fp_toint(X) ((X) >> FRAC_BITS)
  52
  53#define EXT_BITS 6
  54#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
  55
  56static inline int32_t mul_fp(int32_t x, int32_t y)
  57{
  58        return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
  59}
  60
  61static inline int32_t div_fp(s64 x, s64 y)
  62{
  63        return div64_s64((int64_t)x << FRAC_BITS, y);
  64}
  65
  66static inline int ceiling_fp(int32_t x)
  67{
  68        int mask, ret;
  69
  70        ret = fp_toint(x);
  71        mask = (1 << FRAC_BITS) - 1;
  72        if (x & mask)
  73                ret += 1;
  74        return ret;
  75}
  76
  77static inline u64 mul_ext_fp(u64 x, u64 y)
  78{
  79        return (x * y) >> EXT_FRAC_BITS;
  80}
  81
  82static inline u64 div_ext_fp(u64 x, u64 y)
  83{
  84        return div64_u64(x << EXT_FRAC_BITS, y);
  85}
  86
  87/**
  88 * struct sample -      Store performance sample
  89 * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
  90 *                      performance during last sample period
  91 * @busy_scaled:        Scaled busy value which is used to calculate next
  92 *                      P state. This can be different than core_avg_perf
  93 *                      to account for cpu idle period
  94 * @aperf:              Difference of actual performance frequency clock count
  95 *                      read from APERF MSR between last and current sample
  96 * @mperf:              Difference of maximum performance frequency clock count
  97 *                      read from MPERF MSR between last and current sample
  98 * @tsc:                Difference of time stamp counter between last and
  99 *                      current sample
 100 * @time:               Current time from scheduler
 101 *
 102 * This structure is used in the cpudata structure to store performance sample
 103 * data for choosing next P State.
 104 */
 105struct sample {
 106        int32_t core_avg_perf;
 107        int32_t busy_scaled;
 108        u64 aperf;
 109        u64 mperf;
 110        u64 tsc;
 111        u64 time;
 112};
 113
 114/**
 115 * struct pstate_data - Store P state data
 116 * @current_pstate:     Current requested P state
 117 * @min_pstate:         Min P state possible for this platform
 118 * @max_pstate:         Max P state possible for this platform
 119 * @max_pstate_physical:This is physical Max P state for a processor
 120 *                      This can be higher than the max_pstate which can
 121 *                      be limited by platform thermal design power limits
 122 * @scaling:            Scaling factor to  convert frequency to cpufreq
 123 *                      frequency units
 124 * @turbo_pstate:       Max Turbo P state possible for this platform
 125 *
 126 * Stores the per cpu model P state limits and current P state.
 127 */
 128struct pstate_data {
 129        int     current_pstate;
 130        int     min_pstate;
 131        int     max_pstate;
 132        int     max_pstate_physical;
 133        int     scaling;
 134        int     turbo_pstate;
 135};
 136
 137/**
 138 * struct vid_data -    Stores voltage information data
 139 * @min:                VID data for this platform corresponding to
 140 *                      the lowest P state
 141 * @max:                VID data corresponding to the highest P State.
 142 * @turbo:              VID data for turbo P state
 143 * @ratio:              Ratio of (vid max - vid min) /
 144 *                      (max P state - Min P State)
 145 *
 146 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 147 * This data is used in Atom platforms, where in addition to target P state,
 148 * the voltage data needs to be specified to select next P State.
 149 */
 150struct vid_data {
 151        int min;
 152        int max;
 153        int turbo;
 154        int32_t ratio;
 155};
 156
 157/**
 158 * struct _pid -        Stores PID data
 159 * @setpoint:           Target set point for busyness or performance
 160 * @integral:           Storage for accumulated error values
 161 * @p_gain:             PID proportional gain
 162 * @i_gain:             PID integral gain
 163 * @d_gain:             PID derivative gain
 164 * @deadband:           PID deadband
 165 * @last_err:           Last error storage for integral part of PID calculation
 166 *
 167 * Stores PID coefficients and last error for PID controller.
 168 */
 169struct _pid {
 170        int setpoint;
 171        int32_t integral;
 172        int32_t p_gain;
 173        int32_t i_gain;
 174        int32_t d_gain;
 175        int deadband;
 176        int32_t last_err;
 177};
 178
 179/**
 180 * struct cpudata -     Per CPU instance data storage
 181 * @cpu:                CPU number for this instance data
 182 * @policy:             CPUFreq policy value
 183 * @update_util:        CPUFreq utility callback information
 184 * @update_util_set:    CPUFreq utility callback is set
 185 * @iowait_boost:       iowait-related boost fraction
 186 * @last_update:        Time of the last update.
 187 * @pstate:             Stores P state limits for this CPU
 188 * @vid:                Stores VID limits for this CPU
 189 * @pid:                Stores PID parameters for this CPU
 190 * @last_sample_time:   Last Sample time
 191 * @prev_aperf:         Last APERF value read from APERF MSR
 192 * @prev_mperf:         Last MPERF value read from MPERF MSR
 193 * @prev_tsc:           Last timestamp counter (TSC) value
 194 * @prev_cummulative_iowait: IO Wait time difference from last and
 195 *                      current sample
 196 * @sample:             Storage for storing last Sample data
 197 * @acpi_perf_data:     Stores ACPI perf information read from _PSS
 198 * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
 199 *
 200 * This structure stores per CPU instance data for all CPUs.
 201 */
 202struct cpudata {
 203        int cpu;
 204
 205        unsigned int policy;
 206        struct update_util_data update_util;
 207        bool   update_util_set;
 208
 209        struct pstate_data pstate;
 210        struct vid_data vid;
 211        struct _pid pid;
 212
 213        u64     last_update;
 214        u64     last_sample_time;
 215        u64     prev_aperf;
 216        u64     prev_mperf;
 217        u64     prev_tsc;
 218        u64     prev_cummulative_iowait;
 219        struct sample sample;
 220#ifdef CONFIG_ACPI
 221        struct acpi_processor_performance acpi_perf_data;
 222        bool valid_pss_table;
 223#endif
 224        unsigned int iowait_boost;
 225};
 226
 227static struct cpudata **all_cpu_data;
 228
 229/**
 230 * struct pstate_adjust_policy - Stores static PID configuration data
 231 * @sample_rate_ms:     PID calculation sample rate in ms
 232 * @sample_rate_ns:     Sample rate calculation in ns
 233 * @deadband:           PID deadband
 234 * @setpoint:           PID Setpoint
 235 * @p_gain_pct:         PID proportional gain
 236 * @i_gain_pct:         PID integral gain
 237 * @d_gain_pct:         PID derivative gain
 238 * @boost_iowait:       Whether or not to use iowait boosting.
 239 *
 240 * Stores per CPU model static PID configuration data.
 241 */
 242struct pstate_adjust_policy {
 243        int sample_rate_ms;
 244        s64 sample_rate_ns;
 245        int deadband;
 246        int setpoint;
 247        int p_gain_pct;
 248        int d_gain_pct;
 249        int i_gain_pct;
 250        bool boost_iowait;
 251};
 252
 253/**
 254 * struct pstate_funcs - Per CPU model specific callbacks
 255 * @get_max:            Callback to get maximum non turbo effective P state
 256 * @get_max_physical:   Callback to get maximum non turbo physical P state
 257 * @get_min:            Callback to get minimum P state
 258 * @get_turbo:          Callback to get turbo P state
 259 * @get_scaling:        Callback to get frequency scaling factor
 260 * @get_val:            Callback to convert P state to actual MSR write value
 261 * @get_vid:            Callback to get VID data for Atom platforms
 262 * @get_target_pstate:  Callback to a function to calculate next P state to use
 263 *
 264 * Core and Atom CPU models have different way to get P State limits. This
 265 * structure is used to store those callbacks.
 266 */
 267struct pstate_funcs {
 268        int (*get_max)(void);
 269        int (*get_max_physical)(void);
 270        int (*get_min)(void);
 271        int (*get_turbo)(void);
 272        int (*get_scaling)(void);
 273        u64 (*get_val)(struct cpudata*, int pstate);
 274        void (*get_vid)(struct cpudata *);
 275        int32_t (*get_target_pstate)(struct cpudata *);
 276};
 277
 278/**
 279 * struct cpu_defaults- Per CPU model default config data
 280 * @pid_policy: PID config data
 281 * @funcs:              Callback function data
 282 */
 283struct cpu_defaults {
 284        struct pstate_adjust_policy pid_policy;
 285        struct pstate_funcs funcs;
 286};
 287
 288static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
 289static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
 290
 291static struct pstate_adjust_policy pid_params __read_mostly;
 292static struct pstate_funcs pstate_funcs __read_mostly;
 293static int hwp_active __read_mostly;
 294
 295#ifdef CONFIG_ACPI
 296static bool acpi_ppc;
 297#endif
 298
 299/**
 300 * struct perf_limits - Store user and policy limits
 301 * @no_turbo:           User requested turbo state from intel_pstate sysfs
 302 * @turbo_disabled:     Platform turbo status either from msr
 303 *                      MSR_IA32_MISC_ENABLE or when maximum available pstate
 304 *                      matches the maximum turbo pstate
 305 * @max_perf_pct:       Effective maximum performance limit in percentage, this
 306 *                      is minimum of either limits enforced by cpufreq policy
 307 *                      or limits from user set limits via intel_pstate sysfs
 308 * @min_perf_pct:       Effective minimum performance limit in percentage, this
 309 *                      is maximum of either limits enforced by cpufreq policy
 310 *                      or limits from user set limits via intel_pstate sysfs
 311 * @max_perf:           This is a scaled value between 0 to 255 for max_perf_pct
 312 *                      This value is used to limit max pstate
 313 * @min_perf:           This is a scaled value between 0 to 255 for min_perf_pct
 314 *                      This value is used to limit min pstate
 315 * @max_policy_pct:     The maximum performance in percentage enforced by
 316 *                      cpufreq setpolicy interface
 317 * @max_sysfs_pct:      The maximum performance in percentage enforced by
 318 *                      intel pstate sysfs interface
 319 * @min_policy_pct:     The minimum performance in percentage enforced by
 320 *                      cpufreq setpolicy interface
 321 * @min_sysfs_pct:      The minimum performance in percentage enforced by
 322 *                      intel pstate sysfs interface
 323 *
 324 * Storage for user and policy defined limits.
 325 */
 326struct perf_limits {
 327        int no_turbo;
 328        int turbo_disabled;
 329        int max_perf_pct;
 330        int min_perf_pct;
 331        int32_t max_perf;
 332        int32_t min_perf;
 333        int max_policy_pct;
 334        int max_sysfs_pct;
 335        int min_policy_pct;
 336        int min_sysfs_pct;
 337};
 338
 339static struct perf_limits performance_limits = {
 340        .no_turbo = 0,
 341        .turbo_disabled = 0,
 342        .max_perf_pct = 100,
 343        .max_perf = int_tofp(1),
 344        .min_perf_pct = 100,
 345        .min_perf = int_tofp(1),
 346        .max_policy_pct = 100,
 347        .max_sysfs_pct = 100,
 348        .min_policy_pct = 0,
 349        .min_sysfs_pct = 0,
 350};
 351
 352static struct perf_limits powersave_limits = {
 353        .no_turbo = 0,
 354        .turbo_disabled = 0,
 355        .max_perf_pct = 100,
 356        .max_perf = int_tofp(1),
 357        .min_perf_pct = 0,
 358        .min_perf = 0,
 359        .max_policy_pct = 100,
 360        .max_sysfs_pct = 100,
 361        .min_policy_pct = 0,
 362        .min_sysfs_pct = 0,
 363};
 364
 365#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
 366static struct perf_limits *limits = &performance_limits;
 367#else
 368static struct perf_limits *limits = &powersave_limits;
 369#endif
 370
 371#ifdef CONFIG_ACPI
 372
 373static bool intel_pstate_get_ppc_enable_status(void)
 374{
 375        if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
 376            acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
 377                return true;
 378
 379        return acpi_ppc;
 380}
 381
 382static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 383{
 384        struct cpudata *cpu;
 385        int ret;
 386        int i;
 387
 388        if (hwp_active)
 389                return;
 390
 391        if (!intel_pstate_get_ppc_enable_status())
 392                return;
 393
 394        cpu = all_cpu_data[policy->cpu];
 395
 396        ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
 397                                                  policy->cpu);
 398        if (ret)
 399                return;
 400
 401        /*
 402         * Check if the control value in _PSS is for PERF_CTL MSR, which should
 403         * guarantee that the states returned by it map to the states in our
 404         * list directly.
 405         */
 406        if (cpu->acpi_perf_data.control_register.space_id !=
 407                                                ACPI_ADR_SPACE_FIXED_HARDWARE)
 408                goto err;
 409
 410        /*
 411         * If there is only one entry _PSS, simply ignore _PSS and continue as
 412         * usual without taking _PSS into account
 413         */
 414        if (cpu->acpi_perf_data.state_count < 2)
 415                goto err;
 416
 417        pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
 418        for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
 419                pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
 420                         (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
 421                         (u32) cpu->acpi_perf_data.states[i].core_frequency,
 422                         (u32) cpu->acpi_perf_data.states[i].power,
 423                         (u32) cpu->acpi_perf_data.states[i].control);
 424        }
 425
 426        /*
 427         * The _PSS table doesn't contain whole turbo frequency range.
 428         * This just contains +1 MHZ above the max non turbo frequency,
 429         * with control value corresponding to max turbo ratio. But
 430         * when cpufreq set policy is called, it will call with this
 431         * max frequency, which will cause a reduced performance as
 432         * this driver uses real max turbo frequency as the max
 433         * frequency. So correct this frequency in _PSS table to
 434         * correct max turbo frequency based on the turbo state.
 435         * Also need to convert to MHz as _PSS freq is in MHz.
 436         */
 437        if (!limits->turbo_disabled)
 438                cpu->acpi_perf_data.states[0].core_frequency =
 439                                        policy->cpuinfo.max_freq / 1000;
 440        cpu->valid_pss_table = true;
 441        pr_debug("_PPC limits will be enforced\n");
 442
 443        return;
 444
 445 err:
 446        cpu->valid_pss_table = false;
 447        acpi_processor_unregister_performance(policy->cpu);
 448}
 449
 450static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 451{
 452        struct cpudata *cpu;
 453
 454        cpu = all_cpu_data[policy->cpu];
 455        if (!cpu->valid_pss_table)
 456                return;
 457
 458        acpi_processor_unregister_performance(policy->cpu);
 459}
 460
 461#else
 462static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 463{
 464}
 465
 466static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 467{
 468}
 469#endif
 470
 471static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
 472                             int deadband, int integral) {
 473        pid->setpoint = int_tofp(setpoint);
 474        pid->deadband  = int_tofp(deadband);
 475        pid->integral  = int_tofp(integral);
 476        pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
 477}
 478
 479static inline void pid_p_gain_set(struct _pid *pid, int percent)
 480{
 481        pid->p_gain = div_fp(percent, 100);
 482}
 483
 484static inline void pid_i_gain_set(struct _pid *pid, int percent)
 485{
 486        pid->i_gain = div_fp(percent, 100);
 487}
 488
 489static inline void pid_d_gain_set(struct _pid *pid, int percent)
 490{
 491        pid->d_gain = div_fp(percent, 100);
 492}
 493
 494static signed int pid_calc(struct _pid *pid, int32_t busy)
 495{
 496        signed int result;
 497        int32_t pterm, dterm, fp_error;
 498        int32_t integral_limit;
 499
 500        fp_error = pid->setpoint - busy;
 501
 502        if (abs(fp_error) <= pid->deadband)
 503                return 0;
 504
 505        pterm = mul_fp(pid->p_gain, fp_error);
 506
 507        pid->integral += fp_error;
 508
 509        /*
 510         * We limit the integral here so that it will never
 511         * get higher than 30.  This prevents it from becoming
 512         * too large an input over long periods of time and allows
 513         * it to get factored out sooner.
 514         *
 515         * The value of 30 was chosen through experimentation.
 516         */
 517        integral_limit = int_tofp(30);
 518        if (pid->integral > integral_limit)
 519                pid->integral = integral_limit;
 520        if (pid->integral < -integral_limit)
 521                pid->integral = -integral_limit;
 522
 523        dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
 524        pid->last_err = fp_error;
 525
 526        result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
 527        result = result + (1 << (FRAC_BITS-1));
 528        return (signed int)fp_toint(result);
 529}
 530
 531static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
 532{
 533        pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
 534        pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
 535        pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
 536
 537        pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
 538}
 539
 540static inline void intel_pstate_reset_all_pid(void)
 541{
 542        unsigned int cpu;
 543
 544        for_each_online_cpu(cpu) {
 545                if (all_cpu_data[cpu])
 546                        intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
 547        }
 548}
 549
 550static inline void update_turbo_state(void)
 551{
 552        u64 misc_en;
 553        struct cpudata *cpu;
 554
 555        cpu = all_cpu_data[0];
 556        rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
 557        limits->turbo_disabled =
 558                (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
 559                 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
 560}
 561
 562static void intel_pstate_hwp_set(const struct cpumask *cpumask)
 563{
 564        int min, hw_min, max, hw_max, cpu, range, adj_range;
 565        u64 value, cap;
 566
 567        for_each_cpu(cpu, cpumask) {
 568                rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
 569                hw_min = HWP_LOWEST_PERF(cap);
 570                hw_max = HWP_HIGHEST_PERF(cap);
 571                range = hw_max - hw_min;
 572
 573                rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
 574                adj_range = limits->min_perf_pct * range / 100;
 575                min = hw_min + adj_range;
 576                value &= ~HWP_MIN_PERF(~0L);
 577                value |= HWP_MIN_PERF(min);
 578
 579                adj_range = limits->max_perf_pct * range / 100;
 580                max = hw_min + adj_range;
 581                if (limits->no_turbo) {
 582                        hw_max = HWP_GUARANTEED_PERF(cap);
 583                        if (hw_max < max)
 584                                max = hw_max;
 585                }
 586
 587                value &= ~HWP_MAX_PERF(~0L);
 588                value |= HWP_MAX_PERF(max);
 589                wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
 590        }
 591}
 592
 593static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
 594{
 595        if (hwp_active)
 596                intel_pstate_hwp_set(policy->cpus);
 597
 598        return 0;
 599}
 600
 601static void intel_pstate_hwp_set_online_cpus(void)
 602{
 603        get_online_cpus();
 604        intel_pstate_hwp_set(cpu_online_mask);
 605        put_online_cpus();
 606}
 607
 608/************************** debugfs begin ************************/
 609static int pid_param_set(void *data, u64 val)
 610{
 611        *(u32 *)data = val;
 612        intel_pstate_reset_all_pid();
 613        return 0;
 614}
 615
 616static int pid_param_get(void *data, u64 *val)
 617{
 618        *val = *(u32 *)data;
 619        return 0;
 620}
 621DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
 622
 623struct pid_param {
 624        char *name;
 625        void *value;
 626};
 627
 628static struct pid_param pid_files[] = {
 629        {"sample_rate_ms", &pid_params.sample_rate_ms},
 630        {"d_gain_pct", &pid_params.d_gain_pct},
 631        {"i_gain_pct", &pid_params.i_gain_pct},
 632        {"deadband", &pid_params.deadband},
 633        {"setpoint", &pid_params.setpoint},
 634        {"p_gain_pct", &pid_params.p_gain_pct},
 635        {NULL, NULL}
 636};
 637
 638static void __init intel_pstate_debug_expose_params(void)
 639{
 640        struct dentry *debugfs_parent;
 641        int i = 0;
 642
 643        if (hwp_active)
 644                return;
 645        debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
 646        if (IS_ERR_OR_NULL(debugfs_parent))
 647                return;
 648        while (pid_files[i].name) {
 649                debugfs_create_file(pid_files[i].name, 0660,
 650                                    debugfs_parent, pid_files[i].value,
 651                                    &fops_pid_param);
 652                i++;
 653        }
 654}
 655
 656/************************** debugfs end ************************/
 657
 658/************************** sysfs begin ************************/
 659#define show_one(file_name, object)                                     \
 660        static ssize_t show_##file_name                                 \
 661        (struct kobject *kobj, struct attribute *attr, char *buf)       \
 662        {                                                               \
 663                return sprintf(buf, "%u\n", limits->object);            \
 664        }
 665
 666static ssize_t show_turbo_pct(struct kobject *kobj,
 667                                struct attribute *attr, char *buf)
 668{
 669        struct cpudata *cpu;
 670        int total, no_turbo, turbo_pct;
 671        uint32_t turbo_fp;
 672
 673        cpu = all_cpu_data[0];
 674
 675        total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 676        no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
 677        turbo_fp = div_fp(no_turbo, total);
 678        turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
 679        return sprintf(buf, "%u\n", turbo_pct);
 680}
 681
 682static ssize_t show_num_pstates(struct kobject *kobj,
 683                                struct attribute *attr, char *buf)
 684{
 685        struct cpudata *cpu;
 686        int total;
 687
 688        cpu = all_cpu_data[0];
 689        total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 690        return sprintf(buf, "%u\n", total);
 691}
 692
 693static ssize_t show_no_turbo(struct kobject *kobj,
 694                             struct attribute *attr, char *buf)
 695{
 696        ssize_t ret;
 697
 698        update_turbo_state();
 699        if (limits->turbo_disabled)
 700                ret = sprintf(buf, "%u\n", limits->turbo_disabled);
 701        else
 702                ret = sprintf(buf, "%u\n", limits->no_turbo);
 703
 704        return ret;
 705}
 706
 707static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
 708                              const char *buf, size_t count)
 709{
 710        unsigned int input;
 711        int ret;
 712
 713        ret = sscanf(buf, "%u", &input);
 714        if (ret != 1)
 715                return -EINVAL;
 716
 717        update_turbo_state();
 718        if (limits->turbo_disabled) {
 719                pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
 720                return -EPERM;
 721        }
 722
 723        limits->no_turbo = clamp_t(int, input, 0, 1);
 724
 725        if (hwp_active)
 726                intel_pstate_hwp_set_online_cpus();
 727
 728        return count;
 729}
 730
 731static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
 732                                  const char *buf, size_t count)
 733{
 734        unsigned int input;
 735        int ret;
 736
 737        ret = sscanf(buf, "%u", &input);
 738        if (ret != 1)
 739                return -EINVAL;
 740
 741        limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
 742        limits->max_perf_pct = min(limits->max_policy_pct,
 743                                   limits->max_sysfs_pct);
 744        limits->max_perf_pct = max(limits->min_policy_pct,
 745                                   limits->max_perf_pct);
 746        limits->max_perf_pct = max(limits->min_perf_pct,
 747                                   limits->max_perf_pct);
 748        limits->max_perf = div_fp(limits->max_perf_pct, 100);
 749
 750        if (hwp_active)
 751                intel_pstate_hwp_set_online_cpus();
 752        return count;
 753}
 754
 755static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
 756                                  const char *buf, size_t count)
 757{
 758        unsigned int input;
 759        int ret;
 760
 761        ret = sscanf(buf, "%u", &input);
 762        if (ret != 1)
 763                return -EINVAL;
 764
 765        limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
 766        limits->min_perf_pct = max(limits->min_policy_pct,
 767                                   limits->min_sysfs_pct);
 768        limits->min_perf_pct = min(limits->max_policy_pct,
 769                                   limits->min_perf_pct);
 770        limits->min_perf_pct = min(limits->max_perf_pct,
 771                                   limits->min_perf_pct);
 772        limits->min_perf = div_fp(limits->min_perf_pct, 100);
 773
 774        if (hwp_active)
 775                intel_pstate_hwp_set_online_cpus();
 776        return count;
 777}
 778
 779show_one(max_perf_pct, max_perf_pct);
 780show_one(min_perf_pct, min_perf_pct);
 781
 782define_one_global_rw(no_turbo);
 783define_one_global_rw(max_perf_pct);
 784define_one_global_rw(min_perf_pct);
 785define_one_global_ro(turbo_pct);
 786define_one_global_ro(num_pstates);
 787
 788static struct attribute *intel_pstate_attributes[] = {
 789        &no_turbo.attr,
 790        &max_perf_pct.attr,
 791        &min_perf_pct.attr,
 792        &turbo_pct.attr,
 793        &num_pstates.attr,
 794        NULL
 795};
 796
 797static struct attribute_group intel_pstate_attr_group = {
 798        .attrs = intel_pstate_attributes,
 799};
 800
 801static void __init intel_pstate_sysfs_expose_params(void)
 802{
 803        struct kobject *intel_pstate_kobject;
 804        int rc;
 805
 806        intel_pstate_kobject = kobject_create_and_add("intel_pstate",
 807                                                &cpu_subsys.dev_root->kobj);
 808        BUG_ON(!intel_pstate_kobject);
 809        rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
 810        BUG_ON(rc);
 811}
 812/************************** sysfs end ************************/
 813
 814static void intel_pstate_hwp_enable(struct cpudata *cpudata)
 815{
 816        /* First disable HWP notification interrupt as we don't process them */
 817        if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
 818                wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
 819
 820        wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
 821}
 822
 823static int atom_get_min_pstate(void)
 824{
 825        u64 value;
 826
 827        rdmsrl(ATOM_RATIOS, value);
 828        return (value >> 8) & 0x7F;
 829}
 830
 831static int atom_get_max_pstate(void)
 832{
 833        u64 value;
 834
 835        rdmsrl(ATOM_RATIOS, value);
 836        return (value >> 16) & 0x7F;
 837}
 838
 839static int atom_get_turbo_pstate(void)
 840{
 841        u64 value;
 842
 843        rdmsrl(ATOM_TURBO_RATIOS, value);
 844        return value & 0x7F;
 845}
 846
 847static u64 atom_get_val(struct cpudata *cpudata, int pstate)
 848{
 849        u64 val;
 850        int32_t vid_fp;
 851        u32 vid;
 852
 853        val = (u64)pstate << 8;
 854        if (limits->no_turbo && !limits->turbo_disabled)
 855                val |= (u64)1 << 32;
 856
 857        vid_fp = cpudata->vid.min + mul_fp(
 858                int_tofp(pstate - cpudata->pstate.min_pstate),
 859                cpudata->vid.ratio);
 860
 861        vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
 862        vid = ceiling_fp(vid_fp);
 863
 864        if (pstate > cpudata->pstate.max_pstate)
 865                vid = cpudata->vid.turbo;
 866
 867        return val | vid;
 868}
 869
 870static int silvermont_get_scaling(void)
 871{
 872        u64 value;
 873        int i;
 874        /* Defined in Table 35-6 from SDM (Sept 2015) */
 875        static int silvermont_freq_table[] = {
 876                83300, 100000, 133300, 116700, 80000};
 877
 878        rdmsrl(MSR_FSB_FREQ, value);
 879        i = value & 0x7;
 880        WARN_ON(i > 4);
 881
 882        return silvermont_freq_table[i];
 883}
 884
 885static int airmont_get_scaling(void)
 886{
 887        u64 value;
 888        int i;
 889        /* Defined in Table 35-10 from SDM (Sept 2015) */
 890        static int airmont_freq_table[] = {
 891                83300, 100000, 133300, 116700, 80000,
 892                93300, 90000, 88900, 87500};
 893
 894        rdmsrl(MSR_FSB_FREQ, value);
 895        i = value & 0xF;
 896        WARN_ON(i > 8);
 897
 898        return airmont_freq_table[i];
 899}
 900
 901static void atom_get_vid(struct cpudata *cpudata)
 902{
 903        u64 value;
 904
 905        rdmsrl(ATOM_VIDS, value);
 906        cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
 907        cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
 908        cpudata->vid.ratio = div_fp(
 909                cpudata->vid.max - cpudata->vid.min,
 910                int_tofp(cpudata->pstate.max_pstate -
 911                        cpudata->pstate.min_pstate));
 912
 913        rdmsrl(ATOM_TURBO_VIDS, value);
 914        cpudata->vid.turbo = value & 0x7f;
 915}
 916
 917static int core_get_min_pstate(void)
 918{
 919        u64 value;
 920
 921        rdmsrl(MSR_PLATFORM_INFO, value);
 922        return (value >> 40) & 0xFF;
 923}
 924
 925static int core_get_max_pstate_physical(void)
 926{
 927        u64 value;
 928
 929        rdmsrl(MSR_PLATFORM_INFO, value);
 930        return (value >> 8) & 0xFF;
 931}
 932
 933static int core_get_max_pstate(void)
 934{
 935        u64 tar;
 936        u64 plat_info;
 937        int max_pstate;
 938        int err;
 939
 940        rdmsrl(MSR_PLATFORM_INFO, plat_info);
 941        max_pstate = (plat_info >> 8) & 0xFF;
 942
 943        err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
 944        if (!err) {
 945                /* Do some sanity checking for safety */
 946                if (plat_info & 0x600000000) {
 947                        u64 tdp_ctrl;
 948                        u64 tdp_ratio;
 949                        int tdp_msr;
 950
 951                        err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
 952                        if (err)
 953                                goto skip_tar;
 954
 955                        tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
 956                        err = rdmsrl_safe(tdp_msr, &tdp_ratio);
 957                        if (err)
 958                                goto skip_tar;
 959
 960                        /* For level 1 and 2, bits[23:16] contain the ratio */
 961                        if (tdp_ctrl)
 962                                tdp_ratio >>= 16;
 963
 964                        tdp_ratio &= 0xff; /* ratios are only 8 bits long */
 965                        if (tdp_ratio - 1 == tar) {
 966                                max_pstate = tar;
 967                                pr_debug("max_pstate=TAC %x\n", max_pstate);
 968                        } else {
 969                                goto skip_tar;
 970                        }
 971                }
 972        }
 973
 974skip_tar:
 975        return max_pstate;
 976}
 977
 978static int core_get_turbo_pstate(void)
 979{
 980        u64 value;
 981        int nont, ret;
 982
 983        rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
 984        nont = core_get_max_pstate();
 985        ret = (value) & 255;
 986        if (ret <= nont)
 987                ret = nont;
 988        return ret;
 989}
 990
 991static inline int core_get_scaling(void)
 992{
 993        return 100000;
 994}
 995
 996static u64 core_get_val(struct cpudata *cpudata, int pstate)
 997{
 998        u64 val;
 999
1000        val = (u64)pstate << 8;
1001        if (limits->no_turbo && !limits->turbo_disabled)
1002                val |= (u64)1 << 32;
1003
1004        return val;
1005}
1006
1007static int knl_get_turbo_pstate(void)
1008{
1009        u64 value;
1010        int nont, ret;
1011
1012        rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1013        nont = core_get_max_pstate();
1014        ret = (((value) >> 8) & 0xFF);
1015        if (ret <= nont)
1016                ret = nont;
1017        return ret;
1018}
1019
1020static struct cpu_defaults core_params = {
1021        .pid_policy = {
1022                .sample_rate_ms = 10,
1023                .deadband = 0,
1024                .setpoint = 97,
1025                .p_gain_pct = 20,
1026                .d_gain_pct = 0,
1027                .i_gain_pct = 0,
1028        },
1029        .funcs = {
1030                .get_max = core_get_max_pstate,
1031                .get_max_physical = core_get_max_pstate_physical,
1032                .get_min = core_get_min_pstate,
1033                .get_turbo = core_get_turbo_pstate,
1034                .get_scaling = core_get_scaling,
1035                .get_val = core_get_val,
1036                .get_target_pstate = get_target_pstate_use_performance,
1037        },
1038};
1039
1040static const struct cpu_defaults silvermont_params = {
1041        .pid_policy = {
1042                .sample_rate_ms = 10,
1043                .deadband = 0,
1044                .setpoint = 60,
1045                .p_gain_pct = 14,
1046                .d_gain_pct = 0,
1047                .i_gain_pct = 4,
1048                .boost_iowait = true,
1049        },
1050        .funcs = {
1051                .get_max = atom_get_max_pstate,
1052                .get_max_physical = atom_get_max_pstate,
1053                .get_min = atom_get_min_pstate,
1054                .get_turbo = atom_get_turbo_pstate,
1055                .get_val = atom_get_val,
1056                .get_scaling = silvermont_get_scaling,
1057                .get_vid = atom_get_vid,
1058                .get_target_pstate = get_target_pstate_use_cpu_load,
1059        },
1060};
1061
1062static const struct cpu_defaults airmont_params = {
1063        .pid_policy = {
1064                .sample_rate_ms = 10,
1065                .deadband = 0,
1066                .setpoint = 60,
1067                .p_gain_pct = 14,
1068                .d_gain_pct = 0,
1069                .i_gain_pct = 4,
1070                .boost_iowait = true,
1071        },
1072        .funcs = {
1073                .get_max = atom_get_max_pstate,
1074                .get_max_physical = atom_get_max_pstate,
1075                .get_min = atom_get_min_pstate,
1076                .get_turbo = atom_get_turbo_pstate,
1077                .get_val = atom_get_val,
1078                .get_scaling = airmont_get_scaling,
1079                .get_vid = atom_get_vid,
1080                .get_target_pstate = get_target_pstate_use_cpu_load,
1081        },
1082};
1083
1084static const struct cpu_defaults knl_params = {
1085        .pid_policy = {
1086                .sample_rate_ms = 10,
1087                .deadband = 0,
1088                .setpoint = 97,
1089                .p_gain_pct = 20,
1090                .d_gain_pct = 0,
1091                .i_gain_pct = 0,
1092        },
1093        .funcs = {
1094                .get_max = core_get_max_pstate,
1095                .get_max_physical = core_get_max_pstate_physical,
1096                .get_min = core_get_min_pstate,
1097                .get_turbo = knl_get_turbo_pstate,
1098                .get_scaling = core_get_scaling,
1099                .get_val = core_get_val,
1100                .get_target_pstate = get_target_pstate_use_performance,
1101        },
1102};
1103
1104static const struct cpu_defaults bxt_params = {
1105        .pid_policy = {
1106                .sample_rate_ms = 10,
1107                .deadband = 0,
1108                .setpoint = 60,
1109                .p_gain_pct = 14,
1110                .d_gain_pct = 0,
1111                .i_gain_pct = 4,
1112                .boost_iowait = true,
1113        },
1114        .funcs = {
1115                .get_max = core_get_max_pstate,
1116                .get_max_physical = core_get_max_pstate_physical,
1117                .get_min = core_get_min_pstate,
1118                .get_turbo = core_get_turbo_pstate,
1119                .get_scaling = core_get_scaling,
1120                .get_val = core_get_val,
1121                .get_target_pstate = get_target_pstate_use_cpu_load,
1122        },
1123};
1124
1125static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1126{
1127        int max_perf = cpu->pstate.turbo_pstate;
1128        int max_perf_adj;
1129        int min_perf;
1130
1131        if (limits->no_turbo || limits->turbo_disabled)
1132                max_perf = cpu->pstate.max_pstate;
1133
1134        /*
1135         * performance can be limited by user through sysfs, by cpufreq
1136         * policy, or by cpu specific default values determined through
1137         * experimentation.
1138         */
1139        max_perf_adj = fp_toint(max_perf * limits->max_perf);
1140        *max = clamp_t(int, max_perf_adj,
1141                        cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1142
1143        min_perf = fp_toint(max_perf * limits->min_perf);
1144        *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1145}
1146
1147static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1148{
1149        trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1150        cpu->pstate.current_pstate = pstate;
1151        /*
1152         * Generally, there is no guarantee that this code will always run on
1153         * the CPU being updated, so force the register update to run on the
1154         * right CPU.
1155         */
1156        wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1157                      pstate_funcs.get_val(cpu, pstate));
1158}
1159
1160static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1161{
1162        intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1163}
1164
1165static void intel_pstate_max_within_limits(struct cpudata *cpu)
1166{
1167        int min_pstate, max_pstate;
1168
1169        update_turbo_state();
1170        intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1171        intel_pstate_set_pstate(cpu, max_pstate);
1172}
1173
1174static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1175{
1176        cpu->pstate.min_pstate = pstate_funcs.get_min();
1177        cpu->pstate.max_pstate = pstate_funcs.get_max();
1178        cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1179        cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1180        cpu->pstate.scaling = pstate_funcs.get_scaling();
1181
1182        if (pstate_funcs.get_vid)
1183                pstate_funcs.get_vid(cpu);
1184
1185        intel_pstate_set_min_pstate(cpu);
1186}
1187
1188static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1189{
1190        struct sample *sample = &cpu->sample;
1191
1192        sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1193}
1194
1195static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1196{
1197        u64 aperf, mperf;
1198        unsigned long flags;
1199        u64 tsc;
1200
1201        local_irq_save(flags);
1202        rdmsrl(MSR_IA32_APERF, aperf);
1203        rdmsrl(MSR_IA32_MPERF, mperf);
1204        tsc = rdtsc();
1205        if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1206                local_irq_restore(flags);
1207                return false;
1208        }
1209        local_irq_restore(flags);
1210
1211        cpu->last_sample_time = cpu->sample.time;
1212        cpu->sample.time = time;
1213        cpu->sample.aperf = aperf;
1214        cpu->sample.mperf = mperf;
1215        cpu->sample.tsc =  tsc;
1216        cpu->sample.aperf -= cpu->prev_aperf;
1217        cpu->sample.mperf -= cpu->prev_mperf;
1218        cpu->sample.tsc -= cpu->prev_tsc;
1219
1220        cpu->prev_aperf = aperf;
1221        cpu->prev_mperf = mperf;
1222        cpu->prev_tsc = tsc;
1223        /*
1224         * First time this function is invoked in a given cycle, all of the
1225         * previous sample data fields are equal to zero or stale and they must
1226         * be populated with meaningful numbers for things to work, so assume
1227         * that sample.time will always be reset before setting the utilization
1228         * update hook and make the caller skip the sample then.
1229         */
1230        return !!cpu->last_sample_time;
1231}
1232
1233static inline int32_t get_avg_frequency(struct cpudata *cpu)
1234{
1235        return mul_ext_fp(cpu->sample.core_avg_perf,
1236                          cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1237}
1238
1239static inline int32_t get_avg_pstate(struct cpudata *cpu)
1240{
1241        return mul_ext_fp(cpu->pstate.max_pstate_physical,
1242                          cpu->sample.core_avg_perf);
1243}
1244
1245static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1246{
1247        struct sample *sample = &cpu->sample;
1248        int32_t busy_frac, boost;
1249        int target, avg_pstate;
1250
1251        busy_frac = div_fp(sample->mperf, sample->tsc);
1252
1253        boost = cpu->iowait_boost;
1254        cpu->iowait_boost >>= 1;
1255
1256        if (busy_frac < boost)
1257                busy_frac = boost;
1258
1259        sample->busy_scaled = busy_frac * 100;
1260
1261        target = limits->no_turbo || limits->turbo_disabled ?
1262                        cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1263        target += target >> 2;
1264        target = mul_fp(target, busy_frac);
1265        if (target < cpu->pstate.min_pstate)
1266                target = cpu->pstate.min_pstate;
1267
1268        /*
1269         * If the average P-state during the previous cycle was higher than the
1270         * current target, add 50% of the difference to the target to reduce
1271         * possible performance oscillations and offset possible performance
1272         * loss related to moving the workload from one CPU to another within
1273         * a package/module.
1274         */
1275        avg_pstate = get_avg_pstate(cpu);
1276        if (avg_pstate > target)
1277                target += (avg_pstate - target) >> 1;
1278
1279        return target;
1280}
1281
1282static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1283{
1284        int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1285        u64 duration_ns;
1286
1287        /*
1288         * perf_scaled is the ratio of the average P-state during the last
1289         * sampling period to the P-state requested last time (in percent).
1290         *
1291         * That measures the system's response to the previous P-state
1292         * selection.
1293         */
1294        max_pstate = cpu->pstate.max_pstate_physical;
1295        current_pstate = cpu->pstate.current_pstate;
1296        perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1297                               div_fp(100 * max_pstate, current_pstate));
1298
1299        /*
1300         * Since our utilization update callback will not run unless we are
1301         * in C0, check if the actual elapsed time is significantly greater (3x)
1302         * than our sample interval.  If it is, then we were idle for a long
1303         * enough period of time to adjust our performance metric.
1304         */
1305        duration_ns = cpu->sample.time - cpu->last_sample_time;
1306        if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1307                sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1308                perf_scaled = mul_fp(perf_scaled, sample_ratio);
1309        } else {
1310                sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1311                if (sample_ratio < int_tofp(1))
1312                        perf_scaled = 0;
1313        }
1314
1315        cpu->sample.busy_scaled = perf_scaled;
1316        return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1317}
1318
1319static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1320{
1321        int max_perf, min_perf;
1322
1323        update_turbo_state();
1324
1325        intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1326        pstate = clamp_t(int, pstate, min_perf, max_perf);
1327        trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1328        if (pstate == cpu->pstate.current_pstate)
1329                return;
1330
1331        cpu->pstate.current_pstate = pstate;
1332        wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1333}
1334
1335static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1336{
1337        int from, target_pstate;
1338        struct sample *sample;
1339
1340        from = cpu->pstate.current_pstate;
1341
1342        target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1343                cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1344
1345        intel_pstate_update_pstate(cpu, target_pstate);
1346
1347        sample = &cpu->sample;
1348        trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1349                fp_toint(sample->busy_scaled),
1350                from,
1351                cpu->pstate.current_pstate,
1352                sample->mperf,
1353                sample->aperf,
1354                sample->tsc,
1355                get_avg_frequency(cpu),
1356                fp_toint(cpu->iowait_boost * 100));
1357}
1358
1359static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1360                                     unsigned int flags)
1361{
1362        struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1363        u64 delta_ns;
1364
1365        if (pid_params.boost_iowait) {
1366                if (flags & SCHED_CPUFREQ_IOWAIT) {
1367                        cpu->iowait_boost = int_tofp(1);
1368                } else if (cpu->iowait_boost) {
1369                        /* Clear iowait_boost if the CPU may have been idle. */
1370                        delta_ns = time - cpu->last_update;
1371                        if (delta_ns > TICK_NSEC)
1372                                cpu->iowait_boost = 0;
1373                }
1374                cpu->last_update = time;
1375        }
1376
1377        delta_ns = time - cpu->sample.time;
1378        if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1379                bool sample_taken = intel_pstate_sample(cpu, time);
1380
1381                if (sample_taken) {
1382                        intel_pstate_calc_avg_perf(cpu);
1383                        if (!hwp_active)
1384                                intel_pstate_adjust_busy_pstate(cpu);
1385                }
1386        }
1387}
1388
1389#define ICPU(model, policy) \
1390        { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1391                        (unsigned long)&policy }
1392
1393static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1394        ICPU(INTEL_FAM6_SANDYBRIDGE,            core_params),
1395        ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_params),
1396        ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_params),
1397        ICPU(INTEL_FAM6_IVYBRIDGE,              core_params),
1398        ICPU(INTEL_FAM6_HASWELL_CORE,           core_params),
1399        ICPU(INTEL_FAM6_BROADWELL_CORE,         core_params),
1400        ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_params),
1401        ICPU(INTEL_FAM6_HASWELL_X,              core_params),
1402        ICPU(INTEL_FAM6_HASWELL_ULT,            core_params),
1403        ICPU(INTEL_FAM6_HASWELL_GT3E,           core_params),
1404        ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_params),
1405        ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_params),
1406        ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_params),
1407        ICPU(INTEL_FAM6_BROADWELL_X,            core_params),
1408        ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_params),
1409        ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_params),
1410        ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_params),
1411        ICPU(INTEL_FAM6_ATOM_GOLDMONT,          bxt_params),
1412        {}
1413};
1414MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1415
1416static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1417        ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1418        ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1419        ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1420        {}
1421};
1422
1423static int intel_pstate_init_cpu(unsigned int cpunum)
1424{
1425        struct cpudata *cpu;
1426
1427        if (!all_cpu_data[cpunum])
1428                all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1429                                               GFP_KERNEL);
1430        if (!all_cpu_data[cpunum])
1431                return -ENOMEM;
1432
1433        cpu = all_cpu_data[cpunum];
1434
1435        cpu->cpu = cpunum;
1436
1437        if (hwp_active) {
1438                intel_pstate_hwp_enable(cpu);
1439                pid_params.sample_rate_ms = 50;
1440                pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1441        }
1442
1443        intel_pstate_get_cpu_pstates(cpu);
1444
1445        intel_pstate_busy_pid_reset(cpu);
1446
1447        pr_debug("controlling: cpu %d\n", cpunum);
1448
1449        return 0;
1450}
1451
1452static unsigned int intel_pstate_get(unsigned int cpu_num)
1453{
1454        struct cpudata *cpu = all_cpu_data[cpu_num];
1455
1456        return cpu ? get_avg_frequency(cpu) : 0;
1457}
1458
1459static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1460{
1461        struct cpudata *cpu = all_cpu_data[cpu_num];
1462
1463        if (cpu->update_util_set)
1464                return;
1465
1466        /* Prevent intel_pstate_update_util() from using stale data. */
1467        cpu->sample.time = 0;
1468        cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1469                                     intel_pstate_update_util);
1470        cpu->update_util_set = true;
1471}
1472
1473static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1474{
1475        struct cpudata *cpu_data = all_cpu_data[cpu];
1476
1477        if (!cpu_data->update_util_set)
1478                return;
1479
1480        cpufreq_remove_update_util_hook(cpu);
1481        cpu_data->update_util_set = false;
1482        synchronize_sched();
1483}
1484
1485static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1486{
1487        limits->no_turbo = 0;
1488        limits->turbo_disabled = 0;
1489        limits->max_perf_pct = 100;
1490        limits->max_perf = int_tofp(1);
1491        limits->min_perf_pct = 100;
1492        limits->min_perf = int_tofp(1);
1493        limits->max_policy_pct = 100;
1494        limits->max_sysfs_pct = 100;
1495        limits->min_policy_pct = 0;
1496        limits->min_sysfs_pct = 0;
1497}
1498
1499static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1500{
1501        struct cpudata *cpu;
1502
1503        if (!policy->cpuinfo.max_freq)
1504                return -ENODEV;
1505
1506        pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1507                 policy->cpuinfo.max_freq, policy->max);
1508
1509        cpu = all_cpu_data[policy->cpu];
1510        cpu->policy = policy->policy;
1511
1512        if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1513            policy->max < policy->cpuinfo.max_freq &&
1514            policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1515                pr_debug("policy->max > max non turbo frequency\n");
1516                policy->max = policy->cpuinfo.max_freq;
1517        }
1518
1519        if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1520                limits = &performance_limits;
1521                if (policy->max >= policy->cpuinfo.max_freq) {
1522                        pr_debug("set performance\n");
1523                        intel_pstate_set_performance_limits(limits);
1524                        goto out;
1525                }
1526        } else {
1527                pr_debug("set powersave\n");
1528                limits = &powersave_limits;
1529        }
1530
1531        limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1532        limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1533        limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1534                                              policy->cpuinfo.max_freq);
1535        limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1536
1537        /* Normalize user input to [min_policy_pct, max_policy_pct] */
1538        limits->min_perf_pct = max(limits->min_policy_pct,
1539                                   limits->min_sysfs_pct);
1540        limits->min_perf_pct = min(limits->max_policy_pct,
1541                                   limits->min_perf_pct);
1542        limits->max_perf_pct = min(limits->max_policy_pct,
1543                                   limits->max_sysfs_pct);
1544        limits->max_perf_pct = max(limits->min_policy_pct,
1545                                   limits->max_perf_pct);
1546
1547        /* Make sure min_perf_pct <= max_perf_pct */
1548        limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1549
1550        limits->min_perf = div_fp(limits->min_perf_pct, 100);
1551        limits->max_perf = div_fp(limits->max_perf_pct, 100);
1552        limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1553
1554 out:
1555        if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1556                /*
1557                 * NOHZ_FULL CPUs need this as the governor callback may not
1558                 * be invoked on them.
1559                 */
1560                intel_pstate_clear_update_util_hook(policy->cpu);
1561                intel_pstate_max_within_limits(cpu);
1562        }
1563
1564        intel_pstate_set_update_util_hook(policy->cpu);
1565
1566        intel_pstate_hwp_set_policy(policy);
1567
1568        return 0;
1569}
1570
1571static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1572{
1573        cpufreq_verify_within_cpu_limits(policy);
1574
1575        if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1576            policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1577                return -EINVAL;
1578
1579        return 0;
1580}
1581
1582static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1583{
1584        int cpu_num = policy->cpu;
1585        struct cpudata *cpu = all_cpu_data[cpu_num];
1586
1587        pr_debug("CPU %d exiting\n", cpu_num);
1588
1589        intel_pstate_clear_update_util_hook(cpu_num);
1590
1591        if (hwp_active)
1592                return;
1593
1594        intel_pstate_set_min_pstate(cpu);
1595}
1596
1597static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1598{
1599        struct cpudata *cpu;
1600        int rc;
1601
1602        rc = intel_pstate_init_cpu(policy->cpu);
1603        if (rc)
1604                return rc;
1605
1606        cpu = all_cpu_data[policy->cpu];
1607
1608        if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1609                policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1610        else
1611                policy->policy = CPUFREQ_POLICY_POWERSAVE;
1612
1613        policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1614        policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1615
1616        /* cpuinfo and default policy values */
1617        policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1618        update_turbo_state();
1619        policy->cpuinfo.max_freq = limits->turbo_disabled ?
1620                        cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1621        policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1622
1623        intel_pstate_init_acpi_perf_limits(policy);
1624        policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1625        cpumask_set_cpu(policy->cpu, policy->cpus);
1626
1627        return 0;
1628}
1629
1630static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1631{
1632        intel_pstate_exit_perf_limits(policy);
1633
1634        return 0;
1635}
1636
1637static struct cpufreq_driver intel_pstate_driver = {
1638        .flags          = CPUFREQ_CONST_LOOPS,
1639        .verify         = intel_pstate_verify_policy,
1640        .setpolicy      = intel_pstate_set_policy,
1641        .resume         = intel_pstate_hwp_set_policy,
1642        .get            = intel_pstate_get,
1643        .init           = intel_pstate_cpu_init,
1644        .exit           = intel_pstate_cpu_exit,
1645        .stop_cpu       = intel_pstate_stop_cpu,
1646        .name           = "intel_pstate",
1647};
1648
1649static int no_load __initdata;
1650static int no_hwp __initdata;
1651static int hwp_only __initdata;
1652static unsigned int force_load __initdata;
1653
1654static int __init intel_pstate_msrs_not_valid(void)
1655{
1656        if (!pstate_funcs.get_max() ||
1657            !pstate_funcs.get_min() ||
1658            !pstate_funcs.get_turbo())
1659                return -ENODEV;
1660
1661        return 0;
1662}
1663
1664static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1665{
1666        pid_params.sample_rate_ms = policy->sample_rate_ms;
1667        pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1668        pid_params.p_gain_pct = policy->p_gain_pct;
1669        pid_params.i_gain_pct = policy->i_gain_pct;
1670        pid_params.d_gain_pct = policy->d_gain_pct;
1671        pid_params.deadband = policy->deadband;
1672        pid_params.setpoint = policy->setpoint;
1673}
1674
1675static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1676{
1677        pstate_funcs.get_max   = funcs->get_max;
1678        pstate_funcs.get_max_physical = funcs->get_max_physical;
1679        pstate_funcs.get_min   = funcs->get_min;
1680        pstate_funcs.get_turbo = funcs->get_turbo;
1681        pstate_funcs.get_scaling = funcs->get_scaling;
1682        pstate_funcs.get_val   = funcs->get_val;
1683        pstate_funcs.get_vid   = funcs->get_vid;
1684        pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1685
1686}
1687
1688#ifdef CONFIG_ACPI
1689
1690static bool __init intel_pstate_no_acpi_pss(void)
1691{
1692        int i;
1693
1694        for_each_possible_cpu(i) {
1695                acpi_status status;
1696                union acpi_object *pss;
1697                struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1698                struct acpi_processor *pr = per_cpu(processors, i);
1699
1700                if (!pr)
1701                        continue;
1702
1703                status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1704                if (ACPI_FAILURE(status))
1705                        continue;
1706
1707                pss = buffer.pointer;
1708                if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1709                        kfree(pss);
1710                        return false;
1711                }
1712
1713                kfree(pss);
1714        }
1715
1716        return true;
1717}
1718
1719static bool __init intel_pstate_has_acpi_ppc(void)
1720{
1721        int i;
1722
1723        for_each_possible_cpu(i) {
1724                struct acpi_processor *pr = per_cpu(processors, i);
1725
1726                if (!pr)
1727                        continue;
1728                if (acpi_has_method(pr->handle, "_PPC"))
1729                        return true;
1730        }
1731        return false;
1732}
1733
1734enum {
1735        PSS,
1736        PPC,
1737};
1738
1739struct hw_vendor_info {
1740        u16  valid;
1741        char oem_id[ACPI_OEM_ID_SIZE];
1742        char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1743        int  oem_pwr_table;
1744};
1745
1746/* Hardware vendor-specific info that has its own power management modes */
1747static struct hw_vendor_info vendor_info[] __initdata = {
1748        {1, "HP    ", "ProLiant", PSS},
1749        {1, "ORACLE", "X4-2    ", PPC},
1750        {1, "ORACLE", "X4-2L   ", PPC},
1751        {1, "ORACLE", "X4-2B   ", PPC},
1752        {1, "ORACLE", "X3-2    ", PPC},
1753        {1, "ORACLE", "X3-2L   ", PPC},
1754        {1, "ORACLE", "X3-2B   ", PPC},
1755        {1, "ORACLE", "X4470M2 ", PPC},
1756        {1, "ORACLE", "X4270M3 ", PPC},
1757        {1, "ORACLE", "X4270M2 ", PPC},
1758        {1, "ORACLE", "X4170M2 ", PPC},
1759        {1, "ORACLE", "X4170 M3", PPC},
1760        {1, "ORACLE", "X4275 M3", PPC},
1761        {1, "ORACLE", "X6-2    ", PPC},
1762        {1, "ORACLE", "Sudbury ", PPC},
1763        {0, "", ""},
1764};
1765
1766static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1767{
1768        struct acpi_table_header hdr;
1769        struct hw_vendor_info *v_info;
1770        const struct x86_cpu_id *id;
1771        u64 misc_pwr;
1772
1773        id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1774        if (id) {
1775                rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1776                if ( misc_pwr & (1 << 8))
1777                        return true;
1778        }
1779
1780        if (acpi_disabled ||
1781            ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1782                return false;
1783
1784        for (v_info = vendor_info; v_info->valid; v_info++) {
1785                if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1786                        !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1787                                                ACPI_OEM_TABLE_ID_SIZE))
1788                        switch (v_info->oem_pwr_table) {
1789                        case PSS:
1790                                return intel_pstate_no_acpi_pss();
1791                        case PPC:
1792                                return intel_pstate_has_acpi_ppc() &&
1793                                        (!force_load);
1794                        }
1795        }
1796
1797        return false;
1798}
1799#else /* CONFIG_ACPI not enabled */
1800static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1801static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1802#endif /* CONFIG_ACPI */
1803
1804static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1805        { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1806        {}
1807};
1808
1809static int __init intel_pstate_init(void)
1810{
1811        int cpu, rc = 0;
1812        const struct x86_cpu_id *id;
1813        struct cpu_defaults *cpu_def;
1814
1815        if (no_load)
1816                return -ENODEV;
1817
1818        if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1819                copy_cpu_funcs(&core_params.funcs);
1820                hwp_active++;
1821                goto hwp_cpu_matched;
1822        }
1823
1824        id = x86_match_cpu(intel_pstate_cpu_ids);
1825        if (!id)
1826                return -ENODEV;
1827
1828        cpu_def = (struct cpu_defaults *)id->driver_data;
1829
1830        copy_pid_params(&cpu_def->pid_policy);
1831        copy_cpu_funcs(&cpu_def->funcs);
1832
1833        if (intel_pstate_msrs_not_valid())
1834                return -ENODEV;
1835
1836hwp_cpu_matched:
1837        /*
1838         * The Intel pstate driver will be ignored if the platform
1839         * firmware has its own power management modes.
1840         */
1841        if (intel_pstate_platform_pwr_mgmt_exists())
1842                return -ENODEV;
1843
1844        pr_info("Intel P-state driver initializing\n");
1845
1846        all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1847        if (!all_cpu_data)
1848                return -ENOMEM;
1849
1850        if (!hwp_active && hwp_only)
1851                goto out;
1852
1853        rc = cpufreq_register_driver(&intel_pstate_driver);
1854        if (rc)
1855                goto out;
1856
1857        intel_pstate_debug_expose_params();
1858        intel_pstate_sysfs_expose_params();
1859
1860        if (hwp_active)
1861                pr_info("HWP enabled\n");
1862
1863        return rc;
1864out:
1865        get_online_cpus();
1866        for_each_online_cpu(cpu) {
1867                if (all_cpu_data[cpu]) {
1868                        intel_pstate_clear_update_util_hook(cpu);
1869                        kfree(all_cpu_data[cpu]);
1870                }
1871        }
1872
1873        put_online_cpus();
1874        vfree(all_cpu_data);
1875        return -ENODEV;
1876}
1877device_initcall(intel_pstate_init);
1878
1879static int __init intel_pstate_setup(char *str)
1880{
1881        if (!str)
1882                return -EINVAL;
1883
1884        if (!strcmp(str, "disable"))
1885                no_load = 1;
1886        if (!strcmp(str, "no_hwp")) {
1887                pr_info("HWP disabled\n");
1888                no_hwp = 1;
1889        }
1890        if (!strcmp(str, "force"))
1891                force_load = 1;
1892        if (!strcmp(str, "hwp_only"))
1893                hwp_only = 1;
1894
1895#ifdef CONFIG_ACPI
1896        if (!strcmp(str, "support_acpi_ppc"))
1897                acpi_ppc = true;
1898#endif
1899
1900        return 0;
1901}
1902early_param("intel_pstate", intel_pstate_setup);
1903
1904MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1905MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1906MODULE_LICENSE("GPL");
1907