linux/drivers/md/raid10.c
<<
>>
Prefs
   1/*
   2 * raid10.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 2000-2004 Neil Brown
   5 *
   6 * RAID-10 support for md.
   7 *
   8 * Base on code in raid1.c.  See raid1.c for further copyright information.
   9 *
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/slab.h>
  22#include <linux/delay.h>
  23#include <linux/blkdev.h>
  24#include <linux/module.h>
  25#include <linux/seq_file.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
  28#include "md.h"
  29#include "raid10.h"
  30#include "raid0.h"
  31#include "bitmap.h"
  32
  33/*
  34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  35 * The layout of data is defined by
  36 *    chunk_size
  37 *    raid_disks
  38 *    near_copies (stored in low byte of layout)
  39 *    far_copies (stored in second byte of layout)
  40 *    far_offset (stored in bit 16 of layout )
  41 *    use_far_sets (stored in bit 17 of layout )
  42 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  43 *
  44 * The data to be stored is divided into chunks using chunksize.  Each device
  45 * is divided into far_copies sections.   In each section, chunks are laid out
  46 * in a style similar to raid0, but near_copies copies of each chunk is stored
  47 * (each on a different drive).  The starting device for each section is offset
  48 * near_copies from the starting device of the previous section.  Thus there
  49 * are (near_copies * far_copies) of each chunk, and each is on a different
  50 * drive.  near_copies and far_copies must be at least one, and their product
  51 * is at most raid_disks.
  52 *
  53 * If far_offset is true, then the far_copies are handled a bit differently.
  54 * The copies are still in different stripes, but instead of being very far
  55 * apart on disk, there are adjacent stripes.
  56 *
  57 * The far and offset algorithms are handled slightly differently if
  58 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  59 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  60 * are still shifted by 'near_copies' devices, but this shifting stays confined
  61 * to the set rather than the entire array.  This is done to improve the number
  62 * of device combinations that can fail without causing the array to fail.
  63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  64 * on a device):
  65 *    A B C D    A B C D E
  66 *      ...         ...
  67 *    D A B C    E A B C D
  68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  69 *    [A B] [C D]    [A B] [C D E]
  70 *    |...| |...|    |...| | ... |
  71 *    [B A] [D C]    [B A] [E C D]
  72 */
  73
  74/*
  75 * Number of guaranteed r10bios in case of extreme VM load:
  76 */
  77#define NR_RAID10_BIOS 256
  78
  79/* when we get a read error on a read-only array, we redirect to another
  80 * device without failing the first device, or trying to over-write to
  81 * correct the read error.  To keep track of bad blocks on a per-bio
  82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  83 */
  84#define IO_BLOCKED ((struct bio *)1)
  85/* When we successfully write to a known bad-block, we need to remove the
  86 * bad-block marking which must be done from process context.  So we record
  87 * the success by setting devs[n].bio to IO_MADE_GOOD
  88 */
  89#define IO_MADE_GOOD ((struct bio *)2)
  90
  91#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  92
  93/* When there are this many requests queued to be written by
  94 * the raid10 thread, we become 'congested' to provide back-pressure
  95 * for writeback.
  96 */
  97static int max_queued_requests = 1024;
  98
  99static void allow_barrier(struct r10conf *conf);
 100static void lower_barrier(struct r10conf *conf);
 101static int _enough(struct r10conf *conf, int previous, int ignore);
 102static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
 103                                int *skipped);
 104static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
 105static void end_reshape_write(struct bio *bio);
 106static void end_reshape(struct r10conf *conf);
 107
 108static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
 109{
 110        struct r10conf *conf = data;
 111        int size = offsetof(struct r10bio, devs[conf->copies]);
 112
 113        /* allocate a r10bio with room for raid_disks entries in the
 114         * bios array */
 115        return kzalloc(size, gfp_flags);
 116}
 117
 118static void r10bio_pool_free(void *r10_bio, void *data)
 119{
 120        kfree(r10_bio);
 121}
 122
 123/* Maximum size of each resync request */
 124#define RESYNC_BLOCK_SIZE (64*1024)
 125#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
 126/* amount of memory to reserve for resync requests */
 127#define RESYNC_WINDOW (1024*1024)
 128/* maximum number of concurrent requests, memory permitting */
 129#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 130
 131/*
 132 * When performing a resync, we need to read and compare, so
 133 * we need as many pages are there are copies.
 134 * When performing a recovery, we need 2 bios, one for read,
 135 * one for write (we recover only one drive per r10buf)
 136 *
 137 */
 138static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 139{
 140        struct r10conf *conf = data;
 141        struct page *page;
 142        struct r10bio *r10_bio;
 143        struct bio *bio;
 144        int i, j;
 145        int nalloc;
 146
 147        r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 148        if (!r10_bio)
 149                return NULL;
 150
 151        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 152            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 153                nalloc = conf->copies; /* resync */
 154        else
 155                nalloc = 2; /* recovery */
 156
 157        /*
 158         * Allocate bios.
 159         */
 160        for (j = nalloc ; j-- ; ) {
 161                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 162                if (!bio)
 163                        goto out_free_bio;
 164                r10_bio->devs[j].bio = bio;
 165                if (!conf->have_replacement)
 166                        continue;
 167                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 168                if (!bio)
 169                        goto out_free_bio;
 170                r10_bio->devs[j].repl_bio = bio;
 171        }
 172        /*
 173         * Allocate RESYNC_PAGES data pages and attach them
 174         * where needed.
 175         */
 176        for (j = 0 ; j < nalloc; j++) {
 177                struct bio *rbio = r10_bio->devs[j].repl_bio;
 178                bio = r10_bio->devs[j].bio;
 179                for (i = 0; i < RESYNC_PAGES; i++) {
 180                        if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
 181                                               &conf->mddev->recovery)) {
 182                                /* we can share bv_page's during recovery
 183                                 * and reshape */
 184                                struct bio *rbio = r10_bio->devs[0].bio;
 185                                page = rbio->bi_io_vec[i].bv_page;
 186                                get_page(page);
 187                        } else
 188                                page = alloc_page(gfp_flags);
 189                        if (unlikely(!page))
 190                                goto out_free_pages;
 191
 192                        bio->bi_io_vec[i].bv_page = page;
 193                        if (rbio)
 194                                rbio->bi_io_vec[i].bv_page = page;
 195                }
 196        }
 197
 198        return r10_bio;
 199
 200out_free_pages:
 201        for ( ; i > 0 ; i--)
 202                safe_put_page(bio->bi_io_vec[i-1].bv_page);
 203        while (j--)
 204                for (i = 0; i < RESYNC_PAGES ; i++)
 205                        safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
 206        j = 0;
 207out_free_bio:
 208        for ( ; j < nalloc; j++) {
 209                if (r10_bio->devs[j].bio)
 210                        bio_put(r10_bio->devs[j].bio);
 211                if (r10_bio->devs[j].repl_bio)
 212                        bio_put(r10_bio->devs[j].repl_bio);
 213        }
 214        r10bio_pool_free(r10_bio, conf);
 215        return NULL;
 216}
 217
 218static void r10buf_pool_free(void *__r10_bio, void *data)
 219{
 220        int i;
 221        struct r10conf *conf = data;
 222        struct r10bio *r10bio = __r10_bio;
 223        int j;
 224
 225        for (j=0; j < conf->copies; j++) {
 226                struct bio *bio = r10bio->devs[j].bio;
 227                if (bio) {
 228                        for (i = 0; i < RESYNC_PAGES; i++) {
 229                                safe_put_page(bio->bi_io_vec[i].bv_page);
 230                                bio->bi_io_vec[i].bv_page = NULL;
 231                        }
 232                        bio_put(bio);
 233                }
 234                bio = r10bio->devs[j].repl_bio;
 235                if (bio)
 236                        bio_put(bio);
 237        }
 238        r10bio_pool_free(r10bio, conf);
 239}
 240
 241static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 242{
 243        int i;
 244
 245        for (i = 0; i < conf->copies; i++) {
 246                struct bio **bio = & r10_bio->devs[i].bio;
 247                if (!BIO_SPECIAL(*bio))
 248                        bio_put(*bio);
 249                *bio = NULL;
 250                bio = &r10_bio->devs[i].repl_bio;
 251                if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 252                        bio_put(*bio);
 253                *bio = NULL;
 254        }
 255}
 256
 257static void free_r10bio(struct r10bio *r10_bio)
 258{
 259        struct r10conf *conf = r10_bio->mddev->private;
 260
 261        put_all_bios(conf, r10_bio);
 262        mempool_free(r10_bio, conf->r10bio_pool);
 263}
 264
 265static void put_buf(struct r10bio *r10_bio)
 266{
 267        struct r10conf *conf = r10_bio->mddev->private;
 268
 269        mempool_free(r10_bio, conf->r10buf_pool);
 270
 271        lower_barrier(conf);
 272}
 273
 274static void reschedule_retry(struct r10bio *r10_bio)
 275{
 276        unsigned long flags;
 277        struct mddev *mddev = r10_bio->mddev;
 278        struct r10conf *conf = mddev->private;
 279
 280        spin_lock_irqsave(&conf->device_lock, flags);
 281        list_add(&r10_bio->retry_list, &conf->retry_list);
 282        conf->nr_queued ++;
 283        spin_unlock_irqrestore(&conf->device_lock, flags);
 284
 285        /* wake up frozen array... */
 286        wake_up(&conf->wait_barrier);
 287
 288        md_wakeup_thread(mddev->thread);
 289}
 290
 291/*
 292 * raid_end_bio_io() is called when we have finished servicing a mirrored
 293 * operation and are ready to return a success/failure code to the buffer
 294 * cache layer.
 295 */
 296static void raid_end_bio_io(struct r10bio *r10_bio)
 297{
 298        struct bio *bio = r10_bio->master_bio;
 299        int done;
 300        struct r10conf *conf = r10_bio->mddev->private;
 301
 302        if (bio->bi_phys_segments) {
 303                unsigned long flags;
 304                spin_lock_irqsave(&conf->device_lock, flags);
 305                bio->bi_phys_segments--;
 306                done = (bio->bi_phys_segments == 0);
 307                spin_unlock_irqrestore(&conf->device_lock, flags);
 308        } else
 309                done = 1;
 310        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 311                bio->bi_error = -EIO;
 312        if (done) {
 313                bio_endio(bio);
 314                /*
 315                 * Wake up any possible resync thread that waits for the device
 316                 * to go idle.
 317                 */
 318                allow_barrier(conf);
 319        }
 320        free_r10bio(r10_bio);
 321}
 322
 323/*
 324 * Update disk head position estimator based on IRQ completion info.
 325 */
 326static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 327{
 328        struct r10conf *conf = r10_bio->mddev->private;
 329
 330        conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 331                r10_bio->devs[slot].addr + (r10_bio->sectors);
 332}
 333
 334/*
 335 * Find the disk number which triggered given bio
 336 */
 337static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 338                         struct bio *bio, int *slotp, int *replp)
 339{
 340        int slot;
 341        int repl = 0;
 342
 343        for (slot = 0; slot < conf->copies; slot++) {
 344                if (r10_bio->devs[slot].bio == bio)
 345                        break;
 346                if (r10_bio->devs[slot].repl_bio == bio) {
 347                        repl = 1;
 348                        break;
 349                }
 350        }
 351
 352        BUG_ON(slot == conf->copies);
 353        update_head_pos(slot, r10_bio);
 354
 355        if (slotp)
 356                *slotp = slot;
 357        if (replp)
 358                *replp = repl;
 359        return r10_bio->devs[slot].devnum;
 360}
 361
 362static void raid10_end_read_request(struct bio *bio)
 363{
 364        int uptodate = !bio->bi_error;
 365        struct r10bio *r10_bio = bio->bi_private;
 366        int slot, dev;
 367        struct md_rdev *rdev;
 368        struct r10conf *conf = r10_bio->mddev->private;
 369
 370        slot = r10_bio->read_slot;
 371        dev = r10_bio->devs[slot].devnum;
 372        rdev = r10_bio->devs[slot].rdev;
 373        /*
 374         * this branch is our 'one mirror IO has finished' event handler:
 375         */
 376        update_head_pos(slot, r10_bio);
 377
 378        if (uptodate) {
 379                /*
 380                 * Set R10BIO_Uptodate in our master bio, so that
 381                 * we will return a good error code to the higher
 382                 * levels even if IO on some other mirrored buffer fails.
 383                 *
 384                 * The 'master' represents the composite IO operation to
 385                 * user-side. So if something waits for IO, then it will
 386                 * wait for the 'master' bio.
 387                 */
 388                set_bit(R10BIO_Uptodate, &r10_bio->state);
 389        } else {
 390                /* If all other devices that store this block have
 391                 * failed, we want to return the error upwards rather
 392                 * than fail the last device.  Here we redefine
 393                 * "uptodate" to mean "Don't want to retry"
 394                 */
 395                if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 396                             rdev->raid_disk))
 397                        uptodate = 1;
 398        }
 399        if (uptodate) {
 400                raid_end_bio_io(r10_bio);
 401                rdev_dec_pending(rdev, conf->mddev);
 402        } else {
 403                /*
 404                 * oops, read error - keep the refcount on the rdev
 405                 */
 406                char b[BDEVNAME_SIZE];
 407                printk_ratelimited(KERN_ERR
 408                                   "md/raid10:%s: %s: rescheduling sector %llu\n",
 409                                   mdname(conf->mddev),
 410                                   bdevname(rdev->bdev, b),
 411                                   (unsigned long long)r10_bio->sector);
 412                set_bit(R10BIO_ReadError, &r10_bio->state);
 413                reschedule_retry(r10_bio);
 414        }
 415}
 416
 417static void close_write(struct r10bio *r10_bio)
 418{
 419        /* clear the bitmap if all writes complete successfully */
 420        bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 421                        r10_bio->sectors,
 422                        !test_bit(R10BIO_Degraded, &r10_bio->state),
 423                        0);
 424        md_write_end(r10_bio->mddev);
 425}
 426
 427static void one_write_done(struct r10bio *r10_bio)
 428{
 429        if (atomic_dec_and_test(&r10_bio->remaining)) {
 430                if (test_bit(R10BIO_WriteError, &r10_bio->state))
 431                        reschedule_retry(r10_bio);
 432                else {
 433                        close_write(r10_bio);
 434                        if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 435                                reschedule_retry(r10_bio);
 436                        else
 437                                raid_end_bio_io(r10_bio);
 438                }
 439        }
 440}
 441
 442static void raid10_end_write_request(struct bio *bio)
 443{
 444        struct r10bio *r10_bio = bio->bi_private;
 445        int dev;
 446        int dec_rdev = 1;
 447        struct r10conf *conf = r10_bio->mddev->private;
 448        int slot, repl;
 449        struct md_rdev *rdev = NULL;
 450        bool discard_error;
 451
 452        discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
 453
 454        dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 455
 456        if (repl)
 457                rdev = conf->mirrors[dev].replacement;
 458        if (!rdev) {
 459                smp_rmb();
 460                repl = 0;
 461                rdev = conf->mirrors[dev].rdev;
 462        }
 463        /*
 464         * this branch is our 'one mirror IO has finished' event handler:
 465         */
 466        if (bio->bi_error && !discard_error) {
 467                if (repl)
 468                        /* Never record new bad blocks to replacement,
 469                         * just fail it.
 470                         */
 471                        md_error(rdev->mddev, rdev);
 472                else {
 473                        set_bit(WriteErrorSeen, &rdev->flags);
 474                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
 475                                set_bit(MD_RECOVERY_NEEDED,
 476                                        &rdev->mddev->recovery);
 477                        set_bit(R10BIO_WriteError, &r10_bio->state);
 478                        dec_rdev = 0;
 479                }
 480        } else {
 481                /*
 482                 * Set R10BIO_Uptodate in our master bio, so that
 483                 * we will return a good error code for to the higher
 484                 * levels even if IO on some other mirrored buffer fails.
 485                 *
 486                 * The 'master' represents the composite IO operation to
 487                 * user-side. So if something waits for IO, then it will
 488                 * wait for the 'master' bio.
 489                 */
 490                sector_t first_bad;
 491                int bad_sectors;
 492
 493                /*
 494                 * Do not set R10BIO_Uptodate if the current device is
 495                 * rebuilding or Faulty. This is because we cannot use
 496                 * such device for properly reading the data back (we could
 497                 * potentially use it, if the current write would have felt
 498                 * before rdev->recovery_offset, but for simplicity we don't
 499                 * check this here.
 500                 */
 501                if (test_bit(In_sync, &rdev->flags) &&
 502                    !test_bit(Faulty, &rdev->flags))
 503                        set_bit(R10BIO_Uptodate, &r10_bio->state);
 504
 505                /* Maybe we can clear some bad blocks. */
 506                if (is_badblock(rdev,
 507                                r10_bio->devs[slot].addr,
 508                                r10_bio->sectors,
 509                                &first_bad, &bad_sectors) && !discard_error) {
 510                        bio_put(bio);
 511                        if (repl)
 512                                r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 513                        else
 514                                r10_bio->devs[slot].bio = IO_MADE_GOOD;
 515                        dec_rdev = 0;
 516                        set_bit(R10BIO_MadeGood, &r10_bio->state);
 517                }
 518        }
 519
 520        /*
 521         *
 522         * Let's see if all mirrored write operations have finished
 523         * already.
 524         */
 525        one_write_done(r10_bio);
 526        if (dec_rdev)
 527                rdev_dec_pending(rdev, conf->mddev);
 528}
 529
 530/*
 531 * RAID10 layout manager
 532 * As well as the chunksize and raid_disks count, there are two
 533 * parameters: near_copies and far_copies.
 534 * near_copies * far_copies must be <= raid_disks.
 535 * Normally one of these will be 1.
 536 * If both are 1, we get raid0.
 537 * If near_copies == raid_disks, we get raid1.
 538 *
 539 * Chunks are laid out in raid0 style with near_copies copies of the
 540 * first chunk, followed by near_copies copies of the next chunk and
 541 * so on.
 542 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 543 * as described above, we start again with a device offset of near_copies.
 544 * So we effectively have another copy of the whole array further down all
 545 * the drives, but with blocks on different drives.
 546 * With this layout, and block is never stored twice on the one device.
 547 *
 548 * raid10_find_phys finds the sector offset of a given virtual sector
 549 * on each device that it is on.
 550 *
 551 * raid10_find_virt does the reverse mapping, from a device and a
 552 * sector offset to a virtual address
 553 */
 554
 555static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 556{
 557        int n,f;
 558        sector_t sector;
 559        sector_t chunk;
 560        sector_t stripe;
 561        int dev;
 562        int slot = 0;
 563        int last_far_set_start, last_far_set_size;
 564
 565        last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 566        last_far_set_start *= geo->far_set_size;
 567
 568        last_far_set_size = geo->far_set_size;
 569        last_far_set_size += (geo->raid_disks % geo->far_set_size);
 570
 571        /* now calculate first sector/dev */
 572        chunk = r10bio->sector >> geo->chunk_shift;
 573        sector = r10bio->sector & geo->chunk_mask;
 574
 575        chunk *= geo->near_copies;
 576        stripe = chunk;
 577        dev = sector_div(stripe, geo->raid_disks);
 578        if (geo->far_offset)
 579                stripe *= geo->far_copies;
 580
 581        sector += stripe << geo->chunk_shift;
 582
 583        /* and calculate all the others */
 584        for (n = 0; n < geo->near_copies; n++) {
 585                int d = dev;
 586                int set;
 587                sector_t s = sector;
 588                r10bio->devs[slot].devnum = d;
 589                r10bio->devs[slot].addr = s;
 590                slot++;
 591
 592                for (f = 1; f < geo->far_copies; f++) {
 593                        set = d / geo->far_set_size;
 594                        d += geo->near_copies;
 595
 596                        if ((geo->raid_disks % geo->far_set_size) &&
 597                            (d > last_far_set_start)) {
 598                                d -= last_far_set_start;
 599                                d %= last_far_set_size;
 600                                d += last_far_set_start;
 601                        } else {
 602                                d %= geo->far_set_size;
 603                                d += geo->far_set_size * set;
 604                        }
 605                        s += geo->stride;
 606                        r10bio->devs[slot].devnum = d;
 607                        r10bio->devs[slot].addr = s;
 608                        slot++;
 609                }
 610                dev++;
 611                if (dev >= geo->raid_disks) {
 612                        dev = 0;
 613                        sector += (geo->chunk_mask + 1);
 614                }
 615        }
 616}
 617
 618static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 619{
 620        struct geom *geo = &conf->geo;
 621
 622        if (conf->reshape_progress != MaxSector &&
 623            ((r10bio->sector >= conf->reshape_progress) !=
 624             conf->mddev->reshape_backwards)) {
 625                set_bit(R10BIO_Previous, &r10bio->state);
 626                geo = &conf->prev;
 627        } else
 628                clear_bit(R10BIO_Previous, &r10bio->state);
 629
 630        __raid10_find_phys(geo, r10bio);
 631}
 632
 633static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 634{
 635        sector_t offset, chunk, vchunk;
 636        /* Never use conf->prev as this is only called during resync
 637         * or recovery, so reshape isn't happening
 638         */
 639        struct geom *geo = &conf->geo;
 640        int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 641        int far_set_size = geo->far_set_size;
 642        int last_far_set_start;
 643
 644        if (geo->raid_disks % geo->far_set_size) {
 645                last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 646                last_far_set_start *= geo->far_set_size;
 647
 648                if (dev >= last_far_set_start) {
 649                        far_set_size = geo->far_set_size;
 650                        far_set_size += (geo->raid_disks % geo->far_set_size);
 651                        far_set_start = last_far_set_start;
 652                }
 653        }
 654
 655        offset = sector & geo->chunk_mask;
 656        if (geo->far_offset) {
 657                int fc;
 658                chunk = sector >> geo->chunk_shift;
 659                fc = sector_div(chunk, geo->far_copies);
 660                dev -= fc * geo->near_copies;
 661                if (dev < far_set_start)
 662                        dev += far_set_size;
 663        } else {
 664                while (sector >= geo->stride) {
 665                        sector -= geo->stride;
 666                        if (dev < (geo->near_copies + far_set_start))
 667                                dev += far_set_size - geo->near_copies;
 668                        else
 669                                dev -= geo->near_copies;
 670                }
 671                chunk = sector >> geo->chunk_shift;
 672        }
 673        vchunk = chunk * geo->raid_disks + dev;
 674        sector_div(vchunk, geo->near_copies);
 675        return (vchunk << geo->chunk_shift) + offset;
 676}
 677
 678/*
 679 * This routine returns the disk from which the requested read should
 680 * be done. There is a per-array 'next expected sequential IO' sector
 681 * number - if this matches on the next IO then we use the last disk.
 682 * There is also a per-disk 'last know head position' sector that is
 683 * maintained from IRQ contexts, both the normal and the resync IO
 684 * completion handlers update this position correctly. If there is no
 685 * perfect sequential match then we pick the disk whose head is closest.
 686 *
 687 * If there are 2 mirrors in the same 2 devices, performance degrades
 688 * because position is mirror, not device based.
 689 *
 690 * The rdev for the device selected will have nr_pending incremented.
 691 */
 692
 693/*
 694 * FIXME: possibly should rethink readbalancing and do it differently
 695 * depending on near_copies / far_copies geometry.
 696 */
 697static struct md_rdev *read_balance(struct r10conf *conf,
 698                                    struct r10bio *r10_bio,
 699                                    int *max_sectors)
 700{
 701        const sector_t this_sector = r10_bio->sector;
 702        int disk, slot;
 703        int sectors = r10_bio->sectors;
 704        int best_good_sectors;
 705        sector_t new_distance, best_dist;
 706        struct md_rdev *best_rdev, *rdev = NULL;
 707        int do_balance;
 708        int best_slot;
 709        struct geom *geo = &conf->geo;
 710
 711        raid10_find_phys(conf, r10_bio);
 712        rcu_read_lock();
 713        sectors = r10_bio->sectors;
 714        best_slot = -1;
 715        best_rdev = NULL;
 716        best_dist = MaxSector;
 717        best_good_sectors = 0;
 718        do_balance = 1;
 719        /*
 720         * Check if we can balance. We can balance on the whole
 721         * device if no resync is going on (recovery is ok), or below
 722         * the resync window. We take the first readable disk when
 723         * above the resync window.
 724         */
 725        if (conf->mddev->recovery_cp < MaxSector
 726            && (this_sector + sectors >= conf->next_resync))
 727                do_balance = 0;
 728
 729        for (slot = 0; slot < conf->copies ; slot++) {
 730                sector_t first_bad;
 731                int bad_sectors;
 732                sector_t dev_sector;
 733
 734                if (r10_bio->devs[slot].bio == IO_BLOCKED)
 735                        continue;
 736                disk = r10_bio->devs[slot].devnum;
 737                rdev = rcu_dereference(conf->mirrors[disk].replacement);
 738                if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 739                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 740                        rdev = rcu_dereference(conf->mirrors[disk].rdev);
 741                if (rdev == NULL ||
 742                    test_bit(Faulty, &rdev->flags))
 743                        continue;
 744                if (!test_bit(In_sync, &rdev->flags) &&
 745                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 746                        continue;
 747
 748                dev_sector = r10_bio->devs[slot].addr;
 749                if (is_badblock(rdev, dev_sector, sectors,
 750                                &first_bad, &bad_sectors)) {
 751                        if (best_dist < MaxSector)
 752                                /* Already have a better slot */
 753                                continue;
 754                        if (first_bad <= dev_sector) {
 755                                /* Cannot read here.  If this is the
 756                                 * 'primary' device, then we must not read
 757                                 * beyond 'bad_sectors' from another device.
 758                                 */
 759                                bad_sectors -= (dev_sector - first_bad);
 760                                if (!do_balance && sectors > bad_sectors)
 761                                        sectors = bad_sectors;
 762                                if (best_good_sectors > sectors)
 763                                        best_good_sectors = sectors;
 764                        } else {
 765                                sector_t good_sectors =
 766                                        first_bad - dev_sector;
 767                                if (good_sectors > best_good_sectors) {
 768                                        best_good_sectors = good_sectors;
 769                                        best_slot = slot;
 770                                        best_rdev = rdev;
 771                                }
 772                                if (!do_balance)
 773                                        /* Must read from here */
 774                                        break;
 775                        }
 776                        continue;
 777                } else
 778                        best_good_sectors = sectors;
 779
 780                if (!do_balance)
 781                        break;
 782
 783                /* This optimisation is debatable, and completely destroys
 784                 * sequential read speed for 'far copies' arrays.  So only
 785                 * keep it for 'near' arrays, and review those later.
 786                 */
 787                if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
 788                        break;
 789
 790                /* for far > 1 always use the lowest address */
 791                if (geo->far_copies > 1)
 792                        new_distance = r10_bio->devs[slot].addr;
 793                else
 794                        new_distance = abs(r10_bio->devs[slot].addr -
 795                                           conf->mirrors[disk].head_position);
 796                if (new_distance < best_dist) {
 797                        best_dist = new_distance;
 798                        best_slot = slot;
 799                        best_rdev = rdev;
 800                }
 801        }
 802        if (slot >= conf->copies) {
 803                slot = best_slot;
 804                rdev = best_rdev;
 805        }
 806
 807        if (slot >= 0) {
 808                atomic_inc(&rdev->nr_pending);
 809                r10_bio->read_slot = slot;
 810        } else
 811                rdev = NULL;
 812        rcu_read_unlock();
 813        *max_sectors = best_good_sectors;
 814
 815        return rdev;
 816}
 817
 818static int raid10_congested(struct mddev *mddev, int bits)
 819{
 820        struct r10conf *conf = mddev->private;
 821        int i, ret = 0;
 822
 823        if ((bits & (1 << WB_async_congested)) &&
 824            conf->pending_count >= max_queued_requests)
 825                return 1;
 826
 827        rcu_read_lock();
 828        for (i = 0;
 829             (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
 830                     && ret == 0;
 831             i++) {
 832                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 833                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 834                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 835
 836                        ret |= bdi_congested(&q->backing_dev_info, bits);
 837                }
 838        }
 839        rcu_read_unlock();
 840        return ret;
 841}
 842
 843static void flush_pending_writes(struct r10conf *conf)
 844{
 845        /* Any writes that have been queued but are awaiting
 846         * bitmap updates get flushed here.
 847         */
 848        spin_lock_irq(&conf->device_lock);
 849
 850        if (conf->pending_bio_list.head) {
 851                struct bio *bio;
 852                bio = bio_list_get(&conf->pending_bio_list);
 853                conf->pending_count = 0;
 854                spin_unlock_irq(&conf->device_lock);
 855                /* flush any pending bitmap writes to disk
 856                 * before proceeding w/ I/O */
 857                bitmap_unplug(conf->mddev->bitmap);
 858                wake_up(&conf->wait_barrier);
 859
 860                while (bio) { /* submit pending writes */
 861                        struct bio *next = bio->bi_next;
 862                        bio->bi_next = NULL;
 863                        if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
 864                            !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 865                                /* Just ignore it */
 866                                bio_endio(bio);
 867                        else
 868                                generic_make_request(bio);
 869                        bio = next;
 870                }
 871        } else
 872                spin_unlock_irq(&conf->device_lock);
 873}
 874
 875/* Barriers....
 876 * Sometimes we need to suspend IO while we do something else,
 877 * either some resync/recovery, or reconfigure the array.
 878 * To do this we raise a 'barrier'.
 879 * The 'barrier' is a counter that can be raised multiple times
 880 * to count how many activities are happening which preclude
 881 * normal IO.
 882 * We can only raise the barrier if there is no pending IO.
 883 * i.e. if nr_pending == 0.
 884 * We choose only to raise the barrier if no-one is waiting for the
 885 * barrier to go down.  This means that as soon as an IO request
 886 * is ready, no other operations which require a barrier will start
 887 * until the IO request has had a chance.
 888 *
 889 * So: regular IO calls 'wait_barrier'.  When that returns there
 890 *    is no backgroup IO happening,  It must arrange to call
 891 *    allow_barrier when it has finished its IO.
 892 * backgroup IO calls must call raise_barrier.  Once that returns
 893 *    there is no normal IO happeing.  It must arrange to call
 894 *    lower_barrier when the particular background IO completes.
 895 */
 896
 897static void raise_barrier(struct r10conf *conf, int force)
 898{
 899        BUG_ON(force && !conf->barrier);
 900        spin_lock_irq(&conf->resync_lock);
 901
 902        /* Wait until no block IO is waiting (unless 'force') */
 903        wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 904                            conf->resync_lock);
 905
 906        /* block any new IO from starting */
 907        conf->barrier++;
 908
 909        /* Now wait for all pending IO to complete */
 910        wait_event_lock_irq(conf->wait_barrier,
 911                            !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
 912                            conf->resync_lock);
 913
 914        spin_unlock_irq(&conf->resync_lock);
 915}
 916
 917static void lower_barrier(struct r10conf *conf)
 918{
 919        unsigned long flags;
 920        spin_lock_irqsave(&conf->resync_lock, flags);
 921        conf->barrier--;
 922        spin_unlock_irqrestore(&conf->resync_lock, flags);
 923        wake_up(&conf->wait_barrier);
 924}
 925
 926static void wait_barrier(struct r10conf *conf)
 927{
 928        spin_lock_irq(&conf->resync_lock);
 929        if (conf->barrier) {
 930                conf->nr_waiting++;
 931                /* Wait for the barrier to drop.
 932                 * However if there are already pending
 933                 * requests (preventing the barrier from
 934                 * rising completely), and the
 935                 * pre-process bio queue isn't empty,
 936                 * then don't wait, as we need to empty
 937                 * that queue to get the nr_pending
 938                 * count down.
 939                 */
 940                wait_event_lock_irq(conf->wait_barrier,
 941                                    !conf->barrier ||
 942                                    (atomic_read(&conf->nr_pending) &&
 943                                     current->bio_list &&
 944                                     !bio_list_empty(current->bio_list)),
 945                                    conf->resync_lock);
 946                conf->nr_waiting--;
 947                if (!conf->nr_waiting)
 948                        wake_up(&conf->wait_barrier);
 949        }
 950        atomic_inc(&conf->nr_pending);
 951        spin_unlock_irq(&conf->resync_lock);
 952}
 953
 954static void allow_barrier(struct r10conf *conf)
 955{
 956        if ((atomic_dec_and_test(&conf->nr_pending)) ||
 957                        (conf->array_freeze_pending))
 958                wake_up(&conf->wait_barrier);
 959}
 960
 961static void freeze_array(struct r10conf *conf, int extra)
 962{
 963        /* stop syncio and normal IO and wait for everything to
 964         * go quiet.
 965         * We increment barrier and nr_waiting, and then
 966         * wait until nr_pending match nr_queued+extra
 967         * This is called in the context of one normal IO request
 968         * that has failed. Thus any sync request that might be pending
 969         * will be blocked by nr_pending, and we need to wait for
 970         * pending IO requests to complete or be queued for re-try.
 971         * Thus the number queued (nr_queued) plus this request (extra)
 972         * must match the number of pending IOs (nr_pending) before
 973         * we continue.
 974         */
 975        spin_lock_irq(&conf->resync_lock);
 976        conf->array_freeze_pending++;
 977        conf->barrier++;
 978        conf->nr_waiting++;
 979        wait_event_lock_irq_cmd(conf->wait_barrier,
 980                                atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
 981                                conf->resync_lock,
 982                                flush_pending_writes(conf));
 983
 984        conf->array_freeze_pending--;
 985        spin_unlock_irq(&conf->resync_lock);
 986}
 987
 988static void unfreeze_array(struct r10conf *conf)
 989{
 990        /* reverse the effect of the freeze */
 991        spin_lock_irq(&conf->resync_lock);
 992        conf->barrier--;
 993        conf->nr_waiting--;
 994        wake_up(&conf->wait_barrier);
 995        spin_unlock_irq(&conf->resync_lock);
 996}
 997
 998static sector_t choose_data_offset(struct r10bio *r10_bio,
 999                                   struct md_rdev *rdev)
1000{
1001        if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1002            test_bit(R10BIO_Previous, &r10_bio->state))
1003                return rdev->data_offset;
1004        else
1005                return rdev->new_data_offset;
1006}
1007
1008struct raid10_plug_cb {
1009        struct blk_plug_cb      cb;
1010        struct bio_list         pending;
1011        int                     pending_cnt;
1012};
1013
1014static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1015{
1016        struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1017                                                   cb);
1018        struct mddev *mddev = plug->cb.data;
1019        struct r10conf *conf = mddev->private;
1020        struct bio *bio;
1021
1022        if (from_schedule || current->bio_list) {
1023                spin_lock_irq(&conf->device_lock);
1024                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1025                conf->pending_count += plug->pending_cnt;
1026                spin_unlock_irq(&conf->device_lock);
1027                wake_up(&conf->wait_barrier);
1028                md_wakeup_thread(mddev->thread);
1029                kfree(plug);
1030                return;
1031        }
1032
1033        /* we aren't scheduling, so we can do the write-out directly. */
1034        bio = bio_list_get(&plug->pending);
1035        bitmap_unplug(mddev->bitmap);
1036        wake_up(&conf->wait_barrier);
1037
1038        while (bio) { /* submit pending writes */
1039                struct bio *next = bio->bi_next;
1040                bio->bi_next = NULL;
1041                if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1042                    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1043                        /* Just ignore it */
1044                        bio_endio(bio);
1045                else
1046                        generic_make_request(bio);
1047                bio = next;
1048        }
1049        kfree(plug);
1050}
1051
1052static void __make_request(struct mddev *mddev, struct bio *bio)
1053{
1054        struct r10conf *conf = mddev->private;
1055        struct r10bio *r10_bio;
1056        struct bio *read_bio;
1057        int i;
1058        const int op = bio_op(bio);
1059        const int rw = bio_data_dir(bio);
1060        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1061        const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1062        unsigned long flags;
1063        struct md_rdev *blocked_rdev;
1064        struct blk_plug_cb *cb;
1065        struct raid10_plug_cb *plug = NULL;
1066        int sectors_handled;
1067        int max_sectors;
1068        int sectors;
1069
1070        md_write_start(mddev, bio);
1071
1072        /*
1073         * Register the new request and wait if the reconstruction
1074         * thread has put up a bar for new requests.
1075         * Continue immediately if no resync is active currently.
1076         */
1077        wait_barrier(conf);
1078
1079        sectors = bio_sectors(bio);
1080        while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1081            bio->bi_iter.bi_sector < conf->reshape_progress &&
1082            bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1083                /* IO spans the reshape position.  Need to wait for
1084                 * reshape to pass
1085                 */
1086                allow_barrier(conf);
1087                wait_event(conf->wait_barrier,
1088                           conf->reshape_progress <= bio->bi_iter.bi_sector ||
1089                           conf->reshape_progress >= bio->bi_iter.bi_sector +
1090                           sectors);
1091                wait_barrier(conf);
1092        }
1093        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1094            bio_data_dir(bio) == WRITE &&
1095            (mddev->reshape_backwards
1096             ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1097                bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1098             : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1099                bio->bi_iter.bi_sector < conf->reshape_progress))) {
1100                /* Need to update reshape_position in metadata */
1101                mddev->reshape_position = conf->reshape_progress;
1102                set_mask_bits(&mddev->flags, 0,
1103                              BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1104                md_wakeup_thread(mddev->thread);
1105                wait_event(mddev->sb_wait,
1106                           !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1107
1108                conf->reshape_safe = mddev->reshape_position;
1109        }
1110
1111        r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1112
1113        r10_bio->master_bio = bio;
1114        r10_bio->sectors = sectors;
1115
1116        r10_bio->mddev = mddev;
1117        r10_bio->sector = bio->bi_iter.bi_sector;
1118        r10_bio->state = 0;
1119
1120        /* We might need to issue multiple reads to different
1121         * devices if there are bad blocks around, so we keep
1122         * track of the number of reads in bio->bi_phys_segments.
1123         * If this is 0, there is only one r10_bio and no locking
1124         * will be needed when the request completes.  If it is
1125         * non-zero, then it is the number of not-completed requests.
1126         */
1127        bio->bi_phys_segments = 0;
1128        bio_clear_flag(bio, BIO_SEG_VALID);
1129
1130        if (rw == READ) {
1131                /*
1132                 * read balancing logic:
1133                 */
1134                struct md_rdev *rdev;
1135                int slot;
1136
1137read_again:
1138                rdev = read_balance(conf, r10_bio, &max_sectors);
1139                if (!rdev) {
1140                        raid_end_bio_io(r10_bio);
1141                        return;
1142                }
1143                slot = r10_bio->read_slot;
1144
1145                read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1146                bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1147                         max_sectors);
1148
1149                r10_bio->devs[slot].bio = read_bio;
1150                r10_bio->devs[slot].rdev = rdev;
1151
1152                read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1153                        choose_data_offset(r10_bio, rdev);
1154                read_bio->bi_bdev = rdev->bdev;
1155                read_bio->bi_end_io = raid10_end_read_request;
1156                bio_set_op_attrs(read_bio, op, do_sync);
1157                read_bio->bi_private = r10_bio;
1158
1159                if (max_sectors < r10_bio->sectors) {
1160                        /* Could not read all from this device, so we will
1161                         * need another r10_bio.
1162                         */
1163                        sectors_handled = (r10_bio->sector + max_sectors
1164                                           - bio->bi_iter.bi_sector);
1165                        r10_bio->sectors = max_sectors;
1166                        spin_lock_irq(&conf->device_lock);
1167                        if (bio->bi_phys_segments == 0)
1168                                bio->bi_phys_segments = 2;
1169                        else
1170                                bio->bi_phys_segments++;
1171                        spin_unlock_irq(&conf->device_lock);
1172                        /* Cannot call generic_make_request directly
1173                         * as that will be queued in __generic_make_request
1174                         * and subsequent mempool_alloc might block
1175                         * waiting for it.  so hand bio over to raid10d.
1176                         */
1177                        reschedule_retry(r10_bio);
1178
1179                        r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1180
1181                        r10_bio->master_bio = bio;
1182                        r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1183                        r10_bio->state = 0;
1184                        r10_bio->mddev = mddev;
1185                        r10_bio->sector = bio->bi_iter.bi_sector +
1186                                sectors_handled;
1187                        goto read_again;
1188                } else
1189                        generic_make_request(read_bio);
1190                return;
1191        }
1192
1193        /*
1194         * WRITE:
1195         */
1196        if (conf->pending_count >= max_queued_requests) {
1197                md_wakeup_thread(mddev->thread);
1198                wait_event(conf->wait_barrier,
1199                           conf->pending_count < max_queued_requests);
1200        }
1201        /* first select target devices under rcu_lock and
1202         * inc refcount on their rdev.  Record them by setting
1203         * bios[x] to bio
1204         * If there are known/acknowledged bad blocks on any device
1205         * on which we have seen a write error, we want to avoid
1206         * writing to those blocks.  This potentially requires several
1207         * writes to write around the bad blocks.  Each set of writes
1208         * gets its own r10_bio with a set of bios attached.  The number
1209         * of r10_bios is recored in bio->bi_phys_segments just as with
1210         * the read case.
1211         */
1212
1213        r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1214        raid10_find_phys(conf, r10_bio);
1215retry_write:
1216        blocked_rdev = NULL;
1217        rcu_read_lock();
1218        max_sectors = r10_bio->sectors;
1219
1220        for (i = 0;  i < conf->copies; i++) {
1221                int d = r10_bio->devs[i].devnum;
1222                struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1223                struct md_rdev *rrdev = rcu_dereference(
1224                        conf->mirrors[d].replacement);
1225                if (rdev == rrdev)
1226                        rrdev = NULL;
1227                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1228                        atomic_inc(&rdev->nr_pending);
1229                        blocked_rdev = rdev;
1230                        break;
1231                }
1232                if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1233                        atomic_inc(&rrdev->nr_pending);
1234                        blocked_rdev = rrdev;
1235                        break;
1236                }
1237                if (rdev && (test_bit(Faulty, &rdev->flags)))
1238                        rdev = NULL;
1239                if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1240                        rrdev = NULL;
1241
1242                r10_bio->devs[i].bio = NULL;
1243                r10_bio->devs[i].repl_bio = NULL;
1244
1245                if (!rdev && !rrdev) {
1246                        set_bit(R10BIO_Degraded, &r10_bio->state);
1247                        continue;
1248                }
1249                if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1250                        sector_t first_bad;
1251                        sector_t dev_sector = r10_bio->devs[i].addr;
1252                        int bad_sectors;
1253                        int is_bad;
1254
1255                        is_bad = is_badblock(rdev, dev_sector,
1256                                             max_sectors,
1257                                             &first_bad, &bad_sectors);
1258                        if (is_bad < 0) {
1259                                /* Mustn't write here until the bad block
1260                                 * is acknowledged
1261                                 */
1262                                atomic_inc(&rdev->nr_pending);
1263                                set_bit(BlockedBadBlocks, &rdev->flags);
1264                                blocked_rdev = rdev;
1265                                break;
1266                        }
1267                        if (is_bad && first_bad <= dev_sector) {
1268                                /* Cannot write here at all */
1269                                bad_sectors -= (dev_sector - first_bad);
1270                                if (bad_sectors < max_sectors)
1271                                        /* Mustn't write more than bad_sectors
1272                                         * to other devices yet
1273                                         */
1274                                        max_sectors = bad_sectors;
1275                                /* We don't set R10BIO_Degraded as that
1276                                 * only applies if the disk is missing,
1277                                 * so it might be re-added, and we want to
1278                                 * know to recover this chunk.
1279                                 * In this case the device is here, and the
1280                                 * fact that this chunk is not in-sync is
1281                                 * recorded in the bad block log.
1282                                 */
1283                                continue;
1284                        }
1285                        if (is_bad) {
1286                                int good_sectors = first_bad - dev_sector;
1287                                if (good_sectors < max_sectors)
1288                                        max_sectors = good_sectors;
1289                        }
1290                }
1291                if (rdev) {
1292                        r10_bio->devs[i].bio = bio;
1293                        atomic_inc(&rdev->nr_pending);
1294                }
1295                if (rrdev) {
1296                        r10_bio->devs[i].repl_bio = bio;
1297                        atomic_inc(&rrdev->nr_pending);
1298                }
1299        }
1300        rcu_read_unlock();
1301
1302        if (unlikely(blocked_rdev)) {
1303                /* Have to wait for this device to get unblocked, then retry */
1304                int j;
1305                int d;
1306
1307                for (j = 0; j < i; j++) {
1308                        if (r10_bio->devs[j].bio) {
1309                                d = r10_bio->devs[j].devnum;
1310                                rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1311                        }
1312                        if (r10_bio->devs[j].repl_bio) {
1313                                struct md_rdev *rdev;
1314                                d = r10_bio->devs[j].devnum;
1315                                rdev = conf->mirrors[d].replacement;
1316                                if (!rdev) {
1317                                        /* Race with remove_disk */
1318                                        smp_mb();
1319                                        rdev = conf->mirrors[d].rdev;
1320                                }
1321                                rdev_dec_pending(rdev, mddev);
1322                        }
1323                }
1324                allow_barrier(conf);
1325                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1326                wait_barrier(conf);
1327                goto retry_write;
1328        }
1329
1330        if (max_sectors < r10_bio->sectors) {
1331                /* We are splitting this into multiple parts, so
1332                 * we need to prepare for allocating another r10_bio.
1333                 */
1334                r10_bio->sectors = max_sectors;
1335                spin_lock_irq(&conf->device_lock);
1336                if (bio->bi_phys_segments == 0)
1337                        bio->bi_phys_segments = 2;
1338                else
1339                        bio->bi_phys_segments++;
1340                spin_unlock_irq(&conf->device_lock);
1341        }
1342        sectors_handled = r10_bio->sector + max_sectors -
1343                bio->bi_iter.bi_sector;
1344
1345        atomic_set(&r10_bio->remaining, 1);
1346        bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1347
1348        for (i = 0; i < conf->copies; i++) {
1349                struct bio *mbio;
1350                int d = r10_bio->devs[i].devnum;
1351                if (r10_bio->devs[i].bio) {
1352                        struct md_rdev *rdev = conf->mirrors[d].rdev;
1353                        mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1354                        bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1355                                 max_sectors);
1356                        r10_bio->devs[i].bio = mbio;
1357
1358                        mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1359                                           choose_data_offset(r10_bio,
1360                                                              rdev));
1361                        mbio->bi_bdev = rdev->bdev;
1362                        mbio->bi_end_io = raid10_end_write_request;
1363                        bio_set_op_attrs(mbio, op, do_sync | do_fua);
1364                        mbio->bi_private = r10_bio;
1365
1366                        atomic_inc(&r10_bio->remaining);
1367
1368                        cb = blk_check_plugged(raid10_unplug, mddev,
1369                                               sizeof(*plug));
1370                        if (cb)
1371                                plug = container_of(cb, struct raid10_plug_cb,
1372                                                    cb);
1373                        else
1374                                plug = NULL;
1375                        spin_lock_irqsave(&conf->device_lock, flags);
1376                        if (plug) {
1377                                bio_list_add(&plug->pending, mbio);
1378                                plug->pending_cnt++;
1379                        } else {
1380                                bio_list_add(&conf->pending_bio_list, mbio);
1381                                conf->pending_count++;
1382                        }
1383                        spin_unlock_irqrestore(&conf->device_lock, flags);
1384                        if (!plug)
1385                                md_wakeup_thread(mddev->thread);
1386                }
1387
1388                if (r10_bio->devs[i].repl_bio) {
1389                        struct md_rdev *rdev = conf->mirrors[d].replacement;
1390                        if (rdev == NULL) {
1391                                /* Replacement just got moved to main 'rdev' */
1392                                smp_mb();
1393                                rdev = conf->mirrors[d].rdev;
1394                        }
1395                        mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1396                        bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1397                                 max_sectors);
1398                        r10_bio->devs[i].repl_bio = mbio;
1399
1400                        mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1401                                           choose_data_offset(
1402                                                   r10_bio, rdev));
1403                        mbio->bi_bdev = rdev->bdev;
1404                        mbio->bi_end_io = raid10_end_write_request;
1405                        bio_set_op_attrs(mbio, op, do_sync | do_fua);
1406                        mbio->bi_private = r10_bio;
1407
1408                        atomic_inc(&r10_bio->remaining);
1409                        spin_lock_irqsave(&conf->device_lock, flags);
1410                        bio_list_add(&conf->pending_bio_list, mbio);
1411                        conf->pending_count++;
1412                        spin_unlock_irqrestore(&conf->device_lock, flags);
1413                        if (!mddev_check_plugged(mddev))
1414                                md_wakeup_thread(mddev->thread);
1415                }
1416        }
1417
1418        /* Don't remove the bias on 'remaining' (one_write_done) until
1419         * after checking if we need to go around again.
1420         */
1421
1422        if (sectors_handled < bio_sectors(bio)) {
1423                one_write_done(r10_bio);
1424                /* We need another r10_bio.  It has already been counted
1425                 * in bio->bi_phys_segments.
1426                 */
1427                r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1428
1429                r10_bio->master_bio = bio;
1430                r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1431
1432                r10_bio->mddev = mddev;
1433                r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1434                r10_bio->state = 0;
1435                goto retry_write;
1436        }
1437        one_write_done(r10_bio);
1438}
1439
1440static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1441{
1442        struct r10conf *conf = mddev->private;
1443        sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1444        int chunk_sects = chunk_mask + 1;
1445
1446        struct bio *split;
1447
1448        if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1449                md_flush_request(mddev, bio);
1450                return;
1451        }
1452
1453        do {
1454
1455                /*
1456                 * If this request crosses a chunk boundary, we need to split
1457                 * it.
1458                 */
1459                if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1460                             bio_sectors(bio) > chunk_sects
1461                             && (conf->geo.near_copies < conf->geo.raid_disks
1462                                 || conf->prev.near_copies <
1463                                 conf->prev.raid_disks))) {
1464                        split = bio_split(bio, chunk_sects -
1465                                          (bio->bi_iter.bi_sector &
1466                                           (chunk_sects - 1)),
1467                                          GFP_NOIO, fs_bio_set);
1468                        bio_chain(split, bio);
1469                } else {
1470                        split = bio;
1471                }
1472
1473                __make_request(mddev, split);
1474        } while (split != bio);
1475
1476        /* In case raid10d snuck in to freeze_array */
1477        wake_up(&conf->wait_barrier);
1478}
1479
1480static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1481{
1482        struct r10conf *conf = mddev->private;
1483        int i;
1484
1485        if (conf->geo.near_copies < conf->geo.raid_disks)
1486                seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1487        if (conf->geo.near_copies > 1)
1488                seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1489        if (conf->geo.far_copies > 1) {
1490                if (conf->geo.far_offset)
1491                        seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1492                else
1493                        seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1494                if (conf->geo.far_set_size != conf->geo.raid_disks)
1495                        seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1496        }
1497        seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1498                                        conf->geo.raid_disks - mddev->degraded);
1499        rcu_read_lock();
1500        for (i = 0; i < conf->geo.raid_disks; i++) {
1501                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1502                seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1503        }
1504        rcu_read_unlock();
1505        seq_printf(seq, "]");
1506}
1507
1508/* check if there are enough drives for
1509 * every block to appear on atleast one.
1510 * Don't consider the device numbered 'ignore'
1511 * as we might be about to remove it.
1512 */
1513static int _enough(struct r10conf *conf, int previous, int ignore)
1514{
1515        int first = 0;
1516        int has_enough = 0;
1517        int disks, ncopies;
1518        if (previous) {
1519                disks = conf->prev.raid_disks;
1520                ncopies = conf->prev.near_copies;
1521        } else {
1522                disks = conf->geo.raid_disks;
1523                ncopies = conf->geo.near_copies;
1524        }
1525
1526        rcu_read_lock();
1527        do {
1528                int n = conf->copies;
1529                int cnt = 0;
1530                int this = first;
1531                while (n--) {
1532                        struct md_rdev *rdev;
1533                        if (this != ignore &&
1534                            (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1535                            test_bit(In_sync, &rdev->flags))
1536                                cnt++;
1537                        this = (this+1) % disks;
1538                }
1539                if (cnt == 0)
1540                        goto out;
1541                first = (first + ncopies) % disks;
1542        } while (first != 0);
1543        has_enough = 1;
1544out:
1545        rcu_read_unlock();
1546        return has_enough;
1547}
1548
1549static int enough(struct r10conf *conf, int ignore)
1550{
1551        /* when calling 'enough', both 'prev' and 'geo' must
1552         * be stable.
1553         * This is ensured if ->reconfig_mutex or ->device_lock
1554         * is held.
1555         */
1556        return _enough(conf, 0, ignore) &&
1557                _enough(conf, 1, ignore);
1558}
1559
1560static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1561{
1562        char b[BDEVNAME_SIZE];
1563        struct r10conf *conf = mddev->private;
1564        unsigned long flags;
1565
1566        /*
1567         * If it is not operational, then we have already marked it as dead
1568         * else if it is the last working disks, ignore the error, let the
1569         * next level up know.
1570         * else mark the drive as failed
1571         */
1572        spin_lock_irqsave(&conf->device_lock, flags);
1573        if (test_bit(In_sync, &rdev->flags)
1574            && !enough(conf, rdev->raid_disk)) {
1575                /*
1576                 * Don't fail the drive, just return an IO error.
1577                 */
1578                spin_unlock_irqrestore(&conf->device_lock, flags);
1579                return;
1580        }
1581        if (test_and_clear_bit(In_sync, &rdev->flags))
1582                mddev->degraded++;
1583        /*
1584         * If recovery is running, make sure it aborts.
1585         */
1586        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1587        set_bit(Blocked, &rdev->flags);
1588        set_bit(Faulty, &rdev->flags);
1589        set_mask_bits(&mddev->flags, 0,
1590                      BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1591        spin_unlock_irqrestore(&conf->device_lock, flags);
1592        printk(KERN_ALERT
1593               "md/raid10:%s: Disk failure on %s, disabling device.\n"
1594               "md/raid10:%s: Operation continuing on %d devices.\n",
1595               mdname(mddev), bdevname(rdev->bdev, b),
1596               mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1597}
1598
1599static void print_conf(struct r10conf *conf)
1600{
1601        int i;
1602        struct md_rdev *rdev;
1603
1604        printk(KERN_DEBUG "RAID10 conf printout:\n");
1605        if (!conf) {
1606                printk(KERN_DEBUG "(!conf)\n");
1607                return;
1608        }
1609        printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1610                conf->geo.raid_disks);
1611
1612        /* This is only called with ->reconfix_mutex held, so
1613         * rcu protection of rdev is not needed */
1614        for (i = 0; i < conf->geo.raid_disks; i++) {
1615                char b[BDEVNAME_SIZE];
1616                rdev = conf->mirrors[i].rdev;
1617                if (rdev)
1618                        printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1619                                i, !test_bit(In_sync, &rdev->flags),
1620                                !test_bit(Faulty, &rdev->flags),
1621                                bdevname(rdev->bdev,b));
1622        }
1623}
1624
1625static void close_sync(struct r10conf *conf)
1626{
1627        wait_barrier(conf);
1628        allow_barrier(conf);
1629
1630        mempool_destroy(conf->r10buf_pool);
1631        conf->r10buf_pool = NULL;
1632}
1633
1634static int raid10_spare_active(struct mddev *mddev)
1635{
1636        int i;
1637        struct r10conf *conf = mddev->private;
1638        struct raid10_info *tmp;
1639        int count = 0;
1640        unsigned long flags;
1641
1642        /*
1643         * Find all non-in_sync disks within the RAID10 configuration
1644         * and mark them in_sync
1645         */
1646        for (i = 0; i < conf->geo.raid_disks; i++) {
1647                tmp = conf->mirrors + i;
1648                if (tmp->replacement
1649                    && tmp->replacement->recovery_offset == MaxSector
1650                    && !test_bit(Faulty, &tmp->replacement->flags)
1651                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1652                        /* Replacement has just become active */
1653                        if (!tmp->rdev
1654                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1655                                count++;
1656                        if (tmp->rdev) {
1657                                /* Replaced device not technically faulty,
1658                                 * but we need to be sure it gets removed
1659                                 * and never re-added.
1660                                 */
1661                                set_bit(Faulty, &tmp->rdev->flags);
1662                                sysfs_notify_dirent_safe(
1663                                        tmp->rdev->sysfs_state);
1664                        }
1665                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1666                } else if (tmp->rdev
1667                           && tmp->rdev->recovery_offset == MaxSector
1668                           && !test_bit(Faulty, &tmp->rdev->flags)
1669                           && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1670                        count++;
1671                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1672                }
1673        }
1674        spin_lock_irqsave(&conf->device_lock, flags);
1675        mddev->degraded -= count;
1676        spin_unlock_irqrestore(&conf->device_lock, flags);
1677
1678        print_conf(conf);
1679        return count;
1680}
1681
1682static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1683{
1684        struct r10conf *conf = mddev->private;
1685        int err = -EEXIST;
1686        int mirror;
1687        int first = 0;
1688        int last = conf->geo.raid_disks - 1;
1689
1690        if (mddev->recovery_cp < MaxSector)
1691                /* only hot-add to in-sync arrays, as recovery is
1692                 * very different from resync
1693                 */
1694                return -EBUSY;
1695        if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1696                return -EINVAL;
1697
1698        if (md_integrity_add_rdev(rdev, mddev))
1699                return -ENXIO;
1700
1701        if (rdev->raid_disk >= 0)
1702                first = last = rdev->raid_disk;
1703
1704        if (rdev->saved_raid_disk >= first &&
1705            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1706                mirror = rdev->saved_raid_disk;
1707        else
1708                mirror = first;
1709        for ( ; mirror <= last ; mirror++) {
1710                struct raid10_info *p = &conf->mirrors[mirror];
1711                if (p->recovery_disabled == mddev->recovery_disabled)
1712                        continue;
1713                if (p->rdev) {
1714                        if (!test_bit(WantReplacement, &p->rdev->flags) ||
1715                            p->replacement != NULL)
1716                                continue;
1717                        clear_bit(In_sync, &rdev->flags);
1718                        set_bit(Replacement, &rdev->flags);
1719                        rdev->raid_disk = mirror;
1720                        err = 0;
1721                        if (mddev->gendisk)
1722                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1723                                                  rdev->data_offset << 9);
1724                        conf->fullsync = 1;
1725                        rcu_assign_pointer(p->replacement, rdev);
1726                        break;
1727                }
1728
1729                if (mddev->gendisk)
1730                        disk_stack_limits(mddev->gendisk, rdev->bdev,
1731                                          rdev->data_offset << 9);
1732
1733                p->head_position = 0;
1734                p->recovery_disabled = mddev->recovery_disabled - 1;
1735                rdev->raid_disk = mirror;
1736                err = 0;
1737                if (rdev->saved_raid_disk != mirror)
1738                        conf->fullsync = 1;
1739                rcu_assign_pointer(p->rdev, rdev);
1740                break;
1741        }
1742        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1743                queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1744
1745        print_conf(conf);
1746        return err;
1747}
1748
1749static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1750{
1751        struct r10conf *conf = mddev->private;
1752        int err = 0;
1753        int number = rdev->raid_disk;
1754        struct md_rdev **rdevp;
1755        struct raid10_info *p = conf->mirrors + number;
1756
1757        print_conf(conf);
1758        if (rdev == p->rdev)
1759                rdevp = &p->rdev;
1760        else if (rdev == p->replacement)
1761                rdevp = &p->replacement;
1762        else
1763                return 0;
1764
1765        if (test_bit(In_sync, &rdev->flags) ||
1766            atomic_read(&rdev->nr_pending)) {
1767                err = -EBUSY;
1768                goto abort;
1769        }
1770        /* Only remove non-faulty devices if recovery
1771         * is not possible.
1772         */
1773        if (!test_bit(Faulty, &rdev->flags) &&
1774            mddev->recovery_disabled != p->recovery_disabled &&
1775            (!p->replacement || p->replacement == rdev) &&
1776            number < conf->geo.raid_disks &&
1777            enough(conf, -1)) {
1778                err = -EBUSY;
1779                goto abort;
1780        }
1781        *rdevp = NULL;
1782        if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1783                synchronize_rcu();
1784                if (atomic_read(&rdev->nr_pending)) {
1785                        /* lost the race, try later */
1786                        err = -EBUSY;
1787                        *rdevp = rdev;
1788                        goto abort;
1789                }
1790        }
1791        if (p->replacement) {
1792                /* We must have just cleared 'rdev' */
1793                p->rdev = p->replacement;
1794                clear_bit(Replacement, &p->replacement->flags);
1795                smp_mb(); /* Make sure other CPUs may see both as identical
1796                           * but will never see neither -- if they are careful.
1797                           */
1798                p->replacement = NULL;
1799                clear_bit(WantReplacement, &rdev->flags);
1800        } else
1801                /* We might have just remove the Replacement as faulty
1802                 * Clear the flag just in case
1803                 */
1804                clear_bit(WantReplacement, &rdev->flags);
1805
1806        err = md_integrity_register(mddev);
1807
1808abort:
1809
1810        print_conf(conf);
1811        return err;
1812}
1813
1814static void end_sync_read(struct bio *bio)
1815{
1816        struct r10bio *r10_bio = bio->bi_private;
1817        struct r10conf *conf = r10_bio->mddev->private;
1818        int d;
1819
1820        if (bio == r10_bio->master_bio) {
1821                /* this is a reshape read */
1822                d = r10_bio->read_slot; /* really the read dev */
1823        } else
1824                d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1825
1826        if (!bio->bi_error)
1827                set_bit(R10BIO_Uptodate, &r10_bio->state);
1828        else
1829                /* The write handler will notice the lack of
1830                 * R10BIO_Uptodate and record any errors etc
1831                 */
1832                atomic_add(r10_bio->sectors,
1833                           &conf->mirrors[d].rdev->corrected_errors);
1834
1835        /* for reconstruct, we always reschedule after a read.
1836         * for resync, only after all reads
1837         */
1838        rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1839        if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1840            atomic_dec_and_test(&r10_bio->remaining)) {
1841                /* we have read all the blocks,
1842                 * do the comparison in process context in raid10d
1843                 */
1844                reschedule_retry(r10_bio);
1845        }
1846}
1847
1848static void end_sync_request(struct r10bio *r10_bio)
1849{
1850        struct mddev *mddev = r10_bio->mddev;
1851
1852        while (atomic_dec_and_test(&r10_bio->remaining)) {
1853                if (r10_bio->master_bio == NULL) {
1854                        /* the primary of several recovery bios */
1855                        sector_t s = r10_bio->sectors;
1856                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1857                            test_bit(R10BIO_WriteError, &r10_bio->state))
1858                                reschedule_retry(r10_bio);
1859                        else
1860                                put_buf(r10_bio);
1861                        md_done_sync(mddev, s, 1);
1862                        break;
1863                } else {
1864                        struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1865                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1866                            test_bit(R10BIO_WriteError, &r10_bio->state))
1867                                reschedule_retry(r10_bio);
1868                        else
1869                                put_buf(r10_bio);
1870                        r10_bio = r10_bio2;
1871                }
1872        }
1873}
1874
1875static void end_sync_write(struct bio *bio)
1876{
1877        struct r10bio *r10_bio = bio->bi_private;
1878        struct mddev *mddev = r10_bio->mddev;
1879        struct r10conf *conf = mddev->private;
1880        int d;
1881        sector_t first_bad;
1882        int bad_sectors;
1883        int slot;
1884        int repl;
1885        struct md_rdev *rdev = NULL;
1886
1887        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1888        if (repl)
1889                rdev = conf->mirrors[d].replacement;
1890        else
1891                rdev = conf->mirrors[d].rdev;
1892
1893        if (bio->bi_error) {
1894                if (repl)
1895                        md_error(mddev, rdev);
1896                else {
1897                        set_bit(WriteErrorSeen, &rdev->flags);
1898                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
1899                                set_bit(MD_RECOVERY_NEEDED,
1900                                        &rdev->mddev->recovery);
1901                        set_bit(R10BIO_WriteError, &r10_bio->state);
1902                }
1903        } else if (is_badblock(rdev,
1904                             r10_bio->devs[slot].addr,
1905                             r10_bio->sectors,
1906                             &first_bad, &bad_sectors))
1907                set_bit(R10BIO_MadeGood, &r10_bio->state);
1908
1909        rdev_dec_pending(rdev, mddev);
1910
1911        end_sync_request(r10_bio);
1912}
1913
1914/*
1915 * Note: sync and recover and handled very differently for raid10
1916 * This code is for resync.
1917 * For resync, we read through virtual addresses and read all blocks.
1918 * If there is any error, we schedule a write.  The lowest numbered
1919 * drive is authoritative.
1920 * However requests come for physical address, so we need to map.
1921 * For every physical address there are raid_disks/copies virtual addresses,
1922 * which is always are least one, but is not necessarly an integer.
1923 * This means that a physical address can span multiple chunks, so we may
1924 * have to submit multiple io requests for a single sync request.
1925 */
1926/*
1927 * We check if all blocks are in-sync and only write to blocks that
1928 * aren't in sync
1929 */
1930static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1931{
1932        struct r10conf *conf = mddev->private;
1933        int i, first;
1934        struct bio *tbio, *fbio;
1935        int vcnt;
1936
1937        atomic_set(&r10_bio->remaining, 1);
1938
1939        /* find the first device with a block */
1940        for (i=0; i<conf->copies; i++)
1941                if (!r10_bio->devs[i].bio->bi_error)
1942                        break;
1943
1944        if (i == conf->copies)
1945                goto done;
1946
1947        first = i;
1948        fbio = r10_bio->devs[i].bio;
1949        fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1950        fbio->bi_iter.bi_idx = 0;
1951
1952        vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1953        /* now find blocks with errors */
1954        for (i=0 ; i < conf->copies ; i++) {
1955                int  j, d;
1956
1957                tbio = r10_bio->devs[i].bio;
1958
1959                if (tbio->bi_end_io != end_sync_read)
1960                        continue;
1961                if (i == first)
1962                        continue;
1963                if (!r10_bio->devs[i].bio->bi_error) {
1964                        /* We know that the bi_io_vec layout is the same for
1965                         * both 'first' and 'i', so we just compare them.
1966                         * All vec entries are PAGE_SIZE;
1967                         */
1968                        int sectors = r10_bio->sectors;
1969                        for (j = 0; j < vcnt; j++) {
1970                                int len = PAGE_SIZE;
1971                                if (sectors < (len / 512))
1972                                        len = sectors * 512;
1973                                if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1974                                           page_address(tbio->bi_io_vec[j].bv_page),
1975                                           len))
1976                                        break;
1977                                sectors -= len/512;
1978                        }
1979                        if (j == vcnt)
1980                                continue;
1981                        atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1982                        if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1983                                /* Don't fix anything. */
1984                                continue;
1985                }
1986                /* Ok, we need to write this bio, either to correct an
1987                 * inconsistency or to correct an unreadable block.
1988                 * First we need to fixup bv_offset, bv_len and
1989                 * bi_vecs, as the read request might have corrupted these
1990                 */
1991                bio_reset(tbio);
1992
1993                tbio->bi_vcnt = vcnt;
1994                tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
1995                tbio->bi_private = r10_bio;
1996                tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1997                tbio->bi_end_io = end_sync_write;
1998                bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
1999
2000                bio_copy_data(tbio, fbio);
2001
2002                d = r10_bio->devs[i].devnum;
2003                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2004                atomic_inc(&r10_bio->remaining);
2005                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2006
2007                tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2008                tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2009                generic_make_request(tbio);
2010        }
2011
2012        /* Now write out to any replacement devices
2013         * that are active
2014         */
2015        for (i = 0; i < conf->copies; i++) {
2016                int d;
2017
2018                tbio = r10_bio->devs[i].repl_bio;
2019                if (!tbio || !tbio->bi_end_io)
2020                        continue;
2021                if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2022                    && r10_bio->devs[i].bio != fbio)
2023                        bio_copy_data(tbio, fbio);
2024                d = r10_bio->devs[i].devnum;
2025                atomic_inc(&r10_bio->remaining);
2026                md_sync_acct(conf->mirrors[d].replacement->bdev,
2027                             bio_sectors(tbio));
2028                generic_make_request(tbio);
2029        }
2030
2031done:
2032        if (atomic_dec_and_test(&r10_bio->remaining)) {
2033                md_done_sync(mddev, r10_bio->sectors, 1);
2034                put_buf(r10_bio);
2035        }
2036}
2037
2038/*
2039 * Now for the recovery code.
2040 * Recovery happens across physical sectors.
2041 * We recover all non-is_sync drives by finding the virtual address of
2042 * each, and then choose a working drive that also has that virt address.
2043 * There is a separate r10_bio for each non-in_sync drive.
2044 * Only the first two slots are in use. The first for reading,
2045 * The second for writing.
2046 *
2047 */
2048static void fix_recovery_read_error(struct r10bio *r10_bio)
2049{
2050        /* We got a read error during recovery.
2051         * We repeat the read in smaller page-sized sections.
2052         * If a read succeeds, write it to the new device or record
2053         * a bad block if we cannot.
2054         * If a read fails, record a bad block on both old and
2055         * new devices.
2056         */
2057        struct mddev *mddev = r10_bio->mddev;
2058        struct r10conf *conf = mddev->private;
2059        struct bio *bio = r10_bio->devs[0].bio;
2060        sector_t sect = 0;
2061        int sectors = r10_bio->sectors;
2062        int idx = 0;
2063        int dr = r10_bio->devs[0].devnum;
2064        int dw = r10_bio->devs[1].devnum;
2065
2066        while (sectors) {
2067                int s = sectors;
2068                struct md_rdev *rdev;
2069                sector_t addr;
2070                int ok;
2071
2072                if (s > (PAGE_SIZE>>9))
2073                        s = PAGE_SIZE >> 9;
2074
2075                rdev = conf->mirrors[dr].rdev;
2076                addr = r10_bio->devs[0].addr + sect,
2077                ok = sync_page_io(rdev,
2078                                  addr,
2079                                  s << 9,
2080                                  bio->bi_io_vec[idx].bv_page,
2081                                  REQ_OP_READ, 0, false);
2082                if (ok) {
2083                        rdev = conf->mirrors[dw].rdev;
2084                        addr = r10_bio->devs[1].addr + sect;
2085                        ok = sync_page_io(rdev,
2086                                          addr,
2087                                          s << 9,
2088                                          bio->bi_io_vec[idx].bv_page,
2089                                          REQ_OP_WRITE, 0, false);
2090                        if (!ok) {
2091                                set_bit(WriteErrorSeen, &rdev->flags);
2092                                if (!test_and_set_bit(WantReplacement,
2093                                                      &rdev->flags))
2094                                        set_bit(MD_RECOVERY_NEEDED,
2095                                                &rdev->mddev->recovery);
2096                        }
2097                }
2098                if (!ok) {
2099                        /* We don't worry if we cannot set a bad block -
2100                         * it really is bad so there is no loss in not
2101                         * recording it yet
2102                         */
2103                        rdev_set_badblocks(rdev, addr, s, 0);
2104
2105                        if (rdev != conf->mirrors[dw].rdev) {
2106                                /* need bad block on destination too */
2107                                struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2108                                addr = r10_bio->devs[1].addr + sect;
2109                                ok = rdev_set_badblocks(rdev2, addr, s, 0);
2110                                if (!ok) {
2111                                        /* just abort the recovery */
2112                                        printk(KERN_NOTICE
2113                                               "md/raid10:%s: recovery aborted"
2114                                               " due to read error\n",
2115                                               mdname(mddev));
2116
2117                                        conf->mirrors[dw].recovery_disabled
2118                                                = mddev->recovery_disabled;
2119                                        set_bit(MD_RECOVERY_INTR,
2120                                                &mddev->recovery);
2121                                        break;
2122                                }
2123                        }
2124                }
2125
2126                sectors -= s;
2127                sect += s;
2128                idx++;
2129        }
2130}
2131
2132static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2133{
2134        struct r10conf *conf = mddev->private;
2135        int d;
2136        struct bio *wbio, *wbio2;
2137
2138        if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2139                fix_recovery_read_error(r10_bio);
2140                end_sync_request(r10_bio);
2141                return;
2142        }
2143
2144        /*
2145         * share the pages with the first bio
2146         * and submit the write request
2147         */
2148        d = r10_bio->devs[1].devnum;
2149        wbio = r10_bio->devs[1].bio;
2150        wbio2 = r10_bio->devs[1].repl_bio;
2151        /* Need to test wbio2->bi_end_io before we call
2152         * generic_make_request as if the former is NULL,
2153         * the latter is free to free wbio2.
2154         */
2155        if (wbio2 && !wbio2->bi_end_io)
2156                wbio2 = NULL;
2157        if (wbio->bi_end_io) {
2158                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2159                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2160                generic_make_request(wbio);
2161        }
2162        if (wbio2) {
2163                atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2164                md_sync_acct(conf->mirrors[d].replacement->bdev,
2165                             bio_sectors(wbio2));
2166                generic_make_request(wbio2);
2167        }
2168}
2169
2170/*
2171 * Used by fix_read_error() to decay the per rdev read_errors.
2172 * We halve the read error count for every hour that has elapsed
2173 * since the last recorded read error.
2174 *
2175 */
2176static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2177{
2178        long cur_time_mon;
2179        unsigned long hours_since_last;
2180        unsigned int read_errors = atomic_read(&rdev->read_errors);
2181
2182        cur_time_mon = ktime_get_seconds();
2183
2184        if (rdev->last_read_error == 0) {
2185                /* first time we've seen a read error */
2186                rdev->last_read_error = cur_time_mon;
2187                return;
2188        }
2189
2190        hours_since_last = (long)(cur_time_mon -
2191                            rdev->last_read_error) / 3600;
2192
2193        rdev->last_read_error = cur_time_mon;
2194
2195        /*
2196         * if hours_since_last is > the number of bits in read_errors
2197         * just set read errors to 0. We do this to avoid
2198         * overflowing the shift of read_errors by hours_since_last.
2199         */
2200        if (hours_since_last >= 8 * sizeof(read_errors))
2201                atomic_set(&rdev->read_errors, 0);
2202        else
2203                atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2204}
2205
2206static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2207                            int sectors, struct page *page, int rw)
2208{
2209        sector_t first_bad;
2210        int bad_sectors;
2211
2212        if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2213            && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2214                return -1;
2215        if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2216                /* success */
2217                return 1;
2218        if (rw == WRITE) {
2219                set_bit(WriteErrorSeen, &rdev->flags);
2220                if (!test_and_set_bit(WantReplacement, &rdev->flags))
2221                        set_bit(MD_RECOVERY_NEEDED,
2222                                &rdev->mddev->recovery);
2223        }
2224        /* need to record an error - either for the block or the device */
2225        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2226                md_error(rdev->mddev, rdev);
2227        return 0;
2228}
2229
2230/*
2231 * This is a kernel thread which:
2232 *
2233 *      1.      Retries failed read operations on working mirrors.
2234 *      2.      Updates the raid superblock when problems encounter.
2235 *      3.      Performs writes following reads for array synchronising.
2236 */
2237
2238static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2239{
2240        int sect = 0; /* Offset from r10_bio->sector */
2241        int sectors = r10_bio->sectors;
2242        struct md_rdev*rdev;
2243        int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2244        int d = r10_bio->devs[r10_bio->read_slot].devnum;
2245
2246        /* still own a reference to this rdev, so it cannot
2247         * have been cleared recently.
2248         */
2249        rdev = conf->mirrors[d].rdev;
2250
2251        if (test_bit(Faulty, &rdev->flags))
2252                /* drive has already been failed, just ignore any
2253                   more fix_read_error() attempts */
2254                return;
2255
2256        check_decay_read_errors(mddev, rdev);
2257        atomic_inc(&rdev->read_errors);
2258        if (atomic_read(&rdev->read_errors) > max_read_errors) {
2259                char b[BDEVNAME_SIZE];
2260                bdevname(rdev->bdev, b);
2261
2262                printk(KERN_NOTICE
2263                       "md/raid10:%s: %s: Raid device exceeded "
2264                       "read_error threshold [cur %d:max %d]\n",
2265                       mdname(mddev), b,
2266                       atomic_read(&rdev->read_errors), max_read_errors);
2267                printk(KERN_NOTICE
2268                       "md/raid10:%s: %s: Failing raid device\n",
2269                       mdname(mddev), b);
2270                md_error(mddev, rdev);
2271                r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2272                return;
2273        }
2274
2275        while(sectors) {
2276                int s = sectors;
2277                int sl = r10_bio->read_slot;
2278                int success = 0;
2279                int start;
2280
2281                if (s > (PAGE_SIZE>>9))
2282                        s = PAGE_SIZE >> 9;
2283
2284                rcu_read_lock();
2285                do {
2286                        sector_t first_bad;
2287                        int bad_sectors;
2288
2289                        d = r10_bio->devs[sl].devnum;
2290                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2291                        if (rdev &&
2292                            test_bit(In_sync, &rdev->flags) &&
2293                            !test_bit(Faulty, &rdev->flags) &&
2294                            is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2295                                        &first_bad, &bad_sectors) == 0) {
2296                                atomic_inc(&rdev->nr_pending);
2297                                rcu_read_unlock();
2298                                success = sync_page_io(rdev,
2299                                                       r10_bio->devs[sl].addr +
2300                                                       sect,
2301                                                       s<<9,
2302                                                       conf->tmppage,
2303                                                       REQ_OP_READ, 0, false);
2304                                rdev_dec_pending(rdev, mddev);
2305                                rcu_read_lock();
2306                                if (success)
2307                                        break;
2308                        }
2309                        sl++;
2310                        if (sl == conf->copies)
2311                                sl = 0;
2312                } while (!success && sl != r10_bio->read_slot);
2313                rcu_read_unlock();
2314
2315                if (!success) {
2316                        /* Cannot read from anywhere, just mark the block
2317                         * as bad on the first device to discourage future
2318                         * reads.
2319                         */
2320                        int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2321                        rdev = conf->mirrors[dn].rdev;
2322
2323                        if (!rdev_set_badblocks(
2324                                    rdev,
2325                                    r10_bio->devs[r10_bio->read_slot].addr
2326                                    + sect,
2327                                    s, 0)) {
2328                                md_error(mddev, rdev);
2329                                r10_bio->devs[r10_bio->read_slot].bio
2330                                        = IO_BLOCKED;
2331                        }
2332                        break;
2333                }
2334
2335                start = sl;
2336                /* write it back and re-read */
2337                rcu_read_lock();
2338                while (sl != r10_bio->read_slot) {
2339                        char b[BDEVNAME_SIZE];
2340
2341                        if (sl==0)
2342                                sl = conf->copies;
2343                        sl--;
2344                        d = r10_bio->devs[sl].devnum;
2345                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2346                        if (!rdev ||
2347                            test_bit(Faulty, &rdev->flags) ||
2348                            !test_bit(In_sync, &rdev->flags))
2349                                continue;
2350
2351                        atomic_inc(&rdev->nr_pending);
2352                        rcu_read_unlock();
2353                        if (r10_sync_page_io(rdev,
2354                                             r10_bio->devs[sl].addr +
2355                                             sect,
2356                                             s, conf->tmppage, WRITE)
2357                            == 0) {
2358                                /* Well, this device is dead */
2359                                printk(KERN_NOTICE
2360                                       "md/raid10:%s: read correction "
2361                                       "write failed"
2362                                       " (%d sectors at %llu on %s)\n",
2363                                       mdname(mddev), s,
2364                                       (unsigned long long)(
2365                                               sect +
2366                                               choose_data_offset(r10_bio,
2367                                                                  rdev)),
2368                                       bdevname(rdev->bdev, b));
2369                                printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2370                                       "drive\n",
2371                                       mdname(mddev),
2372                                       bdevname(rdev->bdev, b));
2373                        }
2374                        rdev_dec_pending(rdev, mddev);
2375                        rcu_read_lock();
2376                }
2377                sl = start;
2378                while (sl != r10_bio->read_slot) {
2379                        char b[BDEVNAME_SIZE];
2380
2381                        if (sl==0)
2382                                sl = conf->copies;
2383                        sl--;
2384                        d = r10_bio->devs[sl].devnum;
2385                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2386                        if (!rdev ||
2387                            test_bit(Faulty, &rdev->flags) ||
2388                            !test_bit(In_sync, &rdev->flags))
2389                                continue;
2390
2391                        atomic_inc(&rdev->nr_pending);
2392                        rcu_read_unlock();
2393                        switch (r10_sync_page_io(rdev,
2394                                             r10_bio->devs[sl].addr +
2395                                             sect,
2396                                             s, conf->tmppage,
2397                                                 READ)) {
2398                        case 0:
2399                                /* Well, this device is dead */
2400                                printk(KERN_NOTICE
2401                                       "md/raid10:%s: unable to read back "
2402                                       "corrected sectors"
2403                                       " (%d sectors at %llu on %s)\n",
2404                                       mdname(mddev), s,
2405                                       (unsigned long long)(
2406                                               sect +
2407                                               choose_data_offset(r10_bio, rdev)),
2408                                       bdevname(rdev->bdev, b));
2409                                printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2410                                       "drive\n",
2411                                       mdname(mddev),
2412                                       bdevname(rdev->bdev, b));
2413                                break;
2414                        case 1:
2415                                printk(KERN_INFO
2416                                       "md/raid10:%s: read error corrected"
2417                                       " (%d sectors at %llu on %s)\n",
2418                                       mdname(mddev), s,
2419                                       (unsigned long long)(
2420                                               sect +
2421                                               choose_data_offset(r10_bio, rdev)),
2422                                       bdevname(rdev->bdev, b));
2423                                atomic_add(s, &rdev->corrected_errors);
2424                        }
2425
2426                        rdev_dec_pending(rdev, mddev);
2427                        rcu_read_lock();
2428                }
2429                rcu_read_unlock();
2430
2431                sectors -= s;
2432                sect += s;
2433        }
2434}
2435
2436static int narrow_write_error(struct r10bio *r10_bio, int i)
2437{
2438        struct bio *bio = r10_bio->master_bio;
2439        struct mddev *mddev = r10_bio->mddev;
2440        struct r10conf *conf = mddev->private;
2441        struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2442        /* bio has the data to be written to slot 'i' where
2443         * we just recently had a write error.
2444         * We repeatedly clone the bio and trim down to one block,
2445         * then try the write.  Where the write fails we record
2446         * a bad block.
2447         * It is conceivable that the bio doesn't exactly align with
2448         * blocks.  We must handle this.
2449         *
2450         * We currently own a reference to the rdev.
2451         */
2452
2453        int block_sectors;
2454        sector_t sector;
2455        int sectors;
2456        int sect_to_write = r10_bio->sectors;
2457        int ok = 1;
2458
2459        if (rdev->badblocks.shift < 0)
2460                return 0;
2461
2462        block_sectors = roundup(1 << rdev->badblocks.shift,
2463                                bdev_logical_block_size(rdev->bdev) >> 9);
2464        sector = r10_bio->sector;
2465        sectors = ((r10_bio->sector + block_sectors)
2466                   & ~(sector_t)(block_sectors - 1))
2467                - sector;
2468
2469        while (sect_to_write) {
2470                struct bio *wbio;
2471                sector_t wsector;
2472                if (sectors > sect_to_write)
2473                        sectors = sect_to_write;
2474                /* Write at 'sector' for 'sectors' */
2475                wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2476                bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2477                wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2478                wbio->bi_iter.bi_sector = wsector +
2479                                   choose_data_offset(r10_bio, rdev);
2480                wbio->bi_bdev = rdev->bdev;
2481                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2482
2483                if (submit_bio_wait(wbio) < 0)
2484                        /* Failure! */
2485                        ok = rdev_set_badblocks(rdev, wsector,
2486                                                sectors, 0)
2487                                && ok;
2488
2489                bio_put(wbio);
2490                sect_to_write -= sectors;
2491                sector += sectors;
2492                sectors = block_sectors;
2493        }
2494        return ok;
2495}
2496
2497static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2498{
2499        int slot = r10_bio->read_slot;
2500        struct bio *bio;
2501        struct r10conf *conf = mddev->private;
2502        struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2503        char b[BDEVNAME_SIZE];
2504        unsigned long do_sync;
2505        int max_sectors;
2506
2507        /* we got a read error. Maybe the drive is bad.  Maybe just
2508         * the block and we can fix it.
2509         * We freeze all other IO, and try reading the block from
2510         * other devices.  When we find one, we re-write
2511         * and check it that fixes the read error.
2512         * This is all done synchronously while the array is
2513         * frozen.
2514         */
2515        bio = r10_bio->devs[slot].bio;
2516        bdevname(bio->bi_bdev, b);
2517        bio_put(bio);
2518        r10_bio->devs[slot].bio = NULL;
2519
2520        if (mddev->ro == 0) {
2521                freeze_array(conf, 1);
2522                fix_read_error(conf, mddev, r10_bio);
2523                unfreeze_array(conf);
2524        } else
2525                r10_bio->devs[slot].bio = IO_BLOCKED;
2526
2527        rdev_dec_pending(rdev, mddev);
2528
2529read_more:
2530        rdev = read_balance(conf, r10_bio, &max_sectors);
2531        if (rdev == NULL) {
2532                printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2533                       " read error for block %llu\n",
2534                       mdname(mddev), b,
2535                       (unsigned long long)r10_bio->sector);
2536                raid_end_bio_io(r10_bio);
2537                return;
2538        }
2539
2540        do_sync = (r10_bio->master_bio->bi_opf & REQ_SYNC);
2541        slot = r10_bio->read_slot;
2542        printk_ratelimited(
2543                KERN_ERR
2544                "md/raid10:%s: %s: redirecting "
2545                "sector %llu to another mirror\n",
2546                mdname(mddev),
2547                bdevname(rdev->bdev, b),
2548                (unsigned long long)r10_bio->sector);
2549        bio = bio_clone_mddev(r10_bio->master_bio,
2550                              GFP_NOIO, mddev);
2551        bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2552        r10_bio->devs[slot].bio = bio;
2553        r10_bio->devs[slot].rdev = rdev;
2554        bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2555                + choose_data_offset(r10_bio, rdev);
2556        bio->bi_bdev = rdev->bdev;
2557        bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2558        bio->bi_private = r10_bio;
2559        bio->bi_end_io = raid10_end_read_request;
2560        if (max_sectors < r10_bio->sectors) {
2561                /* Drat - have to split this up more */
2562                struct bio *mbio = r10_bio->master_bio;
2563                int sectors_handled =
2564                        r10_bio->sector + max_sectors
2565                        - mbio->bi_iter.bi_sector;
2566                r10_bio->sectors = max_sectors;
2567                spin_lock_irq(&conf->device_lock);
2568                if (mbio->bi_phys_segments == 0)
2569                        mbio->bi_phys_segments = 2;
2570                else
2571                        mbio->bi_phys_segments++;
2572                spin_unlock_irq(&conf->device_lock);
2573                generic_make_request(bio);
2574
2575                r10_bio = mempool_alloc(conf->r10bio_pool,
2576                                        GFP_NOIO);
2577                r10_bio->master_bio = mbio;
2578                r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2579                r10_bio->state = 0;
2580                set_bit(R10BIO_ReadError,
2581                        &r10_bio->state);
2582                r10_bio->mddev = mddev;
2583                r10_bio->sector = mbio->bi_iter.bi_sector
2584                        + sectors_handled;
2585
2586                goto read_more;
2587        } else
2588                generic_make_request(bio);
2589}
2590
2591static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2592{
2593        /* Some sort of write request has finished and it
2594         * succeeded in writing where we thought there was a
2595         * bad block.  So forget the bad block.
2596         * Or possibly if failed and we need to record
2597         * a bad block.
2598         */
2599        int m;
2600        struct md_rdev *rdev;
2601
2602        if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2603            test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2604                for (m = 0; m < conf->copies; m++) {
2605                        int dev = r10_bio->devs[m].devnum;
2606                        rdev = conf->mirrors[dev].rdev;
2607                        if (r10_bio->devs[m].bio == NULL)
2608                                continue;
2609                        if (!r10_bio->devs[m].bio->bi_error) {
2610                                rdev_clear_badblocks(
2611                                        rdev,
2612                                        r10_bio->devs[m].addr,
2613                                        r10_bio->sectors, 0);
2614                        } else {
2615                                if (!rdev_set_badblocks(
2616                                            rdev,
2617                                            r10_bio->devs[m].addr,
2618                                            r10_bio->sectors, 0))
2619                                        md_error(conf->mddev, rdev);
2620                        }
2621                        rdev = conf->mirrors[dev].replacement;
2622                        if (r10_bio->devs[m].repl_bio == NULL)
2623                                continue;
2624
2625                        if (!r10_bio->devs[m].repl_bio->bi_error) {
2626                                rdev_clear_badblocks(
2627                                        rdev,
2628                                        r10_bio->devs[m].addr,
2629                                        r10_bio->sectors, 0);
2630                        } else {
2631                                if (!rdev_set_badblocks(
2632                                            rdev,
2633                                            r10_bio->devs[m].addr,
2634                                            r10_bio->sectors, 0))
2635                                        md_error(conf->mddev, rdev);
2636                        }
2637                }
2638                put_buf(r10_bio);
2639        } else {
2640                bool fail = false;
2641                for (m = 0; m < conf->copies; m++) {
2642                        int dev = r10_bio->devs[m].devnum;
2643                        struct bio *bio = r10_bio->devs[m].bio;
2644                        rdev = conf->mirrors[dev].rdev;
2645                        if (bio == IO_MADE_GOOD) {
2646                                rdev_clear_badblocks(
2647                                        rdev,
2648                                        r10_bio->devs[m].addr,
2649                                        r10_bio->sectors, 0);
2650                                rdev_dec_pending(rdev, conf->mddev);
2651                        } else if (bio != NULL && bio->bi_error) {
2652                                fail = true;
2653                                if (!narrow_write_error(r10_bio, m)) {
2654                                        md_error(conf->mddev, rdev);
2655                                        set_bit(R10BIO_Degraded,
2656                                                &r10_bio->state);
2657                                }
2658                                rdev_dec_pending(rdev, conf->mddev);
2659                        }
2660                        bio = r10_bio->devs[m].repl_bio;
2661                        rdev = conf->mirrors[dev].replacement;
2662                        if (rdev && bio == IO_MADE_GOOD) {
2663                                rdev_clear_badblocks(
2664                                        rdev,
2665                                        r10_bio->devs[m].addr,
2666                                        r10_bio->sectors, 0);
2667                                rdev_dec_pending(rdev, conf->mddev);
2668                        }
2669                }
2670                if (fail) {
2671                        spin_lock_irq(&conf->device_lock);
2672                        list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2673                        conf->nr_queued++;
2674                        spin_unlock_irq(&conf->device_lock);
2675                        md_wakeup_thread(conf->mddev->thread);
2676                } else {
2677                        if (test_bit(R10BIO_WriteError,
2678                                     &r10_bio->state))
2679                                close_write(r10_bio);
2680                        raid_end_bio_io(r10_bio);
2681                }
2682        }
2683}
2684
2685static void raid10d(struct md_thread *thread)
2686{
2687        struct mddev *mddev = thread->mddev;
2688        struct r10bio *r10_bio;
2689        unsigned long flags;
2690        struct r10conf *conf = mddev->private;
2691        struct list_head *head = &conf->retry_list;
2692        struct blk_plug plug;
2693
2694        md_check_recovery(mddev);
2695
2696        if (!list_empty_careful(&conf->bio_end_io_list) &&
2697            !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2698                LIST_HEAD(tmp);
2699                spin_lock_irqsave(&conf->device_lock, flags);
2700                if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2701                        while (!list_empty(&conf->bio_end_io_list)) {
2702                                list_move(conf->bio_end_io_list.prev, &tmp);
2703                                conf->nr_queued--;
2704                        }
2705                }
2706                spin_unlock_irqrestore(&conf->device_lock, flags);
2707                while (!list_empty(&tmp)) {
2708                        r10_bio = list_first_entry(&tmp, struct r10bio,
2709                                                   retry_list);
2710                        list_del(&r10_bio->retry_list);
2711                        if (mddev->degraded)
2712                                set_bit(R10BIO_Degraded, &r10_bio->state);
2713
2714                        if (test_bit(R10BIO_WriteError,
2715                                     &r10_bio->state))
2716                                close_write(r10_bio);
2717                        raid_end_bio_io(r10_bio);
2718                }
2719        }
2720
2721        blk_start_plug(&plug);
2722        for (;;) {
2723
2724                flush_pending_writes(conf);
2725
2726                spin_lock_irqsave(&conf->device_lock, flags);
2727                if (list_empty(head)) {
2728                        spin_unlock_irqrestore(&conf->device_lock, flags);
2729                        break;
2730                }
2731                r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2732                list_del(head->prev);
2733                conf->nr_queued--;
2734                spin_unlock_irqrestore(&conf->device_lock, flags);
2735
2736                mddev = r10_bio->mddev;
2737                conf = mddev->private;
2738                if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2739                    test_bit(R10BIO_WriteError, &r10_bio->state))
2740                        handle_write_completed(conf, r10_bio);
2741                else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2742                        reshape_request_write(mddev, r10_bio);
2743                else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2744                        sync_request_write(mddev, r10_bio);
2745                else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2746                        recovery_request_write(mddev, r10_bio);
2747                else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2748                        handle_read_error(mddev, r10_bio);
2749                else {
2750                        /* just a partial read to be scheduled from a
2751                         * separate context
2752                         */
2753                        int slot = r10_bio->read_slot;
2754                        generic_make_request(r10_bio->devs[slot].bio);
2755                }
2756
2757                cond_resched();
2758                if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2759                        md_check_recovery(mddev);
2760        }
2761        blk_finish_plug(&plug);
2762}
2763
2764static int init_resync(struct r10conf *conf)
2765{
2766        int buffs;
2767        int i;
2768
2769        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2770        BUG_ON(conf->r10buf_pool);
2771        conf->have_replacement = 0;
2772        for (i = 0; i < conf->geo.raid_disks; i++)
2773                if (conf->mirrors[i].replacement)
2774                        conf->have_replacement = 1;
2775        conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2776        if (!conf->r10buf_pool)
2777                return -ENOMEM;
2778        conf->next_resync = 0;
2779        return 0;
2780}
2781
2782/*
2783 * perform a "sync" on one "block"
2784 *
2785 * We need to make sure that no normal I/O request - particularly write
2786 * requests - conflict with active sync requests.
2787 *
2788 * This is achieved by tracking pending requests and a 'barrier' concept
2789 * that can be installed to exclude normal IO requests.
2790 *
2791 * Resync and recovery are handled very differently.
2792 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2793 *
2794 * For resync, we iterate over virtual addresses, read all copies,
2795 * and update if there are differences.  If only one copy is live,
2796 * skip it.
2797 * For recovery, we iterate over physical addresses, read a good
2798 * value for each non-in_sync drive, and over-write.
2799 *
2800 * So, for recovery we may have several outstanding complex requests for a
2801 * given address, one for each out-of-sync device.  We model this by allocating
2802 * a number of r10_bio structures, one for each out-of-sync device.
2803 * As we setup these structures, we collect all bio's together into a list
2804 * which we then process collectively to add pages, and then process again
2805 * to pass to generic_make_request.
2806 *
2807 * The r10_bio structures are linked using a borrowed master_bio pointer.
2808 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2809 * has its remaining count decremented to 0, the whole complex operation
2810 * is complete.
2811 *
2812 */
2813
2814static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2815                             int *skipped)
2816{
2817        struct r10conf *conf = mddev->private;
2818        struct r10bio *r10_bio;
2819        struct bio *biolist = NULL, *bio;
2820        sector_t max_sector, nr_sectors;
2821        int i;
2822        int max_sync;
2823        sector_t sync_blocks;
2824        sector_t sectors_skipped = 0;
2825        int chunks_skipped = 0;
2826        sector_t chunk_mask = conf->geo.chunk_mask;
2827
2828        if (!conf->r10buf_pool)
2829                if (init_resync(conf))
2830                        return 0;
2831
2832        /*
2833         * Allow skipping a full rebuild for incremental assembly
2834         * of a clean array, like RAID1 does.
2835         */
2836        if (mddev->bitmap == NULL &&
2837            mddev->recovery_cp == MaxSector &&
2838            mddev->reshape_position == MaxSector &&
2839            !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2840            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2841            !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2842            conf->fullsync == 0) {
2843                *skipped = 1;
2844                return mddev->dev_sectors - sector_nr;
2845        }
2846
2847 skipped:
2848        max_sector = mddev->dev_sectors;
2849        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2850            test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2851                max_sector = mddev->resync_max_sectors;
2852        if (sector_nr >= max_sector) {
2853                /* If we aborted, we need to abort the
2854                 * sync on the 'current' bitmap chucks (there can
2855                 * be several when recovering multiple devices).
2856                 * as we may have started syncing it but not finished.
2857                 * We can find the current address in
2858                 * mddev->curr_resync, but for recovery,
2859                 * we need to convert that to several
2860                 * virtual addresses.
2861                 */
2862                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2863                        end_reshape(conf);
2864                        close_sync(conf);
2865                        return 0;
2866                }
2867
2868                if (mddev->curr_resync < max_sector) { /* aborted */
2869                        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2870                                bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2871                                                &sync_blocks, 1);
2872                        else for (i = 0; i < conf->geo.raid_disks; i++) {
2873                                sector_t sect =
2874                                        raid10_find_virt(conf, mddev->curr_resync, i);
2875                                bitmap_end_sync(mddev->bitmap, sect,
2876                                                &sync_blocks, 1);
2877                        }
2878                } else {
2879                        /* completed sync */
2880                        if ((!mddev->bitmap || conf->fullsync)
2881                            && conf->have_replacement
2882                            && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2883                                /* Completed a full sync so the replacements
2884                                 * are now fully recovered.
2885                                 */
2886                                rcu_read_lock();
2887                                for (i = 0; i < conf->geo.raid_disks; i++) {
2888                                        struct md_rdev *rdev =
2889                                                rcu_dereference(conf->mirrors[i].replacement);
2890                                        if (rdev)
2891                                                rdev->recovery_offset = MaxSector;
2892                                }
2893                                rcu_read_unlock();
2894                        }
2895                        conf->fullsync = 0;
2896                }
2897                bitmap_close_sync(mddev->bitmap);
2898                close_sync(conf);
2899                *skipped = 1;
2900                return sectors_skipped;
2901        }
2902
2903        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2904                return reshape_request(mddev, sector_nr, skipped);
2905
2906        if (chunks_skipped >= conf->geo.raid_disks) {
2907                /* if there has been nothing to do on any drive,
2908                 * then there is nothing to do at all..
2909                 */
2910                *skipped = 1;
2911                return (max_sector - sector_nr) + sectors_skipped;
2912        }
2913
2914        if (max_sector > mddev->resync_max)
2915                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2916
2917        /* make sure whole request will fit in a chunk - if chunks
2918         * are meaningful
2919         */
2920        if (conf->geo.near_copies < conf->geo.raid_disks &&
2921            max_sector > (sector_nr | chunk_mask))
2922                max_sector = (sector_nr | chunk_mask) + 1;
2923
2924        /*
2925         * If there is non-resync activity waiting for a turn, then let it
2926         * though before starting on this new sync request.
2927         */
2928        if (conf->nr_waiting)
2929                schedule_timeout_uninterruptible(1);
2930
2931        /* Again, very different code for resync and recovery.
2932         * Both must result in an r10bio with a list of bios that
2933         * have bi_end_io, bi_sector, bi_bdev set,
2934         * and bi_private set to the r10bio.
2935         * For recovery, we may actually create several r10bios
2936         * with 2 bios in each, that correspond to the bios in the main one.
2937         * In this case, the subordinate r10bios link back through a
2938         * borrowed master_bio pointer, and the counter in the master
2939         * includes a ref from each subordinate.
2940         */
2941        /* First, we decide what to do and set ->bi_end_io
2942         * To end_sync_read if we want to read, and
2943         * end_sync_write if we will want to write.
2944         */
2945
2946        max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2947        if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2948                /* recovery... the complicated one */
2949                int j;
2950                r10_bio = NULL;
2951
2952                for (i = 0 ; i < conf->geo.raid_disks; i++) {
2953                        int still_degraded;
2954                        struct r10bio *rb2;
2955                        sector_t sect;
2956                        int must_sync;
2957                        int any_working;
2958                        struct raid10_info *mirror = &conf->mirrors[i];
2959                        struct md_rdev *mrdev, *mreplace;
2960
2961                        rcu_read_lock();
2962                        mrdev = rcu_dereference(mirror->rdev);
2963                        mreplace = rcu_dereference(mirror->replacement);
2964
2965                        if ((mrdev == NULL ||
2966                             test_bit(Faulty, &mrdev->flags) ||
2967                             test_bit(In_sync, &mrdev->flags)) &&
2968                            (mreplace == NULL ||
2969                             test_bit(Faulty, &mreplace->flags))) {
2970                                rcu_read_unlock();
2971                                continue;
2972                        }
2973
2974                        still_degraded = 0;
2975                        /* want to reconstruct this device */
2976                        rb2 = r10_bio;
2977                        sect = raid10_find_virt(conf, sector_nr, i);
2978                        if (sect >= mddev->resync_max_sectors) {
2979                                /* last stripe is not complete - don't
2980                                 * try to recover this sector.
2981                                 */
2982                                rcu_read_unlock();
2983                                continue;
2984                        }
2985                        if (mreplace && test_bit(Faulty, &mreplace->flags))
2986                                mreplace = NULL;
2987                        /* Unless we are doing a full sync, or a replacement
2988                         * we only need to recover the block if it is set in
2989                         * the bitmap
2990                         */
2991                        must_sync = bitmap_start_sync(mddev->bitmap, sect,
2992                                                      &sync_blocks, 1);
2993                        if (sync_blocks < max_sync)
2994                                max_sync = sync_blocks;
2995                        if (!must_sync &&
2996                            mreplace == NULL &&
2997                            !conf->fullsync) {
2998                                /* yep, skip the sync_blocks here, but don't assume
2999                                 * that there will never be anything to do here
3000                                 */
3001                                chunks_skipped = -1;
3002                                rcu_read_unlock();
3003                                continue;
3004                        }
3005                        atomic_inc(&mrdev->nr_pending);
3006                        if (mreplace)
3007                                atomic_inc(&mreplace->nr_pending);
3008                        rcu_read_unlock();
3009
3010                        r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3011                        r10_bio->state = 0;
3012                        raise_barrier(conf, rb2 != NULL);
3013                        atomic_set(&r10_bio->remaining, 0);
3014
3015                        r10_bio->master_bio = (struct bio*)rb2;
3016                        if (rb2)
3017                                atomic_inc(&rb2->remaining);
3018                        r10_bio->mddev = mddev;
3019                        set_bit(R10BIO_IsRecover, &r10_bio->state);
3020                        r10_bio->sector = sect;
3021
3022                        raid10_find_phys(conf, r10_bio);
3023
3024                        /* Need to check if the array will still be
3025                         * degraded
3026                         */
3027                        rcu_read_lock();
3028                        for (j = 0; j < conf->geo.raid_disks; j++) {
3029                                struct md_rdev *rdev = rcu_dereference(
3030                                        conf->mirrors[j].rdev);
3031                                if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3032                                        still_degraded = 1;
3033                                        break;
3034                                }
3035                        }
3036
3037                        must_sync = bitmap_start_sync(mddev->bitmap, sect,
3038                                                      &sync_blocks, still_degraded);
3039
3040                        any_working = 0;
3041                        for (j=0; j<conf->copies;j++) {
3042                                int k;
3043                                int d = r10_bio->devs[j].devnum;
3044                                sector_t from_addr, to_addr;
3045                                struct md_rdev *rdev =
3046                                        rcu_dereference(conf->mirrors[d].rdev);
3047                                sector_t sector, first_bad;
3048                                int bad_sectors;
3049                                if (!rdev ||
3050                                    !test_bit(In_sync, &rdev->flags))
3051                                        continue;
3052                                /* This is where we read from */
3053                                any_working = 1;
3054                                sector = r10_bio->devs[j].addr;
3055
3056                                if (is_badblock(rdev, sector, max_sync,
3057                                                &first_bad, &bad_sectors)) {
3058                                        if (first_bad > sector)
3059                                                max_sync = first_bad - sector;
3060                                        else {
3061                                                bad_sectors -= (sector
3062                                                                - first_bad);
3063                                                if (max_sync > bad_sectors)
3064                                                        max_sync = bad_sectors;
3065                                                continue;
3066                                        }
3067                                }
3068                                bio = r10_bio->devs[0].bio;
3069                                bio_reset(bio);
3070                                bio->bi_next = biolist;
3071                                biolist = bio;
3072                                bio->bi_private = r10_bio;
3073                                bio->bi_end_io = end_sync_read;
3074                                bio_set_op_attrs(bio, REQ_OP_READ, 0);
3075                                from_addr = r10_bio->devs[j].addr;
3076                                bio->bi_iter.bi_sector = from_addr +
3077                                        rdev->data_offset;
3078                                bio->bi_bdev = rdev->bdev;
3079                                atomic_inc(&rdev->nr_pending);
3080                                /* and we write to 'i' (if not in_sync) */
3081
3082                                for (k=0; k<conf->copies; k++)
3083                                        if (r10_bio->devs[k].devnum == i)
3084                                                break;
3085                                BUG_ON(k == conf->copies);
3086                                to_addr = r10_bio->devs[k].addr;
3087                                r10_bio->devs[0].devnum = d;
3088                                r10_bio->devs[0].addr = from_addr;
3089                                r10_bio->devs[1].devnum = i;
3090                                r10_bio->devs[1].addr = to_addr;
3091
3092                                if (!test_bit(In_sync, &mrdev->flags)) {
3093                                        bio = r10_bio->devs[1].bio;
3094                                        bio_reset(bio);
3095                                        bio->bi_next = biolist;
3096                                        biolist = bio;
3097                                        bio->bi_private = r10_bio;
3098                                        bio->bi_end_io = end_sync_write;
3099                                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3100                                        bio->bi_iter.bi_sector = to_addr
3101                                                + mrdev->data_offset;
3102                                        bio->bi_bdev = mrdev->bdev;
3103                                        atomic_inc(&r10_bio->remaining);
3104                                } else
3105                                        r10_bio->devs[1].bio->bi_end_io = NULL;
3106
3107                                /* and maybe write to replacement */
3108                                bio = r10_bio->devs[1].repl_bio;
3109                                if (bio)
3110                                        bio->bi_end_io = NULL;
3111                                /* Note: if mreplace != NULL, then bio
3112                                 * cannot be NULL as r10buf_pool_alloc will
3113                                 * have allocated it.
3114                                 * So the second test here is pointless.
3115                                 * But it keeps semantic-checkers happy, and
3116                                 * this comment keeps human reviewers
3117                                 * happy.
3118                                 */
3119                                if (mreplace == NULL || bio == NULL ||
3120                                    test_bit(Faulty, &mreplace->flags))
3121                                        break;
3122                                bio_reset(bio);
3123                                bio->bi_next = biolist;
3124                                biolist = bio;
3125                                bio->bi_private = r10_bio;
3126                                bio->bi_end_io = end_sync_write;
3127                                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3128                                bio->bi_iter.bi_sector = to_addr +
3129                                        mreplace->data_offset;
3130                                bio->bi_bdev = mreplace->bdev;
3131                                atomic_inc(&r10_bio->remaining);
3132                                break;
3133                        }
3134                        rcu_read_unlock();
3135                        if (j == conf->copies) {
3136                                /* Cannot recover, so abort the recovery or
3137                                 * record a bad block */
3138                                if (any_working) {
3139                                        /* problem is that there are bad blocks
3140                                         * on other device(s)
3141                                         */
3142                                        int k;
3143                                        for (k = 0; k < conf->copies; k++)
3144                                                if (r10_bio->devs[k].devnum == i)
3145                                                        break;
3146                                        if (!test_bit(In_sync,
3147                                                      &mrdev->flags)
3148                                            && !rdev_set_badblocks(
3149                                                    mrdev,
3150                                                    r10_bio->devs[k].addr,
3151                                                    max_sync, 0))
3152                                                any_working = 0;
3153                                        if (mreplace &&
3154                                            !rdev_set_badblocks(
3155                                                    mreplace,
3156                                                    r10_bio->devs[k].addr,
3157                                                    max_sync, 0))
3158                                                any_working = 0;
3159                                }
3160                                if (!any_working)  {
3161                                        if (!test_and_set_bit(MD_RECOVERY_INTR,
3162                                                              &mddev->recovery))
3163                                                printk(KERN_INFO "md/raid10:%s: insufficient "
3164                                                       "working devices for recovery.\n",
3165                                                       mdname(mddev));
3166                                        mirror->recovery_disabled
3167                                                = mddev->recovery_disabled;
3168                                }
3169                                put_buf(r10_bio);
3170                                if (rb2)
3171                                        atomic_dec(&rb2->remaining);
3172                                r10_bio = rb2;
3173                                rdev_dec_pending(mrdev, mddev);
3174                                if (mreplace)
3175                                        rdev_dec_pending(mreplace, mddev);
3176                                break;
3177                        }
3178                        rdev_dec_pending(mrdev, mddev);
3179                        if (mreplace)
3180                                rdev_dec_pending(mreplace, mddev);
3181                }
3182                if (biolist == NULL) {
3183                        while (r10_bio) {
3184                                struct r10bio *rb2 = r10_bio;
3185                                r10_bio = (struct r10bio*) rb2->master_bio;
3186                                rb2->master_bio = NULL;
3187                                put_buf(rb2);
3188                        }
3189                        goto giveup;
3190                }
3191        } else {
3192                /* resync. Schedule a read for every block at this virt offset */
3193                int count = 0;
3194
3195                bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3196
3197                if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3198                                       &sync_blocks, mddev->degraded) &&
3199                    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3200                                                 &mddev->recovery)) {
3201                        /* We can skip this block */
3202                        *skipped = 1;
3203                        return sync_blocks + sectors_skipped;
3204                }
3205                if (sync_blocks < max_sync)
3206                        max_sync = sync_blocks;
3207                r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3208                r10_bio->state = 0;
3209
3210                r10_bio->mddev = mddev;
3211                atomic_set(&r10_bio->remaining, 0);
3212                raise_barrier(conf, 0);
3213                conf->next_resync = sector_nr;
3214
3215                r10_bio->master_bio = NULL;
3216                r10_bio->sector = sector_nr;
3217                set_bit(R10BIO_IsSync, &r10_bio->state);
3218                raid10_find_phys(conf, r10_bio);
3219                r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3220
3221                for (i = 0; i < conf->copies; i++) {
3222                        int d = r10_bio->devs[i].devnum;
3223                        sector_t first_bad, sector;
3224                        int bad_sectors;
3225                        struct md_rdev *rdev;
3226
3227                        if (r10_bio->devs[i].repl_bio)
3228                                r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3229
3230                        bio = r10_bio->devs[i].bio;
3231                        bio_reset(bio);
3232                        bio->bi_error = -EIO;
3233                        rcu_read_lock();
3234                        rdev = rcu_dereference(conf->mirrors[d].rdev);
3235                        if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3236                                rcu_read_unlock();
3237                                continue;
3238                        }
3239                        sector = r10_bio->devs[i].addr;
3240                        if (is_badblock(rdev, sector, max_sync,
3241                                        &first_bad, &bad_sectors)) {
3242                                if (first_bad > sector)
3243                                        max_sync = first_bad - sector;
3244                                else {
3245                                        bad_sectors -= (sector - first_bad);
3246                                        if (max_sync > bad_sectors)
3247                                                max_sync = bad_sectors;
3248                                        rcu_read_unlock();
3249                                        continue;
3250                                }
3251                        }
3252                        atomic_inc(&rdev->nr_pending);
3253                        atomic_inc(&r10_bio->remaining);
3254                        bio->bi_next = biolist;
3255                        biolist = bio;
3256                        bio->bi_private = r10_bio;
3257                        bio->bi_end_io = end_sync_read;
3258                        bio_set_op_attrs(bio, REQ_OP_READ, 0);
3259                        bio->bi_iter.bi_sector = sector + rdev->data_offset;
3260                        bio->bi_bdev = rdev->bdev;
3261                        count++;
3262
3263                        rdev = rcu_dereference(conf->mirrors[d].replacement);
3264                        if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3265                                rcu_read_unlock();
3266                                continue;
3267                        }
3268                        atomic_inc(&rdev->nr_pending);
3269                        rcu_read_unlock();
3270
3271                        /* Need to set up for writing to the replacement */
3272                        bio = r10_bio->devs[i].repl_bio;
3273                        bio_reset(bio);
3274                        bio->bi_error = -EIO;
3275
3276                        sector = r10_bio->devs[i].addr;
3277                        bio->bi_next = biolist;
3278                        biolist = bio;
3279                        bio->bi_private = r10_bio;
3280                        bio->bi_end_io = end_sync_write;
3281                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3282                        bio->bi_iter.bi_sector = sector + rdev->data_offset;
3283                        bio->bi_bdev = rdev->bdev;
3284                        count++;
3285                }
3286
3287                if (count < 2) {
3288                        for (i=0; i<conf->copies; i++) {
3289                                int d = r10_bio->devs[i].devnum;
3290                                if (r10_bio->devs[i].bio->bi_end_io)
3291                                        rdev_dec_pending(conf->mirrors[d].rdev,
3292                                                         mddev);
3293                                if (r10_bio->devs[i].repl_bio &&
3294                                    r10_bio->devs[i].repl_bio->bi_end_io)
3295                                        rdev_dec_pending(
3296                                                conf->mirrors[d].replacement,
3297                                                mddev);
3298                        }
3299                        put_buf(r10_bio);
3300                        biolist = NULL;
3301                        goto giveup;
3302                }
3303        }
3304
3305        nr_sectors = 0;
3306        if (sector_nr + max_sync < max_sector)
3307                max_sector = sector_nr + max_sync;
3308        do {
3309                struct page *page;
3310                int len = PAGE_SIZE;
3311                if (sector_nr + (len>>9) > max_sector)
3312                        len = (max_sector - sector_nr) << 9;
3313                if (len == 0)
3314                        break;
3315                for (bio= biolist ; bio ; bio=bio->bi_next) {
3316                        struct bio *bio2;
3317                        page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3318                        if (bio_add_page(bio, page, len, 0))
3319                                continue;
3320
3321                        /* stop here */
3322                        bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3323                        for (bio2 = biolist;
3324                             bio2 && bio2 != bio;
3325                             bio2 = bio2->bi_next) {
3326                                /* remove last page from this bio */
3327                                bio2->bi_vcnt--;
3328                                bio2->bi_iter.bi_size -= len;
3329                                bio_clear_flag(bio2, BIO_SEG_VALID);
3330                        }
3331                        goto bio_full;
3332                }
3333                nr_sectors += len>>9;
3334                sector_nr += len>>9;
3335        } while (biolist->bi_vcnt < RESYNC_PAGES);
3336 bio_full:
3337        r10_bio->sectors = nr_sectors;
3338
3339        while (biolist) {
3340                bio = biolist;
3341                biolist = biolist->bi_next;
3342
3343                bio->bi_next = NULL;
3344                r10_bio = bio->bi_private;
3345                r10_bio->sectors = nr_sectors;
3346
3347                if (bio->bi_end_io == end_sync_read) {
3348                        md_sync_acct(bio->bi_bdev, nr_sectors);
3349                        bio->bi_error = 0;
3350                        generic_make_request(bio);
3351                }
3352        }
3353
3354        if (sectors_skipped)
3355                /* pretend they weren't skipped, it makes
3356                 * no important difference in this case
3357                 */
3358                md_done_sync(mddev, sectors_skipped, 1);
3359
3360        return sectors_skipped + nr_sectors;
3361 giveup:
3362        /* There is nowhere to write, so all non-sync
3363         * drives must be failed or in resync, all drives
3364         * have a bad block, so try the next chunk...
3365         */
3366        if (sector_nr + max_sync < max_sector)
3367                max_sector = sector_nr + max_sync;
3368
3369        sectors_skipped += (max_sector - sector_nr);
3370        chunks_skipped ++;
3371        sector_nr = max_sector;
3372        goto skipped;
3373}
3374
3375static sector_t
3376raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3377{
3378        sector_t size;
3379        struct r10conf *conf = mddev->private;
3380
3381        if (!raid_disks)
3382                raid_disks = min(conf->geo.raid_disks,
3383                                 conf->prev.raid_disks);
3384        if (!sectors)
3385                sectors = conf->dev_sectors;
3386
3387        size = sectors >> conf->geo.chunk_shift;
3388        sector_div(size, conf->geo.far_copies);
3389        size = size * raid_disks;
3390        sector_div(size, conf->geo.near_copies);
3391
3392        return size << conf->geo.chunk_shift;
3393}
3394
3395static void calc_sectors(struct r10conf *conf, sector_t size)
3396{
3397        /* Calculate the number of sectors-per-device that will
3398         * actually be used, and set conf->dev_sectors and
3399         * conf->stride
3400         */
3401
3402        size = size >> conf->geo.chunk_shift;
3403        sector_div(size, conf->geo.far_copies);
3404        size = size * conf->geo.raid_disks;
3405        sector_div(size, conf->geo.near_copies);
3406        /* 'size' is now the number of chunks in the array */
3407        /* calculate "used chunks per device" */
3408        size = size * conf->copies;
3409
3410        /* We need to round up when dividing by raid_disks to
3411         * get the stride size.
3412         */
3413        size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3414
3415        conf->dev_sectors = size << conf->geo.chunk_shift;
3416
3417        if (conf->geo.far_offset)
3418                conf->geo.stride = 1 << conf->geo.chunk_shift;
3419        else {
3420                sector_div(size, conf->geo.far_copies);
3421                conf->geo.stride = size << conf->geo.chunk_shift;
3422        }
3423}
3424
3425enum geo_type {geo_new, geo_old, geo_start};
3426static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3427{
3428        int nc, fc, fo;
3429        int layout, chunk, disks;
3430        switch (new) {
3431        case geo_old:
3432                layout = mddev->layout;
3433                chunk = mddev->chunk_sectors;
3434                disks = mddev->raid_disks - mddev->delta_disks;
3435                break;
3436        case geo_new:
3437                layout = mddev->new_layout;
3438                chunk = mddev->new_chunk_sectors;
3439                disks = mddev->raid_disks;
3440                break;
3441        default: /* avoid 'may be unused' warnings */
3442        case geo_start: /* new when starting reshape - raid_disks not
3443                         * updated yet. */
3444                layout = mddev->new_layout;
3445                chunk = mddev->new_chunk_sectors;
3446                disks = mddev->raid_disks + mddev->delta_disks;
3447                break;
3448        }
3449        if (layout >> 19)
3450                return -1;
3451        if (chunk < (PAGE_SIZE >> 9) ||
3452            !is_power_of_2(chunk))
3453                return -2;
3454        nc = layout & 255;
3455        fc = (layout >> 8) & 255;
3456        fo = layout & (1<<16);
3457        geo->raid_disks = disks;
3458        geo->near_copies = nc;
3459        geo->far_copies = fc;
3460        geo->far_offset = fo;
3461        switch (layout >> 17) {
3462        case 0: /* original layout.  simple but not always optimal */
3463                geo->far_set_size = disks;
3464                break;
3465        case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3466                 * actually using this, but leave code here just in case.*/
3467                geo->far_set_size = disks/fc;
3468                WARN(geo->far_set_size < fc,
3469                     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3470                break;
3471        case 2: /* "improved" layout fixed to match documentation */
3472                geo->far_set_size = fc * nc;
3473                break;
3474        default: /* Not a valid layout */
3475                return -1;
3476        }
3477        geo->chunk_mask = chunk - 1;
3478        geo->chunk_shift = ffz(~chunk);
3479        return nc*fc;
3480}
3481
3482static struct r10conf *setup_conf(struct mddev *mddev)
3483{
3484        struct r10conf *conf = NULL;
3485        int err = -EINVAL;
3486        struct geom geo;
3487        int copies;
3488
3489        copies = setup_geo(&geo, mddev, geo_new);
3490
3491        if (copies == -2) {
3492                printk(KERN_ERR "md/raid10:%s: chunk size must be "
3493                       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3494                       mdname(mddev), PAGE_SIZE);
3495                goto out;
3496        }
3497
3498        if (copies < 2 || copies > mddev->raid_disks) {
3499                printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3500                       mdname(mddev), mddev->new_layout);
3501                goto out;
3502        }
3503
3504        err = -ENOMEM;
3505        conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3506        if (!conf)
3507                goto out;
3508
3509        /* FIXME calc properly */
3510        conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3511                                                            max(0,-mddev->delta_disks)),
3512                                GFP_KERNEL);
3513        if (!conf->mirrors)
3514                goto out;
3515
3516        conf->tmppage = alloc_page(GFP_KERNEL);
3517        if (!conf->tmppage)
3518                goto out;
3519
3520        conf->geo = geo;
3521        conf->copies = copies;
3522        conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3523                                           r10bio_pool_free, conf);
3524        if (!conf->r10bio_pool)
3525                goto out;
3526
3527        calc_sectors(conf, mddev->dev_sectors);
3528        if (mddev->reshape_position == MaxSector) {
3529                conf->prev = conf->geo;
3530                conf->reshape_progress = MaxSector;
3531        } else {
3532                if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3533                        err = -EINVAL;
3534                        goto out;
3535                }
3536                conf->reshape_progress = mddev->reshape_position;
3537                if (conf->prev.far_offset)
3538                        conf->prev.stride = 1 << conf->prev.chunk_shift;
3539                else
3540                        /* far_copies must be 1 */
3541                        conf->prev.stride = conf->dev_sectors;
3542        }
3543        conf->reshape_safe = conf->reshape_progress;
3544        spin_lock_init(&conf->device_lock);
3545        INIT_LIST_HEAD(&conf->retry_list);
3546        INIT_LIST_HEAD(&conf->bio_end_io_list);
3547
3548        spin_lock_init(&conf->resync_lock);
3549        init_waitqueue_head(&conf->wait_barrier);
3550        atomic_set(&conf->nr_pending, 0);
3551
3552        conf->thread = md_register_thread(raid10d, mddev, "raid10");
3553        if (!conf->thread)
3554                goto out;
3555
3556        conf->mddev = mddev;
3557        return conf;
3558
3559 out:
3560        if (err == -ENOMEM)
3561                printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3562                       mdname(mddev));
3563        if (conf) {
3564                mempool_destroy(conf->r10bio_pool);
3565                kfree(conf->mirrors);
3566                safe_put_page(conf->tmppage);
3567                kfree(conf);
3568        }
3569        return ERR_PTR(err);
3570}
3571
3572static int raid10_run(struct mddev *mddev)
3573{
3574        struct r10conf *conf;
3575        int i, disk_idx, chunk_size;
3576        struct raid10_info *disk;
3577        struct md_rdev *rdev;
3578        sector_t size;
3579        sector_t min_offset_diff = 0;
3580        int first = 1;
3581        bool discard_supported = false;
3582
3583        if (mddev->private == NULL) {
3584                conf = setup_conf(mddev);
3585                if (IS_ERR(conf))
3586                        return PTR_ERR(conf);
3587                mddev->private = conf;
3588        }
3589        conf = mddev->private;
3590        if (!conf)
3591                goto out;
3592
3593        mddev->thread = conf->thread;
3594        conf->thread = NULL;
3595
3596        chunk_size = mddev->chunk_sectors << 9;
3597        if (mddev->queue) {
3598                blk_queue_max_discard_sectors(mddev->queue,
3599                                              mddev->chunk_sectors);
3600                blk_queue_max_write_same_sectors(mddev->queue, 0);
3601                blk_queue_io_min(mddev->queue, chunk_size);
3602                if (conf->geo.raid_disks % conf->geo.near_copies)
3603                        blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3604                else
3605                        blk_queue_io_opt(mddev->queue, chunk_size *
3606                                         (conf->geo.raid_disks / conf->geo.near_copies));
3607        }
3608
3609        rdev_for_each(rdev, mddev) {
3610                long long diff;
3611                struct request_queue *q;
3612
3613                disk_idx = rdev->raid_disk;
3614                if (disk_idx < 0)
3615                        continue;
3616                if (disk_idx >= conf->geo.raid_disks &&
3617                    disk_idx >= conf->prev.raid_disks)
3618                        continue;
3619                disk = conf->mirrors + disk_idx;
3620
3621                if (test_bit(Replacement, &rdev->flags)) {
3622                        if (disk->replacement)
3623                                goto out_free_conf;
3624                        disk->replacement = rdev;
3625                } else {
3626                        if (disk->rdev)
3627                                goto out_free_conf;
3628                        disk->rdev = rdev;
3629                }
3630                q = bdev_get_queue(rdev->bdev);
3631                diff = (rdev->new_data_offset - rdev->data_offset);
3632                if (!mddev->reshape_backwards)
3633                        diff = -diff;
3634                if (diff < 0)
3635                        diff = 0;
3636                if (first || diff < min_offset_diff)
3637                        min_offset_diff = diff;
3638
3639                if (mddev->gendisk)
3640                        disk_stack_limits(mddev->gendisk, rdev->bdev,
3641                                          rdev->data_offset << 9);
3642
3643                disk->head_position = 0;
3644
3645                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3646                        discard_supported = true;
3647        }
3648
3649        if (mddev->queue) {
3650                if (discard_supported)
3651                        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3652                                                mddev->queue);
3653                else
3654                        queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3655                                                  mddev->queue);
3656        }
3657        /* need to check that every block has at least one working mirror */
3658        if (!enough(conf, -1)) {
3659                printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3660                       mdname(mddev));
3661                goto out_free_conf;
3662        }
3663
3664        if (conf->reshape_progress != MaxSector) {
3665                /* must ensure that shape change is supported */
3666                if (conf->geo.far_copies != 1 &&
3667                    conf->geo.far_offset == 0)
3668                        goto out_free_conf;
3669                if (conf->prev.far_copies != 1 &&
3670                    conf->prev.far_offset == 0)
3671                        goto out_free_conf;
3672        }
3673
3674        mddev->degraded = 0;
3675        for (i = 0;
3676             i < conf->geo.raid_disks
3677                     || i < conf->prev.raid_disks;
3678             i++) {
3679
3680                disk = conf->mirrors + i;
3681
3682                if (!disk->rdev && disk->replacement) {
3683                        /* The replacement is all we have - use it */
3684                        disk->rdev = disk->replacement;
3685                        disk->replacement = NULL;
3686                        clear_bit(Replacement, &disk->rdev->flags);
3687                }
3688
3689                if (!disk->rdev ||
3690                    !test_bit(In_sync, &disk->rdev->flags)) {
3691                        disk->head_position = 0;
3692                        mddev->degraded++;
3693                        if (disk->rdev &&
3694                            disk->rdev->saved_raid_disk < 0)
3695                                conf->fullsync = 1;
3696                }
3697                disk->recovery_disabled = mddev->recovery_disabled - 1;
3698        }
3699
3700        if (mddev->recovery_cp != MaxSector)
3701                printk(KERN_NOTICE "md/raid10:%s: not clean"
3702                       " -- starting background reconstruction\n",
3703                       mdname(mddev));
3704        printk(KERN_INFO
3705                "md/raid10:%s: active with %d out of %d devices\n",
3706                mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3707                conf->geo.raid_disks);
3708        /*
3709         * Ok, everything is just fine now
3710         */
3711        mddev->dev_sectors = conf->dev_sectors;
3712        size = raid10_size(mddev, 0, 0);
3713        md_set_array_sectors(mddev, size);
3714        mddev->resync_max_sectors = size;
3715
3716        if (mddev->queue) {
3717                int stripe = conf->geo.raid_disks *
3718                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3719
3720                /* Calculate max read-ahead size.
3721                 * We need to readahead at least twice a whole stripe....
3722                 * maybe...
3723                 */
3724                stripe /= conf->geo.near_copies;
3725                if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3726                        mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3727        }
3728
3729        if (md_integrity_register(mddev))
3730                goto out_free_conf;
3731
3732        if (conf->reshape_progress != MaxSector) {
3733                unsigned long before_length, after_length;
3734
3735                before_length = ((1 << conf->prev.chunk_shift) *
3736                                 conf->prev.far_copies);
3737                after_length = ((1 << conf->geo.chunk_shift) *
3738                                conf->geo.far_copies);
3739
3740                if (max(before_length, after_length) > min_offset_diff) {
3741                        /* This cannot work */
3742                        printk("md/raid10: offset difference not enough to continue reshape\n");
3743                        goto out_free_conf;
3744                }
3745                conf->offset_diff = min_offset_diff;
3746
3747                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3748                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3749                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3750                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3751                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3752                                                        "reshape");
3753        }
3754
3755        return 0;
3756
3757out_free_conf:
3758        md_unregister_thread(&mddev->thread);
3759        mempool_destroy(conf->r10bio_pool);
3760        safe_put_page(conf->tmppage);
3761        kfree(conf->mirrors);
3762        kfree(conf);
3763        mddev->private = NULL;
3764out:
3765        return -EIO;
3766}
3767
3768static void raid10_free(struct mddev *mddev, void *priv)
3769{
3770        struct r10conf *conf = priv;
3771
3772        mempool_destroy(conf->r10bio_pool);
3773        safe_put_page(conf->tmppage);
3774        kfree(conf->mirrors);
3775        kfree(conf->mirrors_old);
3776        kfree(conf->mirrors_new);
3777        kfree(conf);
3778}
3779
3780static void raid10_quiesce(struct mddev *mddev, int state)
3781{
3782        struct r10conf *conf = mddev->private;
3783
3784        switch(state) {
3785        case 1:
3786                raise_barrier(conf, 0);
3787                break;
3788        case 0:
3789                lower_barrier(conf);
3790                break;
3791        }
3792}
3793
3794static int raid10_resize(struct mddev *mddev, sector_t sectors)
3795{
3796        /* Resize of 'far' arrays is not supported.
3797         * For 'near' and 'offset' arrays we can set the
3798         * number of sectors used to be an appropriate multiple
3799         * of the chunk size.
3800         * For 'offset', this is far_copies*chunksize.
3801         * For 'near' the multiplier is the LCM of
3802         * near_copies and raid_disks.
3803         * So if far_copies > 1 && !far_offset, fail.
3804         * Else find LCM(raid_disks, near_copy)*far_copies and
3805         * multiply by chunk_size.  Then round to this number.
3806         * This is mostly done by raid10_size()
3807         */
3808        struct r10conf *conf = mddev->private;
3809        sector_t oldsize, size;
3810
3811        if (mddev->reshape_position != MaxSector)
3812                return -EBUSY;
3813
3814        if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3815                return -EINVAL;
3816
3817        oldsize = raid10_size(mddev, 0, 0);
3818        size = raid10_size(mddev, sectors, 0);
3819        if (mddev->external_size &&
3820            mddev->array_sectors > size)
3821                return -EINVAL;
3822        if (mddev->bitmap) {
3823                int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3824                if (ret)
3825                        return ret;
3826        }
3827        md_set_array_sectors(mddev, size);
3828        if (mddev->queue) {
3829                set_capacity(mddev->gendisk, mddev->array_sectors);
3830                revalidate_disk(mddev->gendisk);
3831        }
3832        if (sectors > mddev->dev_sectors &&
3833            mddev->recovery_cp > oldsize) {
3834                mddev->recovery_cp = oldsize;
3835                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3836        }
3837        calc_sectors(conf, sectors);
3838        mddev->dev_sectors = conf->dev_sectors;
3839        mddev->resync_max_sectors = size;
3840        return 0;
3841}
3842
3843static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3844{
3845        struct md_rdev *rdev;
3846        struct r10conf *conf;
3847
3848        if (mddev->degraded > 0) {
3849                printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3850                       mdname(mddev));
3851                return ERR_PTR(-EINVAL);
3852        }
3853        sector_div(size, devs);
3854
3855        /* Set new parameters */
3856        mddev->new_level = 10;
3857        /* new layout: far_copies = 1, near_copies = 2 */
3858        mddev->new_layout = (1<<8) + 2;
3859        mddev->new_chunk_sectors = mddev->chunk_sectors;
3860        mddev->delta_disks = mddev->raid_disks;
3861        mddev->raid_disks *= 2;
3862        /* make sure it will be not marked as dirty */
3863        mddev->recovery_cp = MaxSector;
3864        mddev->dev_sectors = size;
3865
3866        conf = setup_conf(mddev);
3867        if (!IS_ERR(conf)) {
3868                rdev_for_each(rdev, mddev)
3869                        if (rdev->raid_disk >= 0) {
3870                                rdev->new_raid_disk = rdev->raid_disk * 2;
3871                                rdev->sectors = size;
3872                        }
3873                conf->barrier = 1;
3874        }
3875
3876        return conf;
3877}
3878
3879static void *raid10_takeover(struct mddev *mddev)
3880{
3881        struct r0conf *raid0_conf;
3882
3883        /* raid10 can take over:
3884         *  raid0 - providing it has only two drives
3885         */
3886        if (mddev->level == 0) {
3887                /* for raid0 takeover only one zone is supported */
3888                raid0_conf = mddev->private;
3889                if (raid0_conf->nr_strip_zones > 1) {
3890                        printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3891                               " with more than one zone.\n",
3892                               mdname(mddev));
3893                        return ERR_PTR(-EINVAL);
3894                }
3895                return raid10_takeover_raid0(mddev,
3896                        raid0_conf->strip_zone->zone_end,
3897                        raid0_conf->strip_zone->nb_dev);
3898        }
3899        return ERR_PTR(-EINVAL);
3900}
3901
3902static int raid10_check_reshape(struct mddev *mddev)
3903{
3904        /* Called when there is a request to change
3905         * - layout (to ->new_layout)
3906         * - chunk size (to ->new_chunk_sectors)
3907         * - raid_disks (by delta_disks)
3908         * or when trying to restart a reshape that was ongoing.
3909         *
3910         * We need to validate the request and possibly allocate
3911         * space if that might be an issue later.
3912         *
3913         * Currently we reject any reshape of a 'far' mode array,
3914         * allow chunk size to change if new is generally acceptable,
3915         * allow raid_disks to increase, and allow
3916         * a switch between 'near' mode and 'offset' mode.
3917         */
3918        struct r10conf *conf = mddev->private;
3919        struct geom geo;
3920
3921        if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3922                return -EINVAL;
3923
3924        if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3925                /* mustn't change number of copies */
3926                return -EINVAL;
3927        if (geo.far_copies > 1 && !geo.far_offset)
3928                /* Cannot switch to 'far' mode */
3929                return -EINVAL;
3930
3931        if (mddev->array_sectors & geo.chunk_mask)
3932                        /* not factor of array size */
3933                        return -EINVAL;
3934
3935        if (!enough(conf, -1))
3936                return -EINVAL;
3937
3938        kfree(conf->mirrors_new);
3939        conf->mirrors_new = NULL;
3940        if (mddev->delta_disks > 0) {
3941                /* allocate new 'mirrors' list */
3942                conf->mirrors_new = kzalloc(
3943                        sizeof(struct raid10_info)
3944                        *(mddev->raid_disks +
3945                          mddev->delta_disks),
3946                        GFP_KERNEL);
3947                if (!conf->mirrors_new)
3948                        return -ENOMEM;
3949        }
3950        return 0;
3951}
3952
3953/*
3954 * Need to check if array has failed when deciding whether to:
3955 *  - start an array
3956 *  - remove non-faulty devices
3957 *  - add a spare
3958 *  - allow a reshape
3959 * This determination is simple when no reshape is happening.
3960 * However if there is a reshape, we need to carefully check
3961 * both the before and after sections.
3962 * This is because some failed devices may only affect one
3963 * of the two sections, and some non-in_sync devices may
3964 * be insync in the section most affected by failed devices.
3965 */
3966static int calc_degraded(struct r10conf *conf)
3967{
3968        int degraded, degraded2;
3969        int i;
3970
3971        rcu_read_lock();
3972        degraded = 0;
3973        /* 'prev' section first */
3974        for (i = 0; i < conf->prev.raid_disks; i++) {
3975                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3976                if (!rdev || test_bit(Faulty, &rdev->flags))
3977                        degraded++;
3978                else if (!test_bit(In_sync, &rdev->flags))
3979                        /* When we can reduce the number of devices in
3980                         * an array, this might not contribute to
3981                         * 'degraded'.  It does now.
3982                         */
3983                        degraded++;
3984        }
3985        rcu_read_unlock();
3986        if (conf->geo.raid_disks == conf->prev.raid_disks)
3987                return degraded;
3988        rcu_read_lock();
3989        degraded2 = 0;
3990        for (i = 0; i < conf->geo.raid_disks; i++) {
3991                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3992                if (!rdev || test_bit(Faulty, &rdev->flags))
3993                        degraded2++;
3994                else if (!test_bit(In_sync, &rdev->flags)) {
3995                        /* If reshape is increasing the number of devices,
3996                         * this section has already been recovered, so
3997                         * it doesn't contribute to degraded.
3998                         * else it does.
3999                         */
4000                        if (conf->geo.raid_disks <= conf->prev.raid_disks)
4001                                degraded2++;
4002                }
4003        }
4004        rcu_read_unlock();
4005        if (degraded2 > degraded)
4006                return degraded2;
4007        return degraded;
4008}
4009
4010static int raid10_start_reshape(struct mddev *mddev)
4011{
4012        /* A 'reshape' has been requested. This commits
4013         * the various 'new' fields and sets MD_RECOVER_RESHAPE
4014         * This also checks if there are enough spares and adds them
4015         * to the array.
4016         * We currently require enough spares to make the final
4017         * array non-degraded.  We also require that the difference
4018         * between old and new data_offset - on each device - is
4019         * enough that we never risk over-writing.
4020         */
4021
4022        unsigned long before_length, after_length;
4023        sector_t min_offset_diff = 0;
4024        int first = 1;
4025        struct geom new;
4026        struct r10conf *conf = mddev->private;
4027        struct md_rdev *rdev;
4028        int spares = 0;
4029        int ret;
4030
4031        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4032                return -EBUSY;
4033
4034        if (setup_geo(&new, mddev, geo_start) != conf->copies)
4035                return -EINVAL;
4036
4037        before_length = ((1 << conf->prev.chunk_shift) *
4038                         conf->prev.far_copies);
4039        after_length = ((1 << conf->geo.chunk_shift) *
4040                        conf->geo.far_copies);
4041
4042        rdev_for_each(rdev, mddev) {
4043                if (!test_bit(In_sync, &rdev->flags)
4044                    && !test_bit(Faulty, &rdev->flags))
4045                        spares++;
4046                if (rdev->raid_disk >= 0) {
4047                        long long diff = (rdev->new_data_offset
4048                                          - rdev->data_offset);
4049                        if (!mddev->reshape_backwards)
4050                                diff = -diff;
4051                        if (diff < 0)
4052                                diff = 0;
4053                        if (first || diff < min_offset_diff)
4054                                min_offset_diff = diff;
4055                }
4056        }
4057
4058        if (max(before_length, after_length) > min_offset_diff)
4059                return -EINVAL;
4060
4061        if (spares < mddev->delta_disks)
4062                return -EINVAL;
4063
4064        conf->offset_diff = min_offset_diff;
4065        spin_lock_irq(&conf->device_lock);
4066        if (conf->mirrors_new) {
4067                memcpy(conf->mirrors_new, conf->mirrors,
4068                       sizeof(struct raid10_info)*conf->prev.raid_disks);
4069                smp_mb();
4070                kfree(conf->mirrors_old);
4071                conf->mirrors_old = conf->mirrors;
4072                conf->mirrors = conf->mirrors_new;
4073                conf->mirrors_new = NULL;
4074        }
4075        setup_geo(&conf->geo, mddev, geo_start);
4076        smp_mb();
4077        if (mddev->reshape_backwards) {
4078                sector_t size = raid10_size(mddev, 0, 0);
4079                if (size < mddev->array_sectors) {
4080                        spin_unlock_irq(&conf->device_lock);
4081                        printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4082                               mdname(mddev));
4083                        return -EINVAL;
4084                }
4085                mddev->resync_max_sectors = size;
4086                conf->reshape_progress = size;
4087        } else
4088                conf->reshape_progress = 0;
4089        conf->reshape_safe = conf->reshape_progress;
4090        spin_unlock_irq(&conf->device_lock);
4091
4092        if (mddev->delta_disks && mddev->bitmap) {
4093                ret = bitmap_resize(mddev->bitmap,
4094                                    raid10_size(mddev, 0,
4095                                                conf->geo.raid_disks),
4096                                    0, 0);
4097                if (ret)
4098                        goto abort;
4099        }
4100        if (mddev->delta_disks > 0) {
4101                rdev_for_each(rdev, mddev)
4102                        if (rdev->raid_disk < 0 &&
4103                            !test_bit(Faulty, &rdev->flags)) {
4104                                if (raid10_add_disk(mddev, rdev) == 0) {
4105                                        if (rdev->raid_disk >=
4106                                            conf->prev.raid_disks)
4107                                                set_bit(In_sync, &rdev->flags);
4108                                        else
4109                                                rdev->recovery_offset = 0;
4110
4111                                        if (sysfs_link_rdev(mddev, rdev))
4112                                                /* Failure here  is OK */;
4113                                }
4114                        } else if (rdev->raid_disk >= conf->prev.raid_disks
4115                                   && !test_bit(Faulty, &rdev->flags)) {
4116                                /* This is a spare that was manually added */
4117                                set_bit(In_sync, &rdev->flags);
4118                        }
4119        }
4120        /* When a reshape changes the number of devices,
4121         * ->degraded is measured against the larger of the
4122         * pre and  post numbers.
4123         */
4124        spin_lock_irq(&conf->device_lock);
4125        mddev->degraded = calc_degraded(conf);
4126        spin_unlock_irq(&conf->device_lock);
4127        mddev->raid_disks = conf->geo.raid_disks;
4128        mddev->reshape_position = conf->reshape_progress;
4129        set_bit(MD_CHANGE_DEVS, &mddev->flags);
4130
4131        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4132        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4133        clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4134        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4135        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4136
4137        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4138                                                "reshape");
4139        if (!mddev->sync_thread) {
4140                ret = -EAGAIN;
4141                goto abort;
4142        }
4143        conf->reshape_checkpoint = jiffies;
4144        md_wakeup_thread(mddev->sync_thread);
4145        md_new_event(mddev);
4146        return 0;
4147
4148abort:
4149        mddev->recovery = 0;
4150        spin_lock_irq(&conf->device_lock);
4151        conf->geo = conf->prev;
4152        mddev->raid_disks = conf->geo.raid_disks;
4153        rdev_for_each(rdev, mddev)
4154                rdev->new_data_offset = rdev->data_offset;
4155        smp_wmb();
4156        conf->reshape_progress = MaxSector;
4157        conf->reshape_safe = MaxSector;
4158        mddev->reshape_position = MaxSector;
4159        spin_unlock_irq(&conf->device_lock);
4160        return ret;
4161}
4162
4163/* Calculate the last device-address that could contain
4164 * any block from the chunk that includes the array-address 's'
4165 * and report the next address.
4166 * i.e. the address returned will be chunk-aligned and after
4167 * any data that is in the chunk containing 's'.
4168 */
4169static sector_t last_dev_address(sector_t s, struct geom *geo)
4170{
4171        s = (s | geo->chunk_mask) + 1;
4172        s >>= geo->chunk_shift;
4173        s *= geo->near_copies;
4174        s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4175        s *= geo->far_copies;
4176        s <<= geo->chunk_shift;
4177        return s;
4178}
4179
4180/* Calculate the first device-address that could contain
4181 * any block from the chunk that includes the array-address 's'.
4182 * This too will be the start of a chunk
4183 */
4184static sector_t first_dev_address(sector_t s, struct geom *geo)
4185{
4186        s >>= geo->chunk_shift;
4187        s *= geo->near_copies;
4188        sector_div(s, geo->raid_disks);
4189        s *= geo->far_copies;
4190        s <<= geo->chunk_shift;
4191        return s;
4192}
4193
4194static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4195                                int *skipped)
4196{
4197        /* We simply copy at most one chunk (smallest of old and new)
4198         * at a time, possibly less if that exceeds RESYNC_PAGES,
4199         * or we hit a bad block or something.
4200         * This might mean we pause for normal IO in the middle of
4201         * a chunk, but that is not a problem as mddev->reshape_position
4202         * can record any location.
4203         *
4204         * If we will want to write to a location that isn't
4205         * yet recorded as 'safe' (i.e. in metadata on disk) then
4206         * we need to flush all reshape requests and update the metadata.
4207         *
4208         * When reshaping forwards (e.g. to more devices), we interpret
4209         * 'safe' as the earliest block which might not have been copied
4210         * down yet.  We divide this by previous stripe size and multiply
4211         * by previous stripe length to get lowest device offset that we
4212         * cannot write to yet.
4213         * We interpret 'sector_nr' as an address that we want to write to.
4214         * From this we use last_device_address() to find where we might
4215         * write to, and first_device_address on the  'safe' position.
4216         * If this 'next' write position is after the 'safe' position,
4217         * we must update the metadata to increase the 'safe' position.
4218         *
4219         * When reshaping backwards, we round in the opposite direction
4220         * and perform the reverse test:  next write position must not be
4221         * less than current safe position.
4222         *
4223         * In all this the minimum difference in data offsets
4224         * (conf->offset_diff - always positive) allows a bit of slack,
4225         * so next can be after 'safe', but not by more than offset_diff
4226         *
4227         * We need to prepare all the bios here before we start any IO
4228         * to ensure the size we choose is acceptable to all devices.
4229         * The means one for each copy for write-out and an extra one for
4230         * read-in.
4231         * We store the read-in bio in ->master_bio and the others in
4232         * ->devs[x].bio and ->devs[x].repl_bio.
4233         */
4234        struct r10conf *conf = mddev->private;
4235        struct r10bio *r10_bio;
4236        sector_t next, safe, last;
4237        int max_sectors;
4238        int nr_sectors;
4239        int s;
4240        struct md_rdev *rdev;
4241        int need_flush = 0;
4242        struct bio *blist;
4243        struct bio *bio, *read_bio;
4244        int sectors_done = 0;
4245
4246        if (sector_nr == 0) {
4247                /* If restarting in the middle, skip the initial sectors */
4248                if (mddev->reshape_backwards &&
4249                    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4250                        sector_nr = (raid10_size(mddev, 0, 0)
4251                                     - conf->reshape_progress);
4252                } else if (!mddev->reshape_backwards &&
4253                           conf->reshape_progress > 0)
4254                        sector_nr = conf->reshape_progress;
4255                if (sector_nr) {
4256                        mddev->curr_resync_completed = sector_nr;
4257                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4258                        *skipped = 1;
4259                        return sector_nr;
4260                }
4261        }
4262
4263        /* We don't use sector_nr to track where we are up to
4264         * as that doesn't work well for ->reshape_backwards.
4265         * So just use ->reshape_progress.
4266         */
4267        if (mddev->reshape_backwards) {
4268                /* 'next' is the earliest device address that we might
4269                 * write to for this chunk in the new layout
4270                 */
4271                next = first_dev_address(conf->reshape_progress - 1,
4272                                         &conf->geo);
4273
4274                /* 'safe' is the last device address that we might read from
4275                 * in the old layout after a restart
4276                 */
4277                safe = last_dev_address(conf->reshape_safe - 1,
4278                                        &conf->prev);
4279
4280                if (next + conf->offset_diff < safe)
4281                        need_flush = 1;
4282
4283                last = conf->reshape_progress - 1;
4284                sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4285                                               & conf->prev.chunk_mask);
4286                if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4287                        sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4288        } else {
4289                /* 'next' is after the last device address that we
4290                 * might write to for this chunk in the new layout
4291                 */
4292                next = last_dev_address(conf->reshape_progress, &conf->geo);
4293
4294                /* 'safe' is the earliest device address that we might
4295                 * read from in the old layout after a restart
4296                 */
4297                safe = first_dev_address(conf->reshape_safe, &conf->prev);
4298
4299                /* Need to update metadata if 'next' might be beyond 'safe'
4300                 * as that would possibly corrupt data
4301                 */
4302                if (next > safe + conf->offset_diff)
4303                        need_flush = 1;
4304
4305                sector_nr = conf->reshape_progress;
4306                last  = sector_nr | (conf->geo.chunk_mask
4307                                     & conf->prev.chunk_mask);
4308
4309                if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4310                        last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4311        }
4312
4313        if (need_flush ||
4314            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4315                /* Need to update reshape_position in metadata */
4316                wait_barrier(conf);
4317                mddev->reshape_position = conf->reshape_progress;
4318                if (mddev->reshape_backwards)
4319                        mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4320                                - conf->reshape_progress;
4321                else
4322                        mddev->curr_resync_completed = conf->reshape_progress;
4323                conf->reshape_checkpoint = jiffies;
4324                set_bit(MD_CHANGE_DEVS, &mddev->flags);
4325                md_wakeup_thread(mddev->thread);
4326                wait_event(mddev->sb_wait, mddev->flags == 0 ||
4327                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4328                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4329                        allow_barrier(conf);
4330                        return sectors_done;
4331                }
4332                conf->reshape_safe = mddev->reshape_position;
4333                allow_barrier(conf);
4334        }
4335
4336read_more:
4337        /* Now schedule reads for blocks from sector_nr to last */
4338        r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4339        r10_bio->state = 0;
4340        raise_barrier(conf, sectors_done != 0);
4341        atomic_set(&r10_bio->remaining, 0);
4342        r10_bio->mddev = mddev;
4343        r10_bio->sector = sector_nr;
4344        set_bit(R10BIO_IsReshape, &r10_bio->state);
4345        r10_bio->sectors = last - sector_nr + 1;
4346        rdev = read_balance(conf, r10_bio, &max_sectors);
4347        BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4348
4349        if (!rdev) {
4350                /* Cannot read from here, so need to record bad blocks
4351                 * on all the target devices.
4352                 */
4353                // FIXME
4354                mempool_free(r10_bio, conf->r10buf_pool);
4355                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4356                return sectors_done;
4357        }
4358
4359        read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4360
4361        read_bio->bi_bdev = rdev->bdev;
4362        read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4363                               + rdev->data_offset);
4364        read_bio->bi_private = r10_bio;
4365        read_bio->bi_end_io = end_sync_read;
4366        bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4367        read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4368        read_bio->bi_error = 0;
4369        read_bio->bi_vcnt = 0;
4370        read_bio->bi_iter.bi_size = 0;
4371        r10_bio->master_bio = read_bio;
4372        r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4373
4374        /* Now find the locations in the new layout */
4375        __raid10_find_phys(&conf->geo, r10_bio);
4376
4377        blist = read_bio;
4378        read_bio->bi_next = NULL;
4379
4380        rcu_read_lock();
4381        for (s = 0; s < conf->copies*2; s++) {
4382                struct bio *b;
4383                int d = r10_bio->devs[s/2].devnum;
4384                struct md_rdev *rdev2;
4385                if (s&1) {
4386                        rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4387                        b = r10_bio->devs[s/2].repl_bio;
4388                } else {
4389                        rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4390                        b = r10_bio->devs[s/2].bio;
4391                }
4392                if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4393                        continue;
4394
4395                bio_reset(b);
4396                b->bi_bdev = rdev2->bdev;
4397                b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4398                        rdev2->new_data_offset;
4399                b->bi_private = r10_bio;
4400                b->bi_end_io = end_reshape_write;
4401                bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4402                b->bi_next = blist;
4403                blist = b;
4404        }
4405
4406        /* Now add as many pages as possible to all of these bios. */
4407
4408        nr_sectors = 0;
4409        for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4410                struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4411                int len = (max_sectors - s) << 9;
4412                if (len > PAGE_SIZE)
4413                        len = PAGE_SIZE;
4414                for (bio = blist; bio ; bio = bio->bi_next) {
4415                        struct bio *bio2;
4416                        if (bio_add_page(bio, page, len, 0))
4417                                continue;
4418
4419                        /* Didn't fit, must stop */
4420                        for (bio2 = blist;
4421                             bio2 && bio2 != bio;
4422                             bio2 = bio2->bi_next) {
4423                                /* Remove last page from this bio */
4424                                bio2->bi_vcnt--;
4425                                bio2->bi_iter.bi_size -= len;
4426                                bio_clear_flag(bio2, BIO_SEG_VALID);
4427                        }
4428                        goto bio_full;
4429                }
4430                sector_nr += len >> 9;
4431                nr_sectors += len >> 9;
4432        }
4433bio_full:
4434        rcu_read_unlock();
4435        r10_bio->sectors = nr_sectors;
4436
4437        /* Now submit the read */
4438        md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4439        atomic_inc(&r10_bio->remaining);
4440        read_bio->bi_next = NULL;
4441        generic_make_request(read_bio);
4442        sector_nr += nr_sectors;
4443        sectors_done += nr_sectors;
4444        if (sector_nr <= last)
4445                goto read_more;
4446
4447        /* Now that we have done the whole section we can
4448         * update reshape_progress
4449         */
4450        if (mddev->reshape_backwards)
4451                conf->reshape_progress -= sectors_done;
4452        else
4453                conf->reshape_progress += sectors_done;
4454
4455        return sectors_done;
4456}
4457
4458static void end_reshape_request(struct r10bio *r10_bio);
4459static int handle_reshape_read_error(struct mddev *mddev,
4460                                     struct r10bio *r10_bio);
4461static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4462{
4463        /* Reshape read completed.  Hopefully we have a block
4464         * to write out.
4465         * If we got a read error then we do sync 1-page reads from
4466         * elsewhere until we find the data - or give up.
4467         */
4468        struct r10conf *conf = mddev->private;
4469        int s;
4470
4471        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4472                if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4473                        /* Reshape has been aborted */
4474                        md_done_sync(mddev, r10_bio->sectors, 0);
4475                        return;
4476                }
4477
4478        /* We definitely have the data in the pages, schedule the
4479         * writes.
4480         */
4481        atomic_set(&r10_bio->remaining, 1);
4482        for (s = 0; s < conf->copies*2; s++) {
4483                struct bio *b;
4484                int d = r10_bio->devs[s/2].devnum;
4485                struct md_rdev *rdev;
4486                rcu_read_lock();
4487                if (s&1) {
4488                        rdev = rcu_dereference(conf->mirrors[d].replacement);
4489                        b = r10_bio->devs[s/2].repl_bio;
4490                } else {
4491                        rdev = rcu_dereference(conf->mirrors[d].rdev);
4492                        b = r10_bio->devs[s/2].bio;
4493                }
4494                if (!rdev || test_bit(Faulty, &rdev->flags)) {
4495                        rcu_read_unlock();
4496                        continue;
4497                }
4498                atomic_inc(&rdev->nr_pending);
4499                rcu_read_unlock();
4500                md_sync_acct(b->bi_bdev, r10_bio->sectors);
4501                atomic_inc(&r10_bio->remaining);
4502                b->bi_next = NULL;
4503                generic_make_request(b);
4504        }
4505        end_reshape_request(r10_bio);
4506}
4507
4508static void end_reshape(struct r10conf *conf)
4509{
4510        if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4511                return;
4512
4513        spin_lock_irq(&conf->device_lock);
4514        conf->prev = conf->geo;
4515        md_finish_reshape(conf->mddev);
4516        smp_wmb();
4517        conf->reshape_progress = MaxSector;
4518        conf->reshape_safe = MaxSector;
4519        spin_unlock_irq(&conf->device_lock);
4520
4521        /* read-ahead size must cover two whole stripes, which is
4522         * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4523         */
4524        if (conf->mddev->queue) {
4525                int stripe = conf->geo.raid_disks *
4526                        ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4527                stripe /= conf->geo.near_copies;
4528                if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4529                        conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4530        }
4531        conf->fullsync = 0;
4532}
4533
4534static int handle_reshape_read_error(struct mddev *mddev,
4535                                     struct r10bio *r10_bio)
4536{
4537        /* Use sync reads to get the blocks from somewhere else */
4538        int sectors = r10_bio->sectors;
4539        struct r10conf *conf = mddev->private;
4540        struct {
4541                struct r10bio r10_bio;
4542                struct r10dev devs[conf->copies];
4543        } on_stack;
4544        struct r10bio *r10b = &on_stack.r10_bio;
4545        int slot = 0;
4546        int idx = 0;
4547        struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4548
4549        r10b->sector = r10_bio->sector;
4550        __raid10_find_phys(&conf->prev, r10b);
4551
4552        while (sectors) {
4553                int s = sectors;
4554                int success = 0;
4555                int first_slot = slot;
4556
4557                if (s > (PAGE_SIZE >> 9))
4558                        s = PAGE_SIZE >> 9;
4559
4560                rcu_read_lock();
4561                while (!success) {
4562                        int d = r10b->devs[slot].devnum;
4563                        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4564                        sector_t addr;
4565                        if (rdev == NULL ||
4566                            test_bit(Faulty, &rdev->flags) ||
4567                            !test_bit(In_sync, &rdev->flags))
4568                                goto failed;
4569
4570                        addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4571                        atomic_inc(&rdev->nr_pending);
4572                        rcu_read_unlock();
4573                        success = sync_page_io(rdev,
4574                                               addr,
4575                                               s << 9,
4576                                               bvec[idx].bv_page,
4577                                               REQ_OP_READ, 0, false);
4578                        rdev_dec_pending(rdev, mddev);
4579                        rcu_read_lock();
4580                        if (success)
4581                                break;
4582                failed:
4583                        slot++;
4584                        if (slot >= conf->copies)
4585                                slot = 0;
4586                        if (slot == first_slot)
4587                                break;
4588                }
4589                rcu_read_unlock();
4590                if (!success) {
4591                        /* couldn't read this block, must give up */
4592                        set_bit(MD_RECOVERY_INTR,
4593                                &mddev->recovery);
4594                        return -EIO;
4595                }
4596                sectors -= s;
4597                idx++;
4598        }
4599        return 0;
4600}
4601
4602static void end_reshape_write(struct bio *bio)
4603{
4604        struct r10bio *r10_bio = bio->bi_private;
4605        struct mddev *mddev = r10_bio->mddev;
4606        struct r10conf *conf = mddev->private;
4607        int d;
4608        int slot;
4609        int repl;
4610        struct md_rdev *rdev = NULL;
4611
4612        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4613        if (repl)
4614                rdev = conf->mirrors[d].replacement;
4615        if (!rdev) {
4616                smp_mb();
4617                rdev = conf->mirrors[d].rdev;
4618        }
4619
4620        if (bio->bi_error) {
4621                /* FIXME should record badblock */
4622                md_error(mddev, rdev);
4623        }
4624
4625        rdev_dec_pending(rdev, mddev);
4626        end_reshape_request(r10_bio);
4627}
4628
4629static void end_reshape_request(struct r10bio *r10_bio)
4630{
4631        if (!atomic_dec_and_test(&r10_bio->remaining))
4632                return;
4633        md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4634        bio_put(r10_bio->master_bio);
4635        put_buf(r10_bio);
4636}
4637
4638static void raid10_finish_reshape(struct mddev *mddev)
4639{
4640        struct r10conf *conf = mddev->private;
4641
4642        if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4643                return;
4644
4645        if (mddev->delta_disks > 0) {
4646                sector_t size = raid10_size(mddev, 0, 0);
4647                md_set_array_sectors(mddev, size);
4648                if (mddev->recovery_cp > mddev->resync_max_sectors) {
4649                        mddev->recovery_cp = mddev->resync_max_sectors;
4650                        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4651                }
4652                mddev->resync_max_sectors = size;
4653                if (mddev->queue) {
4654                        set_capacity(mddev->gendisk, mddev->array_sectors);
4655                        revalidate_disk(mddev->gendisk);
4656                }
4657        } else {
4658                int d;
4659                rcu_read_lock();
4660                for (d = conf->geo.raid_disks ;
4661                     d < conf->geo.raid_disks - mddev->delta_disks;
4662                     d++) {
4663                        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4664                        if (rdev)
4665                                clear_bit(In_sync, &rdev->flags);
4666                        rdev = rcu_dereference(conf->mirrors[d].replacement);
4667                        if (rdev)
4668                                clear_bit(In_sync, &rdev->flags);
4669                }
4670                rcu_read_unlock();
4671        }
4672        mddev->layout = mddev->new_layout;
4673        mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4674        mddev->reshape_position = MaxSector;
4675        mddev->delta_disks = 0;
4676        mddev->reshape_backwards = 0;
4677}
4678
4679static struct md_personality raid10_personality =
4680{
4681        .name           = "raid10",
4682        .level          = 10,
4683        .owner          = THIS_MODULE,
4684        .make_request   = raid10_make_request,
4685        .run            = raid10_run,
4686        .free           = raid10_free,
4687        .status         = raid10_status,
4688        .error_handler  = raid10_error,
4689        .hot_add_disk   = raid10_add_disk,
4690        .hot_remove_disk= raid10_remove_disk,
4691        .spare_active   = raid10_spare_active,
4692        .sync_request   = raid10_sync_request,
4693        .quiesce        = raid10_quiesce,
4694        .size           = raid10_size,
4695        .resize         = raid10_resize,
4696        .takeover       = raid10_takeover,
4697        .check_reshape  = raid10_check_reshape,
4698        .start_reshape  = raid10_start_reshape,
4699        .finish_reshape = raid10_finish_reshape,
4700        .congested      = raid10_congested,
4701};
4702
4703static int __init raid_init(void)
4704{
4705        return register_md_personality(&raid10_personality);
4706}
4707
4708static void raid_exit(void)
4709{
4710        unregister_md_personality(&raid10_personality);
4711}
4712
4713module_init(raid_init);
4714module_exit(raid_exit);
4715MODULE_LICENSE("GPL");
4716MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4717MODULE_ALIAS("md-personality-9"); /* RAID10 */
4718MODULE_ALIAS("md-raid10");
4719MODULE_ALIAS("md-level-10");
4720
4721module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4722