linux/drivers/dma/ste_dma40.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) Ericsson AB 2007-2008
   3 * Copyright (C) ST-Ericsson SA 2008-2010
   4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
   5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
   6 * License terms: GNU General Public License (GPL) version 2
   7 */
   8
   9#include <linux/dma-mapping.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/export.h>
  13#include <linux/dmaengine.h>
  14#include <linux/platform_device.h>
  15#include <linux/clk.h>
  16#include <linux/delay.h>
  17#include <linux/log2.h>
  18#include <linux/pm.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/err.h>
  21#include <linux/of.h>
  22#include <linux/of_dma.h>
  23#include <linux/amba/bus.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/platform_data/dma-ste-dma40.h>
  26
  27#include "dmaengine.h"
  28#include "ste_dma40_ll.h"
  29
  30#define D40_NAME "dma40"
  31
  32#define D40_PHY_CHAN -1
  33
  34/* For masking out/in 2 bit channel positions */
  35#define D40_CHAN_POS(chan)  (2 * (chan / 2))
  36#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  37
  38/* Maximum iterations taken before giving up suspending a channel */
  39#define D40_SUSPEND_MAX_IT 500
  40
  41/* Milliseconds */
  42#define DMA40_AUTOSUSPEND_DELAY 100
  43
  44/* Hardware requirement on LCLA alignment */
  45#define LCLA_ALIGNMENT 0x40000
  46
  47/* Max number of links per event group */
  48#define D40_LCLA_LINK_PER_EVENT_GRP 128
  49#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  50
  51/* Max number of logical channels per physical channel */
  52#define D40_MAX_LOG_CHAN_PER_PHY 32
  53
  54/* Attempts before giving up to trying to get pages that are aligned */
  55#define MAX_LCLA_ALLOC_ATTEMPTS 256
  56
  57/* Bit markings for allocation map */
  58#define D40_ALLOC_FREE          BIT(31)
  59#define D40_ALLOC_PHY           BIT(30)
  60#define D40_ALLOC_LOG_FREE      0
  61
  62#define D40_MEMCPY_MAX_CHANS    8
  63
  64/* Reserved event lines for memcpy only. */
  65#define DB8500_DMA_MEMCPY_EV_0  51
  66#define DB8500_DMA_MEMCPY_EV_1  56
  67#define DB8500_DMA_MEMCPY_EV_2  57
  68#define DB8500_DMA_MEMCPY_EV_3  58
  69#define DB8500_DMA_MEMCPY_EV_4  59
  70#define DB8500_DMA_MEMCPY_EV_5  60
  71
  72static int dma40_memcpy_channels[] = {
  73        DB8500_DMA_MEMCPY_EV_0,
  74        DB8500_DMA_MEMCPY_EV_1,
  75        DB8500_DMA_MEMCPY_EV_2,
  76        DB8500_DMA_MEMCPY_EV_3,
  77        DB8500_DMA_MEMCPY_EV_4,
  78        DB8500_DMA_MEMCPY_EV_5,
  79};
  80
  81/* Default configuration for physcial memcpy */
  82static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
  83        .mode = STEDMA40_MODE_PHYSICAL,
  84        .dir = DMA_MEM_TO_MEM,
  85
  86        .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  87        .src_info.psize = STEDMA40_PSIZE_PHY_1,
  88        .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  89
  90        .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  91        .dst_info.psize = STEDMA40_PSIZE_PHY_1,
  92        .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  93};
  94
  95/* Default configuration for logical memcpy */
  96static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
  97        .mode = STEDMA40_MODE_LOGICAL,
  98        .dir = DMA_MEM_TO_MEM,
  99
 100        .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 101        .src_info.psize = STEDMA40_PSIZE_LOG_1,
 102        .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 103
 104        .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 105        .dst_info.psize = STEDMA40_PSIZE_LOG_1,
 106        .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 107};
 108
 109/**
 110 * enum 40_command - The different commands and/or statuses.
 111 *
 112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 116 */
 117enum d40_command {
 118        D40_DMA_STOP            = 0,
 119        D40_DMA_RUN             = 1,
 120        D40_DMA_SUSPEND_REQ     = 2,
 121        D40_DMA_SUSPENDED       = 3
 122};
 123
 124/*
 125 * enum d40_events - The different Event Enables for the event lines.
 126 *
 127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 130 * @D40_ROUND_EVENTLINE: Status check for event line.
 131 */
 132
 133enum d40_events {
 134        D40_DEACTIVATE_EVENTLINE        = 0,
 135        D40_ACTIVATE_EVENTLINE          = 1,
 136        D40_SUSPEND_REQ_EVENTLINE       = 2,
 137        D40_ROUND_EVENTLINE             = 3
 138};
 139
 140/*
 141 * These are the registers that has to be saved and later restored
 142 * when the DMA hw is powered off.
 143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 144 */
 145static u32 d40_backup_regs[] = {
 146        D40_DREG_LCPA,
 147        D40_DREG_LCLA,
 148        D40_DREG_PRMSE,
 149        D40_DREG_PRMSO,
 150        D40_DREG_PRMOE,
 151        D40_DREG_PRMOO,
 152};
 153
 154#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
 155
 156/*
 157 * since 9540 and 8540 has the same HW revision
 158 * use v4a for 9540 or ealier
 159 * use v4b for 8540 or later
 160 * HW revision:
 161 * DB8500ed has revision 0
 162 * DB8500v1 has revision 2
 163 * DB8500v2 has revision 3
 164 * AP9540v1 has revision 4
 165 * DB8540v1 has revision 4
 166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 167 */
 168static u32 d40_backup_regs_v4a[] = {
 169        D40_DREG_PSEG1,
 170        D40_DREG_PSEG2,
 171        D40_DREG_PSEG3,
 172        D40_DREG_PSEG4,
 173        D40_DREG_PCEG1,
 174        D40_DREG_PCEG2,
 175        D40_DREG_PCEG3,
 176        D40_DREG_PCEG4,
 177        D40_DREG_RSEG1,
 178        D40_DREG_RSEG2,
 179        D40_DREG_RSEG3,
 180        D40_DREG_RSEG4,
 181        D40_DREG_RCEG1,
 182        D40_DREG_RCEG2,
 183        D40_DREG_RCEG3,
 184        D40_DREG_RCEG4,
 185};
 186
 187#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
 188
 189static u32 d40_backup_regs_v4b[] = {
 190        D40_DREG_CPSEG1,
 191        D40_DREG_CPSEG2,
 192        D40_DREG_CPSEG3,
 193        D40_DREG_CPSEG4,
 194        D40_DREG_CPSEG5,
 195        D40_DREG_CPCEG1,
 196        D40_DREG_CPCEG2,
 197        D40_DREG_CPCEG3,
 198        D40_DREG_CPCEG4,
 199        D40_DREG_CPCEG5,
 200        D40_DREG_CRSEG1,
 201        D40_DREG_CRSEG2,
 202        D40_DREG_CRSEG3,
 203        D40_DREG_CRSEG4,
 204        D40_DREG_CRSEG5,
 205        D40_DREG_CRCEG1,
 206        D40_DREG_CRCEG2,
 207        D40_DREG_CRCEG3,
 208        D40_DREG_CRCEG4,
 209        D40_DREG_CRCEG5,
 210};
 211
 212#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
 213
 214static u32 d40_backup_regs_chan[] = {
 215        D40_CHAN_REG_SSCFG,
 216        D40_CHAN_REG_SSELT,
 217        D40_CHAN_REG_SSPTR,
 218        D40_CHAN_REG_SSLNK,
 219        D40_CHAN_REG_SDCFG,
 220        D40_CHAN_REG_SDELT,
 221        D40_CHAN_REG_SDPTR,
 222        D40_CHAN_REG_SDLNK,
 223};
 224
 225#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
 226                             BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
 227
 228/**
 229 * struct d40_interrupt_lookup - lookup table for interrupt handler
 230 *
 231 * @src: Interrupt mask register.
 232 * @clr: Interrupt clear register.
 233 * @is_error: true if this is an error interrupt.
 234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 236 */
 237struct d40_interrupt_lookup {
 238        u32 src;
 239        u32 clr;
 240        bool is_error;
 241        int offset;
 242};
 243
 244
 245static struct d40_interrupt_lookup il_v4a[] = {
 246        {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
 247        {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
 248        {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
 249        {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
 250        {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
 251        {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
 252        {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
 253        {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
 254        {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
 255        {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
 256};
 257
 258static struct d40_interrupt_lookup il_v4b[] = {
 259        {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
 260        {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
 261        {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
 262        {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
 263        {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
 264        {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
 265        {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
 266        {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
 267        {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
 268        {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
 269        {D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
 270        {D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
 271};
 272
 273/**
 274 * struct d40_reg_val - simple lookup struct
 275 *
 276 * @reg: The register.
 277 * @val: The value that belongs to the register in reg.
 278 */
 279struct d40_reg_val {
 280        unsigned int reg;
 281        unsigned int val;
 282};
 283
 284static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
 285        /* Clock every part of the DMA block from start */
 286        { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 287
 288        /* Interrupts on all logical channels */
 289        { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
 290        { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
 291        { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
 292        { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
 293        { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
 294        { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
 295        { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
 296        { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
 297        { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
 298        { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
 299        { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
 300        { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
 301};
 302static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
 303        /* Clock every part of the DMA block from start */
 304        { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 305
 306        /* Interrupts on all logical channels */
 307        { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
 308        { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
 309        { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
 310        { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
 311        { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
 312        { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
 313        { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
 314        { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
 315        { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
 316        { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
 317        { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
 318        { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
 319        { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
 320        { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
 321        { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
 322};
 323
 324/**
 325 * struct d40_lli_pool - Structure for keeping LLIs in memory
 326 *
 327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 329 * pre_alloc_lli is used.
 330 * @dma_addr: DMA address, if mapped
 331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 333 * one buffer to one buffer.
 334 */
 335struct d40_lli_pool {
 336        void    *base;
 337        int      size;
 338        dma_addr_t      dma_addr;
 339        /* Space for dst and src, plus an extra for padding */
 340        u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
 341};
 342
 343/**
 344 * struct d40_desc - A descriptor is one DMA job.
 345 *
 346 * @lli_phy: LLI settings for physical channel. Both src and dst=
 347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 348 * lli_len equals one.
 349 * @lli_log: Same as above but for logical channels.
 350 * @lli_pool: The pool with two entries pre-allocated.
 351 * @lli_len: Number of llis of current descriptor.
 352 * @lli_current: Number of transferred llis.
 353 * @lcla_alloc: Number of LCLA entries allocated.
 354 * @txd: DMA engine struct. Used for among other things for communication
 355 * during a transfer.
 356 * @node: List entry.
 357 * @is_in_client_list: true if the client owns this descriptor.
 358 * @cyclic: true if this is a cyclic job
 359 *
 360 * This descriptor is used for both logical and physical transfers.
 361 */
 362struct d40_desc {
 363        /* LLI physical */
 364        struct d40_phy_lli_bidir         lli_phy;
 365        /* LLI logical */
 366        struct d40_log_lli_bidir         lli_log;
 367
 368        struct d40_lli_pool              lli_pool;
 369        int                              lli_len;
 370        int                              lli_current;
 371        int                              lcla_alloc;
 372
 373        struct dma_async_tx_descriptor   txd;
 374        struct list_head                 node;
 375
 376        bool                             is_in_client_list;
 377        bool                             cyclic;
 378};
 379
 380/**
 381 * struct d40_lcla_pool - LCLA pool settings and data.
 382 *
 383 * @base: The virtual address of LCLA. 18 bit aligned.
 384 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 385 * This pointer is only there for clean-up on error.
 386 * @pages: The number of pages needed for all physical channels.
 387 * Only used later for clean-up on error
 388 * @lock: Lock to protect the content in this struct.
 389 * @alloc_map: big map over which LCLA entry is own by which job.
 390 */
 391struct d40_lcla_pool {
 392        void            *base;
 393        dma_addr_t      dma_addr;
 394        void            *base_unaligned;
 395        int              pages;
 396        spinlock_t       lock;
 397        struct d40_desc **alloc_map;
 398};
 399
 400/**
 401 * struct d40_phy_res - struct for handling eventlines mapped to physical
 402 * channels.
 403 *
 404 * @lock: A lock protection this entity.
 405 * @reserved: True if used by secure world or otherwise.
 406 * @num: The physical channel number of this entity.
 407 * @allocated_src: Bit mapped to show which src event line's are mapped to
 408 * this physical channel. Can also be free or physically allocated.
 409 * @allocated_dst: Same as for src but is dst.
 410 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
 411 * event line number.
 412 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
 413 */
 414struct d40_phy_res {
 415        spinlock_t lock;
 416        bool       reserved;
 417        int        num;
 418        u32        allocated_src;
 419        u32        allocated_dst;
 420        bool       use_soft_lli;
 421};
 422
 423struct d40_base;
 424
 425/**
 426 * struct d40_chan - Struct that describes a channel.
 427 *
 428 * @lock: A spinlock to protect this struct.
 429 * @log_num: The logical number, if any of this channel.
 430 * @pending_tx: The number of pending transfers. Used between interrupt handler
 431 * and tasklet.
 432 * @busy: Set to true when transfer is ongoing on this channel.
 433 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 434 * point is NULL, then the channel is not allocated.
 435 * @chan: DMA engine handle.
 436 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 437 * transfer and call client callback.
 438 * @client: Cliented owned descriptor list.
 439 * @pending_queue: Submitted jobs, to be issued by issue_pending()
 440 * @active: Active descriptor.
 441 * @done: Completed jobs
 442 * @queue: Queued jobs.
 443 * @prepare_queue: Prepared jobs.
 444 * @dma_cfg: The client configuration of this dma channel.
 445 * @configured: whether the dma_cfg configuration is valid
 446 * @base: Pointer to the device instance struct.
 447 * @src_def_cfg: Default cfg register setting for src.
 448 * @dst_def_cfg: Default cfg register setting for dst.
 449 * @log_def: Default logical channel settings.
 450 * @lcpa: Pointer to dst and src lcpa settings.
 451 * @runtime_addr: runtime configured address.
 452 * @runtime_direction: runtime configured direction.
 453 *
 454 * This struct can either "be" a logical or a physical channel.
 455 */
 456struct d40_chan {
 457        spinlock_t                       lock;
 458        int                              log_num;
 459        int                              pending_tx;
 460        bool                             busy;
 461        struct d40_phy_res              *phy_chan;
 462        struct dma_chan                  chan;
 463        struct tasklet_struct            tasklet;
 464        struct list_head                 client;
 465        struct list_head                 pending_queue;
 466        struct list_head                 active;
 467        struct list_head                 done;
 468        struct list_head                 queue;
 469        struct list_head                 prepare_queue;
 470        struct stedma40_chan_cfg         dma_cfg;
 471        bool                             configured;
 472        struct d40_base                 *base;
 473        /* Default register configurations */
 474        u32                              src_def_cfg;
 475        u32                              dst_def_cfg;
 476        struct d40_def_lcsp              log_def;
 477        struct d40_log_lli_full         *lcpa;
 478        /* Runtime reconfiguration */
 479        dma_addr_t                      runtime_addr;
 480        enum dma_transfer_direction     runtime_direction;
 481};
 482
 483/**
 484 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 485 * controller
 486 *
 487 * @backup: the pointer to the registers address array for backup
 488 * @backup_size: the size of the registers address array for backup
 489 * @realtime_en: the realtime enable register
 490 * @realtime_clear: the realtime clear register
 491 * @high_prio_en: the high priority enable register
 492 * @high_prio_clear: the high priority clear register
 493 * @interrupt_en: the interrupt enable register
 494 * @interrupt_clear: the interrupt clear register
 495 * @il: the pointer to struct d40_interrupt_lookup
 496 * @il_size: the size of d40_interrupt_lookup array
 497 * @init_reg: the pointer to the struct d40_reg_val
 498 * @init_reg_size: the size of d40_reg_val array
 499 */
 500struct d40_gen_dmac {
 501        u32                             *backup;
 502        u32                              backup_size;
 503        u32                              realtime_en;
 504        u32                              realtime_clear;
 505        u32                              high_prio_en;
 506        u32                              high_prio_clear;
 507        u32                              interrupt_en;
 508        u32                              interrupt_clear;
 509        struct d40_interrupt_lookup     *il;
 510        u32                              il_size;
 511        struct d40_reg_val              *init_reg;
 512        u32                              init_reg_size;
 513};
 514
 515/**
 516 * struct d40_base - The big global struct, one for each probe'd instance.
 517 *
 518 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 519 * @execmd_lock: Lock for execute command usage since several channels share
 520 * the same physical register.
 521 * @dev: The device structure.
 522 * @virtbase: The virtual base address of the DMA's register.
 523 * @rev: silicon revision detected.
 524 * @clk: Pointer to the DMA clock structure.
 525 * @phy_start: Physical memory start of the DMA registers.
 526 * @phy_size: Size of the DMA register map.
 527 * @irq: The IRQ number.
 528 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
 529 * transfers).
 530 * @num_phy_chans: The number of physical channels. Read from HW. This
 531 * is the number of available channels for this driver, not counting "Secure
 532 * mode" allocated physical channels.
 533 * @num_log_chans: The number of logical channels. Calculated from
 534 * num_phy_chans.
 535 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 536 * @dma_slave: dma_device channels that can do only do slave transfers.
 537 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 538 * @phy_chans: Room for all possible physical channels in system.
 539 * @log_chans: Room for all possible logical channels in system.
 540 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 541 * to log_chans entries.
 542 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 543 * to phy_chans entries.
 544 * @plat_data: Pointer to provided platform_data which is the driver
 545 * configuration.
 546 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
 547 * @phy_res: Vector containing all physical channels.
 548 * @lcla_pool: lcla pool settings and data.
 549 * @lcpa_base: The virtual mapped address of LCPA.
 550 * @phy_lcpa: The physical address of the LCPA.
 551 * @lcpa_size: The size of the LCPA area.
 552 * @desc_slab: cache for descriptors.
 553 * @reg_val_backup: Here the values of some hardware registers are stored
 554 * before the DMA is powered off. They are restored when the power is back on.
 555 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 556 * later
 557 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 558 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 559 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 560 * DMA controller
 561 */
 562struct d40_base {
 563        spinlock_t                       interrupt_lock;
 564        spinlock_t                       execmd_lock;
 565        struct device                    *dev;
 566        void __iomem                     *virtbase;
 567        u8                                rev:4;
 568        struct clk                       *clk;
 569        phys_addr_t                       phy_start;
 570        resource_size_t                   phy_size;
 571        int                               irq;
 572        int                               num_memcpy_chans;
 573        int                               num_phy_chans;
 574        int                               num_log_chans;
 575        struct device_dma_parameters      dma_parms;
 576        struct dma_device                 dma_both;
 577        struct dma_device                 dma_slave;
 578        struct dma_device                 dma_memcpy;
 579        struct d40_chan                  *phy_chans;
 580        struct d40_chan                  *log_chans;
 581        struct d40_chan                 **lookup_log_chans;
 582        struct d40_chan                 **lookup_phy_chans;
 583        struct stedma40_platform_data    *plat_data;
 584        struct regulator                 *lcpa_regulator;
 585        /* Physical half channels */
 586        struct d40_phy_res               *phy_res;
 587        struct d40_lcla_pool              lcla_pool;
 588        void                             *lcpa_base;
 589        dma_addr_t                        phy_lcpa;
 590        resource_size_t                   lcpa_size;
 591        struct kmem_cache                *desc_slab;
 592        u32                               reg_val_backup[BACKUP_REGS_SZ];
 593        u32                               reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
 594        u32                              *reg_val_backup_chan;
 595        u16                               gcc_pwr_off_mask;
 596        struct d40_gen_dmac               gen_dmac;
 597};
 598
 599static struct device *chan2dev(struct d40_chan *d40c)
 600{
 601        return &d40c->chan.dev->device;
 602}
 603
 604static bool chan_is_physical(struct d40_chan *chan)
 605{
 606        return chan->log_num == D40_PHY_CHAN;
 607}
 608
 609static bool chan_is_logical(struct d40_chan *chan)
 610{
 611        return !chan_is_physical(chan);
 612}
 613
 614static void __iomem *chan_base(struct d40_chan *chan)
 615{
 616        return chan->base->virtbase + D40_DREG_PCBASE +
 617               chan->phy_chan->num * D40_DREG_PCDELTA;
 618}
 619
 620#define d40_err(dev, format, arg...)            \
 621        dev_err(dev, "[%s] " format, __func__, ## arg)
 622
 623#define chan_err(d40c, format, arg...)          \
 624        d40_err(chan2dev(d40c), format, ## arg)
 625
 626static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
 627                              int lli_len)
 628{
 629        bool is_log = chan_is_logical(d40c);
 630        u32 align;
 631        void *base;
 632
 633        if (is_log)
 634                align = sizeof(struct d40_log_lli);
 635        else
 636                align = sizeof(struct d40_phy_lli);
 637
 638        if (lli_len == 1) {
 639                base = d40d->lli_pool.pre_alloc_lli;
 640                d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
 641                d40d->lli_pool.base = NULL;
 642        } else {
 643                d40d->lli_pool.size = lli_len * 2 * align;
 644
 645                base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
 646                d40d->lli_pool.base = base;
 647
 648                if (d40d->lli_pool.base == NULL)
 649                        return -ENOMEM;
 650        }
 651
 652        if (is_log) {
 653                d40d->lli_log.src = PTR_ALIGN(base, align);
 654                d40d->lli_log.dst = d40d->lli_log.src + lli_len;
 655
 656                d40d->lli_pool.dma_addr = 0;
 657        } else {
 658                d40d->lli_phy.src = PTR_ALIGN(base, align);
 659                d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
 660
 661                d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
 662                                                         d40d->lli_phy.src,
 663                                                         d40d->lli_pool.size,
 664                                                         DMA_TO_DEVICE);
 665
 666                if (dma_mapping_error(d40c->base->dev,
 667                                      d40d->lli_pool.dma_addr)) {
 668                        kfree(d40d->lli_pool.base);
 669                        d40d->lli_pool.base = NULL;
 670                        d40d->lli_pool.dma_addr = 0;
 671                        return -ENOMEM;
 672                }
 673        }
 674
 675        return 0;
 676}
 677
 678static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
 679{
 680        if (d40d->lli_pool.dma_addr)
 681                dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
 682                                 d40d->lli_pool.size, DMA_TO_DEVICE);
 683
 684        kfree(d40d->lli_pool.base);
 685        d40d->lli_pool.base = NULL;
 686        d40d->lli_pool.size = 0;
 687        d40d->lli_log.src = NULL;
 688        d40d->lli_log.dst = NULL;
 689        d40d->lli_phy.src = NULL;
 690        d40d->lli_phy.dst = NULL;
 691}
 692
 693static int d40_lcla_alloc_one(struct d40_chan *d40c,
 694                              struct d40_desc *d40d)
 695{
 696        unsigned long flags;
 697        int i;
 698        int ret = -EINVAL;
 699
 700        spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 701
 702        /*
 703         * Allocate both src and dst at the same time, therefore the half
 704         * start on 1 since 0 can't be used since zero is used as end marker.
 705         */
 706        for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 707                int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 708
 709                if (!d40c->base->lcla_pool.alloc_map[idx]) {
 710                        d40c->base->lcla_pool.alloc_map[idx] = d40d;
 711                        d40d->lcla_alloc++;
 712                        ret = i;
 713                        break;
 714                }
 715        }
 716
 717        spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 718
 719        return ret;
 720}
 721
 722static int d40_lcla_free_all(struct d40_chan *d40c,
 723                             struct d40_desc *d40d)
 724{
 725        unsigned long flags;
 726        int i;
 727        int ret = -EINVAL;
 728
 729        if (chan_is_physical(d40c))
 730                return 0;
 731
 732        spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 733
 734        for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 735                int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 736
 737                if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
 738                        d40c->base->lcla_pool.alloc_map[idx] = NULL;
 739                        d40d->lcla_alloc--;
 740                        if (d40d->lcla_alloc == 0) {
 741                                ret = 0;
 742                                break;
 743                        }
 744                }
 745        }
 746
 747        spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 748
 749        return ret;
 750
 751}
 752
 753static void d40_desc_remove(struct d40_desc *d40d)
 754{
 755        list_del(&d40d->node);
 756}
 757
 758static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
 759{
 760        struct d40_desc *desc = NULL;
 761
 762        if (!list_empty(&d40c->client)) {
 763                struct d40_desc *d;
 764                struct d40_desc *_d;
 765
 766                list_for_each_entry_safe(d, _d, &d40c->client, node) {
 767                        if (async_tx_test_ack(&d->txd)) {
 768                                d40_desc_remove(d);
 769                                desc = d;
 770                                memset(desc, 0, sizeof(*desc));
 771                                break;
 772                        }
 773                }
 774        }
 775
 776        if (!desc)
 777                desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
 778
 779        if (desc)
 780                INIT_LIST_HEAD(&desc->node);
 781
 782        return desc;
 783}
 784
 785static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
 786{
 787
 788        d40_pool_lli_free(d40c, d40d);
 789        d40_lcla_free_all(d40c, d40d);
 790        kmem_cache_free(d40c->base->desc_slab, d40d);
 791}
 792
 793static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
 794{
 795        list_add_tail(&desc->node, &d40c->active);
 796}
 797
 798static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
 799{
 800        struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
 801        struct d40_phy_lli *lli_src = desc->lli_phy.src;
 802        void __iomem *base = chan_base(chan);
 803
 804        writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
 805        writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
 806        writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
 807        writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
 808
 809        writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
 810        writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
 811        writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
 812        writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
 813}
 814
 815static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
 816{
 817        list_add_tail(&desc->node, &d40c->done);
 818}
 819
 820static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
 821{
 822        struct d40_lcla_pool *pool = &chan->base->lcla_pool;
 823        struct d40_log_lli_bidir *lli = &desc->lli_log;
 824        int lli_current = desc->lli_current;
 825        int lli_len = desc->lli_len;
 826        bool cyclic = desc->cyclic;
 827        int curr_lcla = -EINVAL;
 828        int first_lcla = 0;
 829        bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
 830        bool linkback;
 831
 832        /*
 833         * We may have partially running cyclic transfers, in case we did't get
 834         * enough LCLA entries.
 835         */
 836        linkback = cyclic && lli_current == 0;
 837
 838        /*
 839         * For linkback, we need one LCLA even with only one link, because we
 840         * can't link back to the one in LCPA space
 841         */
 842        if (linkback || (lli_len - lli_current > 1)) {
 843                /*
 844                 * If the channel is expected to use only soft_lli don't
 845                 * allocate a lcla. This is to avoid a HW issue that exists
 846                 * in some controller during a peripheral to memory transfer
 847                 * that uses linked lists.
 848                 */
 849                if (!(chan->phy_chan->use_soft_lli &&
 850                        chan->dma_cfg.dir == DMA_DEV_TO_MEM))
 851                        curr_lcla = d40_lcla_alloc_one(chan, desc);
 852
 853                first_lcla = curr_lcla;
 854        }
 855
 856        /*
 857         * For linkback, we normally load the LCPA in the loop since we need to
 858         * link it to the second LCLA and not the first.  However, if we
 859         * couldn't even get a first LCLA, then we have to run in LCPA and
 860         * reload manually.
 861         */
 862        if (!linkback || curr_lcla == -EINVAL) {
 863                unsigned int flags = 0;
 864
 865                if (curr_lcla == -EINVAL)
 866                        flags |= LLI_TERM_INT;
 867
 868                d40_log_lli_lcpa_write(chan->lcpa,
 869                                       &lli->dst[lli_current],
 870                                       &lli->src[lli_current],
 871                                       curr_lcla,
 872                                       flags);
 873                lli_current++;
 874        }
 875
 876        if (curr_lcla < 0)
 877                goto set_current;
 878
 879        for (; lli_current < lli_len; lli_current++) {
 880                unsigned int lcla_offset = chan->phy_chan->num * 1024 +
 881                                           8 * curr_lcla * 2;
 882                struct d40_log_lli *lcla = pool->base + lcla_offset;
 883                unsigned int flags = 0;
 884                int next_lcla;
 885
 886                if (lli_current + 1 < lli_len)
 887                        next_lcla = d40_lcla_alloc_one(chan, desc);
 888                else
 889                        next_lcla = linkback ? first_lcla : -EINVAL;
 890
 891                if (cyclic || next_lcla == -EINVAL)
 892                        flags |= LLI_TERM_INT;
 893
 894                if (linkback && curr_lcla == first_lcla) {
 895                        /* First link goes in both LCPA and LCLA */
 896                        d40_log_lli_lcpa_write(chan->lcpa,
 897                                               &lli->dst[lli_current],
 898                                               &lli->src[lli_current],
 899                                               next_lcla, flags);
 900                }
 901
 902                /*
 903                 * One unused LCLA in the cyclic case if the very first
 904                 * next_lcla fails...
 905                 */
 906                d40_log_lli_lcla_write(lcla,
 907                                       &lli->dst[lli_current],
 908                                       &lli->src[lli_current],
 909                                       next_lcla, flags);
 910
 911                /*
 912                 * Cache maintenance is not needed if lcla is
 913                 * mapped in esram
 914                 */
 915                if (!use_esram_lcla) {
 916                        dma_sync_single_range_for_device(chan->base->dev,
 917                                                pool->dma_addr, lcla_offset,
 918                                                2 * sizeof(struct d40_log_lli),
 919                                                DMA_TO_DEVICE);
 920                }
 921                curr_lcla = next_lcla;
 922
 923                if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
 924                        lli_current++;
 925                        break;
 926                }
 927        }
 928 set_current:
 929        desc->lli_current = lli_current;
 930}
 931
 932static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
 933{
 934        if (chan_is_physical(d40c)) {
 935                d40_phy_lli_load(d40c, d40d);
 936                d40d->lli_current = d40d->lli_len;
 937        } else
 938                d40_log_lli_to_lcxa(d40c, d40d);
 939}
 940
 941static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
 942{
 943        return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
 944}
 945
 946/* remove desc from current queue and add it to the pending_queue */
 947static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
 948{
 949        d40_desc_remove(desc);
 950        desc->is_in_client_list = false;
 951        list_add_tail(&desc->node, &d40c->pending_queue);
 952}
 953
 954static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
 955{
 956        return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
 957                                        node);
 958}
 959
 960static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
 961{
 962        return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
 963}
 964
 965static struct d40_desc *d40_first_done(struct d40_chan *d40c)
 966{
 967        return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
 968}
 969
 970static int d40_psize_2_burst_size(bool is_log, int psize)
 971{
 972        if (is_log) {
 973                if (psize == STEDMA40_PSIZE_LOG_1)
 974                        return 1;
 975        } else {
 976                if (psize == STEDMA40_PSIZE_PHY_1)
 977                        return 1;
 978        }
 979
 980        return 2 << psize;
 981}
 982
 983/*
 984 * The dma only supports transmitting packages up to
 985 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
 986 *
 987 * Calculate the total number of dma elements required to send the entire sg list.
 988 */
 989static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
 990{
 991        int dmalen;
 992        u32 max_w = max(data_width1, data_width2);
 993        u32 min_w = min(data_width1, data_width2);
 994        u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
 995
 996        if (seg_max > STEDMA40_MAX_SEG_SIZE)
 997                seg_max -= max_w;
 998
 999        if (!IS_ALIGNED(size, max_w))
1000                return -EINVAL;
1001
1002        if (size <= seg_max)
1003                dmalen = 1;
1004        else {
1005                dmalen = size / seg_max;
1006                if (dmalen * seg_max < size)
1007                        dmalen++;
1008        }
1009        return dmalen;
1010}
1011
1012static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1013                           u32 data_width1, u32 data_width2)
1014{
1015        struct scatterlist *sg;
1016        int i;
1017        int len = 0;
1018        int ret;
1019
1020        for_each_sg(sgl, sg, sg_len, i) {
1021                ret = d40_size_2_dmalen(sg_dma_len(sg),
1022                                        data_width1, data_width2);
1023                if (ret < 0)
1024                        return ret;
1025                len += ret;
1026        }
1027        return len;
1028}
1029
1030static int __d40_execute_command_phy(struct d40_chan *d40c,
1031                                     enum d40_command command)
1032{
1033        u32 status;
1034        int i;
1035        void __iomem *active_reg;
1036        int ret = 0;
1037        unsigned long flags;
1038        u32 wmask;
1039
1040        if (command == D40_DMA_STOP) {
1041                ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1042                if (ret)
1043                        return ret;
1044        }
1045
1046        spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1047
1048        if (d40c->phy_chan->num % 2 == 0)
1049                active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1050        else
1051                active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1052
1053        if (command == D40_DMA_SUSPEND_REQ) {
1054                status = (readl(active_reg) &
1055                          D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1056                        D40_CHAN_POS(d40c->phy_chan->num);
1057
1058                if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1059                        goto unlock;
1060        }
1061
1062        wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1063        writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1064               active_reg);
1065
1066        if (command == D40_DMA_SUSPEND_REQ) {
1067
1068                for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1069                        status = (readl(active_reg) &
1070                                  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1071                                D40_CHAN_POS(d40c->phy_chan->num);
1072
1073                        cpu_relax();
1074                        /*
1075                         * Reduce the number of bus accesses while
1076                         * waiting for the DMA to suspend.
1077                         */
1078                        udelay(3);
1079
1080                        if (status == D40_DMA_STOP ||
1081                            status == D40_DMA_SUSPENDED)
1082                                break;
1083                }
1084
1085                if (i == D40_SUSPEND_MAX_IT) {
1086                        chan_err(d40c,
1087                                "unable to suspend the chl %d (log: %d) status %x\n",
1088                                d40c->phy_chan->num, d40c->log_num,
1089                                status);
1090                        dump_stack();
1091                        ret = -EBUSY;
1092                }
1093
1094        }
1095 unlock:
1096        spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1097        return ret;
1098}
1099
1100static void d40_term_all(struct d40_chan *d40c)
1101{
1102        struct d40_desc *d40d;
1103        struct d40_desc *_d;
1104
1105        /* Release completed descriptors */
1106        while ((d40d = d40_first_done(d40c))) {
1107                d40_desc_remove(d40d);
1108                d40_desc_free(d40c, d40d);
1109        }
1110
1111        /* Release active descriptors */
1112        while ((d40d = d40_first_active_get(d40c))) {
1113                d40_desc_remove(d40d);
1114                d40_desc_free(d40c, d40d);
1115        }
1116
1117        /* Release queued descriptors waiting for transfer */
1118        while ((d40d = d40_first_queued(d40c))) {
1119                d40_desc_remove(d40d);
1120                d40_desc_free(d40c, d40d);
1121        }
1122
1123        /* Release pending descriptors */
1124        while ((d40d = d40_first_pending(d40c))) {
1125                d40_desc_remove(d40d);
1126                d40_desc_free(d40c, d40d);
1127        }
1128
1129        /* Release client owned descriptors */
1130        if (!list_empty(&d40c->client))
1131                list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1132                        d40_desc_remove(d40d);
1133                        d40_desc_free(d40c, d40d);
1134                }
1135
1136        /* Release descriptors in prepare queue */
1137        if (!list_empty(&d40c->prepare_queue))
1138                list_for_each_entry_safe(d40d, _d,
1139                                         &d40c->prepare_queue, node) {
1140                        d40_desc_remove(d40d);
1141                        d40_desc_free(d40c, d40d);
1142                }
1143
1144        d40c->pending_tx = 0;
1145}
1146
1147static void __d40_config_set_event(struct d40_chan *d40c,
1148                                   enum d40_events event_type, u32 event,
1149                                   int reg)
1150{
1151        void __iomem *addr = chan_base(d40c) + reg;
1152        int tries;
1153        u32 status;
1154
1155        switch (event_type) {
1156
1157        case D40_DEACTIVATE_EVENTLINE:
1158
1159                writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1160                       | ~D40_EVENTLINE_MASK(event), addr);
1161                break;
1162
1163        case D40_SUSPEND_REQ_EVENTLINE:
1164                status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1165                          D40_EVENTLINE_POS(event);
1166
1167                if (status == D40_DEACTIVATE_EVENTLINE ||
1168                    status == D40_SUSPEND_REQ_EVENTLINE)
1169                        break;
1170
1171                writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1172                       | ~D40_EVENTLINE_MASK(event), addr);
1173
1174                for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1175
1176                        status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1177                                  D40_EVENTLINE_POS(event);
1178
1179                        cpu_relax();
1180                        /*
1181                         * Reduce the number of bus accesses while
1182                         * waiting for the DMA to suspend.
1183                         */
1184                        udelay(3);
1185
1186                        if (status == D40_DEACTIVATE_EVENTLINE)
1187                                break;
1188                }
1189
1190                if (tries == D40_SUSPEND_MAX_IT) {
1191                        chan_err(d40c,
1192                                "unable to stop the event_line chl %d (log: %d)"
1193                                "status %x\n", d40c->phy_chan->num,
1194                                 d40c->log_num, status);
1195                }
1196                break;
1197
1198        case D40_ACTIVATE_EVENTLINE:
1199        /*
1200         * The hardware sometimes doesn't register the enable when src and dst
1201         * event lines are active on the same logical channel.  Retry to ensure
1202         * it does.  Usually only one retry is sufficient.
1203         */
1204                tries = 100;
1205                while (--tries) {
1206                        writel((D40_ACTIVATE_EVENTLINE <<
1207                                D40_EVENTLINE_POS(event)) |
1208                                ~D40_EVENTLINE_MASK(event), addr);
1209
1210                        if (readl(addr) & D40_EVENTLINE_MASK(event))
1211                                break;
1212                }
1213
1214                if (tries != 99)
1215                        dev_dbg(chan2dev(d40c),
1216                                "[%s] workaround enable S%cLNK (%d tries)\n",
1217                                __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1218                                100 - tries);
1219
1220                WARN_ON(!tries);
1221                break;
1222
1223        case D40_ROUND_EVENTLINE:
1224                BUG();
1225                break;
1226
1227        }
1228}
1229
1230static void d40_config_set_event(struct d40_chan *d40c,
1231                                 enum d40_events event_type)
1232{
1233        u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1234
1235        /* Enable event line connected to device (or memcpy) */
1236        if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1237            (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1238                __d40_config_set_event(d40c, event_type, event,
1239                                       D40_CHAN_REG_SSLNK);
1240
1241        if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1242                __d40_config_set_event(d40c, event_type, event,
1243                                       D40_CHAN_REG_SDLNK);
1244}
1245
1246static u32 d40_chan_has_events(struct d40_chan *d40c)
1247{
1248        void __iomem *chanbase = chan_base(d40c);
1249        u32 val;
1250
1251        val = readl(chanbase + D40_CHAN_REG_SSLNK);
1252        val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1253
1254        return val;
1255}
1256
1257static int
1258__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1259{
1260        unsigned long flags;
1261        int ret = 0;
1262        u32 active_status;
1263        void __iomem *active_reg;
1264
1265        if (d40c->phy_chan->num % 2 == 0)
1266                active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1267        else
1268                active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1269
1270
1271        spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1272
1273        switch (command) {
1274        case D40_DMA_STOP:
1275        case D40_DMA_SUSPEND_REQ:
1276
1277                active_status = (readl(active_reg) &
1278                                 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1279                                 D40_CHAN_POS(d40c->phy_chan->num);
1280
1281                if (active_status == D40_DMA_RUN)
1282                        d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1283                else
1284                        d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1285
1286                if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1287                        ret = __d40_execute_command_phy(d40c, command);
1288
1289                break;
1290
1291        case D40_DMA_RUN:
1292
1293                d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1294                ret = __d40_execute_command_phy(d40c, command);
1295                break;
1296
1297        case D40_DMA_SUSPENDED:
1298                BUG();
1299                break;
1300        }
1301
1302        spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1303        return ret;
1304}
1305
1306static int d40_channel_execute_command(struct d40_chan *d40c,
1307                                       enum d40_command command)
1308{
1309        if (chan_is_logical(d40c))
1310                return __d40_execute_command_log(d40c, command);
1311        else
1312                return __d40_execute_command_phy(d40c, command);
1313}
1314
1315static u32 d40_get_prmo(struct d40_chan *d40c)
1316{
1317        static const unsigned int phy_map[] = {
1318                [STEDMA40_PCHAN_BASIC_MODE]
1319                        = D40_DREG_PRMO_PCHAN_BASIC,
1320                [STEDMA40_PCHAN_MODULO_MODE]
1321                        = D40_DREG_PRMO_PCHAN_MODULO,
1322                [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1323                        = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1324        };
1325        static const unsigned int log_map[] = {
1326                [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1327                        = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1328                [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1329                        = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1330                [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1331                        = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1332        };
1333
1334        if (chan_is_physical(d40c))
1335                return phy_map[d40c->dma_cfg.mode_opt];
1336        else
1337                return log_map[d40c->dma_cfg.mode_opt];
1338}
1339
1340static void d40_config_write(struct d40_chan *d40c)
1341{
1342        u32 addr_base;
1343        u32 var;
1344
1345        /* Odd addresses are even addresses + 4 */
1346        addr_base = (d40c->phy_chan->num % 2) * 4;
1347        /* Setup channel mode to logical or physical */
1348        var = ((u32)(chan_is_logical(d40c)) + 1) <<
1349                D40_CHAN_POS(d40c->phy_chan->num);
1350        writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1351
1352        /* Setup operational mode option register */
1353        var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1354
1355        writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1356
1357        if (chan_is_logical(d40c)) {
1358                int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1359                           & D40_SREG_ELEM_LOG_LIDX_MASK;
1360                void __iomem *chanbase = chan_base(d40c);
1361
1362                /* Set default config for CFG reg */
1363                writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1364                writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1365
1366                /* Set LIDX for lcla */
1367                writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1368                writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1369
1370                /* Clear LNK which will be used by d40_chan_has_events() */
1371                writel(0, chanbase + D40_CHAN_REG_SSLNK);
1372                writel(0, chanbase + D40_CHAN_REG_SDLNK);
1373        }
1374}
1375
1376static u32 d40_residue(struct d40_chan *d40c)
1377{
1378        u32 num_elt;
1379
1380        if (chan_is_logical(d40c))
1381                num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1382                        >> D40_MEM_LCSP2_ECNT_POS;
1383        else {
1384                u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1385                num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1386                          >> D40_SREG_ELEM_PHY_ECNT_POS;
1387        }
1388
1389        return num_elt * d40c->dma_cfg.dst_info.data_width;
1390}
1391
1392static bool d40_tx_is_linked(struct d40_chan *d40c)
1393{
1394        bool is_link;
1395
1396        if (chan_is_logical(d40c))
1397                is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1398        else
1399                is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1400                          & D40_SREG_LNK_PHYS_LNK_MASK;
1401
1402        return is_link;
1403}
1404
1405static int d40_pause(struct dma_chan *chan)
1406{
1407        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1408        int res = 0;
1409        unsigned long flags;
1410
1411        if (d40c->phy_chan == NULL) {
1412                chan_err(d40c, "Channel is not allocated!\n");
1413                return -EINVAL;
1414        }
1415
1416        if (!d40c->busy)
1417                return 0;
1418
1419        spin_lock_irqsave(&d40c->lock, flags);
1420        pm_runtime_get_sync(d40c->base->dev);
1421
1422        res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1423
1424        pm_runtime_mark_last_busy(d40c->base->dev);
1425        pm_runtime_put_autosuspend(d40c->base->dev);
1426        spin_unlock_irqrestore(&d40c->lock, flags);
1427        return res;
1428}
1429
1430static int d40_resume(struct dma_chan *chan)
1431{
1432        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1433        int res = 0;
1434        unsigned long flags;
1435
1436        if (d40c->phy_chan == NULL) {
1437                chan_err(d40c, "Channel is not allocated!\n");
1438                return -EINVAL;
1439        }
1440
1441        if (!d40c->busy)
1442                return 0;
1443
1444        spin_lock_irqsave(&d40c->lock, flags);
1445        pm_runtime_get_sync(d40c->base->dev);
1446
1447        /* If bytes left to transfer or linked tx resume job */
1448        if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1449                res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1450
1451        pm_runtime_mark_last_busy(d40c->base->dev);
1452        pm_runtime_put_autosuspend(d40c->base->dev);
1453        spin_unlock_irqrestore(&d40c->lock, flags);
1454        return res;
1455}
1456
1457static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1458{
1459        struct d40_chan *d40c = container_of(tx->chan,
1460                                             struct d40_chan,
1461                                             chan);
1462        struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1463        unsigned long flags;
1464        dma_cookie_t cookie;
1465
1466        spin_lock_irqsave(&d40c->lock, flags);
1467        cookie = dma_cookie_assign(tx);
1468        d40_desc_queue(d40c, d40d);
1469        spin_unlock_irqrestore(&d40c->lock, flags);
1470
1471        return cookie;
1472}
1473
1474static int d40_start(struct d40_chan *d40c)
1475{
1476        return d40_channel_execute_command(d40c, D40_DMA_RUN);
1477}
1478
1479static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1480{
1481        struct d40_desc *d40d;
1482        int err;
1483
1484        /* Start queued jobs, if any */
1485        d40d = d40_first_queued(d40c);
1486
1487        if (d40d != NULL) {
1488                if (!d40c->busy) {
1489                        d40c->busy = true;
1490                        pm_runtime_get_sync(d40c->base->dev);
1491                }
1492
1493                /* Remove from queue */
1494                d40_desc_remove(d40d);
1495
1496                /* Add to active queue */
1497                d40_desc_submit(d40c, d40d);
1498
1499                /* Initiate DMA job */
1500                d40_desc_load(d40c, d40d);
1501
1502                /* Start dma job */
1503                err = d40_start(d40c);
1504
1505                if (err)
1506                        return NULL;
1507        }
1508
1509        return d40d;
1510}
1511
1512/* called from interrupt context */
1513static void dma_tc_handle(struct d40_chan *d40c)
1514{
1515        struct d40_desc *d40d;
1516
1517        /* Get first active entry from list */
1518        d40d = d40_first_active_get(d40c);
1519
1520        if (d40d == NULL)
1521                return;
1522
1523        if (d40d->cyclic) {
1524                /*
1525                 * If this was a paritially loaded list, we need to reloaded
1526                 * it, and only when the list is completed.  We need to check
1527                 * for done because the interrupt will hit for every link, and
1528                 * not just the last one.
1529                 */
1530                if (d40d->lli_current < d40d->lli_len
1531                    && !d40_tx_is_linked(d40c)
1532                    && !d40_residue(d40c)) {
1533                        d40_lcla_free_all(d40c, d40d);
1534                        d40_desc_load(d40c, d40d);
1535                        (void) d40_start(d40c);
1536
1537                        if (d40d->lli_current == d40d->lli_len)
1538                                d40d->lli_current = 0;
1539                }
1540        } else {
1541                d40_lcla_free_all(d40c, d40d);
1542
1543                if (d40d->lli_current < d40d->lli_len) {
1544                        d40_desc_load(d40c, d40d);
1545                        /* Start dma job */
1546                        (void) d40_start(d40c);
1547                        return;
1548                }
1549
1550                if (d40_queue_start(d40c) == NULL) {
1551                        d40c->busy = false;
1552
1553                        pm_runtime_mark_last_busy(d40c->base->dev);
1554                        pm_runtime_put_autosuspend(d40c->base->dev);
1555                }
1556
1557                d40_desc_remove(d40d);
1558                d40_desc_done(d40c, d40d);
1559        }
1560
1561        d40c->pending_tx++;
1562        tasklet_schedule(&d40c->tasklet);
1563
1564}
1565
1566static void dma_tasklet(unsigned long data)
1567{
1568        struct d40_chan *d40c = (struct d40_chan *) data;
1569        struct d40_desc *d40d;
1570        unsigned long flags;
1571        bool callback_active;
1572        struct dmaengine_desc_callback cb;
1573
1574        spin_lock_irqsave(&d40c->lock, flags);
1575
1576        /* Get first entry from the done list */
1577        d40d = d40_first_done(d40c);
1578        if (d40d == NULL) {
1579                /* Check if we have reached here for cyclic job */
1580                d40d = d40_first_active_get(d40c);
1581                if (d40d == NULL || !d40d->cyclic)
1582                        goto check_pending_tx;
1583        }
1584
1585        if (!d40d->cyclic)
1586                dma_cookie_complete(&d40d->txd);
1587
1588        /*
1589         * If terminating a channel pending_tx is set to zero.
1590         * This prevents any finished active jobs to return to the client.
1591         */
1592        if (d40c->pending_tx == 0) {
1593                spin_unlock_irqrestore(&d40c->lock, flags);
1594                return;
1595        }
1596
1597        /* Callback to client */
1598        callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1599        dmaengine_desc_get_callback(&d40d->txd, &cb);
1600
1601        if (!d40d->cyclic) {
1602                if (async_tx_test_ack(&d40d->txd)) {
1603                        d40_desc_remove(d40d);
1604                        d40_desc_free(d40c, d40d);
1605                } else if (!d40d->is_in_client_list) {
1606                        d40_desc_remove(d40d);
1607                        d40_lcla_free_all(d40c, d40d);
1608                        list_add_tail(&d40d->node, &d40c->client);
1609                        d40d->is_in_client_list = true;
1610                }
1611        }
1612
1613        d40c->pending_tx--;
1614
1615        if (d40c->pending_tx)
1616                tasklet_schedule(&d40c->tasklet);
1617
1618        spin_unlock_irqrestore(&d40c->lock, flags);
1619
1620        if (callback_active)
1621                dmaengine_desc_callback_invoke(&cb, NULL);
1622
1623        return;
1624 check_pending_tx:
1625        /* Rescue manouver if receiving double interrupts */
1626        if (d40c->pending_tx > 0)
1627                d40c->pending_tx--;
1628        spin_unlock_irqrestore(&d40c->lock, flags);
1629}
1630
1631static irqreturn_t d40_handle_interrupt(int irq, void *data)
1632{
1633        int i;
1634        u32 idx;
1635        u32 row;
1636        long chan = -1;
1637        struct d40_chan *d40c;
1638        unsigned long flags;
1639        struct d40_base *base = data;
1640        u32 regs[base->gen_dmac.il_size];
1641        struct d40_interrupt_lookup *il = base->gen_dmac.il;
1642        u32 il_size = base->gen_dmac.il_size;
1643
1644        spin_lock_irqsave(&base->interrupt_lock, flags);
1645
1646        /* Read interrupt status of both logical and physical channels */
1647        for (i = 0; i < il_size; i++)
1648                regs[i] = readl(base->virtbase + il[i].src);
1649
1650        for (;;) {
1651
1652                chan = find_next_bit((unsigned long *)regs,
1653                                     BITS_PER_LONG * il_size, chan + 1);
1654
1655                /* No more set bits found? */
1656                if (chan == BITS_PER_LONG * il_size)
1657                        break;
1658
1659                row = chan / BITS_PER_LONG;
1660                idx = chan & (BITS_PER_LONG - 1);
1661
1662                if (il[row].offset == D40_PHY_CHAN)
1663                        d40c = base->lookup_phy_chans[idx];
1664                else
1665                        d40c = base->lookup_log_chans[il[row].offset + idx];
1666
1667                if (!d40c) {
1668                        /*
1669                         * No error because this can happen if something else
1670                         * in the system is using the channel.
1671                         */
1672                        continue;
1673                }
1674
1675                /* ACK interrupt */
1676                writel(BIT(idx), base->virtbase + il[row].clr);
1677
1678                spin_lock(&d40c->lock);
1679
1680                if (!il[row].is_error)
1681                        dma_tc_handle(d40c);
1682                else
1683                        d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1684                                chan, il[row].offset, idx);
1685
1686                spin_unlock(&d40c->lock);
1687        }
1688
1689        spin_unlock_irqrestore(&base->interrupt_lock, flags);
1690
1691        return IRQ_HANDLED;
1692}
1693
1694static int d40_validate_conf(struct d40_chan *d40c,
1695                             struct stedma40_chan_cfg *conf)
1696{
1697        int res = 0;
1698        bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1699
1700        if (!conf->dir) {
1701                chan_err(d40c, "Invalid direction.\n");
1702                res = -EINVAL;
1703        }
1704
1705        if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1706            (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1707            (conf->dev_type < 0)) {
1708                chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1709                res = -EINVAL;
1710        }
1711
1712        if (conf->dir == DMA_DEV_TO_DEV) {
1713                /*
1714                 * DMAC HW supports it. Will be added to this driver,
1715                 * in case any dma client requires it.
1716                 */
1717                chan_err(d40c, "periph to periph not supported\n");
1718                res = -EINVAL;
1719        }
1720
1721        if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1722            conf->src_info.data_width !=
1723            d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1724            conf->dst_info.data_width) {
1725                /*
1726                 * The DMAC hardware only supports
1727                 * src (burst x width) == dst (burst x width)
1728                 */
1729
1730                chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1731                res = -EINVAL;
1732        }
1733
1734        return res;
1735}
1736
1737static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1738                               bool is_src, int log_event_line, bool is_log,
1739                               bool *first_user)
1740{
1741        unsigned long flags;
1742        spin_lock_irqsave(&phy->lock, flags);
1743
1744        *first_user = ((phy->allocated_src | phy->allocated_dst)
1745                        == D40_ALLOC_FREE);
1746
1747        if (!is_log) {
1748                /* Physical interrupts are masked per physical full channel */
1749                if (phy->allocated_src == D40_ALLOC_FREE &&
1750                    phy->allocated_dst == D40_ALLOC_FREE) {
1751                        phy->allocated_dst = D40_ALLOC_PHY;
1752                        phy->allocated_src = D40_ALLOC_PHY;
1753                        goto found_unlock;
1754                } else
1755                        goto not_found_unlock;
1756        }
1757
1758        /* Logical channel */
1759        if (is_src) {
1760                if (phy->allocated_src == D40_ALLOC_PHY)
1761                        goto not_found_unlock;
1762
1763                if (phy->allocated_src == D40_ALLOC_FREE)
1764                        phy->allocated_src = D40_ALLOC_LOG_FREE;
1765
1766                if (!(phy->allocated_src & BIT(log_event_line))) {
1767                        phy->allocated_src |= BIT(log_event_line);
1768                        goto found_unlock;
1769                } else
1770                        goto not_found_unlock;
1771        } else {
1772                if (phy->allocated_dst == D40_ALLOC_PHY)
1773                        goto not_found_unlock;
1774
1775                if (phy->allocated_dst == D40_ALLOC_FREE)
1776                        phy->allocated_dst = D40_ALLOC_LOG_FREE;
1777
1778                if (!(phy->allocated_dst & BIT(log_event_line))) {
1779                        phy->allocated_dst |= BIT(log_event_line);
1780                        goto found_unlock;
1781                }
1782        }
1783 not_found_unlock:
1784        spin_unlock_irqrestore(&phy->lock, flags);
1785        return false;
1786 found_unlock:
1787        spin_unlock_irqrestore(&phy->lock, flags);
1788        return true;
1789}
1790
1791static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1792                               int log_event_line)
1793{
1794        unsigned long flags;
1795        bool is_free = false;
1796
1797        spin_lock_irqsave(&phy->lock, flags);
1798        if (!log_event_line) {
1799                phy->allocated_dst = D40_ALLOC_FREE;
1800                phy->allocated_src = D40_ALLOC_FREE;
1801                is_free = true;
1802                goto unlock;
1803        }
1804
1805        /* Logical channel */
1806        if (is_src) {
1807                phy->allocated_src &= ~BIT(log_event_line);
1808                if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1809                        phy->allocated_src = D40_ALLOC_FREE;
1810        } else {
1811                phy->allocated_dst &= ~BIT(log_event_line);
1812                if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1813                        phy->allocated_dst = D40_ALLOC_FREE;
1814        }
1815
1816        is_free = ((phy->allocated_src | phy->allocated_dst) ==
1817                   D40_ALLOC_FREE);
1818 unlock:
1819        spin_unlock_irqrestore(&phy->lock, flags);
1820
1821        return is_free;
1822}
1823
1824static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1825{
1826        int dev_type = d40c->dma_cfg.dev_type;
1827        int event_group;
1828        int event_line;
1829        struct d40_phy_res *phys;
1830        int i;
1831        int j;
1832        int log_num;
1833        int num_phy_chans;
1834        bool is_src;
1835        bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1836
1837        phys = d40c->base->phy_res;
1838        num_phy_chans = d40c->base->num_phy_chans;
1839
1840        if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1841                log_num = 2 * dev_type;
1842                is_src = true;
1843        } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1844                   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1845                /* dst event lines are used for logical memcpy */
1846                log_num = 2 * dev_type + 1;
1847                is_src = false;
1848        } else
1849                return -EINVAL;
1850
1851        event_group = D40_TYPE_TO_GROUP(dev_type);
1852        event_line = D40_TYPE_TO_EVENT(dev_type);
1853
1854        if (!is_log) {
1855                if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1856                        /* Find physical half channel */
1857                        if (d40c->dma_cfg.use_fixed_channel) {
1858                                i = d40c->dma_cfg.phy_channel;
1859                                if (d40_alloc_mask_set(&phys[i], is_src,
1860                                                       0, is_log,
1861                                                       first_phy_user))
1862                                        goto found_phy;
1863                        } else {
1864                                for (i = 0; i < num_phy_chans; i++) {
1865                                        if (d40_alloc_mask_set(&phys[i], is_src,
1866                                                       0, is_log,
1867                                                       first_phy_user))
1868                                                goto found_phy;
1869                                }
1870                        }
1871                } else
1872                        for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1873                                int phy_num = j  + event_group * 2;
1874                                for (i = phy_num; i < phy_num + 2; i++) {
1875                                        if (d40_alloc_mask_set(&phys[i],
1876                                                               is_src,
1877                                                               0,
1878                                                               is_log,
1879                                                               first_phy_user))
1880                                                goto found_phy;
1881                                }
1882                        }
1883                return -EINVAL;
1884found_phy:
1885                d40c->phy_chan = &phys[i];
1886                d40c->log_num = D40_PHY_CHAN;
1887                goto out;
1888        }
1889        if (dev_type == -1)
1890                return -EINVAL;
1891
1892        /* Find logical channel */
1893        for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1894                int phy_num = j + event_group * 2;
1895
1896                if (d40c->dma_cfg.use_fixed_channel) {
1897                        i = d40c->dma_cfg.phy_channel;
1898
1899                        if ((i != phy_num) && (i != phy_num + 1)) {
1900                                dev_err(chan2dev(d40c),
1901                                        "invalid fixed phy channel %d\n", i);
1902                                return -EINVAL;
1903                        }
1904
1905                        if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1906                                               is_log, first_phy_user))
1907                                goto found_log;
1908
1909                        dev_err(chan2dev(d40c),
1910                                "could not allocate fixed phy channel %d\n", i);
1911                        return -EINVAL;
1912                }
1913
1914                /*
1915                 * Spread logical channels across all available physical rather
1916                 * than pack every logical channel at the first available phy
1917                 * channels.
1918                 */
1919                if (is_src) {
1920                        for (i = phy_num; i < phy_num + 2; i++) {
1921                                if (d40_alloc_mask_set(&phys[i], is_src,
1922                                                       event_line, is_log,
1923                                                       first_phy_user))
1924                                        goto found_log;
1925                        }
1926                } else {
1927                        for (i = phy_num + 1; i >= phy_num; i--) {
1928                                if (d40_alloc_mask_set(&phys[i], is_src,
1929                                                       event_line, is_log,
1930                                                       first_phy_user))
1931                                        goto found_log;
1932                        }
1933                }
1934        }
1935        return -EINVAL;
1936
1937found_log:
1938        d40c->phy_chan = &phys[i];
1939        d40c->log_num = log_num;
1940out:
1941
1942        if (is_log)
1943                d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1944        else
1945                d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1946
1947        return 0;
1948
1949}
1950
1951static int d40_config_memcpy(struct d40_chan *d40c)
1952{
1953        dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1954
1955        if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1956                d40c->dma_cfg = dma40_memcpy_conf_log;
1957                d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1958
1959                d40_log_cfg(&d40c->dma_cfg,
1960                            &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1961
1962        } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1963                   dma_has_cap(DMA_SLAVE, cap)) {
1964                d40c->dma_cfg = dma40_memcpy_conf_phy;
1965
1966                /* Generate interrrupt at end of transfer or relink. */
1967                d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1968
1969                /* Generate interrupt on error. */
1970                d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1971                d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1972
1973        } else {
1974                chan_err(d40c, "No memcpy\n");
1975                return -EINVAL;
1976        }
1977
1978        return 0;
1979}
1980
1981static int d40_free_dma(struct d40_chan *d40c)
1982{
1983
1984        int res = 0;
1985        u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1986        struct d40_phy_res *phy = d40c->phy_chan;
1987        bool is_src;
1988
1989        /* Terminate all queued and active transfers */
1990        d40_term_all(d40c);
1991
1992        if (phy == NULL) {
1993                chan_err(d40c, "phy == null\n");
1994                return -EINVAL;
1995        }
1996
1997        if (phy->allocated_src == D40_ALLOC_FREE &&
1998            phy->allocated_dst == D40_ALLOC_FREE) {
1999                chan_err(d40c, "channel already free\n");
2000                return -EINVAL;
2001        }
2002
2003        if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2004            d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2005                is_src = false;
2006        else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2007                is_src = true;
2008        else {
2009                chan_err(d40c, "Unknown direction\n");
2010                return -EINVAL;
2011        }
2012
2013        pm_runtime_get_sync(d40c->base->dev);
2014        res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2015        if (res) {
2016                chan_err(d40c, "stop failed\n");
2017                goto mark_last_busy;
2018        }
2019
2020        d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2021
2022        if (chan_is_logical(d40c))
2023                d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2024        else
2025                d40c->base->lookup_phy_chans[phy->num] = NULL;
2026
2027        if (d40c->busy) {
2028                pm_runtime_mark_last_busy(d40c->base->dev);
2029                pm_runtime_put_autosuspend(d40c->base->dev);
2030        }
2031
2032        d40c->busy = false;
2033        d40c->phy_chan = NULL;
2034        d40c->configured = false;
2035 mark_last_busy:
2036        pm_runtime_mark_last_busy(d40c->base->dev);
2037        pm_runtime_put_autosuspend(d40c->base->dev);
2038        return res;
2039}
2040
2041static bool d40_is_paused(struct d40_chan *d40c)
2042{
2043        void __iomem *chanbase = chan_base(d40c);
2044        bool is_paused = false;
2045        unsigned long flags;
2046        void __iomem *active_reg;
2047        u32 status;
2048        u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2049
2050        spin_lock_irqsave(&d40c->lock, flags);
2051
2052        if (chan_is_physical(d40c)) {
2053                if (d40c->phy_chan->num % 2 == 0)
2054                        active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2055                else
2056                        active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2057
2058                status = (readl(active_reg) &
2059                          D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2060                        D40_CHAN_POS(d40c->phy_chan->num);
2061                if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2062                        is_paused = true;
2063                goto unlock;
2064        }
2065
2066        if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2067            d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2068                status = readl(chanbase + D40_CHAN_REG_SDLNK);
2069        } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2070                status = readl(chanbase + D40_CHAN_REG_SSLNK);
2071        } else {
2072                chan_err(d40c, "Unknown direction\n");
2073                goto unlock;
2074        }
2075
2076        status = (status & D40_EVENTLINE_MASK(event)) >>
2077                D40_EVENTLINE_POS(event);
2078
2079        if (status != D40_DMA_RUN)
2080                is_paused = true;
2081 unlock:
2082        spin_unlock_irqrestore(&d40c->lock, flags);
2083        return is_paused;
2084
2085}
2086
2087static u32 stedma40_residue(struct dma_chan *chan)
2088{
2089        struct d40_chan *d40c =
2090                container_of(chan, struct d40_chan, chan);
2091        u32 bytes_left;
2092        unsigned long flags;
2093
2094        spin_lock_irqsave(&d40c->lock, flags);
2095        bytes_left = d40_residue(d40c);
2096        spin_unlock_irqrestore(&d40c->lock, flags);
2097
2098        return bytes_left;
2099}
2100
2101static int
2102d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2103                struct scatterlist *sg_src, struct scatterlist *sg_dst,
2104                unsigned int sg_len, dma_addr_t src_dev_addr,
2105                dma_addr_t dst_dev_addr)
2106{
2107        struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2108        struct stedma40_half_channel_info *src_info = &cfg->src_info;
2109        struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2110        int ret;
2111
2112        ret = d40_log_sg_to_lli(sg_src, sg_len,
2113                                src_dev_addr,
2114                                desc->lli_log.src,
2115                                chan->log_def.lcsp1,
2116                                src_info->data_width,
2117                                dst_info->data_width);
2118
2119        ret = d40_log_sg_to_lli(sg_dst, sg_len,
2120                                dst_dev_addr,
2121                                desc->lli_log.dst,
2122                                chan->log_def.lcsp3,
2123                                dst_info->data_width,
2124                                src_info->data_width);
2125
2126        return ret < 0 ? ret : 0;
2127}
2128
2129static int
2130d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2131                struct scatterlist *sg_src, struct scatterlist *sg_dst,
2132                unsigned int sg_len, dma_addr_t src_dev_addr,
2133                dma_addr_t dst_dev_addr)
2134{
2135        struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2136        struct stedma40_half_channel_info *src_info = &cfg->src_info;
2137        struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2138        unsigned long flags = 0;
2139        int ret;
2140
2141        if (desc->cyclic)
2142                flags |= LLI_CYCLIC | LLI_TERM_INT;
2143
2144        ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2145                                desc->lli_phy.src,
2146                                virt_to_phys(desc->lli_phy.src),
2147                                chan->src_def_cfg,
2148                                src_info, dst_info, flags);
2149
2150        ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2151                                desc->lli_phy.dst,
2152                                virt_to_phys(desc->lli_phy.dst),
2153                                chan->dst_def_cfg,
2154                                dst_info, src_info, flags);
2155
2156        dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2157                                   desc->lli_pool.size, DMA_TO_DEVICE);
2158
2159        return ret < 0 ? ret : 0;
2160}
2161
2162static struct d40_desc *
2163d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2164              unsigned int sg_len, unsigned long dma_flags)
2165{
2166        struct stedma40_chan_cfg *cfg;
2167        struct d40_desc *desc;
2168        int ret;
2169
2170        desc = d40_desc_get(chan);
2171        if (!desc)
2172                return NULL;
2173
2174        cfg = &chan->dma_cfg;
2175        desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2176                                        cfg->dst_info.data_width);
2177        if (desc->lli_len < 0) {
2178                chan_err(chan, "Unaligned size\n");
2179                goto free_desc;
2180        }
2181
2182        ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2183        if (ret < 0) {
2184                chan_err(chan, "Could not allocate lli\n");
2185                goto free_desc;
2186        }
2187
2188        desc->lli_current = 0;
2189        desc->txd.flags = dma_flags;
2190        desc->txd.tx_submit = d40_tx_submit;
2191
2192        dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2193
2194        return desc;
2195 free_desc:
2196        d40_desc_free(chan, desc);
2197        return NULL;
2198}
2199
2200static struct dma_async_tx_descriptor *
2201d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2202            struct scatterlist *sg_dst, unsigned int sg_len,
2203            enum dma_transfer_direction direction, unsigned long dma_flags)
2204{
2205        struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2206        dma_addr_t src_dev_addr;
2207        dma_addr_t dst_dev_addr;
2208        struct d40_desc *desc;
2209        unsigned long flags;
2210        int ret;
2211
2212        if (!chan->phy_chan) {
2213                chan_err(chan, "Cannot prepare unallocated channel\n");
2214                return NULL;
2215        }
2216
2217        spin_lock_irqsave(&chan->lock, flags);
2218
2219        desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2220        if (desc == NULL)
2221                goto unlock;
2222
2223        if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2224                desc->cyclic = true;
2225
2226        src_dev_addr = 0;
2227        dst_dev_addr = 0;
2228        if (direction == DMA_DEV_TO_MEM)
2229                src_dev_addr = chan->runtime_addr;
2230        else if (direction == DMA_MEM_TO_DEV)
2231                dst_dev_addr = chan->runtime_addr;
2232
2233        if (chan_is_logical(chan))
2234                ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2235                                      sg_len, src_dev_addr, dst_dev_addr);
2236        else
2237                ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2238                                      sg_len, src_dev_addr, dst_dev_addr);
2239
2240        if (ret) {
2241                chan_err(chan, "Failed to prepare %s sg job: %d\n",
2242                         chan_is_logical(chan) ? "log" : "phy", ret);
2243                goto free_desc;
2244        }
2245
2246        /*
2247         * add descriptor to the prepare queue in order to be able
2248         * to free them later in terminate_all
2249         */
2250        list_add_tail(&desc->node, &chan->prepare_queue);
2251
2252        spin_unlock_irqrestore(&chan->lock, flags);
2253
2254        return &desc->txd;
2255 free_desc:
2256        d40_desc_free(chan, desc);
2257 unlock:
2258        spin_unlock_irqrestore(&chan->lock, flags);
2259        return NULL;
2260}
2261
2262bool stedma40_filter(struct dma_chan *chan, void *data)
2263{
2264        struct stedma40_chan_cfg *info = data;
2265        struct d40_chan *d40c =
2266                container_of(chan, struct d40_chan, chan);
2267        int err;
2268
2269        if (data) {
2270                err = d40_validate_conf(d40c, info);
2271                if (!err)
2272                        d40c->dma_cfg = *info;
2273        } else
2274                err = d40_config_memcpy(d40c);
2275
2276        if (!err)
2277                d40c->configured = true;
2278
2279        return err == 0;
2280}
2281EXPORT_SYMBOL(stedma40_filter);
2282
2283static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2284{
2285        bool realtime = d40c->dma_cfg.realtime;
2286        bool highprio = d40c->dma_cfg.high_priority;
2287        u32 rtreg;
2288        u32 event = D40_TYPE_TO_EVENT(dev_type);
2289        u32 group = D40_TYPE_TO_GROUP(dev_type);
2290        u32 bit = BIT(event);
2291        u32 prioreg;
2292        struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2293
2294        rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2295        /*
2296         * Due to a hardware bug, in some cases a logical channel triggered by
2297         * a high priority destination event line can generate extra packet
2298         * transactions.
2299         *
2300         * The workaround is to not set the high priority level for the
2301         * destination event lines that trigger logical channels.
2302         */
2303        if (!src && chan_is_logical(d40c))
2304                highprio = false;
2305
2306        prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2307
2308        /* Destination event lines are stored in the upper halfword */
2309        if (!src)
2310                bit <<= 16;
2311
2312        writel(bit, d40c->base->virtbase + prioreg + group * 4);
2313        writel(bit, d40c->base->virtbase + rtreg + group * 4);
2314}
2315
2316static void d40_set_prio_realtime(struct d40_chan *d40c)
2317{
2318        if (d40c->base->rev < 3)
2319                return;
2320
2321        if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2322            (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2323                __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2324
2325        if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2326            (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2327                __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2328}
2329
2330#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2331#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2332#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2333#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2334#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2335
2336static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2337                                  struct of_dma *ofdma)
2338{
2339        struct stedma40_chan_cfg cfg;
2340        dma_cap_mask_t cap;
2341        u32 flags;
2342
2343        memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2344
2345        dma_cap_zero(cap);
2346        dma_cap_set(DMA_SLAVE, cap);
2347
2348        cfg.dev_type = dma_spec->args[0];
2349        flags = dma_spec->args[2];
2350
2351        switch (D40_DT_FLAGS_MODE(flags)) {
2352        case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2353        case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2354        }
2355
2356        switch (D40_DT_FLAGS_DIR(flags)) {
2357        case 0:
2358                cfg.dir = DMA_MEM_TO_DEV;
2359                cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2360                break;
2361        case 1:
2362                cfg.dir = DMA_DEV_TO_MEM;
2363                cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2364                break;
2365        }
2366
2367        if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2368                cfg.phy_channel = dma_spec->args[1];
2369                cfg.use_fixed_channel = true;
2370        }
2371
2372        if (D40_DT_FLAGS_HIGH_PRIO(flags))
2373                cfg.high_priority = true;
2374
2375        return dma_request_channel(cap, stedma40_filter, &cfg);
2376}
2377
2378/* DMA ENGINE functions */
2379static int d40_alloc_chan_resources(struct dma_chan *chan)
2380{
2381        int err;
2382        unsigned long flags;
2383        struct d40_chan *d40c =
2384                container_of(chan, struct d40_chan, chan);
2385        bool is_free_phy;
2386        spin_lock_irqsave(&d40c->lock, flags);
2387
2388        dma_cookie_init(chan);
2389
2390        /* If no dma configuration is set use default configuration (memcpy) */
2391        if (!d40c->configured) {
2392                err = d40_config_memcpy(d40c);
2393                if (err) {
2394                        chan_err(d40c, "Failed to configure memcpy channel\n");
2395                        goto mark_last_busy;
2396                }
2397        }
2398
2399        err = d40_allocate_channel(d40c, &is_free_phy);
2400        if (err) {
2401                chan_err(d40c, "Failed to allocate channel\n");
2402                d40c->configured = false;
2403                goto mark_last_busy;
2404        }
2405
2406        pm_runtime_get_sync(d40c->base->dev);
2407
2408        d40_set_prio_realtime(d40c);
2409
2410        if (chan_is_logical(d40c)) {
2411                if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2412                        d40c->lcpa = d40c->base->lcpa_base +
2413                                d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2414                else
2415                        d40c->lcpa = d40c->base->lcpa_base +
2416                                d40c->dma_cfg.dev_type *
2417                                D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2418
2419                /* Unmask the Global Interrupt Mask. */
2420                d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2421                d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2422        }
2423
2424        dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2425                 chan_is_logical(d40c) ? "logical" : "physical",
2426                 d40c->phy_chan->num,
2427                 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2428
2429
2430        /*
2431         * Only write channel configuration to the DMA if the physical
2432         * resource is free. In case of multiple logical channels
2433         * on the same physical resource, only the first write is necessary.
2434         */
2435        if (is_free_phy)
2436                d40_config_write(d40c);
2437 mark_last_busy:
2438        pm_runtime_mark_last_busy(d40c->base->dev);
2439        pm_runtime_put_autosuspend(d40c->base->dev);
2440        spin_unlock_irqrestore(&d40c->lock, flags);
2441        return err;
2442}
2443
2444static void d40_free_chan_resources(struct dma_chan *chan)
2445{
2446        struct d40_chan *d40c =
2447                container_of(chan, struct d40_chan, chan);
2448        int err;
2449        unsigned long flags;
2450
2451        if (d40c->phy_chan == NULL) {
2452                chan_err(d40c, "Cannot free unallocated channel\n");
2453                return;
2454        }
2455
2456        spin_lock_irqsave(&d40c->lock, flags);
2457
2458        err = d40_free_dma(d40c);
2459
2460        if (err)
2461                chan_err(d40c, "Failed to free channel\n");
2462        spin_unlock_irqrestore(&d40c->lock, flags);
2463}
2464
2465static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2466                                                       dma_addr_t dst,
2467                                                       dma_addr_t src,
2468                                                       size_t size,
2469                                                       unsigned long dma_flags)
2470{
2471        struct scatterlist dst_sg;
2472        struct scatterlist src_sg;
2473
2474        sg_init_table(&dst_sg, 1);
2475        sg_init_table(&src_sg, 1);
2476
2477        sg_dma_address(&dst_sg) = dst;
2478        sg_dma_address(&src_sg) = src;
2479
2480        sg_dma_len(&dst_sg) = size;
2481        sg_dma_len(&src_sg) = size;
2482
2483        return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2484                           DMA_MEM_TO_MEM, dma_flags);
2485}
2486
2487static struct dma_async_tx_descriptor *
2488d40_prep_memcpy_sg(struct dma_chan *chan,
2489                   struct scatterlist *dst_sg, unsigned int dst_nents,
2490                   struct scatterlist *src_sg, unsigned int src_nents,
2491                   unsigned long dma_flags)
2492{
2493        if (dst_nents != src_nents)
2494                return NULL;
2495
2496        return d40_prep_sg(chan, src_sg, dst_sg, src_nents,
2497                           DMA_MEM_TO_MEM, dma_flags);
2498}
2499
2500static struct dma_async_tx_descriptor *
2501d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2502                  unsigned int sg_len, enum dma_transfer_direction direction,
2503                  unsigned long dma_flags, void *context)
2504{
2505        if (!is_slave_direction(direction))
2506                return NULL;
2507
2508        return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2509}
2510
2511static struct dma_async_tx_descriptor *
2512dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2513                     size_t buf_len, size_t period_len,
2514                     enum dma_transfer_direction direction, unsigned long flags)
2515{
2516        unsigned int periods = buf_len / period_len;
2517        struct dma_async_tx_descriptor *txd;
2518        struct scatterlist *sg;
2519        int i;
2520
2521        sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2522        if (!sg)
2523                return NULL;
2524
2525        for (i = 0; i < periods; i++) {
2526                sg_dma_address(&sg[i]) = dma_addr;
2527                sg_dma_len(&sg[i]) = period_len;
2528                dma_addr += period_len;
2529        }
2530
2531        sg[periods].offset = 0;
2532        sg_dma_len(&sg[periods]) = 0;
2533        sg[periods].page_link =
2534                ((unsigned long)sg | 0x01) & ~0x02;
2535
2536        txd = d40_prep_sg(chan, sg, sg, periods, direction,
2537                          DMA_PREP_INTERRUPT);
2538
2539        kfree(sg);
2540
2541        return txd;
2542}
2543
2544static enum dma_status d40_tx_status(struct dma_chan *chan,
2545                                     dma_cookie_t cookie,
2546                                     struct dma_tx_state *txstate)
2547{
2548        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2549        enum dma_status ret;
2550
2551        if (d40c->phy_chan == NULL) {
2552                chan_err(d40c, "Cannot read status of unallocated channel\n");
2553                return -EINVAL;
2554        }
2555
2556        ret = dma_cookie_status(chan, cookie, txstate);
2557        if (ret != DMA_COMPLETE && txstate)
2558                dma_set_residue(txstate, stedma40_residue(chan));
2559
2560        if (d40_is_paused(d40c))
2561                ret = DMA_PAUSED;
2562
2563        return ret;
2564}
2565
2566static void d40_issue_pending(struct dma_chan *chan)
2567{
2568        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2569        unsigned long flags;
2570
2571        if (d40c->phy_chan == NULL) {
2572                chan_err(d40c, "Channel is not allocated!\n");
2573                return;
2574        }
2575
2576        spin_lock_irqsave(&d40c->lock, flags);
2577
2578        list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2579
2580        /* Busy means that queued jobs are already being processed */
2581        if (!d40c->busy)
2582                (void) d40_queue_start(d40c);
2583
2584        spin_unlock_irqrestore(&d40c->lock, flags);
2585}
2586
2587static int d40_terminate_all(struct dma_chan *chan)
2588{
2589        unsigned long flags;
2590        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2591        int ret;
2592
2593        if (d40c->phy_chan == NULL) {
2594                chan_err(d40c, "Channel is not allocated!\n");
2595                return -EINVAL;
2596        }
2597
2598        spin_lock_irqsave(&d40c->lock, flags);
2599
2600        pm_runtime_get_sync(d40c->base->dev);
2601        ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2602        if (ret)
2603                chan_err(d40c, "Failed to stop channel\n");
2604
2605        d40_term_all(d40c);
2606        pm_runtime_mark_last_busy(d40c->base->dev);
2607        pm_runtime_put_autosuspend(d40c->base->dev);
2608        if (d40c->busy) {
2609                pm_runtime_mark_last_busy(d40c->base->dev);
2610                pm_runtime_put_autosuspend(d40c->base->dev);
2611        }
2612        d40c->busy = false;
2613
2614        spin_unlock_irqrestore(&d40c->lock, flags);
2615        return 0;
2616}
2617
2618static int
2619dma40_config_to_halfchannel(struct d40_chan *d40c,
2620                            struct stedma40_half_channel_info *info,
2621                            u32 maxburst)
2622{
2623        int psize;
2624
2625        if (chan_is_logical(d40c)) {
2626                if (maxburst >= 16)
2627                        psize = STEDMA40_PSIZE_LOG_16;
2628                else if (maxburst >= 8)
2629                        psize = STEDMA40_PSIZE_LOG_8;
2630                else if (maxburst >= 4)
2631                        psize = STEDMA40_PSIZE_LOG_4;
2632                else
2633                        psize = STEDMA40_PSIZE_LOG_1;
2634        } else {
2635                if (maxburst >= 16)
2636                        psize = STEDMA40_PSIZE_PHY_16;
2637                else if (maxburst >= 8)
2638                        psize = STEDMA40_PSIZE_PHY_8;
2639                else if (maxburst >= 4)
2640                        psize = STEDMA40_PSIZE_PHY_4;
2641                else
2642                        psize = STEDMA40_PSIZE_PHY_1;
2643        }
2644
2645        info->psize = psize;
2646        info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2647
2648        return 0;
2649}
2650
2651/* Runtime reconfiguration extension */
2652static int d40_set_runtime_config(struct dma_chan *chan,
2653                                  struct dma_slave_config *config)
2654{
2655        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2656        struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2657        enum dma_slave_buswidth src_addr_width, dst_addr_width;
2658        dma_addr_t config_addr;
2659        u32 src_maxburst, dst_maxburst;
2660        int ret;
2661
2662        if (d40c->phy_chan == NULL) {
2663                chan_err(d40c, "Channel is not allocated!\n");
2664                return -EINVAL;
2665        }
2666
2667        src_addr_width = config->src_addr_width;
2668        src_maxburst = config->src_maxburst;
2669        dst_addr_width = config->dst_addr_width;
2670        dst_maxburst = config->dst_maxburst;
2671
2672        if (config->direction == DMA_DEV_TO_MEM) {
2673                config_addr = config->src_addr;
2674
2675                if (cfg->dir != DMA_DEV_TO_MEM)
2676                        dev_dbg(d40c->base->dev,
2677                                "channel was not configured for peripheral "
2678                                "to memory transfer (%d) overriding\n",
2679                                cfg->dir);
2680                cfg->dir = DMA_DEV_TO_MEM;
2681
2682                /* Configure the memory side */
2683                if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2684                        dst_addr_width = src_addr_width;
2685                if (dst_maxburst == 0)
2686                        dst_maxburst = src_maxburst;
2687
2688        } else if (config->direction == DMA_MEM_TO_DEV) {
2689                config_addr = config->dst_addr;
2690
2691                if (cfg->dir != DMA_MEM_TO_DEV)
2692                        dev_dbg(d40c->base->dev,
2693                                "channel was not configured for memory "
2694                                "to peripheral transfer (%d) overriding\n",
2695                                cfg->dir);
2696                cfg->dir = DMA_MEM_TO_DEV;
2697
2698                /* Configure the memory side */
2699                if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2700                        src_addr_width = dst_addr_width;
2701                if (src_maxburst == 0)
2702                        src_maxburst = dst_maxburst;
2703        } else {
2704                dev_err(d40c->base->dev,
2705                        "unrecognized channel direction %d\n",
2706                        config->direction);
2707                return -EINVAL;
2708        }
2709
2710        if (config_addr <= 0) {
2711                dev_err(d40c->base->dev, "no address supplied\n");
2712                return -EINVAL;
2713        }
2714
2715        if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2716                dev_err(d40c->base->dev,
2717                        "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2718                        src_maxburst,
2719                        src_addr_width,
2720                        dst_maxburst,
2721                        dst_addr_width);
2722                return -EINVAL;
2723        }
2724
2725        if (src_maxburst > 16) {
2726                src_maxburst = 16;
2727                dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2728        } else if (dst_maxburst > 16) {
2729                dst_maxburst = 16;
2730                src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2731        }
2732
2733        /* Only valid widths are; 1, 2, 4 and 8. */
2734        if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2735            src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2736            dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2737            dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2738            !is_power_of_2(src_addr_width) ||
2739            !is_power_of_2(dst_addr_width))
2740                return -EINVAL;
2741
2742        cfg->src_info.data_width = src_addr_width;
2743        cfg->dst_info.data_width = dst_addr_width;
2744
2745        ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2746                                          src_maxburst);
2747        if (ret)
2748                return ret;
2749
2750        ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2751                                          dst_maxburst);
2752        if (ret)
2753                return ret;
2754
2755        /* Fill in register values */
2756        if (chan_is_logical(d40c))
2757                d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2758        else
2759                d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2760
2761        /* These settings will take precedence later */
2762        d40c->runtime_addr = config_addr;
2763        d40c->runtime_direction = config->direction;
2764        dev_dbg(d40c->base->dev,
2765                "configured channel %s for %s, data width %d/%d, "
2766                "maxburst %d/%d elements, LE, no flow control\n",
2767                dma_chan_name(chan),
2768                (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2769                src_addr_width, dst_addr_width,
2770                src_maxburst, dst_maxburst);
2771
2772        return 0;
2773}
2774
2775/* Initialization functions */
2776
2777static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2778                                 struct d40_chan *chans, int offset,
2779                                 int num_chans)
2780{
2781        int i = 0;
2782        struct d40_chan *d40c;
2783
2784        INIT_LIST_HEAD(&dma->channels);
2785
2786        for (i = offset; i < offset + num_chans; i++) {
2787                d40c = &chans[i];
2788                d40c->base = base;
2789                d40c->chan.device = dma;
2790
2791                spin_lock_init(&d40c->lock);
2792
2793                d40c->log_num = D40_PHY_CHAN;
2794
2795                INIT_LIST_HEAD(&d40c->done);
2796                INIT_LIST_HEAD(&d40c->active);
2797                INIT_LIST_HEAD(&d40c->queue);
2798                INIT_LIST_HEAD(&d40c->pending_queue);
2799                INIT_LIST_HEAD(&d40c->client);
2800                INIT_LIST_HEAD(&d40c->prepare_queue);
2801
2802                tasklet_init(&d40c->tasklet, dma_tasklet,
2803                             (unsigned long) d40c);
2804
2805                list_add_tail(&d40c->chan.device_node,
2806                              &dma->channels);
2807        }
2808}
2809
2810static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2811{
2812        if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2813                dev->device_prep_slave_sg = d40_prep_slave_sg;
2814
2815        if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2816                dev->device_prep_dma_memcpy = d40_prep_memcpy;
2817
2818                /*
2819                 * This controller can only access address at even
2820                 * 32bit boundaries, i.e. 2^2
2821                 */
2822                dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2823        }
2824
2825        if (dma_has_cap(DMA_SG, dev->cap_mask))
2826                dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2827
2828        if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2829                dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2830
2831        dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2832        dev->device_free_chan_resources = d40_free_chan_resources;
2833        dev->device_issue_pending = d40_issue_pending;
2834        dev->device_tx_status = d40_tx_status;
2835        dev->device_config = d40_set_runtime_config;
2836        dev->device_pause = d40_pause;
2837        dev->device_resume = d40_resume;
2838        dev->device_terminate_all = d40_terminate_all;
2839        dev->dev = base->dev;
2840}
2841
2842static int __init d40_dmaengine_init(struct d40_base *base,
2843                                     int num_reserved_chans)
2844{
2845        int err ;
2846
2847        d40_chan_init(base, &base->dma_slave, base->log_chans,
2848                      0, base->num_log_chans);
2849
2850        dma_cap_zero(base->dma_slave.cap_mask);
2851        dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2852        dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2853
2854        d40_ops_init(base, &base->dma_slave);
2855
2856        err = dma_async_device_register(&base->dma_slave);
2857
2858        if (err) {
2859                d40_err(base->dev, "Failed to register slave channels\n");
2860                goto exit;
2861        }
2862
2863        d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2864                      base->num_log_chans, base->num_memcpy_chans);
2865
2866        dma_cap_zero(base->dma_memcpy.cap_mask);
2867        dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2868        dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2869
2870        d40_ops_init(base, &base->dma_memcpy);
2871
2872        err = dma_async_device_register(&base->dma_memcpy);
2873
2874        if (err) {
2875                d40_err(base->dev,
2876                        "Failed to register memcpy only channels\n");
2877                goto unregister_slave;
2878        }
2879
2880        d40_chan_init(base, &base->dma_both, base->phy_chans,
2881                      0, num_reserved_chans);
2882
2883        dma_cap_zero(base->dma_both.cap_mask);
2884        dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2885        dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2886        dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2887        dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2888
2889        d40_ops_init(base, &base->dma_both);
2890        err = dma_async_device_register(&base->dma_both);
2891
2892        if (err) {
2893                d40_err(base->dev,
2894                        "Failed to register logical and physical capable channels\n");
2895                goto unregister_memcpy;
2896        }
2897        return 0;
2898 unregister_memcpy:
2899        dma_async_device_unregister(&base->dma_memcpy);
2900 unregister_slave:
2901        dma_async_device_unregister(&base->dma_slave);
2902 exit:
2903        return err;
2904}
2905
2906/* Suspend resume functionality */
2907#ifdef CONFIG_PM_SLEEP
2908static int dma40_suspend(struct device *dev)
2909{
2910        struct platform_device *pdev = to_platform_device(dev);
2911        struct d40_base *base = platform_get_drvdata(pdev);
2912        int ret;
2913
2914        ret = pm_runtime_force_suspend(dev);
2915        if (ret)
2916                return ret;
2917
2918        if (base->lcpa_regulator)
2919                ret = regulator_disable(base->lcpa_regulator);
2920        return ret;
2921}
2922
2923static int dma40_resume(struct device *dev)
2924{
2925        struct platform_device *pdev = to_platform_device(dev);
2926        struct d40_base *base = platform_get_drvdata(pdev);
2927        int ret = 0;
2928
2929        if (base->lcpa_regulator) {
2930                ret = regulator_enable(base->lcpa_regulator);
2931                if (ret)
2932                        return ret;
2933        }
2934
2935        return pm_runtime_force_resume(dev);
2936}
2937#endif
2938
2939#ifdef CONFIG_PM
2940static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2941                         u32 *regaddr, int num, bool save)
2942{
2943        int i;
2944
2945        for (i = 0; i < num; i++) {
2946                void __iomem *addr = baseaddr + regaddr[i];
2947
2948                if (save)
2949                        backup[i] = readl_relaxed(addr);
2950                else
2951                        writel_relaxed(backup[i], addr);
2952        }
2953}
2954
2955static void d40_save_restore_registers(struct d40_base *base, bool save)
2956{
2957        int i;
2958
2959        /* Save/Restore channel specific registers */
2960        for (i = 0; i < base->num_phy_chans; i++) {
2961                void __iomem *addr;
2962                int idx;
2963
2964                if (base->phy_res[i].reserved)
2965                        continue;
2966
2967                addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2968                idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2969
2970                dma40_backup(addr, &base->reg_val_backup_chan[idx],
2971                             d40_backup_regs_chan,
2972                             ARRAY_SIZE(d40_backup_regs_chan),
2973                             save);
2974        }
2975
2976        /* Save/Restore global registers */
2977        dma40_backup(base->virtbase, base->reg_val_backup,
2978                     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2979                     save);
2980
2981        /* Save/Restore registers only existing on dma40 v3 and later */
2982        if (base->gen_dmac.backup)
2983                dma40_backup(base->virtbase, base->reg_val_backup_v4,
2984                             base->gen_dmac.backup,
2985                        base->gen_dmac.backup_size,
2986                        save);
2987}
2988
2989static int dma40_runtime_suspend(struct device *dev)
2990{
2991        struct platform_device *pdev = to_platform_device(dev);
2992        struct d40_base *base = platform_get_drvdata(pdev);
2993
2994        d40_save_restore_registers(base, true);
2995
2996        /* Don't disable/enable clocks for v1 due to HW bugs */
2997        if (base->rev != 1)
2998                writel_relaxed(base->gcc_pwr_off_mask,
2999                               base->virtbase + D40_DREG_GCC);
3000
3001        return 0;
3002}
3003
3004static int dma40_runtime_resume(struct device *dev)
3005{
3006        struct platform_device *pdev = to_platform_device(dev);
3007        struct d40_base *base = platform_get_drvdata(pdev);
3008
3009        d40_save_restore_registers(base, false);
3010
3011        writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3012                       base->virtbase + D40_DREG_GCC);
3013        return 0;
3014}
3015#endif
3016
3017static const struct dev_pm_ops dma40_pm_ops = {
3018        SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3019        SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3020                                dma40_runtime_resume,
3021                                NULL)
3022};
3023
3024/* Initialization functions. */
3025
3026static int __init d40_phy_res_init(struct d40_base *base)
3027{
3028        int i;
3029        int num_phy_chans_avail = 0;
3030        u32 val[2];
3031        int odd_even_bit = -2;
3032        int gcc = D40_DREG_GCC_ENA;
3033
3034        val[0] = readl(base->virtbase + D40_DREG_PRSME);
3035        val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3036
3037        for (i = 0; i < base->num_phy_chans; i++) {
3038                base->phy_res[i].num = i;
3039                odd_even_bit += 2 * ((i % 2) == 0);
3040                if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3041                        /* Mark security only channels as occupied */
3042                        base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3043                        base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3044                        base->phy_res[i].reserved = true;
3045                        gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3046                                                       D40_DREG_GCC_SRC);
3047                        gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3048                                                       D40_DREG_GCC_DST);
3049
3050
3051                } else {
3052                        base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3053                        base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3054                        base->phy_res[i].reserved = false;
3055                        num_phy_chans_avail++;
3056                }
3057                spin_lock_init(&base->phy_res[i].lock);
3058        }
3059
3060        /* Mark disabled channels as occupied */
3061        for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3062                int chan = base->plat_data->disabled_channels[i];
3063
3064                base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3065                base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3066                base->phy_res[chan].reserved = true;
3067                gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3068                                               D40_DREG_GCC_SRC);
3069                gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3070                                               D40_DREG_GCC_DST);
3071                num_phy_chans_avail--;
3072        }
3073
3074        /* Mark soft_lli channels */
3075        for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3076                int chan = base->plat_data->soft_lli_chans[i];
3077
3078                base->phy_res[chan].use_soft_lli = true;
3079        }
3080
3081        dev_info(base->dev, "%d of %d physical DMA channels available\n",
3082                 num_phy_chans_avail, base->num_phy_chans);
3083
3084        /* Verify settings extended vs standard */
3085        val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3086
3087        for (i = 0; i < base->num_phy_chans; i++) {
3088
3089                if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3090                    (val[0] & 0x3) != 1)
3091                        dev_info(base->dev,
3092                                 "[%s] INFO: channel %d is misconfigured (%d)\n",
3093                                 __func__, i, val[0] & 0x3);
3094
3095                val[0] = val[0] >> 2;
3096        }
3097
3098        /*
3099         * To keep things simple, Enable all clocks initially.
3100         * The clocks will get managed later post channel allocation.
3101         * The clocks for the event lines on which reserved channels exists
3102         * are not managed here.
3103         */
3104        writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3105        base->gcc_pwr_off_mask = gcc;
3106
3107        return num_phy_chans_avail;
3108}
3109
3110static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3111{
3112        struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3113        struct clk *clk;
3114        void __iomem *virtbase;
3115        struct resource *res;
3116        struct d40_base *base;
3117        int num_log_chans;
3118        int num_phy_chans;
3119        int num_memcpy_chans;
3120        int clk_ret = -EINVAL;
3121        int i;
3122        u32 pid;
3123        u32 cid;
3124        u8 rev;
3125
3126        clk = clk_get(&pdev->dev, NULL);
3127        if (IS_ERR(clk)) {
3128                d40_err(&pdev->dev, "No matching clock found\n");
3129                goto check_prepare_enabled;
3130        }
3131
3132        clk_ret = clk_prepare_enable(clk);
3133        if (clk_ret) {
3134                d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3135                goto disable_unprepare;
3136        }
3137
3138        /* Get IO for DMAC base address */
3139        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3140        if (!res)
3141                goto disable_unprepare;
3142
3143        if (request_mem_region(res->start, resource_size(res),
3144                               D40_NAME " I/O base") == NULL)
3145                goto release_region;
3146
3147        virtbase = ioremap(res->start, resource_size(res));
3148        if (!virtbase)
3149                goto release_region;
3150
3151        /* This is just a regular AMBA PrimeCell ID actually */
3152        for (pid = 0, i = 0; i < 4; i++)
3153                pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3154                        & 255) << (i * 8);
3155        for (cid = 0, i = 0; i < 4; i++)
3156                cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3157                        & 255) << (i * 8);
3158
3159        if (cid != AMBA_CID) {
3160                d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3161                goto unmap_io;
3162        }
3163        if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3164                d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3165                        AMBA_MANF_BITS(pid),
3166                        AMBA_VENDOR_ST);
3167                goto unmap_io;
3168        }
3169        /*
3170         * HW revision:
3171         * DB8500ed has revision 0
3172         * ? has revision 1
3173         * DB8500v1 has revision 2
3174         * DB8500v2 has revision 3
3175         * AP9540v1 has revision 4
3176         * DB8540v1 has revision 4
3177         */
3178        rev = AMBA_REV_BITS(pid);
3179        if (rev < 2) {
3180                d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3181                goto unmap_io;
3182        }
3183
3184        /* The number of physical channels on this HW */
3185        if (plat_data->num_of_phy_chans)
3186                num_phy_chans = plat_data->num_of_phy_chans;
3187        else
3188                num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3189
3190        /* The number of channels used for memcpy */
3191        if (plat_data->num_of_memcpy_chans)
3192                num_memcpy_chans = plat_data->num_of_memcpy_chans;
3193        else
3194                num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3195
3196        num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3197
3198        dev_info(&pdev->dev,
3199                 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3200                 rev, &res->start, num_phy_chans, num_log_chans);
3201
3202        base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3203                       (num_phy_chans + num_log_chans + num_memcpy_chans) *
3204                       sizeof(struct d40_chan), GFP_KERNEL);
3205
3206        if (base == NULL)
3207                goto unmap_io;
3208
3209        base->rev = rev;
3210        base->clk = clk;
3211        base->num_memcpy_chans = num_memcpy_chans;
3212        base->num_phy_chans = num_phy_chans;
3213        base->num_log_chans = num_log_chans;
3214        base->phy_start = res->start;
3215        base->phy_size = resource_size(res);
3216        base->virtbase = virtbase;
3217        base->plat_data = plat_data;
3218        base->dev = &pdev->dev;
3219        base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3220        base->log_chans = &base->phy_chans[num_phy_chans];
3221
3222        if (base->plat_data->num_of_phy_chans == 14) {
3223                base->gen_dmac.backup = d40_backup_regs_v4b;
3224                base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3225                base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3226                base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3227                base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3228                base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3229                base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3230                base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3231                base->gen_dmac.il = il_v4b;
3232                base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3233                base->gen_dmac.init_reg = dma_init_reg_v4b;
3234                base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3235        } else {
3236                if (base->rev >= 3) {
3237                        base->gen_dmac.backup = d40_backup_regs_v4a;
3238                        base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3239                }
3240                base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3241                base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3242                base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3243                base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3244                base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3245                base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3246                base->gen_dmac.il = il_v4a;
3247                base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3248                base->gen_dmac.init_reg = dma_init_reg_v4a;
3249                base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3250        }
3251
3252        base->phy_res = kcalloc(num_phy_chans,
3253                                sizeof(*base->phy_res),
3254                                GFP_KERNEL);
3255        if (!base->phy_res)
3256                goto free_base;
3257
3258        base->lookup_phy_chans = kcalloc(num_phy_chans,
3259                                         sizeof(*base->lookup_phy_chans),
3260                                         GFP_KERNEL);
3261        if (!base->lookup_phy_chans)
3262                goto free_phy_res;
3263
3264        base->lookup_log_chans = kcalloc(num_log_chans,
3265                                         sizeof(*base->lookup_log_chans),
3266                                         GFP_KERNEL);
3267        if (!base->lookup_log_chans)
3268                goto free_phy_chans;
3269
3270        base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
3271                                                  sizeof(d40_backup_regs_chan),
3272                                                  GFP_KERNEL);
3273        if (!base->reg_val_backup_chan)
3274                goto free_log_chans;
3275
3276        base->lcla_pool.alloc_map = kcalloc(num_phy_chans
3277                                            * D40_LCLA_LINK_PER_EVENT_GRP,
3278                                            sizeof(*base->lcla_pool.alloc_map),
3279                                            GFP_KERNEL);
3280        if (!base->lcla_pool.alloc_map)
3281                goto free_backup_chan;
3282
3283        base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3284                                            0, SLAB_HWCACHE_ALIGN,
3285                                            NULL);
3286        if (base->desc_slab == NULL)
3287                goto free_map;
3288
3289        return base;
3290 free_map:
3291        kfree(base->lcla_pool.alloc_map);
3292 free_backup_chan:
3293        kfree(base->reg_val_backup_chan);
3294 free_log_chans:
3295        kfree(base->lookup_log_chans);
3296 free_phy_chans:
3297        kfree(base->lookup_phy_chans);
3298 free_phy_res:
3299        kfree(base->phy_res);
3300 free_base:
3301        kfree(base);
3302 unmap_io:
3303        iounmap(virtbase);
3304 release_region:
3305        release_mem_region(res->start, resource_size(res));
3306 check_prepare_enabled:
3307        if (!clk_ret)
3308 disable_unprepare:
3309                clk_disable_unprepare(clk);
3310        if (!IS_ERR(clk))
3311                clk_put(clk);
3312        return NULL;
3313}
3314
3315static void __init d40_hw_init(struct d40_base *base)
3316{
3317
3318        int i;
3319        u32 prmseo[2] = {0, 0};
3320        u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3321        u32 pcmis = 0;
3322        u32 pcicr = 0;
3323        struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3324        u32 reg_size = base->gen_dmac.init_reg_size;
3325
3326        for (i = 0; i < reg_size; i++)
3327                writel(dma_init_reg[i].val,
3328                       base->virtbase + dma_init_reg[i].reg);
3329
3330        /* Configure all our dma channels to default settings */
3331        for (i = 0; i < base->num_phy_chans; i++) {
3332
3333                activeo[i % 2] = activeo[i % 2] << 2;
3334
3335                if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3336                    == D40_ALLOC_PHY) {
3337                        activeo[i % 2] |= 3;
3338                        continue;
3339                }
3340
3341                /* Enable interrupt # */
3342                pcmis = (pcmis << 1) | 1;
3343
3344                /* Clear interrupt # */
3345                pcicr = (pcicr << 1) | 1;
3346
3347                /* Set channel to physical mode */
3348                prmseo[i % 2] = prmseo[i % 2] << 2;
3349                prmseo[i % 2] |= 1;
3350
3351        }
3352
3353        writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3354        writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3355        writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3356        writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3357
3358        /* Write which interrupt to enable */
3359        writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3360
3361        /* Write which interrupt to clear */
3362        writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3363
3364        /* These are __initdata and cannot be accessed after init */
3365        base->gen_dmac.init_reg = NULL;
3366        base->gen_dmac.init_reg_size = 0;
3367}
3368
3369static int __init d40_lcla_allocate(struct d40_base *base)
3370{
3371        struct d40_lcla_pool *pool = &base->lcla_pool;
3372        unsigned long *page_list;
3373        int i, j;
3374        int ret;
3375
3376        /*
3377         * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3378         * To full fill this hardware requirement without wasting 256 kb
3379         * we allocate pages until we get an aligned one.
3380         */
3381        page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3382                                  sizeof(*page_list),
3383                                  GFP_KERNEL);
3384        if (!page_list)
3385                return -ENOMEM;
3386
3387        /* Calculating how many pages that are required */
3388        base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3389
3390        for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3391                page_list[i] = __get_free_pages(GFP_KERNEL,
3392                                                base->lcla_pool.pages);
3393                if (!page_list[i]) {
3394
3395                        d40_err(base->dev, "Failed to allocate %d pages.\n",
3396                                base->lcla_pool.pages);
3397                        ret = -ENOMEM;
3398
3399                        for (j = 0; j < i; j++)
3400                                free_pages(page_list[j], base->lcla_pool.pages);
3401                        goto free_page_list;
3402                }
3403
3404                if ((virt_to_phys((void *)page_list[i]) &
3405                     (LCLA_ALIGNMENT - 1)) == 0)
3406                        break;
3407        }
3408
3409        for (j = 0; j < i; j++)
3410                free_pages(page_list[j], base->lcla_pool.pages);
3411
3412        if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3413                base->lcla_pool.base = (void *)page_list[i];
3414        } else {
3415                /*
3416                 * After many attempts and no succees with finding the correct
3417                 * alignment, try with allocating a big buffer.
3418                 */
3419                dev_warn(base->dev,
3420                         "[%s] Failed to get %d pages @ 18 bit align.\n",
3421                         __func__, base->lcla_pool.pages);
3422                base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3423                                                         base->num_phy_chans +
3424                                                         LCLA_ALIGNMENT,
3425                                                         GFP_KERNEL);
3426                if (!base->lcla_pool.base_unaligned) {
3427                        ret = -ENOMEM;
3428                        goto free_page_list;
3429                }
3430
3431                base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3432                                                 LCLA_ALIGNMENT);
3433        }
3434
3435        pool->dma_addr = dma_map_single(base->dev, pool->base,
3436                                        SZ_1K * base->num_phy_chans,
3437                                        DMA_TO_DEVICE);
3438        if (dma_mapping_error(base->dev, pool->dma_addr)) {
3439                pool->dma_addr = 0;
3440                ret = -ENOMEM;
3441                goto free_page_list;
3442        }
3443
3444        writel(virt_to_phys(base->lcla_pool.base),
3445               base->virtbase + D40_DREG_LCLA);
3446        ret = 0;
3447 free_page_list:
3448        kfree(page_list);
3449        return ret;
3450}
3451
3452static int __init d40_of_probe(struct platform_device *pdev,
3453                               struct device_node *np)
3454{
3455        struct stedma40_platform_data *pdata;
3456        int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3457        const __be32 *list;
3458
3459        pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3460        if (!pdata)
3461                return -ENOMEM;
3462
3463        /* If absent this value will be obtained from h/w. */
3464        of_property_read_u32(np, "dma-channels", &num_phy);
3465        if (num_phy > 0)
3466                pdata->num_of_phy_chans = num_phy;
3467
3468        list = of_get_property(np, "memcpy-channels", &num_memcpy);
3469        num_memcpy /= sizeof(*list);
3470
3471        if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3472                d40_err(&pdev->dev,
3473                        "Invalid number of memcpy channels specified (%d)\n",
3474                        num_memcpy);
3475                return -EINVAL;
3476        }
3477        pdata->num_of_memcpy_chans = num_memcpy;
3478
3479        of_property_read_u32_array(np, "memcpy-channels",
3480                                   dma40_memcpy_channels,
3481                                   num_memcpy);
3482
3483        list = of_get_property(np, "disabled-channels", &num_disabled);
3484        num_disabled /= sizeof(*list);
3485
3486        if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3487                d40_err(&pdev->dev,
3488                        "Invalid number of disabled channels specified (%d)\n",
3489                        num_disabled);
3490                return -EINVAL;
3491        }
3492
3493        of_property_read_u32_array(np, "disabled-channels",
3494                                   pdata->disabled_channels,
3495                                   num_disabled);
3496        pdata->disabled_channels[num_disabled] = -1;
3497
3498        pdev->dev.platform_data = pdata;
3499
3500        return 0;
3501}
3502
3503static int __init d40_probe(struct platform_device *pdev)
3504{
3505        struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3506        struct device_node *np = pdev->dev.of_node;
3507        int ret = -ENOENT;
3508        struct d40_base *base;
3509        struct resource *res;
3510        int num_reserved_chans;
3511        u32 val;
3512
3513        if (!plat_data) {
3514                if (np) {
3515                        if (d40_of_probe(pdev, np)) {
3516                                ret = -ENOMEM;
3517                                goto report_failure;
3518                        }
3519                } else {
3520                        d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3521                        goto report_failure;
3522                }
3523        }
3524
3525        base = d40_hw_detect_init(pdev);
3526        if (!base)
3527                goto report_failure;
3528
3529        num_reserved_chans = d40_phy_res_init(base);
3530
3531        platform_set_drvdata(pdev, base);
3532
3533        spin_lock_init(&base->interrupt_lock);
3534        spin_lock_init(&base->execmd_lock);
3535
3536        /* Get IO for logical channel parameter address */
3537        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3538        if (!res) {
3539                ret = -ENOENT;
3540                d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3541                goto destroy_cache;
3542        }
3543        base->lcpa_size = resource_size(res);
3544        base->phy_lcpa = res->start;
3545
3546        if (request_mem_region(res->start, resource_size(res),
3547                               D40_NAME " I/O lcpa") == NULL) {
3548                ret = -EBUSY;
3549                d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3550                goto destroy_cache;
3551        }
3552
3553        /* We make use of ESRAM memory for this. */
3554        val = readl(base->virtbase + D40_DREG_LCPA);
3555        if (res->start != val && val != 0) {
3556                dev_warn(&pdev->dev,
3557                         "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3558                         __func__, val, &res->start);
3559        } else
3560                writel(res->start, base->virtbase + D40_DREG_LCPA);
3561
3562        base->lcpa_base = ioremap(res->start, resource_size(res));
3563        if (!base->lcpa_base) {
3564                ret = -ENOMEM;
3565                d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3566                goto destroy_cache;
3567        }
3568        /* If lcla has to be located in ESRAM we don't need to allocate */
3569        if (base->plat_data->use_esram_lcla) {
3570                res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3571                                                        "lcla_esram");
3572                if (!res) {
3573                        ret = -ENOENT;
3574                        d40_err(&pdev->dev,
3575                                "No \"lcla_esram\" memory resource\n");
3576                        goto destroy_cache;
3577                }
3578                base->lcla_pool.base = ioremap(res->start,
3579                                                resource_size(res));
3580                if (!base->lcla_pool.base) {
3581                        ret = -ENOMEM;
3582                        d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3583                        goto destroy_cache;
3584                }
3585                writel(res->start, base->virtbase + D40_DREG_LCLA);
3586
3587        } else {
3588                ret = d40_lcla_allocate(base);
3589                if (ret) {
3590                        d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3591                        goto destroy_cache;
3592                }
3593        }
3594
3595        spin_lock_init(&base->lcla_pool.lock);
3596
3597        base->irq = platform_get_irq(pdev, 0);
3598
3599        ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3600        if (ret) {
3601                d40_err(&pdev->dev, "No IRQ defined\n");
3602                goto destroy_cache;
3603        }
3604
3605        if (base->plat_data->use_esram_lcla) {
3606
3607                base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3608                if (IS_ERR(base->lcpa_regulator)) {
3609                        d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3610                        ret = PTR_ERR(base->lcpa_regulator);
3611                        base->lcpa_regulator = NULL;
3612                        goto destroy_cache;
3613                }
3614
3615                ret = regulator_enable(base->lcpa_regulator);
3616                if (ret) {
3617                        d40_err(&pdev->dev,
3618                                "Failed to enable lcpa_regulator\n");
3619                        regulator_put(base->lcpa_regulator);
3620                        base->lcpa_regulator = NULL;
3621                        goto destroy_cache;
3622                }
3623        }
3624
3625        writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3626
3627        pm_runtime_irq_safe(base->dev);
3628        pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3629        pm_runtime_use_autosuspend(base->dev);
3630        pm_runtime_mark_last_busy(base->dev);
3631        pm_runtime_set_active(base->dev);
3632        pm_runtime_enable(base->dev);
3633
3634        ret = d40_dmaengine_init(base, num_reserved_chans);
3635        if (ret)
3636                goto destroy_cache;
3637
3638        base->dev->dma_parms = &base->dma_parms;
3639        ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3640        if (ret) {
3641                d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3642                goto destroy_cache;
3643        }
3644
3645        d40_hw_init(base);
3646
3647        if (np) {
3648                ret = of_dma_controller_register(np, d40_xlate, NULL);
3649                if (ret)
3650                        dev_err(&pdev->dev,
3651                                "could not register of_dma_controller\n");
3652        }
3653
3654        dev_info(base->dev, "initialized\n");
3655        return 0;
3656 destroy_cache:
3657        kmem_cache_destroy(base->desc_slab);
3658        if (base->virtbase)
3659                iounmap(base->virtbase);
3660
3661        if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3662                iounmap(base->lcla_pool.base);
3663                base->lcla_pool.base = NULL;
3664        }
3665
3666        if (base->lcla_pool.dma_addr)
3667                dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3668                                 SZ_1K * base->num_phy_chans,
3669                                 DMA_TO_DEVICE);
3670
3671        if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3672                free_pages((unsigned long)base->lcla_pool.base,
3673                           base->lcla_pool.pages);
3674
3675        kfree(base->lcla_pool.base_unaligned);
3676
3677        if (base->phy_lcpa)
3678                release_mem_region(base->phy_lcpa,
3679                                   base->lcpa_size);
3680        if (base->phy_start)
3681                release_mem_region(base->phy_start,
3682                                   base->phy_size);
3683        if (base->clk) {
3684                clk_disable_unprepare(base->clk);
3685                clk_put(base->clk);
3686        }
3687
3688        if (base->lcpa_regulator) {
3689                regulator_disable(base->lcpa_regulator);
3690                regulator_put(base->lcpa_regulator);
3691        }
3692
3693        kfree(base->lcla_pool.alloc_map);
3694        kfree(base->lookup_log_chans);
3695        kfree(base->lookup_phy_chans);
3696        kfree(base->phy_res);
3697        kfree(base);
3698 report_failure:
3699        d40_err(&pdev->dev, "probe failed\n");
3700        return ret;
3701}
3702
3703static const struct of_device_id d40_match[] = {
3704        { .compatible = "stericsson,dma40", },
3705        {}
3706};
3707
3708static struct platform_driver d40_driver = {
3709        .driver = {
3710                .name  = D40_NAME,
3711                .pm = &dma40_pm_ops,
3712                .of_match_table = d40_match,
3713        },
3714};
3715
3716static int __init stedma40_init(void)
3717{
3718        return platform_driver_probe(&d40_driver, d40_probe);
3719}
3720subsys_initcall(stedma40_init);
3721