linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  36
  37#include <linux/bitmap.h>
  38#include <linux/crc32.h>
  39#include <linux/ctype.h>
  40#include <linux/debugfs.h>
  41#include <linux/err.h>
  42#include <linux/etherdevice.h>
  43#include <linux/firmware.h>
  44#include <linux/if.h>
  45#include <linux/if_vlan.h>
  46#include <linux/init.h>
  47#include <linux/log2.h>
  48#include <linux/mdio.h>
  49#include <linux/module.h>
  50#include <linux/moduleparam.h>
  51#include <linux/mutex.h>
  52#include <linux/netdevice.h>
  53#include <linux/pci.h>
  54#include <linux/aer.h>
  55#include <linux/rtnetlink.h>
  56#include <linux/sched.h>
  57#include <linux/seq_file.h>
  58#include <linux/sockios.h>
  59#include <linux/vmalloc.h>
  60#include <linux/workqueue.h>
  61#include <net/neighbour.h>
  62#include <net/netevent.h>
  63#include <net/addrconf.h>
  64#include <net/bonding.h>
  65#include <net/addrconf.h>
  66#include <asm/uaccess.h>
  67#include <linux/crash_dump.h>
  68
  69#include "cxgb4.h"
  70#include "cxgb4_filter.h"
  71#include "t4_regs.h"
  72#include "t4_values.h"
  73#include "t4_msg.h"
  74#include "t4fw_api.h"
  75#include "t4fw_version.h"
  76#include "cxgb4_dcb.h"
  77#include "cxgb4_debugfs.h"
  78#include "clip_tbl.h"
  79#include "l2t.h"
  80#include "sched.h"
  81#include "cxgb4_tc_u32.h"
  82
  83char cxgb4_driver_name[] = KBUILD_MODNAME;
  84
  85#ifdef DRV_VERSION
  86#undef DRV_VERSION
  87#endif
  88#define DRV_VERSION "2.0.0-ko"
  89const char cxgb4_driver_version[] = DRV_VERSION;
  90#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
  91
  92#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
  93                         NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
  94                         NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
  95
  96/* Macros needed to support the PCI Device ID Table ...
  97 */
  98#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
  99        static const struct pci_device_id cxgb4_pci_tbl[] = {
 100#define CH_PCI_DEVICE_ID_FUNCTION 0x4
 101
 102/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
 103 * called for both.
 104 */
 105#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
 106
 107#define CH_PCI_ID_TABLE_ENTRY(devid) \
 108                {PCI_VDEVICE(CHELSIO, (devid)), 4}
 109
 110#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
 111                { 0, } \
 112        }
 113
 114#include "t4_pci_id_tbl.h"
 115
 116#define FW4_FNAME "cxgb4/t4fw.bin"
 117#define FW5_FNAME "cxgb4/t5fw.bin"
 118#define FW6_FNAME "cxgb4/t6fw.bin"
 119#define FW4_CFNAME "cxgb4/t4-config.txt"
 120#define FW5_CFNAME "cxgb4/t5-config.txt"
 121#define FW6_CFNAME "cxgb4/t6-config.txt"
 122#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
 123#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
 124#define PHY_AQ1202_DEVICEID 0x4409
 125#define PHY_BCM84834_DEVICEID 0x4486
 126
 127MODULE_DESCRIPTION(DRV_DESC);
 128MODULE_AUTHOR("Chelsio Communications");
 129MODULE_LICENSE("Dual BSD/GPL");
 130MODULE_VERSION(DRV_VERSION);
 131MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
 132MODULE_FIRMWARE(FW4_FNAME);
 133MODULE_FIRMWARE(FW5_FNAME);
 134MODULE_FIRMWARE(FW6_FNAME);
 135
 136/*
 137 * Normally we're willing to become the firmware's Master PF but will be happy
 138 * if another PF has already become the Master and initialized the adapter.
 139 * Setting "force_init" will cause this driver to forcibly establish itself as
 140 * the Master PF and initialize the adapter.
 141 */
 142static uint force_init;
 143
 144module_param(force_init, uint, 0644);
 145MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
 146                 "deprecated parameter");
 147
 148static int dflt_msg_enable = DFLT_MSG_ENABLE;
 149
 150module_param(dflt_msg_enable, int, 0644);
 151MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap, "
 152                 "deprecated parameter");
 153
 154/*
 155 * The driver uses the best interrupt scheme available on a platform in the
 156 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
 157 * of these schemes the driver may consider as follows:
 158 *
 159 * msi = 2: choose from among all three options
 160 * msi = 1: only consider MSI and INTx interrupts
 161 * msi = 0: force INTx interrupts
 162 */
 163static int msi = 2;
 164
 165module_param(msi, int, 0644);
 166MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
 167
 168/*
 169 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
 170 * offset by 2 bytes in order to have the IP headers line up on 4-byte
 171 * boundaries.  This is a requirement for many architectures which will throw
 172 * a machine check fault if an attempt is made to access one of the 4-byte IP
 173 * header fields on a non-4-byte boundary.  And it's a major performance issue
 174 * even on some architectures which allow it like some implementations of the
 175 * x86 ISA.  However, some architectures don't mind this and for some very
 176 * edge-case performance sensitive applications (like forwarding large volumes
 177 * of small packets), setting this DMA offset to 0 will decrease the number of
 178 * PCI-E Bus transfers enough to measurably affect performance.
 179 */
 180static int rx_dma_offset = 2;
 181
 182#ifdef CONFIG_PCI_IOV
 183/* Configure the number of PCI-E Virtual Function which are to be instantiated
 184 * on SR-IOV Capable Physical Functions.
 185 */
 186static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
 187
 188module_param_array(num_vf, uint, NULL, 0644);
 189MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3, deprecated parameter - please use the pci sysfs interface.");
 190#endif
 191
 192/* TX Queue select used to determine what algorithm to use for selecting TX
 193 * queue. Select between the kernel provided function (select_queue=0) or user
 194 * cxgb_select_queue function (select_queue=1)
 195 *
 196 * Default: select_queue=0
 197 */
 198static int select_queue;
 199module_param(select_queue, int, 0644);
 200MODULE_PARM_DESC(select_queue,
 201                 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
 202
 203static struct dentry *cxgb4_debugfs_root;
 204
 205LIST_HEAD(adapter_list);
 206DEFINE_MUTEX(uld_mutex);
 207
 208static void link_report(struct net_device *dev)
 209{
 210        if (!netif_carrier_ok(dev))
 211                netdev_info(dev, "link down\n");
 212        else {
 213                static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
 214
 215                const char *s;
 216                const struct port_info *p = netdev_priv(dev);
 217
 218                switch (p->link_cfg.speed) {
 219                case 10000:
 220                        s = "10Gbps";
 221                        break;
 222                case 1000:
 223                        s = "1000Mbps";
 224                        break;
 225                case 100:
 226                        s = "100Mbps";
 227                        break;
 228                case 40000:
 229                        s = "40Gbps";
 230                        break;
 231                default:
 232                        pr_info("%s: unsupported speed: %d\n",
 233                                dev->name, p->link_cfg.speed);
 234                        return;
 235                }
 236
 237                netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
 238                            fc[p->link_cfg.fc]);
 239        }
 240}
 241
 242#ifdef CONFIG_CHELSIO_T4_DCB
 243/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
 244static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
 245{
 246        struct port_info *pi = netdev_priv(dev);
 247        struct adapter *adap = pi->adapter;
 248        struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
 249        int i;
 250
 251        /* We use a simple mapping of Port TX Queue Index to DCB
 252         * Priority when we're enabling DCB.
 253         */
 254        for (i = 0; i < pi->nqsets; i++, txq++) {
 255                u32 name, value;
 256                int err;
 257
 258                name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
 259                        FW_PARAMS_PARAM_X_V(
 260                                FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
 261                        FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
 262                value = enable ? i : 0xffffffff;
 263
 264                /* Since we can be called while atomic (from "interrupt
 265                 * level") we need to issue the Set Parameters Commannd
 266                 * without sleeping (timeout < 0).
 267                 */
 268                err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
 269                                            &name, &value,
 270                                            -FW_CMD_MAX_TIMEOUT);
 271
 272                if (err)
 273                        dev_err(adap->pdev_dev,
 274                                "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
 275                                enable ? "set" : "unset", pi->port_id, i, -err);
 276                else
 277                        txq->dcb_prio = value;
 278        }
 279}
 280
 281static int cxgb4_dcb_enabled(const struct net_device *dev)
 282{
 283        struct port_info *pi = netdev_priv(dev);
 284
 285        if (!pi->dcb.enabled)
 286                return 0;
 287
 288        return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
 289                (pi->dcb.state == CXGB4_DCB_STATE_HOST));
 290}
 291#endif /* CONFIG_CHELSIO_T4_DCB */
 292
 293void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
 294{
 295        struct net_device *dev = adapter->port[port_id];
 296
 297        /* Skip changes from disabled ports. */
 298        if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
 299                if (link_stat)
 300                        netif_carrier_on(dev);
 301                else {
 302#ifdef CONFIG_CHELSIO_T4_DCB
 303                        if (cxgb4_dcb_enabled(dev)) {
 304                                cxgb4_dcb_state_init(dev);
 305                                dcb_tx_queue_prio_enable(dev, false);
 306                        }
 307#endif /* CONFIG_CHELSIO_T4_DCB */
 308                        netif_carrier_off(dev);
 309                }
 310
 311                link_report(dev);
 312        }
 313}
 314
 315void t4_os_portmod_changed(const struct adapter *adap, int port_id)
 316{
 317        static const char *mod_str[] = {
 318                NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
 319        };
 320
 321        const struct net_device *dev = adap->port[port_id];
 322        const struct port_info *pi = netdev_priv(dev);
 323
 324        if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
 325                netdev_info(dev, "port module unplugged\n");
 326        else if (pi->mod_type < ARRAY_SIZE(mod_str))
 327                netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
 328        else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
 329                netdev_info(dev, "%s: unsupported port module inserted\n",
 330                            dev->name);
 331        else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
 332                netdev_info(dev, "%s: unknown port module inserted\n",
 333                            dev->name);
 334        else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
 335                netdev_info(dev, "%s: transceiver module error\n", dev->name);
 336        else
 337                netdev_info(dev, "%s: unknown module type %d inserted\n",
 338                            dev->name, pi->mod_type);
 339}
 340
 341int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
 342module_param(dbfifo_int_thresh, int, 0644);
 343MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
 344
 345/*
 346 * usecs to sleep while draining the dbfifo
 347 */
 348static int dbfifo_drain_delay = 1000;
 349module_param(dbfifo_drain_delay, int, 0644);
 350MODULE_PARM_DESC(dbfifo_drain_delay,
 351                 "usecs to sleep while draining the dbfifo");
 352
 353static inline int cxgb4_set_addr_hash(struct port_info *pi)
 354{
 355        struct adapter *adap = pi->adapter;
 356        u64 vec = 0;
 357        bool ucast = false;
 358        struct hash_mac_addr *entry;
 359
 360        /* Calculate the hash vector for the updated list and program it */
 361        list_for_each_entry(entry, &adap->mac_hlist, list) {
 362                ucast |= is_unicast_ether_addr(entry->addr);
 363                vec |= (1ULL << hash_mac_addr(entry->addr));
 364        }
 365        return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
 366                                vec, false);
 367}
 368
 369static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
 370{
 371        struct port_info *pi = netdev_priv(netdev);
 372        struct adapter *adap = pi->adapter;
 373        int ret;
 374        u64 mhash = 0;
 375        u64 uhash = 0;
 376        bool free = false;
 377        bool ucast = is_unicast_ether_addr(mac_addr);
 378        const u8 *maclist[1] = {mac_addr};
 379        struct hash_mac_addr *new_entry;
 380
 381        ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
 382                                NULL, ucast ? &uhash : &mhash, false);
 383        if (ret < 0)
 384                goto out;
 385        /* if hash != 0, then add the addr to hash addr list
 386         * so on the end we will calculate the hash for the
 387         * list and program it
 388         */
 389        if (uhash || mhash) {
 390                new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
 391                if (!new_entry)
 392                        return -ENOMEM;
 393                ether_addr_copy(new_entry->addr, mac_addr);
 394                list_add_tail(&new_entry->list, &adap->mac_hlist);
 395                ret = cxgb4_set_addr_hash(pi);
 396        }
 397out:
 398        return ret < 0 ? ret : 0;
 399}
 400
 401static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
 402{
 403        struct port_info *pi = netdev_priv(netdev);
 404        struct adapter *adap = pi->adapter;
 405        int ret;
 406        const u8 *maclist[1] = {mac_addr};
 407        struct hash_mac_addr *entry, *tmp;
 408
 409        /* If the MAC address to be removed is in the hash addr
 410         * list, delete it from the list and update hash vector
 411         */
 412        list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
 413                if (ether_addr_equal(entry->addr, mac_addr)) {
 414                        list_del(&entry->list);
 415                        kfree(entry);
 416                        return cxgb4_set_addr_hash(pi);
 417                }
 418        }
 419
 420        ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
 421        return ret < 0 ? -EINVAL : 0;
 422}
 423
 424/*
 425 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
 426 * If @mtu is -1 it is left unchanged.
 427 */
 428static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
 429{
 430        struct port_info *pi = netdev_priv(dev);
 431        struct adapter *adapter = pi->adapter;
 432
 433        __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
 434        __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
 435
 436        return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
 437                             (dev->flags & IFF_PROMISC) ? 1 : 0,
 438                             (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
 439                             sleep_ok);
 440}
 441
 442/**
 443 *      link_start - enable a port
 444 *      @dev: the port to enable
 445 *
 446 *      Performs the MAC and PHY actions needed to enable a port.
 447 */
 448static int link_start(struct net_device *dev)
 449{
 450        int ret;
 451        struct port_info *pi = netdev_priv(dev);
 452        unsigned int mb = pi->adapter->pf;
 453
 454        /*
 455         * We do not set address filters and promiscuity here, the stack does
 456         * that step explicitly.
 457         */
 458        ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
 459                            !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
 460        if (ret == 0) {
 461                ret = t4_change_mac(pi->adapter, mb, pi->viid,
 462                                    pi->xact_addr_filt, dev->dev_addr, true,
 463                                    true);
 464                if (ret >= 0) {
 465                        pi->xact_addr_filt = ret;
 466                        ret = 0;
 467                }
 468        }
 469        if (ret == 0)
 470                ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
 471                                    &pi->link_cfg);
 472        if (ret == 0) {
 473                local_bh_disable();
 474                ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
 475                                          true, CXGB4_DCB_ENABLED);
 476                local_bh_enable();
 477        }
 478
 479        return ret;
 480}
 481
 482#ifdef CONFIG_CHELSIO_T4_DCB
 483/* Handle a Data Center Bridging update message from the firmware. */
 484static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
 485{
 486        int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
 487        struct net_device *dev = adap->port[adap->chan_map[port]];
 488        int old_dcb_enabled = cxgb4_dcb_enabled(dev);
 489        int new_dcb_enabled;
 490
 491        cxgb4_dcb_handle_fw_update(adap, pcmd);
 492        new_dcb_enabled = cxgb4_dcb_enabled(dev);
 493
 494        /* If the DCB has become enabled or disabled on the port then we're
 495         * going to need to set up/tear down DCB Priority parameters for the
 496         * TX Queues associated with the port.
 497         */
 498        if (new_dcb_enabled != old_dcb_enabled)
 499                dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
 500}
 501#endif /* CONFIG_CHELSIO_T4_DCB */
 502
 503/* Response queue handler for the FW event queue.
 504 */
 505static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
 506                          const struct pkt_gl *gl)
 507{
 508        u8 opcode = ((const struct rss_header *)rsp)->opcode;
 509
 510        rsp++;                                          /* skip RSS header */
 511
 512        /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
 513         */
 514        if (unlikely(opcode == CPL_FW4_MSG &&
 515           ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
 516                rsp++;
 517                opcode = ((const struct rss_header *)rsp)->opcode;
 518                rsp++;
 519                if (opcode != CPL_SGE_EGR_UPDATE) {
 520                        dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
 521                                , opcode);
 522                        goto out;
 523                }
 524        }
 525
 526        if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
 527                const struct cpl_sge_egr_update *p = (void *)rsp;
 528                unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
 529                struct sge_txq *txq;
 530
 531                txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
 532                txq->restarts++;
 533                if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
 534                        struct sge_eth_txq *eq;
 535
 536                        eq = container_of(txq, struct sge_eth_txq, q);
 537                        netif_tx_wake_queue(eq->txq);
 538                } else {
 539                        struct sge_ofld_txq *oq;
 540
 541                        oq = container_of(txq, struct sge_ofld_txq, q);
 542                        tasklet_schedule(&oq->qresume_tsk);
 543                }
 544        } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
 545                const struct cpl_fw6_msg *p = (void *)rsp;
 546
 547#ifdef CONFIG_CHELSIO_T4_DCB
 548                const struct fw_port_cmd *pcmd = (const void *)p->data;
 549                unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
 550                unsigned int action =
 551                        FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
 552
 553                if (cmd == FW_PORT_CMD &&
 554                    action == FW_PORT_ACTION_GET_PORT_INFO) {
 555                        int port = FW_PORT_CMD_PORTID_G(
 556                                        be32_to_cpu(pcmd->op_to_portid));
 557                        struct net_device *dev =
 558                                q->adap->port[q->adap->chan_map[port]];
 559                        int state_input = ((pcmd->u.info.dcbxdis_pkd &
 560                                            FW_PORT_CMD_DCBXDIS_F)
 561                                           ? CXGB4_DCB_INPUT_FW_DISABLED
 562                                           : CXGB4_DCB_INPUT_FW_ENABLED);
 563
 564                        cxgb4_dcb_state_fsm(dev, state_input);
 565                }
 566
 567                if (cmd == FW_PORT_CMD &&
 568                    action == FW_PORT_ACTION_L2_DCB_CFG)
 569                        dcb_rpl(q->adap, pcmd);
 570                else
 571#endif
 572                        if (p->type == 0)
 573                                t4_handle_fw_rpl(q->adap, p->data);
 574        } else if (opcode == CPL_L2T_WRITE_RPL) {
 575                const struct cpl_l2t_write_rpl *p = (void *)rsp;
 576
 577                do_l2t_write_rpl(q->adap, p);
 578        } else if (opcode == CPL_SET_TCB_RPL) {
 579                const struct cpl_set_tcb_rpl *p = (void *)rsp;
 580
 581                filter_rpl(q->adap, p);
 582        } else
 583                dev_err(q->adap->pdev_dev,
 584                        "unexpected CPL %#x on FW event queue\n", opcode);
 585out:
 586        return 0;
 587}
 588
 589static void disable_msi(struct adapter *adapter)
 590{
 591        if (adapter->flags & USING_MSIX) {
 592                pci_disable_msix(adapter->pdev);
 593                adapter->flags &= ~USING_MSIX;
 594        } else if (adapter->flags & USING_MSI) {
 595                pci_disable_msi(adapter->pdev);
 596                adapter->flags &= ~USING_MSI;
 597        }
 598}
 599
 600/*
 601 * Interrupt handler for non-data events used with MSI-X.
 602 */
 603static irqreturn_t t4_nondata_intr(int irq, void *cookie)
 604{
 605        struct adapter *adap = cookie;
 606        u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
 607
 608        if (v & PFSW_F) {
 609                adap->swintr = 1;
 610                t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
 611        }
 612        if (adap->flags & MASTER_PF)
 613                t4_slow_intr_handler(adap);
 614        return IRQ_HANDLED;
 615}
 616
 617/*
 618 * Name the MSI-X interrupts.
 619 */
 620static void name_msix_vecs(struct adapter *adap)
 621{
 622        int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
 623
 624        /* non-data interrupts */
 625        snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
 626
 627        /* FW events */
 628        snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
 629                 adap->port[0]->name);
 630
 631        /* Ethernet queues */
 632        for_each_port(adap, j) {
 633                struct net_device *d = adap->port[j];
 634                const struct port_info *pi = netdev_priv(d);
 635
 636                for (i = 0; i < pi->nqsets; i++, msi_idx++)
 637                        snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
 638                                 d->name, i);
 639        }
 640}
 641
 642static int request_msix_queue_irqs(struct adapter *adap)
 643{
 644        struct sge *s = &adap->sge;
 645        int err, ethqidx;
 646        int msi_index = 2;
 647
 648        err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
 649                          adap->msix_info[1].desc, &s->fw_evtq);
 650        if (err)
 651                return err;
 652
 653        for_each_ethrxq(s, ethqidx) {
 654                err = request_irq(adap->msix_info[msi_index].vec,
 655                                  t4_sge_intr_msix, 0,
 656                                  adap->msix_info[msi_index].desc,
 657                                  &s->ethrxq[ethqidx].rspq);
 658                if (err)
 659                        goto unwind;
 660                msi_index++;
 661        }
 662        return 0;
 663
 664unwind:
 665        while (--ethqidx >= 0)
 666                free_irq(adap->msix_info[--msi_index].vec,
 667                         &s->ethrxq[ethqidx].rspq);
 668        free_irq(adap->msix_info[1].vec, &s->fw_evtq);
 669        return err;
 670}
 671
 672static void free_msix_queue_irqs(struct adapter *adap)
 673{
 674        int i, msi_index = 2;
 675        struct sge *s = &adap->sge;
 676
 677        free_irq(adap->msix_info[1].vec, &s->fw_evtq);
 678        for_each_ethrxq(s, i)
 679                free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
 680}
 681
 682/**
 683 *      cxgb4_write_rss - write the RSS table for a given port
 684 *      @pi: the port
 685 *      @queues: array of queue indices for RSS
 686 *
 687 *      Sets up the portion of the HW RSS table for the port's VI to distribute
 688 *      packets to the Rx queues in @queues.
 689 *      Should never be called before setting up sge eth rx queues
 690 */
 691int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
 692{
 693        u16 *rss;
 694        int i, err;
 695        struct adapter *adapter = pi->adapter;
 696        const struct sge_eth_rxq *rxq;
 697
 698        rxq = &adapter->sge.ethrxq[pi->first_qset];
 699        rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
 700        if (!rss)
 701                return -ENOMEM;
 702
 703        /* map the queue indices to queue ids */
 704        for (i = 0; i < pi->rss_size; i++, queues++)
 705                rss[i] = rxq[*queues].rspq.abs_id;
 706
 707        err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
 708                                  pi->rss_size, rss, pi->rss_size);
 709        /* If Tunnel All Lookup isn't specified in the global RSS
 710         * Configuration, then we need to specify a default Ingress
 711         * Queue for any ingress packets which aren't hashed.  We'll
 712         * use our first ingress queue ...
 713         */
 714        if (!err)
 715                err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
 716                                       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
 717                                       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
 718                                       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
 719                                       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
 720                                       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
 721                                       rss[0]);
 722        kfree(rss);
 723        return err;
 724}
 725
 726/**
 727 *      setup_rss - configure RSS
 728 *      @adap: the adapter
 729 *
 730 *      Sets up RSS for each port.
 731 */
 732static int setup_rss(struct adapter *adap)
 733{
 734        int i, j, err;
 735
 736        for_each_port(adap, i) {
 737                const struct port_info *pi = adap2pinfo(adap, i);
 738
 739                /* Fill default values with equal distribution */
 740                for (j = 0; j < pi->rss_size; j++)
 741                        pi->rss[j] = j % pi->nqsets;
 742
 743                err = cxgb4_write_rss(pi, pi->rss);
 744                if (err)
 745                        return err;
 746        }
 747        return 0;
 748}
 749
 750/*
 751 * Return the channel of the ingress queue with the given qid.
 752 */
 753static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
 754{
 755        qid -= p->ingr_start;
 756        return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
 757}
 758
 759/*
 760 * Wait until all NAPI handlers are descheduled.
 761 */
 762static void quiesce_rx(struct adapter *adap)
 763{
 764        int i;
 765
 766        for (i = 0; i < adap->sge.ingr_sz; i++) {
 767                struct sge_rspq *q = adap->sge.ingr_map[i];
 768
 769                if (q && q->handler) {
 770                        napi_disable(&q->napi);
 771                        local_bh_disable();
 772                        while (!cxgb_poll_lock_napi(q))
 773                                mdelay(1);
 774                        local_bh_enable();
 775                }
 776
 777        }
 778}
 779
 780/* Disable interrupt and napi handler */
 781static void disable_interrupts(struct adapter *adap)
 782{
 783        if (adap->flags & FULL_INIT_DONE) {
 784                t4_intr_disable(adap);
 785                if (adap->flags & USING_MSIX) {
 786                        free_msix_queue_irqs(adap);
 787                        free_irq(adap->msix_info[0].vec, adap);
 788                } else {
 789                        free_irq(adap->pdev->irq, adap);
 790                }
 791                quiesce_rx(adap);
 792        }
 793}
 794
 795/*
 796 * Enable NAPI scheduling and interrupt generation for all Rx queues.
 797 */
 798static void enable_rx(struct adapter *adap)
 799{
 800        int i;
 801
 802        for (i = 0; i < adap->sge.ingr_sz; i++) {
 803                struct sge_rspq *q = adap->sge.ingr_map[i];
 804
 805                if (!q)
 806                        continue;
 807                if (q->handler) {
 808                        cxgb_busy_poll_init_lock(q);
 809                        napi_enable(&q->napi);
 810                }
 811                /* 0-increment GTS to start the timer and enable interrupts */
 812                t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
 813                             SEINTARM_V(q->intr_params) |
 814                             INGRESSQID_V(q->cntxt_id));
 815        }
 816}
 817
 818
 819static int setup_fw_sge_queues(struct adapter *adap)
 820{
 821        struct sge *s = &adap->sge;
 822        int err = 0;
 823
 824        bitmap_zero(s->starving_fl, s->egr_sz);
 825        bitmap_zero(s->txq_maperr, s->egr_sz);
 826
 827        if (adap->flags & USING_MSIX)
 828                adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
 829        else {
 830                err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
 831                                       NULL, NULL, NULL, -1);
 832                if (err)
 833                        return err;
 834                adap->msi_idx = -((int)s->intrq.abs_id + 1);
 835        }
 836
 837        err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
 838                               adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
 839        if (err)
 840                t4_free_sge_resources(adap);
 841        return err;
 842}
 843
 844/**
 845 *      setup_sge_queues - configure SGE Tx/Rx/response queues
 846 *      @adap: the adapter
 847 *
 848 *      Determines how many sets of SGE queues to use and initializes them.
 849 *      We support multiple queue sets per port if we have MSI-X, otherwise
 850 *      just one queue set per port.
 851 */
 852static int setup_sge_queues(struct adapter *adap)
 853{
 854        int err, i, j;
 855        struct sge *s = &adap->sge;
 856        struct sge_uld_rxq_info *rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
 857        unsigned int cmplqid = 0;
 858
 859        for_each_port(adap, i) {
 860                struct net_device *dev = adap->port[i];
 861                struct port_info *pi = netdev_priv(dev);
 862                struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
 863                struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
 864
 865                for (j = 0; j < pi->nqsets; j++, q++) {
 866                        if (adap->msi_idx > 0)
 867                                adap->msi_idx++;
 868                        err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
 869                                               adap->msi_idx, &q->fl,
 870                                               t4_ethrx_handler,
 871                                               NULL,
 872                                               t4_get_mps_bg_map(adap,
 873                                                                 pi->tx_chan));
 874                        if (err)
 875                                goto freeout;
 876                        q->rspq.idx = j;
 877                        memset(&q->stats, 0, sizeof(q->stats));
 878                }
 879                for (j = 0; j < pi->nqsets; j++, t++) {
 880                        err = t4_sge_alloc_eth_txq(adap, t, dev,
 881                                        netdev_get_tx_queue(dev, j),
 882                                        s->fw_evtq.cntxt_id);
 883                        if (err)
 884                                goto freeout;
 885                }
 886        }
 887
 888        j = s->ofldqsets / adap->params.nports; /* iscsi queues per channel */
 889        for_each_ofldtxq(s, i) {
 890                err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
 891                                            adap->port[i / j],
 892                                            s->fw_evtq.cntxt_id);
 893                if (err)
 894                        goto freeout;
 895        }
 896
 897        for_each_port(adap, i) {
 898                /* Note that cmplqid below is 0 if we don't
 899                 * have RDMA queues, and that's the right value.
 900                 */
 901                if (rxq_info)
 902                        cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
 903
 904                err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
 905                                            s->fw_evtq.cntxt_id, cmplqid);
 906                if (err)
 907                        goto freeout;
 908        }
 909
 910        t4_write_reg(adap, is_t4(adap->params.chip) ?
 911                                MPS_TRC_RSS_CONTROL_A :
 912                                MPS_T5_TRC_RSS_CONTROL_A,
 913                     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
 914                     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
 915        return 0;
 916freeout:
 917        t4_free_sge_resources(adap);
 918        return err;
 919}
 920
 921/*
 922 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
 923 * The allocated memory is cleared.
 924 */
 925void *t4_alloc_mem(size_t size)
 926{
 927        void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
 928
 929        if (!p)
 930                p = vzalloc(size);
 931        return p;
 932}
 933
 934/*
 935 * Free memory allocated through alloc_mem().
 936 */
 937void t4_free_mem(void *addr)
 938{
 939        kvfree(addr);
 940}
 941
 942static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
 943                             void *accel_priv, select_queue_fallback_t fallback)
 944{
 945        int txq;
 946
 947#ifdef CONFIG_CHELSIO_T4_DCB
 948        /* If a Data Center Bridging has been successfully negotiated on this
 949         * link then we'll use the skb's priority to map it to a TX Queue.
 950         * The skb's priority is determined via the VLAN Tag Priority Code
 951         * Point field.
 952         */
 953        if (cxgb4_dcb_enabled(dev)) {
 954                u16 vlan_tci;
 955                int err;
 956
 957                err = vlan_get_tag(skb, &vlan_tci);
 958                if (unlikely(err)) {
 959                        if (net_ratelimit())
 960                                netdev_warn(dev,
 961                                            "TX Packet without VLAN Tag on DCB Link\n");
 962                        txq = 0;
 963                } else {
 964                        txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
 965#ifdef CONFIG_CHELSIO_T4_FCOE
 966                        if (skb->protocol == htons(ETH_P_FCOE))
 967                                txq = skb->priority & 0x7;
 968#endif /* CONFIG_CHELSIO_T4_FCOE */
 969                }
 970                return txq;
 971        }
 972#endif /* CONFIG_CHELSIO_T4_DCB */
 973
 974        if (select_queue) {
 975                txq = (skb_rx_queue_recorded(skb)
 976                        ? skb_get_rx_queue(skb)
 977                        : smp_processor_id());
 978
 979                while (unlikely(txq >= dev->real_num_tx_queues))
 980                        txq -= dev->real_num_tx_queues;
 981
 982                return txq;
 983        }
 984
 985        return fallback(dev, skb) % dev->real_num_tx_queues;
 986}
 987
 988static int closest_timer(const struct sge *s, int time)
 989{
 990        int i, delta, match = 0, min_delta = INT_MAX;
 991
 992        for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
 993                delta = time - s->timer_val[i];
 994                if (delta < 0)
 995                        delta = -delta;
 996                if (delta < min_delta) {
 997                        min_delta = delta;
 998                        match = i;
 999                }
1000        }
1001        return match;
1002}
1003
1004static int closest_thres(const struct sge *s, int thres)
1005{
1006        int i, delta, match = 0, min_delta = INT_MAX;
1007
1008        for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1009                delta = thres - s->counter_val[i];
1010                if (delta < 0)
1011                        delta = -delta;
1012                if (delta < min_delta) {
1013                        min_delta = delta;
1014                        match = i;
1015                }
1016        }
1017        return match;
1018}
1019
1020/**
1021 *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1022 *      @q: the Rx queue
1023 *      @us: the hold-off time in us, or 0 to disable timer
1024 *      @cnt: the hold-off packet count, or 0 to disable counter
1025 *
1026 *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1027 *      one of the two needs to be enabled for the queue to generate interrupts.
1028 */
1029int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1030                               unsigned int us, unsigned int cnt)
1031{
1032        struct adapter *adap = q->adap;
1033
1034        if ((us | cnt) == 0)
1035                cnt = 1;
1036
1037        if (cnt) {
1038                int err;
1039                u32 v, new_idx;
1040
1041                new_idx = closest_thres(&adap->sge, cnt);
1042                if (q->desc && q->pktcnt_idx != new_idx) {
1043                        /* the queue has already been created, update it */
1044                        v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1045                            FW_PARAMS_PARAM_X_V(
1046                                        FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1047                            FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1048                        err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1049                                            &v, &new_idx);
1050                        if (err)
1051                                return err;
1052                }
1053                q->pktcnt_idx = new_idx;
1054        }
1055
1056        us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1057        q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1058        return 0;
1059}
1060
1061static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1062{
1063        const struct port_info *pi = netdev_priv(dev);
1064        netdev_features_t changed = dev->features ^ features;
1065        int err;
1066
1067        if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1068                return 0;
1069
1070        err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1071                            -1, -1, -1,
1072                            !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1073        if (unlikely(err))
1074                dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1075        return err;
1076}
1077
1078static int setup_debugfs(struct adapter *adap)
1079{
1080        if (IS_ERR_OR_NULL(adap->debugfs_root))
1081                return -1;
1082
1083#ifdef CONFIG_DEBUG_FS
1084        t4_setup_debugfs(adap);
1085#endif
1086        return 0;
1087}
1088
1089/*
1090 * upper-layer driver support
1091 */
1092
1093/*
1094 * Allocate an active-open TID and set it to the supplied value.
1095 */
1096int cxgb4_alloc_atid(struct tid_info *t, void *data)
1097{
1098        int atid = -1;
1099
1100        spin_lock_bh(&t->atid_lock);
1101        if (t->afree) {
1102                union aopen_entry *p = t->afree;
1103
1104                atid = (p - t->atid_tab) + t->atid_base;
1105                t->afree = p->next;
1106                p->data = data;
1107                t->atids_in_use++;
1108        }
1109        spin_unlock_bh(&t->atid_lock);
1110        return atid;
1111}
1112EXPORT_SYMBOL(cxgb4_alloc_atid);
1113
1114/*
1115 * Release an active-open TID.
1116 */
1117void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1118{
1119        union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1120
1121        spin_lock_bh(&t->atid_lock);
1122        p->next = t->afree;
1123        t->afree = p;
1124        t->atids_in_use--;
1125        spin_unlock_bh(&t->atid_lock);
1126}
1127EXPORT_SYMBOL(cxgb4_free_atid);
1128
1129/*
1130 * Allocate a server TID and set it to the supplied value.
1131 */
1132int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1133{
1134        int stid;
1135
1136        spin_lock_bh(&t->stid_lock);
1137        if (family == PF_INET) {
1138                stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1139                if (stid < t->nstids)
1140                        __set_bit(stid, t->stid_bmap);
1141                else
1142                        stid = -1;
1143        } else {
1144                stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1145                if (stid < 0)
1146                        stid = -1;
1147        }
1148        if (stid >= 0) {
1149                t->stid_tab[stid].data = data;
1150                stid += t->stid_base;
1151                /* IPv6 requires max of 520 bits or 16 cells in TCAM
1152                 * This is equivalent to 4 TIDs. With CLIP enabled it
1153                 * needs 2 TIDs.
1154                 */
1155                if (family == PF_INET)
1156                        t->stids_in_use++;
1157                else
1158                        t->stids_in_use += 2;
1159        }
1160        spin_unlock_bh(&t->stid_lock);
1161        return stid;
1162}
1163EXPORT_SYMBOL(cxgb4_alloc_stid);
1164
1165/* Allocate a server filter TID and set it to the supplied value.
1166 */
1167int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1168{
1169        int stid;
1170
1171        spin_lock_bh(&t->stid_lock);
1172        if (family == PF_INET) {
1173                stid = find_next_zero_bit(t->stid_bmap,
1174                                t->nstids + t->nsftids, t->nstids);
1175                if (stid < (t->nstids + t->nsftids))
1176                        __set_bit(stid, t->stid_bmap);
1177                else
1178                        stid = -1;
1179        } else {
1180                stid = -1;
1181        }
1182        if (stid >= 0) {
1183                t->stid_tab[stid].data = data;
1184                stid -= t->nstids;
1185                stid += t->sftid_base;
1186                t->sftids_in_use++;
1187        }
1188        spin_unlock_bh(&t->stid_lock);
1189        return stid;
1190}
1191EXPORT_SYMBOL(cxgb4_alloc_sftid);
1192
1193/* Release a server TID.
1194 */
1195void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1196{
1197        /* Is it a server filter TID? */
1198        if (t->nsftids && (stid >= t->sftid_base)) {
1199                stid -= t->sftid_base;
1200                stid += t->nstids;
1201        } else {
1202                stid -= t->stid_base;
1203        }
1204
1205        spin_lock_bh(&t->stid_lock);
1206        if (family == PF_INET)
1207                __clear_bit(stid, t->stid_bmap);
1208        else
1209                bitmap_release_region(t->stid_bmap, stid, 1);
1210        t->stid_tab[stid].data = NULL;
1211        if (stid < t->nstids) {
1212                if (family == PF_INET)
1213                        t->stids_in_use--;
1214                else
1215                        t->stids_in_use -= 2;
1216        } else {
1217                t->sftids_in_use--;
1218        }
1219        spin_unlock_bh(&t->stid_lock);
1220}
1221EXPORT_SYMBOL(cxgb4_free_stid);
1222
1223/*
1224 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1225 */
1226static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1227                           unsigned int tid)
1228{
1229        struct cpl_tid_release *req;
1230
1231        set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1232        req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1233        INIT_TP_WR(req, tid);
1234        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1235}
1236
1237/*
1238 * Queue a TID release request and if necessary schedule a work queue to
1239 * process it.
1240 */
1241static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1242                                    unsigned int tid)
1243{
1244        void **p = &t->tid_tab[tid];
1245        struct adapter *adap = container_of(t, struct adapter, tids);
1246
1247        spin_lock_bh(&adap->tid_release_lock);
1248        *p = adap->tid_release_head;
1249        /* Low 2 bits encode the Tx channel number */
1250        adap->tid_release_head = (void **)((uintptr_t)p | chan);
1251        if (!adap->tid_release_task_busy) {
1252                adap->tid_release_task_busy = true;
1253                queue_work(adap->workq, &adap->tid_release_task);
1254        }
1255        spin_unlock_bh(&adap->tid_release_lock);
1256}
1257
1258/*
1259 * Process the list of pending TID release requests.
1260 */
1261static void process_tid_release_list(struct work_struct *work)
1262{
1263        struct sk_buff *skb;
1264        struct adapter *adap;
1265
1266        adap = container_of(work, struct adapter, tid_release_task);
1267
1268        spin_lock_bh(&adap->tid_release_lock);
1269        while (adap->tid_release_head) {
1270                void **p = adap->tid_release_head;
1271                unsigned int chan = (uintptr_t)p & 3;
1272                p = (void *)p - chan;
1273
1274                adap->tid_release_head = *p;
1275                *p = NULL;
1276                spin_unlock_bh(&adap->tid_release_lock);
1277
1278                while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1279                                         GFP_KERNEL)))
1280                        schedule_timeout_uninterruptible(1);
1281
1282                mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1283                t4_ofld_send(adap, skb);
1284                spin_lock_bh(&adap->tid_release_lock);
1285        }
1286        adap->tid_release_task_busy = false;
1287        spin_unlock_bh(&adap->tid_release_lock);
1288}
1289
1290/*
1291 * Release a TID and inform HW.  If we are unable to allocate the release
1292 * message we defer to a work queue.
1293 */
1294void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1295{
1296        struct sk_buff *skb;
1297        struct adapter *adap = container_of(t, struct adapter, tids);
1298
1299        WARN_ON(tid >= t->ntids);
1300
1301        if (t->tid_tab[tid]) {
1302                t->tid_tab[tid] = NULL;
1303                if (t->hash_base && (tid >= t->hash_base))
1304                        atomic_dec(&t->hash_tids_in_use);
1305                else
1306                        atomic_dec(&t->tids_in_use);
1307        }
1308
1309        skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1310        if (likely(skb)) {
1311                mk_tid_release(skb, chan, tid);
1312                t4_ofld_send(adap, skb);
1313        } else
1314                cxgb4_queue_tid_release(t, chan, tid);
1315}
1316EXPORT_SYMBOL(cxgb4_remove_tid);
1317
1318/*
1319 * Allocate and initialize the TID tables.  Returns 0 on success.
1320 */
1321static int tid_init(struct tid_info *t)
1322{
1323        struct adapter *adap = container_of(t, struct adapter, tids);
1324        unsigned int max_ftids = t->nftids + t->nsftids;
1325        unsigned int natids = t->natids;
1326        unsigned int stid_bmap_size;
1327        unsigned int ftid_bmap_size;
1328        size_t size;
1329
1330        stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1331        ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1332        size = t->ntids * sizeof(*t->tid_tab) +
1333               natids * sizeof(*t->atid_tab) +
1334               t->nstids * sizeof(*t->stid_tab) +
1335               t->nsftids * sizeof(*t->stid_tab) +
1336               stid_bmap_size * sizeof(long) +
1337               max_ftids * sizeof(*t->ftid_tab) +
1338               ftid_bmap_size * sizeof(long);
1339
1340        t->tid_tab = t4_alloc_mem(size);
1341        if (!t->tid_tab)
1342                return -ENOMEM;
1343
1344        t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1345        t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1346        t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1347        t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1348        t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1349        spin_lock_init(&t->stid_lock);
1350        spin_lock_init(&t->atid_lock);
1351        spin_lock_init(&t->ftid_lock);
1352
1353        t->stids_in_use = 0;
1354        t->sftids_in_use = 0;
1355        t->afree = NULL;
1356        t->atids_in_use = 0;
1357        atomic_set(&t->tids_in_use, 0);
1358        atomic_set(&t->hash_tids_in_use, 0);
1359
1360        /* Setup the free list for atid_tab and clear the stid bitmap. */
1361        if (natids) {
1362                while (--natids)
1363                        t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1364                t->afree = t->atid_tab;
1365        }
1366
1367        if (is_offload(adap)) {
1368                bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1369                /* Reserve stid 0 for T4/T5 adapters */
1370                if (!t->stid_base &&
1371                    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1372                        __set_bit(0, t->stid_bmap);
1373        }
1374
1375        bitmap_zero(t->ftid_bmap, t->nftids);
1376        return 0;
1377}
1378
1379/**
1380 *      cxgb4_create_server - create an IP server
1381 *      @dev: the device
1382 *      @stid: the server TID
1383 *      @sip: local IP address to bind server to
1384 *      @sport: the server's TCP port
1385 *      @queue: queue to direct messages from this server to
1386 *
1387 *      Create an IP server for the given port and address.
1388 *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1389 */
1390int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1391                        __be32 sip, __be16 sport, __be16 vlan,
1392                        unsigned int queue)
1393{
1394        unsigned int chan;
1395        struct sk_buff *skb;
1396        struct adapter *adap;
1397        struct cpl_pass_open_req *req;
1398        int ret;
1399
1400        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1401        if (!skb)
1402                return -ENOMEM;
1403
1404        adap = netdev2adap(dev);
1405        req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1406        INIT_TP_WR(req, 0);
1407        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1408        req->local_port = sport;
1409        req->peer_port = htons(0);
1410        req->local_ip = sip;
1411        req->peer_ip = htonl(0);
1412        chan = rxq_to_chan(&adap->sge, queue);
1413        req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1414        req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1415                                SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1416        ret = t4_mgmt_tx(adap, skb);
1417        return net_xmit_eval(ret);
1418}
1419EXPORT_SYMBOL(cxgb4_create_server);
1420
1421/*      cxgb4_create_server6 - create an IPv6 server
1422 *      @dev: the device
1423 *      @stid: the server TID
1424 *      @sip: local IPv6 address to bind server to
1425 *      @sport: the server's TCP port
1426 *      @queue: queue to direct messages from this server to
1427 *
1428 *      Create an IPv6 server for the given port and address.
1429 *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1430 */
1431int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1432                         const struct in6_addr *sip, __be16 sport,
1433                         unsigned int queue)
1434{
1435        unsigned int chan;
1436        struct sk_buff *skb;
1437        struct adapter *adap;
1438        struct cpl_pass_open_req6 *req;
1439        int ret;
1440
1441        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1442        if (!skb)
1443                return -ENOMEM;
1444
1445        adap = netdev2adap(dev);
1446        req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1447        INIT_TP_WR(req, 0);
1448        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1449        req->local_port = sport;
1450        req->peer_port = htons(0);
1451        req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1452        req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1453        req->peer_ip_hi = cpu_to_be64(0);
1454        req->peer_ip_lo = cpu_to_be64(0);
1455        chan = rxq_to_chan(&adap->sge, queue);
1456        req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1457        req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1458                                SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1459        ret = t4_mgmt_tx(adap, skb);
1460        return net_xmit_eval(ret);
1461}
1462EXPORT_SYMBOL(cxgb4_create_server6);
1463
1464int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1465                        unsigned int queue, bool ipv6)
1466{
1467        struct sk_buff *skb;
1468        struct adapter *adap;
1469        struct cpl_close_listsvr_req *req;
1470        int ret;
1471
1472        adap = netdev2adap(dev);
1473
1474        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1475        if (!skb)
1476                return -ENOMEM;
1477
1478        req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1479        INIT_TP_WR(req, 0);
1480        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1481        req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1482                                LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1483        ret = t4_mgmt_tx(adap, skb);
1484        return net_xmit_eval(ret);
1485}
1486EXPORT_SYMBOL(cxgb4_remove_server);
1487
1488/**
1489 *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1490 *      @mtus: the HW MTU table
1491 *      @mtu: the target MTU
1492 *      @idx: index of selected entry in the MTU table
1493 *
1494 *      Returns the index and the value in the HW MTU table that is closest to
1495 *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1496 *      table, in which case that smallest available value is selected.
1497 */
1498unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1499                            unsigned int *idx)
1500{
1501        unsigned int i = 0;
1502
1503        while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1504                ++i;
1505        if (idx)
1506                *idx = i;
1507        return mtus[i];
1508}
1509EXPORT_SYMBOL(cxgb4_best_mtu);
1510
1511/**
1512 *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1513 *     @mtus: the HW MTU table
1514 *     @header_size: Header Size
1515 *     @data_size_max: maximum Data Segment Size
1516 *     @data_size_align: desired Data Segment Size Alignment (2^N)
1517 *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1518 *
1519 *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1520 *     MTU Table based solely on a Maximum MTU parameter, we break that
1521 *     parameter up into a Header Size and Maximum Data Segment Size, and
1522 *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1523 *     the Hardware MTU Table which will result in a Data Segment Size with
1524 *     the requested alignment _and_ that MTU isn't "too far" from the
1525 *     closest MTU, then we'll return that rather than the closest MTU.
1526 */
1527unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1528                                    unsigned short header_size,
1529                                    unsigned short data_size_max,
1530                                    unsigned short data_size_align,
1531                                    unsigned int *mtu_idxp)
1532{
1533        unsigned short max_mtu = header_size + data_size_max;
1534        unsigned short data_size_align_mask = data_size_align - 1;
1535        int mtu_idx, aligned_mtu_idx;
1536
1537        /* Scan the MTU Table till we find an MTU which is larger than our
1538         * Maximum MTU or we reach the end of the table.  Along the way,
1539         * record the last MTU found, if any, which will result in a Data
1540         * Segment Length matching the requested alignment.
1541         */
1542        for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1543                unsigned short data_size = mtus[mtu_idx] - header_size;
1544
1545                /* If this MTU minus the Header Size would result in a
1546                 * Data Segment Size of the desired alignment, remember it.
1547                 */
1548                if ((data_size & data_size_align_mask) == 0)
1549                        aligned_mtu_idx = mtu_idx;
1550
1551                /* If we're not at the end of the Hardware MTU Table and the
1552                 * next element is larger than our Maximum MTU, drop out of
1553                 * the loop.
1554                 */
1555                if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1556                        break;
1557        }
1558
1559        /* If we fell out of the loop because we ran to the end of the table,
1560         * then we just have to use the last [largest] entry.
1561         */
1562        if (mtu_idx == NMTUS)
1563                mtu_idx--;
1564
1565        /* If we found an MTU which resulted in the requested Data Segment
1566         * Length alignment and that's "not far" from the largest MTU which is
1567         * less than or equal to the maximum MTU, then use that.
1568         */
1569        if (aligned_mtu_idx >= 0 &&
1570            mtu_idx - aligned_mtu_idx <= 1)
1571                mtu_idx = aligned_mtu_idx;
1572
1573        /* If the caller has passed in an MTU Index pointer, pass the
1574         * MTU Index back.  Return the MTU value.
1575         */
1576        if (mtu_idxp)
1577                *mtu_idxp = mtu_idx;
1578        return mtus[mtu_idx];
1579}
1580EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1581
1582/**
1583 *      cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1584 *      @chip: chip type
1585 *      @viid: VI id of the given port
1586 *
1587 *      Return the SMT index for this VI.
1588 */
1589unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1590{
1591        /* In T4/T5, SMT contains 256 SMAC entries organized in
1592         * 128 rows of 2 entries each.
1593         * In T6, SMT contains 256 SMAC entries in 256 rows.
1594         * TODO: The below code needs to be updated when we add support
1595         * for 256 VFs.
1596         */
1597        if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1598                return ((viid & 0x7f) << 1);
1599        else
1600                return (viid & 0x7f);
1601}
1602EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1603
1604/**
1605 *      cxgb4_port_chan - get the HW channel of a port
1606 *      @dev: the net device for the port
1607 *
1608 *      Return the HW Tx channel of the given port.
1609 */
1610unsigned int cxgb4_port_chan(const struct net_device *dev)
1611{
1612        return netdev2pinfo(dev)->tx_chan;
1613}
1614EXPORT_SYMBOL(cxgb4_port_chan);
1615
1616unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1617{
1618        struct adapter *adap = netdev2adap(dev);
1619        u32 v1, v2, lp_count, hp_count;
1620
1621        v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1622        v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1623        if (is_t4(adap->params.chip)) {
1624                lp_count = LP_COUNT_G(v1);
1625                hp_count = HP_COUNT_G(v1);
1626        } else {
1627                lp_count = LP_COUNT_T5_G(v1);
1628                hp_count = HP_COUNT_T5_G(v2);
1629        }
1630        return lpfifo ? lp_count : hp_count;
1631}
1632EXPORT_SYMBOL(cxgb4_dbfifo_count);
1633
1634/**
1635 *      cxgb4_port_viid - get the VI id of a port
1636 *      @dev: the net device for the port
1637 *
1638 *      Return the VI id of the given port.
1639 */
1640unsigned int cxgb4_port_viid(const struct net_device *dev)
1641{
1642        return netdev2pinfo(dev)->viid;
1643}
1644EXPORT_SYMBOL(cxgb4_port_viid);
1645
1646/**
1647 *      cxgb4_port_idx - get the index of a port
1648 *      @dev: the net device for the port
1649 *
1650 *      Return the index of the given port.
1651 */
1652unsigned int cxgb4_port_idx(const struct net_device *dev)
1653{
1654        return netdev2pinfo(dev)->port_id;
1655}
1656EXPORT_SYMBOL(cxgb4_port_idx);
1657
1658void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1659                         struct tp_tcp_stats *v6)
1660{
1661        struct adapter *adap = pci_get_drvdata(pdev);
1662
1663        spin_lock(&adap->stats_lock);
1664        t4_tp_get_tcp_stats(adap, v4, v6);
1665        spin_unlock(&adap->stats_lock);
1666}
1667EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1668
1669void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1670                      const unsigned int *pgsz_order)
1671{
1672        struct adapter *adap = netdev2adap(dev);
1673
1674        t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1675        t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1676                     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1677                     HPZ3_V(pgsz_order[3]));
1678}
1679EXPORT_SYMBOL(cxgb4_iscsi_init);
1680
1681int cxgb4_flush_eq_cache(struct net_device *dev)
1682{
1683        struct adapter *adap = netdev2adap(dev);
1684
1685        return t4_sge_ctxt_flush(adap, adap->mbox);
1686}
1687EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1688
1689static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1690{
1691        u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1692        __be64 indices;
1693        int ret;
1694
1695        spin_lock(&adap->win0_lock);
1696        ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1697                           sizeof(indices), (__be32 *)&indices,
1698                           T4_MEMORY_READ);
1699        spin_unlock(&adap->win0_lock);
1700        if (!ret) {
1701                *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1702                *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1703        }
1704        return ret;
1705}
1706
1707int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1708                        u16 size)
1709{
1710        struct adapter *adap = netdev2adap(dev);
1711        u16 hw_pidx, hw_cidx;
1712        int ret;
1713
1714        ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1715        if (ret)
1716                goto out;
1717
1718        if (pidx != hw_pidx) {
1719                u16 delta;
1720                u32 val;
1721
1722                if (pidx >= hw_pidx)
1723                        delta = pidx - hw_pidx;
1724                else
1725                        delta = size - hw_pidx + pidx;
1726
1727                if (is_t4(adap->params.chip))
1728                        val = PIDX_V(delta);
1729                else
1730                        val = PIDX_T5_V(delta);
1731                wmb();
1732                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1733                             QID_V(qid) | val);
1734        }
1735out:
1736        return ret;
1737}
1738EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1739
1740int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1741{
1742        struct adapter *adap;
1743        u32 offset, memtype, memaddr;
1744        u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1745        u32 edc0_end, edc1_end, mc0_end, mc1_end;
1746        int ret;
1747
1748        adap = netdev2adap(dev);
1749
1750        offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1751
1752        /* Figure out where the offset lands in the Memory Type/Address scheme.
1753         * This code assumes that the memory is laid out starting at offset 0
1754         * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1755         * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1756         * MC0, and some have both MC0 and MC1.
1757         */
1758        size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1759        edc0_size = EDRAM0_SIZE_G(size) << 20;
1760        size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1761        edc1_size = EDRAM1_SIZE_G(size) << 20;
1762        size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1763        mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1764
1765        edc0_end = edc0_size;
1766        edc1_end = edc0_end + edc1_size;
1767        mc0_end = edc1_end + mc0_size;
1768
1769        if (offset < edc0_end) {
1770                memtype = MEM_EDC0;
1771                memaddr = offset;
1772        } else if (offset < edc1_end) {
1773                memtype = MEM_EDC1;
1774                memaddr = offset - edc0_end;
1775        } else {
1776                if (offset < mc0_end) {
1777                        memtype = MEM_MC0;
1778                        memaddr = offset - edc1_end;
1779                } else if (is_t5(adap->params.chip)) {
1780                        size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1781                        mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1782                        mc1_end = mc0_end + mc1_size;
1783                        if (offset < mc1_end) {
1784                                memtype = MEM_MC1;
1785                                memaddr = offset - mc0_end;
1786                        } else {
1787                                /* offset beyond the end of any memory */
1788                                goto err;
1789                        }
1790                } else {
1791                        /* T4/T6 only has a single memory channel */
1792                        goto err;
1793                }
1794        }
1795
1796        spin_lock(&adap->win0_lock);
1797        ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1798        spin_unlock(&adap->win0_lock);
1799        return ret;
1800
1801err:
1802        dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1803                stag, offset);
1804        return -EINVAL;
1805}
1806EXPORT_SYMBOL(cxgb4_read_tpte);
1807
1808u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1809{
1810        u32 hi, lo;
1811        struct adapter *adap;
1812
1813        adap = netdev2adap(dev);
1814        lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1815        hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1816
1817        return ((u64)hi << 32) | (u64)lo;
1818}
1819EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1820
1821int cxgb4_bar2_sge_qregs(struct net_device *dev,
1822                         unsigned int qid,
1823                         enum cxgb4_bar2_qtype qtype,
1824                         int user,
1825                         u64 *pbar2_qoffset,
1826                         unsigned int *pbar2_qid)
1827{
1828        return t4_bar2_sge_qregs(netdev2adap(dev),
1829                                 qid,
1830                                 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1831                                  ? T4_BAR2_QTYPE_EGRESS
1832                                  : T4_BAR2_QTYPE_INGRESS),
1833                                 user,
1834                                 pbar2_qoffset,
1835                                 pbar2_qid);
1836}
1837EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1838
1839static struct pci_driver cxgb4_driver;
1840
1841static void check_neigh_update(struct neighbour *neigh)
1842{
1843        const struct device *parent;
1844        const struct net_device *netdev = neigh->dev;
1845
1846        if (netdev->priv_flags & IFF_802_1Q_VLAN)
1847                netdev = vlan_dev_real_dev(netdev);
1848        parent = netdev->dev.parent;
1849        if (parent && parent->driver == &cxgb4_driver.driver)
1850                t4_l2t_update(dev_get_drvdata(parent), neigh);
1851}
1852
1853static int netevent_cb(struct notifier_block *nb, unsigned long event,
1854                       void *data)
1855{
1856        switch (event) {
1857        case NETEVENT_NEIGH_UPDATE:
1858                check_neigh_update(data);
1859                break;
1860        case NETEVENT_REDIRECT:
1861        default:
1862                break;
1863        }
1864        return 0;
1865}
1866
1867static bool netevent_registered;
1868static struct notifier_block cxgb4_netevent_nb = {
1869        .notifier_call = netevent_cb
1870};
1871
1872static void drain_db_fifo(struct adapter *adap, int usecs)
1873{
1874        u32 v1, v2, lp_count, hp_count;
1875
1876        do {
1877                v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1878                v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1879                if (is_t4(adap->params.chip)) {
1880                        lp_count = LP_COUNT_G(v1);
1881                        hp_count = HP_COUNT_G(v1);
1882                } else {
1883                        lp_count = LP_COUNT_T5_G(v1);
1884                        hp_count = HP_COUNT_T5_G(v2);
1885                }
1886
1887                if (lp_count == 0 && hp_count == 0)
1888                        break;
1889                set_current_state(TASK_UNINTERRUPTIBLE);
1890                schedule_timeout(usecs_to_jiffies(usecs));
1891        } while (1);
1892}
1893
1894static void disable_txq_db(struct sge_txq *q)
1895{
1896        unsigned long flags;
1897
1898        spin_lock_irqsave(&q->db_lock, flags);
1899        q->db_disabled = 1;
1900        spin_unlock_irqrestore(&q->db_lock, flags);
1901}
1902
1903static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1904{
1905        spin_lock_irq(&q->db_lock);
1906        if (q->db_pidx_inc) {
1907                /* Make sure that all writes to the TX descriptors
1908                 * are committed before we tell HW about them.
1909                 */
1910                wmb();
1911                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1912                             QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1913                q->db_pidx_inc = 0;
1914        }
1915        q->db_disabled = 0;
1916        spin_unlock_irq(&q->db_lock);
1917}
1918
1919static void disable_dbs(struct adapter *adap)
1920{
1921        int i;
1922
1923        for_each_ethrxq(&adap->sge, i)
1924                disable_txq_db(&adap->sge.ethtxq[i].q);
1925        for_each_ofldtxq(&adap->sge, i)
1926                disable_txq_db(&adap->sge.ofldtxq[i].q);
1927        for_each_port(adap, i)
1928                disable_txq_db(&adap->sge.ctrlq[i].q);
1929}
1930
1931static void enable_dbs(struct adapter *adap)
1932{
1933        int i;
1934
1935        for_each_ethrxq(&adap->sge, i)
1936                enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1937        for_each_ofldtxq(&adap->sge, i)
1938                enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
1939        for_each_port(adap, i)
1940                enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1941}
1942
1943static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1944{
1945        enum cxgb4_uld type = CXGB4_ULD_RDMA;
1946
1947        if (adap->uld && adap->uld[type].handle)
1948                adap->uld[type].control(adap->uld[type].handle, cmd);
1949}
1950
1951static void process_db_full(struct work_struct *work)
1952{
1953        struct adapter *adap;
1954
1955        adap = container_of(work, struct adapter, db_full_task);
1956
1957        drain_db_fifo(adap, dbfifo_drain_delay);
1958        enable_dbs(adap);
1959        notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1960        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1961                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1962                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1963                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1964        else
1965                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1966                                 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1967}
1968
1969static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1970{
1971        u16 hw_pidx, hw_cidx;
1972        int ret;
1973
1974        spin_lock_irq(&q->db_lock);
1975        ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1976        if (ret)
1977                goto out;
1978        if (q->db_pidx != hw_pidx) {
1979                u16 delta;
1980                u32 val;
1981
1982                if (q->db_pidx >= hw_pidx)
1983                        delta = q->db_pidx - hw_pidx;
1984                else
1985                        delta = q->size - hw_pidx + q->db_pidx;
1986
1987                if (is_t4(adap->params.chip))
1988                        val = PIDX_V(delta);
1989                else
1990                        val = PIDX_T5_V(delta);
1991                wmb();
1992                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1993                             QID_V(q->cntxt_id) | val);
1994        }
1995out:
1996        q->db_disabled = 0;
1997        q->db_pidx_inc = 0;
1998        spin_unlock_irq(&q->db_lock);
1999        if (ret)
2000                CH_WARN(adap, "DB drop recovery failed.\n");
2001}
2002
2003static void recover_all_queues(struct adapter *adap)
2004{
2005        int i;
2006
2007        for_each_ethrxq(&adap->sge, i)
2008                sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2009        for_each_ofldtxq(&adap->sge, i)
2010                sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2011        for_each_port(adap, i)
2012                sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2013}
2014
2015static void process_db_drop(struct work_struct *work)
2016{
2017        struct adapter *adap;
2018
2019        adap = container_of(work, struct adapter, db_drop_task);
2020
2021        if (is_t4(adap->params.chip)) {
2022                drain_db_fifo(adap, dbfifo_drain_delay);
2023                notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2024                drain_db_fifo(adap, dbfifo_drain_delay);
2025                recover_all_queues(adap);
2026                drain_db_fifo(adap, dbfifo_drain_delay);
2027                enable_dbs(adap);
2028                notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2029        } else if (is_t5(adap->params.chip)) {
2030                u32 dropped_db = t4_read_reg(adap, 0x010ac);
2031                u16 qid = (dropped_db >> 15) & 0x1ffff;
2032                u16 pidx_inc = dropped_db & 0x1fff;
2033                u64 bar2_qoffset;
2034                unsigned int bar2_qid;
2035                int ret;
2036
2037                ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2038                                        0, &bar2_qoffset, &bar2_qid);
2039                if (ret)
2040                        dev_err(adap->pdev_dev, "doorbell drop recovery: "
2041                                "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2042                else
2043                        writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2044                               adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2045
2046                /* Re-enable BAR2 WC */
2047                t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2048        }
2049
2050        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2051                t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2052}
2053
2054void t4_db_full(struct adapter *adap)
2055{
2056        if (is_t4(adap->params.chip)) {
2057                disable_dbs(adap);
2058                notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2059                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2060                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2061                queue_work(adap->workq, &adap->db_full_task);
2062        }
2063}
2064
2065void t4_db_dropped(struct adapter *adap)
2066{
2067        if (is_t4(adap->params.chip)) {
2068                disable_dbs(adap);
2069                notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2070        }
2071        queue_work(adap->workq, &adap->db_drop_task);
2072}
2073
2074void t4_register_netevent_notifier(void)
2075{
2076        if (!netevent_registered) {
2077                register_netevent_notifier(&cxgb4_netevent_nb);
2078                netevent_registered = true;
2079        }
2080}
2081
2082static void detach_ulds(struct adapter *adap)
2083{
2084        unsigned int i;
2085
2086        mutex_lock(&uld_mutex);
2087        list_del(&adap->list_node);
2088        for (i = 0; i < CXGB4_ULD_MAX; i++)
2089                if (adap->uld && adap->uld[i].handle) {
2090                        adap->uld[i].state_change(adap->uld[i].handle,
2091                                             CXGB4_STATE_DETACH);
2092                        adap->uld[i].handle = NULL;
2093                }
2094        if (netevent_registered && list_empty(&adapter_list)) {
2095                unregister_netevent_notifier(&cxgb4_netevent_nb);
2096                netevent_registered = false;
2097        }
2098        mutex_unlock(&uld_mutex);
2099}
2100
2101static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2102{
2103        unsigned int i;
2104
2105        mutex_lock(&uld_mutex);
2106        for (i = 0; i < CXGB4_ULD_MAX; i++)
2107                if (adap->uld && adap->uld[i].handle)
2108                        adap->uld[i].state_change(adap->uld[i].handle,
2109                                                  new_state);
2110        mutex_unlock(&uld_mutex);
2111}
2112
2113#if IS_ENABLED(CONFIG_IPV6)
2114static int cxgb4_inet6addr_handler(struct notifier_block *this,
2115                                   unsigned long event, void *data)
2116{
2117        struct inet6_ifaddr *ifa = data;
2118        struct net_device *event_dev = ifa->idev->dev;
2119        const struct device *parent = NULL;
2120#if IS_ENABLED(CONFIG_BONDING)
2121        struct adapter *adap;
2122#endif
2123        if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2124                event_dev = vlan_dev_real_dev(event_dev);
2125#if IS_ENABLED(CONFIG_BONDING)
2126        if (event_dev->flags & IFF_MASTER) {
2127                list_for_each_entry(adap, &adapter_list, list_node) {
2128                        switch (event) {
2129                        case NETDEV_UP:
2130                                cxgb4_clip_get(adap->port[0],
2131                                               (const u32 *)ifa, 1);
2132                                break;
2133                        case NETDEV_DOWN:
2134                                cxgb4_clip_release(adap->port[0],
2135                                                   (const u32 *)ifa, 1);
2136                                break;
2137                        default:
2138                                break;
2139                        }
2140                }
2141                return NOTIFY_OK;
2142        }
2143#endif
2144
2145        if (event_dev)
2146                parent = event_dev->dev.parent;
2147
2148        if (parent && parent->driver == &cxgb4_driver.driver) {
2149                switch (event) {
2150                case NETDEV_UP:
2151                        cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2152                        break;
2153                case NETDEV_DOWN:
2154                        cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2155                        break;
2156                default:
2157                        break;
2158                }
2159        }
2160        return NOTIFY_OK;
2161}
2162
2163static bool inet6addr_registered;
2164static struct notifier_block cxgb4_inet6addr_notifier = {
2165        .notifier_call = cxgb4_inet6addr_handler
2166};
2167
2168static void update_clip(const struct adapter *adap)
2169{
2170        int i;
2171        struct net_device *dev;
2172        int ret;
2173
2174        rcu_read_lock();
2175
2176        for (i = 0; i < MAX_NPORTS; i++) {
2177                dev = adap->port[i];
2178                ret = 0;
2179
2180                if (dev)
2181                        ret = cxgb4_update_root_dev_clip(dev);
2182
2183                if (ret < 0)
2184                        break;
2185        }
2186        rcu_read_unlock();
2187}
2188#endif /* IS_ENABLED(CONFIG_IPV6) */
2189
2190/**
2191 *      cxgb_up - enable the adapter
2192 *      @adap: adapter being enabled
2193 *
2194 *      Called when the first port is enabled, this function performs the
2195 *      actions necessary to make an adapter operational, such as completing
2196 *      the initialization of HW modules, and enabling interrupts.
2197 *
2198 *      Must be called with the rtnl lock held.
2199 */
2200static int cxgb_up(struct adapter *adap)
2201{
2202        int err;
2203
2204        err = setup_sge_queues(adap);
2205        if (err)
2206                goto out;
2207        err = setup_rss(adap);
2208        if (err)
2209                goto freeq;
2210
2211        if (adap->flags & USING_MSIX) {
2212                name_msix_vecs(adap);
2213                err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2214                                  adap->msix_info[0].desc, adap);
2215                if (err)
2216                        goto irq_err;
2217                err = request_msix_queue_irqs(adap);
2218                if (err) {
2219                        free_irq(adap->msix_info[0].vec, adap);
2220                        goto irq_err;
2221                }
2222        } else {
2223                err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2224                                  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2225                                  adap->port[0]->name, adap);
2226                if (err)
2227                        goto irq_err;
2228        }
2229        enable_rx(adap);
2230        t4_sge_start(adap);
2231        t4_intr_enable(adap);
2232        adap->flags |= FULL_INIT_DONE;
2233        notify_ulds(adap, CXGB4_STATE_UP);
2234#if IS_ENABLED(CONFIG_IPV6)
2235        update_clip(adap);
2236#endif
2237        /* Initialize hash mac addr list*/
2238        INIT_LIST_HEAD(&adap->mac_hlist);
2239 out:
2240        return err;
2241 irq_err:
2242        dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2243 freeq:
2244        t4_free_sge_resources(adap);
2245        goto out;
2246}
2247
2248static void cxgb_down(struct adapter *adapter)
2249{
2250        cancel_work_sync(&adapter->tid_release_task);
2251        cancel_work_sync(&adapter->db_full_task);
2252        cancel_work_sync(&adapter->db_drop_task);
2253        adapter->tid_release_task_busy = false;
2254        adapter->tid_release_head = NULL;
2255
2256        t4_sge_stop(adapter);
2257        t4_free_sge_resources(adapter);
2258        adapter->flags &= ~FULL_INIT_DONE;
2259}
2260
2261/*
2262 * net_device operations
2263 */
2264static int cxgb_open(struct net_device *dev)
2265{
2266        int err;
2267        struct port_info *pi = netdev_priv(dev);
2268        struct adapter *adapter = pi->adapter;
2269
2270        netif_carrier_off(dev);
2271
2272        if (!(adapter->flags & FULL_INIT_DONE)) {
2273                err = cxgb_up(adapter);
2274                if (err < 0)
2275                        return err;
2276        }
2277
2278        err = link_start(dev);
2279        if (!err)
2280                netif_tx_start_all_queues(dev);
2281        return err;
2282}
2283
2284static int cxgb_close(struct net_device *dev)
2285{
2286        struct port_info *pi = netdev_priv(dev);
2287        struct adapter *adapter = pi->adapter;
2288
2289        netif_tx_stop_all_queues(dev);
2290        netif_carrier_off(dev);
2291        return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2292}
2293
2294int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2295                __be32 sip, __be16 sport, __be16 vlan,
2296                unsigned int queue, unsigned char port, unsigned char mask)
2297{
2298        int ret;
2299        struct filter_entry *f;
2300        struct adapter *adap;
2301        int i;
2302        u8 *val;
2303
2304        adap = netdev2adap(dev);
2305
2306        /* Adjust stid to correct filter index */
2307        stid -= adap->tids.sftid_base;
2308        stid += adap->tids.nftids;
2309
2310        /* Check to make sure the filter requested is writable ...
2311         */
2312        f = &adap->tids.ftid_tab[stid];
2313        ret = writable_filter(f);
2314        if (ret)
2315                return ret;
2316
2317        /* Clear out any old resources being used by the filter before
2318         * we start constructing the new filter.
2319         */
2320        if (f->valid)
2321                clear_filter(adap, f);
2322
2323        /* Clear out filter specifications */
2324        memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2325        f->fs.val.lport = cpu_to_be16(sport);
2326        f->fs.mask.lport  = ~0;
2327        val = (u8 *)&sip;
2328        if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2329                for (i = 0; i < 4; i++) {
2330                        f->fs.val.lip[i] = val[i];
2331                        f->fs.mask.lip[i] = ~0;
2332                }
2333                if (adap->params.tp.vlan_pri_map & PORT_F) {
2334                        f->fs.val.iport = port;
2335                        f->fs.mask.iport = mask;
2336                }
2337        }
2338
2339        if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2340                f->fs.val.proto = IPPROTO_TCP;
2341                f->fs.mask.proto = ~0;
2342        }
2343
2344        f->fs.dirsteer = 1;
2345        f->fs.iq = queue;
2346        /* Mark filter as locked */
2347        f->locked = 1;
2348        f->fs.rpttid = 1;
2349
2350        ret = set_filter_wr(adap, stid);
2351        if (ret) {
2352                clear_filter(adap, f);
2353                return ret;
2354        }
2355
2356        return 0;
2357}
2358EXPORT_SYMBOL(cxgb4_create_server_filter);
2359
2360int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2361                unsigned int queue, bool ipv6)
2362{
2363        struct filter_entry *f;
2364        struct adapter *adap;
2365
2366        adap = netdev2adap(dev);
2367
2368        /* Adjust stid to correct filter index */
2369        stid -= adap->tids.sftid_base;
2370        stid += adap->tids.nftids;
2371
2372        f = &adap->tids.ftid_tab[stid];
2373        /* Unlock the filter */
2374        f->locked = 0;
2375
2376        return delete_filter(adap, stid);
2377}
2378EXPORT_SYMBOL(cxgb4_remove_server_filter);
2379
2380static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2381                                                struct rtnl_link_stats64 *ns)
2382{
2383        struct port_stats stats;
2384        struct port_info *p = netdev_priv(dev);
2385        struct adapter *adapter = p->adapter;
2386
2387        /* Block retrieving statistics during EEH error
2388         * recovery. Otherwise, the recovery might fail
2389         * and the PCI device will be removed permanently
2390         */
2391        spin_lock(&adapter->stats_lock);
2392        if (!netif_device_present(dev)) {
2393                spin_unlock(&adapter->stats_lock);
2394                return ns;
2395        }
2396        t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2397                                 &p->stats_base);
2398        spin_unlock(&adapter->stats_lock);
2399
2400        ns->tx_bytes   = stats.tx_octets;
2401        ns->tx_packets = stats.tx_frames;
2402        ns->rx_bytes   = stats.rx_octets;
2403        ns->rx_packets = stats.rx_frames;
2404        ns->multicast  = stats.rx_mcast_frames;
2405
2406        /* detailed rx_errors */
2407        ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2408                               stats.rx_runt;
2409        ns->rx_over_errors   = 0;
2410        ns->rx_crc_errors    = stats.rx_fcs_err;
2411        ns->rx_frame_errors  = stats.rx_symbol_err;
2412        ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2413                               stats.rx_ovflow2 + stats.rx_ovflow3 +
2414                               stats.rx_trunc0 + stats.rx_trunc1 +
2415                               stats.rx_trunc2 + stats.rx_trunc3;
2416        ns->rx_missed_errors = 0;
2417
2418        /* detailed tx_errors */
2419        ns->tx_aborted_errors   = 0;
2420        ns->tx_carrier_errors   = 0;
2421        ns->tx_fifo_errors      = 0;
2422        ns->tx_heartbeat_errors = 0;
2423        ns->tx_window_errors    = 0;
2424
2425        ns->tx_errors = stats.tx_error_frames;
2426        ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2427                ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2428        return ns;
2429}
2430
2431static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2432{
2433        unsigned int mbox;
2434        int ret = 0, prtad, devad;
2435        struct port_info *pi = netdev_priv(dev);
2436        struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2437
2438        switch (cmd) {
2439        case SIOCGMIIPHY:
2440                if (pi->mdio_addr < 0)
2441                        return -EOPNOTSUPP;
2442                data->phy_id = pi->mdio_addr;
2443                break;
2444        case SIOCGMIIREG:
2445        case SIOCSMIIREG:
2446                if (mdio_phy_id_is_c45(data->phy_id)) {
2447                        prtad = mdio_phy_id_prtad(data->phy_id);
2448                        devad = mdio_phy_id_devad(data->phy_id);
2449                } else if (data->phy_id < 32) {
2450                        prtad = data->phy_id;
2451                        devad = 0;
2452                        data->reg_num &= 0x1f;
2453                } else
2454                        return -EINVAL;
2455
2456                mbox = pi->adapter->pf;
2457                if (cmd == SIOCGMIIREG)
2458                        ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2459                                         data->reg_num, &data->val_out);
2460                else
2461                        ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2462                                         data->reg_num, data->val_in);
2463                break;
2464        case SIOCGHWTSTAMP:
2465                return copy_to_user(req->ifr_data, &pi->tstamp_config,
2466                                    sizeof(pi->tstamp_config)) ?
2467                        -EFAULT : 0;
2468        case SIOCSHWTSTAMP:
2469                if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2470                                   sizeof(pi->tstamp_config)))
2471                        return -EFAULT;
2472
2473                switch (pi->tstamp_config.rx_filter) {
2474                case HWTSTAMP_FILTER_NONE:
2475                        pi->rxtstamp = false;
2476                        break;
2477                case HWTSTAMP_FILTER_ALL:
2478                        pi->rxtstamp = true;
2479                        break;
2480                default:
2481                        pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2482                        return -ERANGE;
2483                }
2484
2485                return copy_to_user(req->ifr_data, &pi->tstamp_config,
2486                                    sizeof(pi->tstamp_config)) ?
2487                        -EFAULT : 0;
2488        default:
2489                return -EOPNOTSUPP;
2490        }
2491        return ret;
2492}
2493
2494static void cxgb_set_rxmode(struct net_device *dev)
2495{
2496        /* unfortunately we can't return errors to the stack */
2497        set_rxmode(dev, -1, false);
2498}
2499
2500static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2501{
2502        int ret;
2503        struct port_info *pi = netdev_priv(dev);
2504
2505        if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2506                return -EINVAL;
2507        ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2508                            -1, -1, -1, true);
2509        if (!ret)
2510                dev->mtu = new_mtu;
2511        return ret;
2512}
2513
2514#ifdef CONFIG_PCI_IOV
2515static int dummy_open(struct net_device *dev)
2516{
2517        /* Turn carrier off since we don't have to transmit anything on this
2518         * interface.
2519         */
2520        netif_carrier_off(dev);
2521        return 0;
2522}
2523
2524/* Fill MAC address that will be assigned by the FW */
2525static void fill_vf_station_mac_addr(struct adapter *adap)
2526{
2527        unsigned int i;
2528        u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2529        int err;
2530        u8 *na;
2531        u16 a, b;
2532
2533        err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2534        if (!err) {
2535                na = adap->params.vpd.na;
2536                for (i = 0; i < ETH_ALEN; i++)
2537                        hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2538                                      hex2val(na[2 * i + 1]));
2539                a = (hw_addr[0] << 8) | hw_addr[1];
2540                b = (hw_addr[1] << 8) | hw_addr[2];
2541                a ^= b;
2542                a |= 0x0200;    /* locally assigned Ethernet MAC address */
2543                a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2544                macaddr[0] = a >> 8;
2545                macaddr[1] = a & 0xff;
2546
2547                for (i = 2; i < 5; i++)
2548                        macaddr[i] = hw_addr[i + 1];
2549
2550                for (i = 0; i < adap->num_vfs; i++) {
2551                        macaddr[5] = adap->pf * 16 + i;
2552                        ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
2553                }
2554        }
2555}
2556
2557static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2558{
2559        struct port_info *pi = netdev_priv(dev);
2560        struct adapter *adap = pi->adapter;
2561        int ret;
2562
2563        /* verify MAC addr is valid */
2564        if (!is_valid_ether_addr(mac)) {
2565                dev_err(pi->adapter->pdev_dev,
2566                        "Invalid Ethernet address %pM for VF %d\n",
2567                        mac, vf);
2568                return -EINVAL;
2569        }
2570
2571        dev_info(pi->adapter->pdev_dev,
2572                 "Setting MAC %pM on VF %d\n", mac, vf);
2573        ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2574        if (!ret)
2575                ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2576        return ret;
2577}
2578
2579static int cxgb_get_vf_config(struct net_device *dev,
2580                              int vf, struct ifla_vf_info *ivi)
2581{
2582        struct port_info *pi = netdev_priv(dev);
2583        struct adapter *adap = pi->adapter;
2584
2585        if (vf >= adap->num_vfs)
2586                return -EINVAL;
2587        ivi->vf = vf;
2588        ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2589        return 0;
2590}
2591#endif
2592
2593static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2594{
2595        int ret;
2596        struct sockaddr *addr = p;
2597        struct port_info *pi = netdev_priv(dev);
2598
2599        if (!is_valid_ether_addr(addr->sa_data))
2600                return -EADDRNOTAVAIL;
2601
2602        ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2603                            pi->xact_addr_filt, addr->sa_data, true, true);
2604        if (ret < 0)
2605                return ret;
2606
2607        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2608        pi->xact_addr_filt = ret;
2609        return 0;
2610}
2611
2612#ifdef CONFIG_NET_POLL_CONTROLLER
2613static void cxgb_netpoll(struct net_device *dev)
2614{
2615        struct port_info *pi = netdev_priv(dev);
2616        struct adapter *adap = pi->adapter;
2617
2618        if (adap->flags & USING_MSIX) {
2619                int i;
2620                struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2621
2622                for (i = pi->nqsets; i; i--, rx++)
2623                        t4_sge_intr_msix(0, &rx->rspq);
2624        } else
2625                t4_intr_handler(adap)(0, adap);
2626}
2627#endif
2628
2629static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2630{
2631        struct port_info *pi = netdev_priv(dev);
2632        struct adapter *adap = pi->adapter;
2633        struct sched_class *e;
2634        struct ch_sched_params p;
2635        struct ch_sched_queue qe;
2636        u32 req_rate;
2637        int err = 0;
2638
2639        if (!can_sched(dev))
2640                return -ENOTSUPP;
2641
2642        if (index < 0 || index > pi->nqsets - 1)
2643                return -EINVAL;
2644
2645        if (!(adap->flags & FULL_INIT_DONE)) {
2646                dev_err(adap->pdev_dev,
2647                        "Failed to rate limit on queue %d. Link Down?\n",
2648                        index);
2649                return -EINVAL;
2650        }
2651
2652        /* Convert from Mbps to Kbps */
2653        req_rate = rate << 10;
2654
2655        /* Max rate is 10 Gbps */
2656        if (req_rate >= SCHED_MAX_RATE_KBPS) {
2657                dev_err(adap->pdev_dev,
2658                        "Invalid rate %u Mbps, Max rate is %u Gbps\n",
2659                        rate, SCHED_MAX_RATE_KBPS);
2660                return -ERANGE;
2661        }
2662
2663        /* First unbind the queue from any existing class */
2664        memset(&qe, 0, sizeof(qe));
2665        qe.queue = index;
2666        qe.class = SCHED_CLS_NONE;
2667
2668        err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2669        if (err) {
2670                dev_err(adap->pdev_dev,
2671                        "Unbinding Queue %d on port %d fail. Err: %d\n",
2672                        index, pi->port_id, err);
2673                return err;
2674        }
2675
2676        /* Queue already unbound */
2677        if (!req_rate)
2678                return 0;
2679
2680        /* Fetch any available unused or matching scheduling class */
2681        memset(&p, 0, sizeof(p));
2682        p.type = SCHED_CLASS_TYPE_PACKET;
2683        p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2684        p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2685        p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2686        p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2687        p.u.params.channel  = pi->tx_chan;
2688        p.u.params.class    = SCHED_CLS_NONE;
2689        p.u.params.minrate  = 0;
2690        p.u.params.maxrate  = req_rate;
2691        p.u.params.weight   = 0;
2692        p.u.params.pktsize  = dev->mtu;
2693
2694        e = cxgb4_sched_class_alloc(dev, &p);
2695        if (!e)
2696                return -ENOMEM;
2697
2698        /* Bind the queue to a scheduling class */
2699        memset(&qe, 0, sizeof(qe));
2700        qe.queue = index;
2701        qe.class = e->idx;
2702
2703        err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2704        if (err)
2705                dev_err(adap->pdev_dev,
2706                        "Queue rate limiting failed. Err: %d\n", err);
2707        return err;
2708}
2709
2710static int cxgb_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
2711                         struct tc_to_netdev *tc)
2712{
2713        struct port_info *pi = netdev2pinfo(dev);
2714        struct adapter *adap = netdev2adap(dev);
2715
2716        if (!(adap->flags & FULL_INIT_DONE)) {
2717                dev_err(adap->pdev_dev,
2718                        "Failed to setup tc on port %d. Link Down?\n",
2719                        pi->port_id);
2720                return -EINVAL;
2721        }
2722
2723        if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) &&
2724            tc->type == TC_SETUP_CLSU32) {
2725                switch (tc->cls_u32->command) {
2726                case TC_CLSU32_NEW_KNODE:
2727                case TC_CLSU32_REPLACE_KNODE:
2728                        return cxgb4_config_knode(dev, proto, tc->cls_u32);
2729                case TC_CLSU32_DELETE_KNODE:
2730                        return cxgb4_delete_knode(dev, proto, tc->cls_u32);
2731                default:
2732                        return -EOPNOTSUPP;
2733                }
2734        }
2735
2736        return -EOPNOTSUPP;
2737}
2738
2739static const struct net_device_ops cxgb4_netdev_ops = {
2740        .ndo_open             = cxgb_open,
2741        .ndo_stop             = cxgb_close,
2742        .ndo_start_xmit       = t4_eth_xmit,
2743        .ndo_select_queue     = cxgb_select_queue,
2744        .ndo_get_stats64      = cxgb_get_stats,
2745        .ndo_set_rx_mode      = cxgb_set_rxmode,
2746        .ndo_set_mac_address  = cxgb_set_mac_addr,
2747        .ndo_set_features     = cxgb_set_features,
2748        .ndo_validate_addr    = eth_validate_addr,
2749        .ndo_do_ioctl         = cxgb_ioctl,
2750        .ndo_change_mtu       = cxgb_change_mtu,
2751#ifdef CONFIG_NET_POLL_CONTROLLER
2752        .ndo_poll_controller  = cxgb_netpoll,
2753#endif
2754#ifdef CONFIG_CHELSIO_T4_FCOE
2755        .ndo_fcoe_enable      = cxgb_fcoe_enable,
2756        .ndo_fcoe_disable     = cxgb_fcoe_disable,
2757#endif /* CONFIG_CHELSIO_T4_FCOE */
2758#ifdef CONFIG_NET_RX_BUSY_POLL
2759        .ndo_busy_poll        = cxgb_busy_poll,
2760#endif
2761        .ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
2762        .ndo_setup_tc         = cxgb_setup_tc,
2763};
2764
2765#ifdef CONFIG_PCI_IOV
2766static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
2767        .ndo_open             = dummy_open,
2768        .ndo_set_vf_mac       = cxgb_set_vf_mac,
2769        .ndo_get_vf_config    = cxgb_get_vf_config,
2770};
2771#endif
2772
2773static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2774{
2775        struct adapter *adapter = netdev2adap(dev);
2776
2777        strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
2778        strlcpy(info->version, cxgb4_driver_version,
2779                sizeof(info->version));
2780        strlcpy(info->bus_info, pci_name(adapter->pdev),
2781                sizeof(info->bus_info));
2782}
2783
2784static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
2785        .get_drvinfo       = get_drvinfo,
2786};
2787
2788void t4_fatal_err(struct adapter *adap)
2789{
2790        t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2791        t4_intr_disable(adap);
2792        dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2793}
2794
2795static void setup_memwin(struct adapter *adap)
2796{
2797        u32 nic_win_base = t4_get_util_window(adap);
2798
2799        t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
2800}
2801
2802static void setup_memwin_rdma(struct adapter *adap)
2803{
2804        if (adap->vres.ocq.size) {
2805                u32 start;
2806                unsigned int sz_kb;
2807
2808                start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
2809                start &= PCI_BASE_ADDRESS_MEM_MASK;
2810                start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
2811                sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
2812                t4_write_reg(adap,
2813                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
2814                             start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
2815                t4_write_reg(adap,
2816                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
2817                             adap->vres.ocq.start);
2818                t4_read_reg(adap,
2819                            PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
2820        }
2821}
2822
2823static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
2824{
2825        u32 v;
2826        int ret;
2827
2828        /* get device capabilities */
2829        memset(c, 0, sizeof(*c));
2830        c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2831                               FW_CMD_REQUEST_F | FW_CMD_READ_F);
2832        c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
2833        ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
2834        if (ret < 0)
2835                return ret;
2836
2837        c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2838                               FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
2839        ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
2840        if (ret < 0)
2841                return ret;
2842
2843        ret = t4_config_glbl_rss(adap, adap->pf,
2844                                 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2845                                 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
2846                                 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
2847        if (ret < 0)
2848                return ret;
2849
2850        ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
2851                          MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
2852                          FW_CMD_CAP_PF);
2853        if (ret < 0)
2854                return ret;
2855
2856        t4_sge_init(adap);
2857
2858        /* tweak some settings */
2859        t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
2860        t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
2861        t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
2862        v = t4_read_reg(adap, TP_PIO_DATA_A);
2863        t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
2864
2865        /* first 4 Tx modulation queues point to consecutive Tx channels */
2866        adap->params.tp.tx_modq_map = 0xE4;
2867        t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
2868                     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
2869
2870        /* associate each Tx modulation queue with consecutive Tx channels */
2871        v = 0x84218421;
2872        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2873                          &v, 1, TP_TX_SCHED_HDR_A);
2874        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2875                          &v, 1, TP_TX_SCHED_FIFO_A);
2876        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2877                          &v, 1, TP_TX_SCHED_PCMD_A);
2878
2879#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
2880        if (is_offload(adap)) {
2881                t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
2882                             TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2883                             TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2884                             TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2885                             TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2886                t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
2887                             TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2888                             TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2889                             TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2890                             TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2891        }
2892
2893        /* get basic stuff going */
2894        return t4_early_init(adap, adap->pf);
2895}
2896
2897/*
2898 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
2899 */
2900#define MAX_ATIDS 8192U
2901
2902/*
2903 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
2904 *
2905 * If the firmware we're dealing with has Configuration File support, then
2906 * we use that to perform all configuration
2907 */
2908
2909/*
2910 * Tweak configuration based on module parameters, etc.  Most of these have
2911 * defaults assigned to them by Firmware Configuration Files (if we're using
2912 * them) but need to be explicitly set if we're using hard-coded
2913 * initialization.  But even in the case of using Firmware Configuration
2914 * Files, we'd like to expose the ability to change these via module
2915 * parameters so these are essentially common tweaks/settings for
2916 * Configuration Files and hard-coded initialization ...
2917 */
2918static int adap_init0_tweaks(struct adapter *adapter)
2919{
2920        /*
2921         * Fix up various Host-Dependent Parameters like Page Size, Cache
2922         * Line Size, etc.  The firmware default is for a 4KB Page Size and
2923         * 64B Cache Line Size ...
2924         */
2925        t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
2926
2927        /*
2928         * Process module parameters which affect early initialization.
2929         */
2930        if (rx_dma_offset != 2 && rx_dma_offset != 0) {
2931                dev_err(&adapter->pdev->dev,
2932                        "Ignoring illegal rx_dma_offset=%d, using 2\n",
2933                        rx_dma_offset);
2934                rx_dma_offset = 2;
2935        }
2936        t4_set_reg_field(adapter, SGE_CONTROL_A,
2937                         PKTSHIFT_V(PKTSHIFT_M),
2938                         PKTSHIFT_V(rx_dma_offset));
2939
2940        /*
2941         * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
2942         * adds the pseudo header itself.
2943         */
2944        t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
2945                               CSUM_HAS_PSEUDO_HDR_F, 0);
2946
2947        return 0;
2948}
2949
2950/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
2951 * unto themselves and they contain their own firmware to perform their
2952 * tasks ...
2953 */
2954static int phy_aq1202_version(const u8 *phy_fw_data,
2955                              size_t phy_fw_size)
2956{
2957        int offset;
2958
2959        /* At offset 0x8 you're looking for the primary image's
2960         * starting offset which is 3 Bytes wide
2961         *
2962         * At offset 0xa of the primary image, you look for the offset
2963         * of the DRAM segment which is 3 Bytes wide.
2964         *
2965         * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
2966         * wide
2967         */
2968        #define be16(__p) (((__p)[0] << 8) | (__p)[1])
2969        #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
2970        #define le24(__p) (le16(__p) | ((__p)[2] << 16))
2971
2972        offset = le24(phy_fw_data + 0x8) << 12;
2973        offset = le24(phy_fw_data + offset + 0xa);
2974        return be16(phy_fw_data + offset + 0x27e);
2975
2976        #undef be16
2977        #undef le16
2978        #undef le24
2979}
2980
2981static struct info_10gbt_phy_fw {
2982        unsigned int phy_fw_id;         /* PCI Device ID */
2983        char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
2984        int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
2985        int phy_flash;                  /* Has FLASH for PHY Firmware */
2986} phy_info_array[] = {
2987        {
2988                PHY_AQ1202_DEVICEID,
2989                PHY_AQ1202_FIRMWARE,
2990                phy_aq1202_version,
2991                1,
2992        },
2993        {
2994                PHY_BCM84834_DEVICEID,
2995                PHY_BCM84834_FIRMWARE,
2996                NULL,
2997                0,
2998        },
2999        { 0, NULL, NULL },
3000};
3001
3002static struct info_10gbt_phy_fw *find_phy_info(int devid)
3003{
3004        int i;
3005
3006        for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3007                if (phy_info_array[i].phy_fw_id == devid)
3008                        return &phy_info_array[i];
3009        }
3010        return NULL;
3011}
3012
3013/* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3014 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3015 * we return a negative error number.  If we transfer new firmware we return 1
3016 * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3017 */
3018static int adap_init0_phy(struct adapter *adap)
3019{
3020        const struct firmware *phyf;
3021        int ret;
3022        struct info_10gbt_phy_fw *phy_info;
3023
3024        /* Use the device ID to determine which PHY file to flash.
3025         */
3026        phy_info = find_phy_info(adap->pdev->device);
3027        if (!phy_info) {
3028                dev_warn(adap->pdev_dev,
3029                         "No PHY Firmware file found for this PHY\n");
3030                return -EOPNOTSUPP;
3031        }
3032
3033        /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3034         * use that. The adapter firmware provides us with a memory buffer
3035         * where we can load a PHY firmware file from the host if we want to
3036         * override the PHY firmware File in flash.
3037         */
3038        ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3039                                      adap->pdev_dev);
3040        if (ret < 0) {
3041                /* For adapters without FLASH attached to PHY for their
3042                 * firmware, it's obviously a fatal error if we can't get the
3043                 * firmware to the adapter.  For adapters with PHY firmware
3044                 * FLASH storage, it's worth a warning if we can't find the
3045                 * PHY Firmware but we'll neuter the error ...
3046                 */
3047                dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3048                        "/lib/firmware/%s, error %d\n",
3049                        phy_info->phy_fw_file, -ret);
3050                if (phy_info->phy_flash) {
3051                        int cur_phy_fw_ver = 0;
3052
3053                        t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3054                        dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3055                                 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3056                        ret = 0;
3057                }
3058
3059                return ret;
3060        }
3061
3062        /* Load PHY Firmware onto adapter.
3063         */
3064        ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3065                             phy_info->phy_fw_version,
3066                             (u8 *)phyf->data, phyf->size);
3067        if (ret < 0)
3068                dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3069                        -ret);
3070        else if (ret > 0) {
3071                int new_phy_fw_ver = 0;
3072
3073                if (phy_info->phy_fw_version)
3074                        new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3075                                                                  phyf->size);
3076                dev_info(adap->pdev_dev, "Successfully transferred PHY "
3077                         "Firmware /lib/firmware/%s, version %#x\n",
3078                         phy_info->phy_fw_file, new_phy_fw_ver);
3079        }
3080
3081        release_firmware(phyf);
3082
3083        return ret;
3084}
3085
3086/*
3087 * Attempt to initialize the adapter via a Firmware Configuration File.
3088 */
3089static int adap_init0_config(struct adapter *adapter, int reset)
3090{
3091        struct fw_caps_config_cmd caps_cmd;
3092        const struct firmware *cf;
3093        unsigned long mtype = 0, maddr = 0;
3094        u32 finiver, finicsum, cfcsum;
3095        int ret;
3096        int config_issued = 0;
3097        char *fw_config_file, fw_config_file_path[256];
3098        char *config_name = NULL;
3099
3100        /*
3101         * Reset device if necessary.
3102         */
3103        if (reset) {
3104                ret = t4_fw_reset(adapter, adapter->mbox,
3105                                  PIORSTMODE_F | PIORST_F);
3106                if (ret < 0)
3107                        goto bye;
3108        }
3109
3110        /* If this is a 10Gb/s-BT adapter make sure the chip-external
3111         * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3112         * to be performed after any global adapter RESET above since some
3113         * PHYs only have local RAM copies of the PHY firmware.
3114         */
3115        if (is_10gbt_device(adapter->pdev->device)) {
3116                ret = adap_init0_phy(adapter);
3117                if (ret < 0)
3118                        goto bye;
3119        }
3120        /*
3121         * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3122         * then use that.  Otherwise, use the configuration file stored
3123         * in the adapter flash ...
3124         */
3125        switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3126        case CHELSIO_T4:
3127                fw_config_file = FW4_CFNAME;
3128                break;
3129        case CHELSIO_T5:
3130                fw_config_file = FW5_CFNAME;
3131                break;
3132        case CHELSIO_T6:
3133                fw_config_file = FW6_CFNAME;
3134                break;
3135        default:
3136                dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3137                       adapter->pdev->device);
3138                ret = -EINVAL;
3139                goto bye;
3140        }
3141
3142        ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3143        if (ret < 0) {
3144                config_name = "On FLASH";
3145                mtype = FW_MEMTYPE_CF_FLASH;
3146                maddr = t4_flash_cfg_addr(adapter);
3147        } else {
3148                u32 params[7], val[7];
3149
3150                sprintf(fw_config_file_path,
3151                        "/lib/firmware/%s", fw_config_file);
3152                config_name = fw_config_file_path;
3153
3154                if (cf->size >= FLASH_CFG_MAX_SIZE)
3155                        ret = -ENOMEM;
3156                else {
3157                        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3158                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3159                        ret = t4_query_params(adapter, adapter->mbox,
3160                                              adapter->pf, 0, 1, params, val);
3161                        if (ret == 0) {
3162                                /*
3163                                 * For t4_memory_rw() below addresses and
3164                                 * sizes have to be in terms of multiples of 4
3165                                 * bytes.  So, if the Configuration File isn't
3166                                 * a multiple of 4 bytes in length we'll have
3167                                 * to write that out separately since we can't
3168                                 * guarantee that the bytes following the
3169                                 * residual byte in the buffer returned by
3170                                 * request_firmware() are zeroed out ...
3171                                 */
3172                                size_t resid = cf->size & 0x3;
3173                                size_t size = cf->size & ~0x3;
3174                                __be32 *data = (__be32 *)cf->data;
3175
3176                                mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3177                                maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3178
3179                                spin_lock(&adapter->win0_lock);
3180                                ret = t4_memory_rw(adapter, 0, mtype, maddr,
3181                                                   size, data, T4_MEMORY_WRITE);
3182                                if (ret == 0 && resid != 0) {
3183                                        union {
3184                                                __be32 word;
3185                                                char buf[4];
3186                                        } last;
3187                                        int i;
3188
3189                                        last.word = data[size >> 2];
3190                                        for (i = resid; i < 4; i++)
3191                                                last.buf[i] = 0;
3192                                        ret = t4_memory_rw(adapter, 0, mtype,
3193                                                           maddr + size,
3194                                                           4, &last.word,
3195                                                           T4_MEMORY_WRITE);
3196                                }
3197                                spin_unlock(&adapter->win0_lock);
3198                        }
3199                }
3200
3201                release_firmware(cf);
3202                if (ret)
3203                        goto bye;
3204        }
3205
3206        /*
3207         * Issue a Capability Configuration command to the firmware to get it
3208         * to parse the Configuration File.  We don't use t4_fw_config_file()
3209         * because we want the ability to modify various features after we've
3210         * processed the configuration file ...
3211         */
3212        memset(&caps_cmd, 0, sizeof(caps_cmd));
3213        caps_cmd.op_to_write =
3214                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3215                      FW_CMD_REQUEST_F |
3216                      FW_CMD_READ_F);
3217        caps_cmd.cfvalid_to_len16 =
3218                htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3219                      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3220                      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3221                      FW_LEN16(caps_cmd));
3222        ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3223                         &caps_cmd);
3224
3225        /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3226         * Configuration File in FLASH), our last gasp effort is to use the
3227         * Firmware Configuration File which is embedded in the firmware.  A
3228         * very few early versions of the firmware didn't have one embedded
3229         * but we can ignore those.
3230         */
3231        if (ret == -ENOENT) {
3232                memset(&caps_cmd, 0, sizeof(caps_cmd));
3233                caps_cmd.op_to_write =
3234                        htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3235                                        FW_CMD_REQUEST_F |
3236                                        FW_CMD_READ_F);
3237                caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3238                ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3239                                sizeof(caps_cmd), &caps_cmd);
3240                config_name = "Firmware Default";
3241        }
3242
3243        config_issued = 1;
3244        if (ret < 0)
3245                goto bye;
3246
3247        finiver = ntohl(caps_cmd.finiver);
3248        finicsum = ntohl(caps_cmd.finicsum);
3249        cfcsum = ntohl(caps_cmd.cfcsum);
3250        if (finicsum != cfcsum)
3251                dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3252                         "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3253                         finicsum, cfcsum);
3254
3255        /*
3256         * And now tell the firmware to use the configuration we just loaded.
3257         */
3258        caps_cmd.op_to_write =
3259                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3260                      FW_CMD_REQUEST_F |
3261                      FW_CMD_WRITE_F);
3262        caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3263        ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3264                         NULL);
3265        if (ret < 0)
3266                goto bye;
3267
3268        /*
3269         * Tweak configuration based on system architecture, module
3270         * parameters, etc.
3271         */
3272        ret = adap_init0_tweaks(adapter);
3273        if (ret < 0)
3274                goto bye;
3275
3276        /*
3277         * And finally tell the firmware to initialize itself using the
3278         * parameters from the Configuration File.
3279         */
3280        ret = t4_fw_initialize(adapter, adapter->mbox);
3281        if (ret < 0)
3282                goto bye;
3283
3284        /* Emit Firmware Configuration File information and return
3285         * successfully.
3286         */
3287        dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3288                 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3289                 config_name, finiver, cfcsum);
3290        return 0;
3291
3292        /*
3293         * Something bad happened.  Return the error ...  (If the "error"
3294         * is that there's no Configuration File on the adapter we don't
3295         * want to issue a warning since this is fairly common.)
3296         */
3297bye:
3298        if (config_issued && ret != -ENOENT)
3299                dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3300                         config_name, -ret);
3301        return ret;
3302}
3303
3304static struct fw_info fw_info_array[] = {
3305        {
3306                .chip = CHELSIO_T4,
3307                .fs_name = FW4_CFNAME,
3308                .fw_mod_name = FW4_FNAME,
3309                .fw_hdr = {
3310                        .chip = FW_HDR_CHIP_T4,
3311                        .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3312                        .intfver_nic = FW_INTFVER(T4, NIC),
3313                        .intfver_vnic = FW_INTFVER(T4, VNIC),
3314                        .intfver_ri = FW_INTFVER(T4, RI),
3315                        .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3316                        .intfver_fcoe = FW_INTFVER(T4, FCOE),
3317                },
3318        }, {
3319                .chip = CHELSIO_T5,
3320                .fs_name = FW5_CFNAME,
3321                .fw_mod_name = FW5_FNAME,
3322                .fw_hdr = {
3323                        .chip = FW_HDR_CHIP_T5,
3324                        .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3325                        .intfver_nic = FW_INTFVER(T5, NIC),
3326                        .intfver_vnic = FW_INTFVER(T5, VNIC),
3327                        .intfver_ri = FW_INTFVER(T5, RI),
3328                        .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3329                        .intfver_fcoe = FW_INTFVER(T5, FCOE),
3330                },
3331        }, {
3332                .chip = CHELSIO_T6,
3333                .fs_name = FW6_CFNAME,
3334                .fw_mod_name = FW6_FNAME,
3335                .fw_hdr = {
3336                        .chip = FW_HDR_CHIP_T6,
3337                        .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3338                        .intfver_nic = FW_INTFVER(T6, NIC),
3339                        .intfver_vnic = FW_INTFVER(T6, VNIC),
3340                        .intfver_ofld = FW_INTFVER(T6, OFLD),
3341                        .intfver_ri = FW_INTFVER(T6, RI),
3342                        .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3343                        .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3344                        .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3345                        .intfver_fcoe = FW_INTFVER(T6, FCOE),
3346                },
3347        }
3348
3349};
3350
3351static struct fw_info *find_fw_info(int chip)
3352{
3353        int i;
3354
3355        for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3356                if (fw_info_array[i].chip == chip)
3357                        return &fw_info_array[i];
3358        }
3359        return NULL;
3360}
3361
3362/*
3363 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3364 */
3365static int adap_init0(struct adapter *adap)
3366{
3367        int ret;
3368        u32 v, port_vec;
3369        enum dev_state state;
3370        u32 params[7], val[7];
3371        struct fw_caps_config_cmd caps_cmd;
3372        int reset = 1;
3373
3374        /* Grab Firmware Device Log parameters as early as possible so we have
3375         * access to it for debugging, etc.
3376         */
3377        ret = t4_init_devlog_params(adap);
3378        if (ret < 0)
3379                return ret;
3380
3381        /* Contact FW, advertising Master capability */
3382        ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3383                          is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3384        if (ret < 0) {
3385                dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3386                        ret);
3387                return ret;
3388        }
3389        if (ret == adap->mbox)
3390                adap->flags |= MASTER_PF;
3391
3392        /*
3393         * If we're the Master PF Driver and the device is uninitialized,
3394         * then let's consider upgrading the firmware ...  (We always want
3395         * to check the firmware version number in order to A. get it for
3396         * later reporting and B. to warn if the currently loaded firmware
3397         * is excessively mismatched relative to the driver.)
3398         */
3399        t4_get_fw_version(adap, &adap->params.fw_vers);
3400        t4_get_bs_version(adap, &adap->params.bs_vers);
3401        t4_get_tp_version(adap, &adap->params.tp_vers);
3402        t4_get_exprom_version(adap, &adap->params.er_vers);
3403
3404        ret = t4_check_fw_version(adap);
3405        /* If firmware is too old (not supported by driver) force an update. */
3406        if (ret)
3407                state = DEV_STATE_UNINIT;
3408        if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3409                struct fw_info *fw_info;
3410                struct fw_hdr *card_fw;
3411                const struct firmware *fw;
3412                const u8 *fw_data = NULL;
3413                unsigned int fw_size = 0;
3414
3415                /* This is the firmware whose headers the driver was compiled
3416                 * against
3417                 */
3418                fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3419                if (fw_info == NULL) {
3420                        dev_err(adap->pdev_dev,
3421                                "unable to get firmware info for chip %d.\n",
3422                                CHELSIO_CHIP_VERSION(adap->params.chip));
3423                        return -EINVAL;
3424                }
3425
3426                /* allocate memory to read the header of the firmware on the
3427                 * card
3428                 */
3429                card_fw = t4_alloc_mem(sizeof(*card_fw));
3430
3431                /* Get FW from from /lib/firmware/ */
3432                ret = request_firmware(&fw, fw_info->fw_mod_name,
3433                                       adap->pdev_dev);
3434                if (ret < 0) {
3435                        dev_err(adap->pdev_dev,
3436                                "unable to load firmware image %s, error %d\n",
3437                                fw_info->fw_mod_name, ret);
3438                } else {
3439                        fw_data = fw->data;
3440                        fw_size = fw->size;
3441                }
3442
3443                /* upgrade FW logic */
3444                ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3445                                 state, &reset);
3446
3447                /* Cleaning up */
3448                release_firmware(fw);
3449                t4_free_mem(card_fw);
3450
3451                if (ret < 0)
3452                        goto bye;
3453        }
3454
3455        /*
3456         * Grab VPD parameters.  This should be done after we establish a
3457         * connection to the firmware since some of the VPD parameters
3458         * (notably the Core Clock frequency) are retrieved via requests to
3459         * the firmware.  On the other hand, we need these fairly early on
3460         * so we do this right after getting ahold of the firmware.
3461         */
3462        ret = t4_get_vpd_params(adap, &adap->params.vpd);
3463        if (ret < 0)
3464                goto bye;
3465
3466        /*
3467         * Find out what ports are available to us.  Note that we need to do
3468         * this before calling adap_init0_no_config() since it needs nports
3469         * and portvec ...
3470         */
3471        v =
3472            FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3473            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3474        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3475        if (ret < 0)
3476                goto bye;
3477
3478        adap->params.nports = hweight32(port_vec);
3479        adap->params.portvec = port_vec;
3480
3481        /* If the firmware is initialized already, emit a simply note to that
3482         * effect. Otherwise, it's time to try initializing the adapter.
3483         */
3484        if (state == DEV_STATE_INIT) {
3485                dev_info(adap->pdev_dev, "Coming up as %s: "\
3486                         "Adapter already initialized\n",
3487                         adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3488        } else {
3489                dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3490                         "Initializing adapter\n");
3491
3492                /* Find out whether we're dealing with a version of the
3493                 * firmware which has configuration file support.
3494                 */
3495                params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3496                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3497                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3498                                      params, val);
3499
3500                /* If the firmware doesn't support Configuration Files,
3501                 * return an error.
3502                 */
3503                if (ret < 0) {
3504                        dev_err(adap->pdev_dev, "firmware doesn't support "
3505                                "Firmware Configuration Files\n");
3506                        goto bye;
3507                }
3508
3509                /* The firmware provides us with a memory buffer where we can
3510                 * load a Configuration File from the host if we want to
3511                 * override the Configuration File in flash.
3512                 */
3513                ret = adap_init0_config(adap, reset);
3514                if (ret == -ENOENT) {
3515                        dev_err(adap->pdev_dev, "no Configuration File "
3516                                "present on adapter.\n");
3517                        goto bye;
3518                }
3519                if (ret < 0) {
3520                        dev_err(adap->pdev_dev, "could not initialize "
3521                                "adapter, error %d\n", -ret);
3522                        goto bye;
3523                }
3524        }
3525
3526        /* Give the SGE code a chance to pull in anything that it needs ...
3527         * Note that this must be called after we retrieve our VPD parameters
3528         * in order to know how to convert core ticks to seconds, etc.
3529         */
3530        ret = t4_sge_init(adap);
3531        if (ret < 0)
3532                goto bye;
3533
3534        if (is_bypass_device(adap->pdev->device))
3535                adap->params.bypass = 1;
3536
3537        /*
3538         * Grab some of our basic fundamental operating parameters.
3539         */
3540#define FW_PARAM_DEV(param) \
3541        (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3542        FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3543
3544#define FW_PARAM_PFVF(param) \
3545        FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3546        FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3547        FW_PARAMS_PARAM_Y_V(0) | \
3548        FW_PARAMS_PARAM_Z_V(0)
3549
3550        params[0] = FW_PARAM_PFVF(EQ_START);
3551        params[1] = FW_PARAM_PFVF(L2T_START);
3552        params[2] = FW_PARAM_PFVF(L2T_END);
3553        params[3] = FW_PARAM_PFVF(FILTER_START);
3554        params[4] = FW_PARAM_PFVF(FILTER_END);
3555        params[5] = FW_PARAM_PFVF(IQFLINT_START);
3556        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3557        if (ret < 0)
3558                goto bye;
3559        adap->sge.egr_start = val[0];
3560        adap->l2t_start = val[1];
3561        adap->l2t_end = val[2];
3562        adap->tids.ftid_base = val[3];
3563        adap->tids.nftids = val[4] - val[3] + 1;
3564        adap->sge.ingr_start = val[5];
3565
3566        /* qids (ingress/egress) returned from firmware can be anywhere
3567         * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3568         * Hence driver needs to allocate memory for this range to
3569         * store the queue info. Get the highest IQFLINT/EQ index returned
3570         * in FW_EQ_*_CMD.alloc command.
3571         */
3572        params[0] = FW_PARAM_PFVF(EQ_END);
3573        params[1] = FW_PARAM_PFVF(IQFLINT_END);
3574        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3575        if (ret < 0)
3576                goto bye;
3577        adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3578        adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3579
3580        adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3581                                    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3582        if (!adap->sge.egr_map) {
3583                ret = -ENOMEM;
3584                goto bye;
3585        }
3586
3587        adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3588                                     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3589        if (!adap->sge.ingr_map) {
3590                ret = -ENOMEM;
3591                goto bye;
3592        }
3593
3594        /* Allocate the memory for the vaious egress queue bitmaps
3595         * ie starving_fl, txq_maperr and blocked_fl.
3596         */
3597        adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3598                                        sizeof(long), GFP_KERNEL);
3599        if (!adap->sge.starving_fl) {
3600                ret = -ENOMEM;
3601                goto bye;
3602        }
3603
3604        adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3605                                       sizeof(long), GFP_KERNEL);
3606        if (!adap->sge.txq_maperr) {
3607                ret = -ENOMEM;
3608                goto bye;
3609        }
3610
3611#ifdef CONFIG_DEBUG_FS
3612        adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3613                                       sizeof(long), GFP_KERNEL);
3614        if (!adap->sge.blocked_fl) {
3615                ret = -ENOMEM;
3616                goto bye;
3617        }
3618#endif
3619
3620        params[0] = FW_PARAM_PFVF(CLIP_START);
3621        params[1] = FW_PARAM_PFVF(CLIP_END);
3622        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3623        if (ret < 0)
3624                goto bye;
3625        adap->clipt_start = val[0];
3626        adap->clipt_end = val[1];
3627
3628        /* We don't yet have a PARAMs calls to retrieve the number of Traffic
3629         * Classes supported by the hardware/firmware so we hard code it here
3630         * for now.
3631         */
3632        adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
3633
3634        /* query params related to active filter region */
3635        params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3636        params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3637        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3638        /* If Active filter size is set we enable establishing
3639         * offload connection through firmware work request
3640         */
3641        if ((val[0] != val[1]) && (ret >= 0)) {
3642                adap->flags |= FW_OFLD_CONN;
3643                adap->tids.aftid_base = val[0];
3644                adap->tids.aftid_end = val[1];
3645        }
3646
3647        /* If we're running on newer firmware, let it know that we're
3648         * prepared to deal with encapsulated CPL messages.  Older
3649         * firmware won't understand this and we'll just get
3650         * unencapsulated messages ...
3651         */
3652        params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3653        val[0] = 1;
3654        (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3655
3656        /*
3657         * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3658         * capability.  Earlier versions of the firmware didn't have the
3659         * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3660         * permission to use ULPTX MEMWRITE DSGL.
3661         */
3662        if (is_t4(adap->params.chip)) {
3663                adap->params.ulptx_memwrite_dsgl = false;
3664        } else {
3665                params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3666                ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3667                                      1, params, val);
3668                adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3669        }
3670
3671        /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
3672        params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
3673        ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3674                              1, params, val);
3675        adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
3676
3677        /*
3678         * Get device capabilities so we can determine what resources we need
3679         * to manage.
3680         */
3681        memset(&caps_cmd, 0, sizeof(caps_cmd));
3682        caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3683                                     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3684        caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3685        ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3686                         &caps_cmd);
3687        if (ret < 0)
3688                goto bye;
3689
3690        if (caps_cmd.ofldcaps) {
3691                /* query offload-related parameters */
3692                params[0] = FW_PARAM_DEV(NTID);
3693                params[1] = FW_PARAM_PFVF(SERVER_START);
3694                params[2] = FW_PARAM_PFVF(SERVER_END);
3695                params[3] = FW_PARAM_PFVF(TDDP_START);
3696                params[4] = FW_PARAM_PFVF(TDDP_END);
3697                params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3698                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3699                                      params, val);
3700                if (ret < 0)
3701                        goto bye;
3702                adap->tids.ntids = val[0];
3703                adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3704                adap->tids.stid_base = val[1];
3705                adap->tids.nstids = val[2] - val[1] + 1;
3706                /*
3707                 * Setup server filter region. Divide the available filter
3708                 * region into two parts. Regular filters get 1/3rd and server
3709                 * filters get 2/3rd part. This is only enabled if workarond
3710                 * path is enabled.
3711                 * 1. For regular filters.
3712                 * 2. Server filter: This are special filters which are used
3713                 * to redirect SYN packets to offload queue.
3714                 */
3715                if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3716                        adap->tids.sftid_base = adap->tids.ftid_base +
3717                                        DIV_ROUND_UP(adap->tids.nftids, 3);
3718                        adap->tids.nsftids = adap->tids.nftids -
3719                                         DIV_ROUND_UP(adap->tids.nftids, 3);
3720                        adap->tids.nftids = adap->tids.sftid_base -
3721                                                adap->tids.ftid_base;
3722                }
3723                adap->vres.ddp.start = val[3];
3724                adap->vres.ddp.size = val[4] - val[3] + 1;
3725                adap->params.ofldq_wr_cred = val[5];
3726
3727                adap->params.offload = 1;
3728                adap->num_ofld_uld += 1;
3729        }
3730        if (caps_cmd.rdmacaps) {
3731                params[0] = FW_PARAM_PFVF(STAG_START);
3732                params[1] = FW_PARAM_PFVF(STAG_END);
3733                params[2] = FW_PARAM_PFVF(RQ_START);
3734                params[3] = FW_PARAM_PFVF(RQ_END);
3735                params[4] = FW_PARAM_PFVF(PBL_START);
3736                params[5] = FW_PARAM_PFVF(PBL_END);
3737                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3738                                      params, val);
3739                if (ret < 0)
3740                        goto bye;
3741                adap->vres.stag.start = val[0];
3742                adap->vres.stag.size = val[1] - val[0] + 1;
3743                adap->vres.rq.start = val[2];
3744                adap->vres.rq.size = val[3] - val[2] + 1;
3745                adap->vres.pbl.start = val[4];
3746                adap->vres.pbl.size = val[5] - val[4] + 1;
3747
3748                params[0] = FW_PARAM_PFVF(SQRQ_START);
3749                params[1] = FW_PARAM_PFVF(SQRQ_END);
3750                params[2] = FW_PARAM_PFVF(CQ_START);
3751                params[3] = FW_PARAM_PFVF(CQ_END);
3752                params[4] = FW_PARAM_PFVF(OCQ_START);
3753                params[5] = FW_PARAM_PFVF(OCQ_END);
3754                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3755                                      val);
3756                if (ret < 0)
3757                        goto bye;
3758                adap->vres.qp.start = val[0];
3759                adap->vres.qp.size = val[1] - val[0] + 1;
3760                adap->vres.cq.start = val[2];
3761                adap->vres.cq.size = val[3] - val[2] + 1;
3762                adap->vres.ocq.start = val[4];
3763                adap->vres.ocq.size = val[5] - val[4] + 1;
3764
3765                params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3766                params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3767                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
3768                                      val);
3769                if (ret < 0) {
3770                        adap->params.max_ordird_qp = 8;
3771                        adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3772                        ret = 0;
3773                } else {
3774                        adap->params.max_ordird_qp = val[0];
3775                        adap->params.max_ird_adapter = val[1];
3776                }
3777                dev_info(adap->pdev_dev,
3778                         "max_ordird_qp %d max_ird_adapter %d\n",
3779                         adap->params.max_ordird_qp,
3780                         adap->params.max_ird_adapter);
3781                adap->num_ofld_uld += 2;
3782        }
3783        if (caps_cmd.iscsicaps) {
3784                params[0] = FW_PARAM_PFVF(ISCSI_START);
3785                params[1] = FW_PARAM_PFVF(ISCSI_END);
3786                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3787                                      params, val);
3788                if (ret < 0)
3789                        goto bye;
3790                adap->vres.iscsi.start = val[0];
3791                adap->vres.iscsi.size = val[1] - val[0] + 1;
3792                /* LIO target and cxgb4i initiaitor */
3793                adap->num_ofld_uld += 2;
3794        }
3795        if (caps_cmd.cryptocaps) {
3796                /* Should query params here...TODO */
3797                adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
3798                adap->num_uld += 1;
3799        }
3800#undef FW_PARAM_PFVF
3801#undef FW_PARAM_DEV
3802
3803        /* The MTU/MSS Table is initialized by now, so load their values.  If
3804         * we're initializing the adapter, then we'll make any modifications
3805         * we want to the MTU/MSS Table and also initialize the congestion
3806         * parameters.
3807         */
3808        t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3809        if (state != DEV_STATE_INIT) {
3810                int i;
3811
3812                /* The default MTU Table contains values 1492 and 1500.
3813                 * However, for TCP, it's better to have two values which are
3814                 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3815                 * This allows us to have a TCP Data Payload which is a
3816                 * multiple of 8 regardless of what combination of TCP Options
3817                 * are in use (always a multiple of 4 bytes) which is
3818                 * important for performance reasons.  For instance, if no
3819                 * options are in use, then we have a 20-byte IP header and a
3820                 * 20-byte TCP header.  In this case, a 1500-byte MSS would
3821                 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3822                 * which is not a multiple of 8.  So using an MSS of 1488 in
3823                 * this case results in a TCP Data Payload of 1448 bytes which
3824                 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
3825                 * Stamps have been negotiated, then an MTU of 1500 bytes
3826                 * results in a TCP Data Payload of 1448 bytes which, as
3827                 * above, is a multiple of 8 bytes ...
3828                 */
3829                for (i = 0; i < NMTUS; i++)
3830                        if (adap->params.mtus[i] == 1492) {
3831                                adap->params.mtus[i] = 1488;
3832                                break;
3833                        }
3834
3835                t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3836                             adap->params.b_wnd);
3837        }
3838        t4_init_sge_params(adap);
3839        adap->flags |= FW_OK;
3840        t4_init_tp_params(adap);
3841        return 0;
3842
3843        /*
3844         * Something bad happened.  If a command timed out or failed with EIO
3845         * FW does not operate within its spec or something catastrophic
3846         * happened to HW/FW, stop issuing commands.
3847         */
3848bye:
3849        kfree(adap->sge.egr_map);
3850        kfree(adap->sge.ingr_map);
3851        kfree(adap->sge.starving_fl);
3852        kfree(adap->sge.txq_maperr);
3853#ifdef CONFIG_DEBUG_FS
3854        kfree(adap->sge.blocked_fl);
3855#endif
3856        if (ret != -ETIMEDOUT && ret != -EIO)
3857                t4_fw_bye(adap, adap->mbox);
3858        return ret;
3859}
3860
3861/* EEH callbacks */
3862
3863static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3864                                         pci_channel_state_t state)
3865{
3866        int i;
3867        struct adapter *adap = pci_get_drvdata(pdev);
3868
3869        if (!adap)
3870                goto out;
3871
3872        rtnl_lock();
3873        adap->flags &= ~FW_OK;
3874        notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3875        spin_lock(&adap->stats_lock);
3876        for_each_port(adap, i) {
3877                struct net_device *dev = adap->port[i];
3878
3879                netif_device_detach(dev);
3880                netif_carrier_off(dev);
3881        }
3882        spin_unlock(&adap->stats_lock);
3883        disable_interrupts(adap);
3884        if (adap->flags & FULL_INIT_DONE)
3885                cxgb_down(adap);
3886        rtnl_unlock();
3887        if ((adap->flags & DEV_ENABLED)) {
3888                pci_disable_device(pdev);
3889                adap->flags &= ~DEV_ENABLED;
3890        }
3891out:    return state == pci_channel_io_perm_failure ?
3892                PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
3893}
3894
3895static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
3896{
3897        int i, ret;
3898        struct fw_caps_config_cmd c;
3899        struct adapter *adap = pci_get_drvdata(pdev);
3900
3901        if (!adap) {
3902                pci_restore_state(pdev);
3903                pci_save_state(pdev);
3904                return PCI_ERS_RESULT_RECOVERED;
3905        }
3906
3907        if (!(adap->flags & DEV_ENABLED)) {
3908                if (pci_enable_device(pdev)) {
3909                        dev_err(&pdev->dev, "Cannot reenable PCI "
3910                                            "device after reset\n");
3911                        return PCI_ERS_RESULT_DISCONNECT;
3912                }
3913                adap->flags |= DEV_ENABLED;
3914        }
3915
3916        pci_set_master(pdev);
3917        pci_restore_state(pdev);
3918        pci_save_state(pdev);
3919        pci_cleanup_aer_uncorrect_error_status(pdev);
3920
3921        if (t4_wait_dev_ready(adap->regs) < 0)
3922                return PCI_ERS_RESULT_DISCONNECT;
3923        if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
3924                return PCI_ERS_RESULT_DISCONNECT;
3925        adap->flags |= FW_OK;
3926        if (adap_init1(adap, &c))
3927                return PCI_ERS_RESULT_DISCONNECT;
3928
3929        for_each_port(adap, i) {
3930                struct port_info *p = adap2pinfo(adap, i);
3931
3932                ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
3933                                  NULL, NULL);
3934                if (ret < 0)
3935                        return PCI_ERS_RESULT_DISCONNECT;
3936                p->viid = ret;
3937                p->xact_addr_filt = -1;
3938        }
3939
3940        t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3941                     adap->params.b_wnd);
3942        setup_memwin(adap);
3943        if (cxgb_up(adap))
3944                return PCI_ERS_RESULT_DISCONNECT;
3945        return PCI_ERS_RESULT_RECOVERED;
3946}
3947
3948static void eeh_resume(struct pci_dev *pdev)
3949{
3950        int i;
3951        struct adapter *adap = pci_get_drvdata(pdev);
3952
3953        if (!adap)
3954                return;
3955
3956        rtnl_lock();
3957        for_each_port(adap, i) {
3958                struct net_device *dev = adap->port[i];
3959
3960                if (netif_running(dev)) {
3961                        link_start(dev);
3962                        cxgb_set_rxmode(dev);
3963                }
3964                netif_device_attach(dev);
3965        }
3966        rtnl_unlock();
3967}
3968
3969static const struct pci_error_handlers cxgb4_eeh = {
3970        .error_detected = eeh_err_detected,
3971        .slot_reset     = eeh_slot_reset,
3972        .resume         = eeh_resume,
3973};
3974
3975/* Return true if the Link Configuration supports "High Speeds" (those greater
3976 * than 1Gb/s).
3977 */
3978static inline bool is_x_10g_port(const struct link_config *lc)
3979{
3980        unsigned int speeds, high_speeds;
3981
3982        speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported));
3983        high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G);
3984
3985        return high_speeds != 0;
3986}
3987
3988/*
3989 * Perform default configuration of DMA queues depending on the number and type
3990 * of ports we found and the number of available CPUs.  Most settings can be
3991 * modified by the admin prior to actual use.
3992 */
3993static void cfg_queues(struct adapter *adap)
3994{
3995        struct sge *s = &adap->sge;
3996        int i, n10g = 0, qidx = 0;
3997#ifndef CONFIG_CHELSIO_T4_DCB
3998        int q10g = 0;
3999#endif
4000
4001        /* Reduce memory usage in kdump environment, disable all offload.
4002         */
4003        if (is_kdump_kernel()) {
4004                adap->params.offload = 0;
4005                adap->params.crypto = 0;
4006        } else if (is_uld(adap) && t4_uld_mem_alloc(adap)) {
4007                adap->params.offload = 0;
4008                adap->params.crypto = 0;
4009        }
4010
4011        for_each_port(adap, i)
4012                n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4013#ifdef CONFIG_CHELSIO_T4_DCB
4014        /* For Data Center Bridging support we need to be able to support up
4015         * to 8 Traffic Priorities; each of which will be assigned to its
4016         * own TX Queue in order to prevent Head-Of-Line Blocking.
4017         */
4018        if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4019                dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4020                        MAX_ETH_QSETS, adap->params.nports * 8);
4021                BUG_ON(1);
4022        }
4023
4024        for_each_port(adap, i) {
4025                struct port_info *pi = adap2pinfo(adap, i);
4026
4027                pi->first_qset = qidx;
4028                pi->nqsets = 8;
4029                qidx += pi->nqsets;
4030        }
4031#else /* !CONFIG_CHELSIO_T4_DCB */
4032        /*
4033         * We default to 1 queue per non-10G port and up to # of cores queues
4034         * per 10G port.
4035         */
4036        if (n10g)
4037                q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4038        if (q10g > netif_get_num_default_rss_queues())
4039                q10g = netif_get_num_default_rss_queues();
4040
4041        for_each_port(adap, i) {
4042                struct port_info *pi = adap2pinfo(adap, i);
4043
4044                pi->first_qset = qidx;
4045                pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4046                qidx += pi->nqsets;
4047        }
4048#endif /* !CONFIG_CHELSIO_T4_DCB */
4049
4050        s->ethqsets = qidx;
4051        s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4052
4053        if (is_uld(adap)) {
4054                /*
4055                 * For offload we use 1 queue/channel if all ports are up to 1G,
4056                 * otherwise we divide all available queues amongst the channels
4057                 * capped by the number of available cores.
4058                 */
4059                if (n10g) {
4060                        i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4061                        s->ofldqsets = roundup(i, adap->params.nports);
4062                } else {
4063                        s->ofldqsets = adap->params.nports;
4064                }
4065        }
4066
4067        for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4068                struct sge_eth_rxq *r = &s->ethrxq[i];
4069
4070                init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4071                r->fl.size = 72;
4072        }
4073
4074        for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4075                s->ethtxq[i].q.size = 1024;
4076
4077        for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4078                s->ctrlq[i].q.size = 512;
4079
4080        for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4081                s->ofldtxq[i].q.size = 1024;
4082
4083        init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4084        init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4085}
4086
4087/*
4088 * Reduce the number of Ethernet queues across all ports to at most n.
4089 * n provides at least one queue per port.
4090 */
4091static void reduce_ethqs(struct adapter *adap, int n)
4092{
4093        int i;
4094        struct port_info *pi;
4095
4096        while (n < adap->sge.ethqsets)
4097                for_each_port(adap, i) {
4098                        pi = adap2pinfo(adap, i);
4099                        if (pi->nqsets > 1) {
4100                                pi->nqsets--;
4101                                adap->sge.ethqsets--;
4102                                if (adap->sge.ethqsets <= n)
4103                                        break;
4104                        }
4105                }
4106
4107        n = 0;
4108        for_each_port(adap, i) {
4109                pi = adap2pinfo(adap, i);
4110                pi->first_qset = n;
4111                n += pi->nqsets;
4112        }
4113}
4114
4115static int get_msix_info(struct adapter *adap)
4116{
4117        struct uld_msix_info *msix_info;
4118        unsigned int max_ingq = 0;
4119
4120        if (is_offload(adap))
4121                max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4122        if (is_pci_uld(adap))
4123                max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4124
4125        if (!max_ingq)
4126                goto out;
4127
4128        msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4129        if (!msix_info)
4130                return -ENOMEM;
4131
4132        adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4133                                                 sizeof(long), GFP_KERNEL);
4134        if (!adap->msix_bmap_ulds.msix_bmap) {
4135                kfree(msix_info);
4136                return -ENOMEM;
4137        }
4138        spin_lock_init(&adap->msix_bmap_ulds.lock);
4139        adap->msix_info_ulds = msix_info;
4140out:
4141        return 0;
4142}
4143
4144static void free_msix_info(struct adapter *adap)
4145{
4146        if (!(adap->num_uld && adap->num_ofld_uld))
4147                return;
4148
4149        kfree(adap->msix_info_ulds);
4150        kfree(adap->msix_bmap_ulds.msix_bmap);
4151}
4152
4153/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4154#define EXTRA_VECS 2
4155
4156static int enable_msix(struct adapter *adap)
4157{
4158        int ofld_need = 0, uld_need = 0;
4159        int i, j, want, need, allocated;
4160        struct sge *s = &adap->sge;
4161        unsigned int nchan = adap->params.nports;
4162        struct msix_entry *entries;
4163        int max_ingq = MAX_INGQ;
4164
4165        if (is_pci_uld(adap))
4166                max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4167        if (is_offload(adap))
4168                max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4169        entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4170                          GFP_KERNEL);
4171        if (!entries)
4172                return -ENOMEM;
4173
4174        /* map for msix */
4175        if (get_msix_info(adap)) {
4176                adap->params.offload = 0;
4177                adap->params.crypto = 0;
4178        }
4179
4180        for (i = 0; i < max_ingq + 1; ++i)
4181                entries[i].entry = i;
4182
4183        want = s->max_ethqsets + EXTRA_VECS;
4184        if (is_offload(adap)) {
4185                want += adap->num_ofld_uld * s->ofldqsets;
4186                ofld_need = adap->num_ofld_uld * nchan;
4187        }
4188        if (is_pci_uld(adap)) {
4189                want += adap->num_uld * s->ofldqsets;
4190                uld_need = adap->num_uld * nchan;
4191        }
4192#ifdef CONFIG_CHELSIO_T4_DCB
4193        /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4194         * each port.
4195         */
4196        need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4197#else
4198        need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4199#endif
4200        allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4201        if (allocated < 0) {
4202                dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4203                         " not using MSI-X\n");
4204                kfree(entries);
4205                return allocated;
4206        }
4207
4208        /* Distribute available vectors to the various queue groups.
4209         * Every group gets its minimum requirement and NIC gets top
4210         * priority for leftovers.
4211         */
4212        i = allocated - EXTRA_VECS - ofld_need - uld_need;
4213        if (i < s->max_ethqsets) {
4214                s->max_ethqsets = i;
4215                if (i < s->ethqsets)
4216                        reduce_ethqs(adap, i);
4217        }
4218        if (is_uld(adap)) {
4219                if (allocated < want)
4220                        s->nqs_per_uld = nchan;
4221                else
4222                        s->nqs_per_uld = s->ofldqsets;
4223        }
4224
4225        for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4226                adap->msix_info[i].vec = entries[i].vector;
4227        if (is_uld(adap)) {
4228                for (j = 0 ; i < allocated; ++i, j++) {
4229                        adap->msix_info_ulds[j].vec = entries[i].vector;
4230                        adap->msix_info_ulds[j].idx = i;
4231                }
4232                adap->msix_bmap_ulds.mapsize = j;
4233        }
4234        dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4235                 "nic %d per uld %d\n",
4236                 allocated, s->max_ethqsets, s->nqs_per_uld);
4237
4238        kfree(entries);
4239        return 0;
4240}
4241
4242#undef EXTRA_VECS
4243
4244static int init_rss(struct adapter *adap)
4245{
4246        unsigned int i;
4247        int err;
4248
4249        err = t4_init_rss_mode(adap, adap->mbox);
4250        if (err)
4251                return err;
4252
4253        for_each_port(adap, i) {
4254                struct port_info *pi = adap2pinfo(adap, i);
4255
4256                pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4257                if (!pi->rss)
4258                        return -ENOMEM;
4259        }
4260        return 0;
4261}
4262
4263static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4264                                        enum pci_bus_speed *speed,
4265                                        enum pcie_link_width *width)
4266{
4267        u32 lnkcap1, lnkcap2;
4268        int err1, err2;
4269
4270#define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4271
4272        *speed = PCI_SPEED_UNKNOWN;
4273        *width = PCIE_LNK_WIDTH_UNKNOWN;
4274
4275        err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4276                                          &lnkcap1);
4277        err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4278                                          &lnkcap2);
4279        if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4280                if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4281                        *speed = PCIE_SPEED_8_0GT;
4282                else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4283                        *speed = PCIE_SPEED_5_0GT;
4284                else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4285                        *speed = PCIE_SPEED_2_5GT;
4286        }
4287        if (!err1) {
4288                *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4289                if (!lnkcap2) { /* pre-r3.0 */
4290                        if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4291                                *speed = PCIE_SPEED_5_0GT;
4292                        else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4293                                *speed = PCIE_SPEED_2_5GT;
4294                }
4295        }
4296
4297        if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4298                return err1 ? err1 : err2 ? err2 : -EINVAL;
4299        return 0;
4300}
4301
4302static void cxgb4_check_pcie_caps(struct adapter *adap)
4303{
4304        enum pcie_link_width width, width_cap;
4305        enum pci_bus_speed speed, speed_cap;
4306
4307#define PCIE_SPEED_STR(speed) \
4308        (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4309         speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4310         speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4311         "Unknown")
4312
4313        if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4314                dev_warn(adap->pdev_dev,
4315                         "Unable to determine PCIe device BW capabilities\n");
4316                return;
4317        }
4318
4319        if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4320            speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4321                dev_warn(adap->pdev_dev,
4322                         "Unable to determine PCI Express bandwidth.\n");
4323                return;
4324        }
4325
4326        dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4327                 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4328        dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4329                 width, width_cap);
4330        if (speed < speed_cap || width < width_cap)
4331                dev_info(adap->pdev_dev,
4332                         "A slot with more lanes and/or higher speed is "
4333                         "suggested for optimal performance.\n");
4334}
4335
4336/* Dump basic information about the adapter */
4337static void print_adapter_info(struct adapter *adapter)
4338{
4339        /* Device information */
4340        dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4341                 adapter->params.vpd.id,
4342                 CHELSIO_CHIP_RELEASE(adapter->params.chip));
4343        dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4344                 adapter->params.vpd.sn, adapter->params.vpd.pn);
4345
4346        /* Firmware Version */
4347        if (!adapter->params.fw_vers)
4348                dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4349        else
4350                dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4351                         FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4352                         FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4353                         FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4354                         FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4355
4356        /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4357         * Firmware, so dev_info() is more appropriate here.)
4358         */
4359        if (!adapter->params.bs_vers)
4360                dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4361        else
4362                dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4363                         FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4364                         FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4365                         FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4366                         FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4367
4368        /* TP Microcode Version */
4369        if (!adapter->params.tp_vers)
4370                dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4371        else
4372                dev_info(adapter->pdev_dev,
4373                         "TP Microcode version: %u.%u.%u.%u\n",
4374                         FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4375                         FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4376                         FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4377                         FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4378
4379        /* Expansion ROM version */
4380        if (!adapter->params.er_vers)
4381                dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4382        else
4383                dev_info(adapter->pdev_dev,
4384                         "Expansion ROM version: %u.%u.%u.%u\n",
4385                         FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4386                         FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4387                         FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4388                         FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4389
4390        /* Software/Hardware configuration */
4391        dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4392                 is_offload(adapter) ? "R" : "",
4393                 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4394                  (adapter->flags & USING_MSI) ? "MSI" : ""),
4395                 is_offload(adapter) ? "Offload" : "non-Offload");
4396}
4397
4398static void print_port_info(const struct net_device *dev)
4399{
4400        char buf[80];
4401        char *bufp = buf;
4402        const char *spd = "";
4403        const struct port_info *pi = netdev_priv(dev);
4404        const struct adapter *adap = pi->adapter;
4405
4406        if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4407                spd = " 2.5 GT/s";
4408        else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4409                spd = " 5 GT/s";
4410        else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4411                spd = " 8 GT/s";
4412
4413        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4414                bufp += sprintf(bufp, "100/");
4415        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4416                bufp += sprintf(bufp, "1000/");
4417        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4418                bufp += sprintf(bufp, "10G/");
4419        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G)
4420                bufp += sprintf(bufp, "25G/");
4421        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4422                bufp += sprintf(bufp, "40G/");
4423        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G)
4424                bufp += sprintf(bufp, "100G/");
4425        if (bufp != buf)
4426                --bufp;
4427        sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4428
4429        netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4430                    dev->name, adap->params.vpd.id, adap->name, buf);
4431}
4432
4433static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4434{
4435        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4436}
4437
4438/*
4439 * Free the following resources:
4440 * - memory used for tables
4441 * - MSI/MSI-X
4442 * - net devices
4443 * - resources FW is holding for us
4444 */
4445static void free_some_resources(struct adapter *adapter)
4446{
4447        unsigned int i;
4448
4449        t4_free_mem(adapter->l2t);
4450        t4_cleanup_sched(adapter);
4451        t4_free_mem(adapter->tids.tid_tab);
4452        cxgb4_cleanup_tc_u32(adapter);
4453        kfree(adapter->sge.egr_map);
4454        kfree(adapter->sge.ingr_map);
4455        kfree(adapter->sge.starving_fl);
4456        kfree(adapter->sge.txq_maperr);
4457#ifdef CONFIG_DEBUG_FS
4458        kfree(adapter->sge.blocked_fl);
4459#endif
4460        disable_msi(adapter);
4461
4462        for_each_port(adapter, i)
4463                if (adapter->port[i]) {
4464                        struct port_info *pi = adap2pinfo(adapter, i);
4465
4466                        if (pi->viid != 0)
4467                                t4_free_vi(adapter, adapter->mbox, adapter->pf,
4468                                           0, pi->viid);
4469                        kfree(adap2pinfo(adapter, i)->rss);
4470                        free_netdev(adapter->port[i]);
4471                }
4472        if (adapter->flags & FW_OK)
4473                t4_fw_bye(adapter, adapter->pf);
4474}
4475
4476#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4477#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4478                   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4479#define SEGMENT_SIZE 128
4480
4481static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4482{
4483        u16 device_id;
4484
4485        /* Retrieve adapter's device ID */
4486        pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4487
4488        switch (device_id >> 12) {
4489        case CHELSIO_T4:
4490                return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4491        case CHELSIO_T5:
4492                return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4493        case CHELSIO_T6:
4494                return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4495        default:
4496                dev_err(&pdev->dev, "Device %d is not supported\n",
4497                        device_id);
4498        }
4499        return -EINVAL;
4500}
4501
4502#ifdef CONFIG_PCI_IOV
4503static void dummy_setup(struct net_device *dev)
4504{
4505        dev->type = ARPHRD_NONE;
4506        dev->mtu = 0;
4507        dev->hard_header_len = 0;
4508        dev->addr_len = 0;
4509        dev->tx_queue_len = 0;
4510        dev->flags |= IFF_NOARP;
4511        dev->priv_flags |= IFF_NO_QUEUE;
4512
4513        /* Initialize the device structure. */
4514        dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4515        dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4516        dev->destructor = free_netdev;
4517}
4518
4519static int config_mgmt_dev(struct pci_dev *pdev)
4520{
4521        struct adapter *adap = pci_get_drvdata(pdev);
4522        struct net_device *netdev;
4523        struct port_info *pi;
4524        char name[IFNAMSIZ];
4525        int err;
4526
4527        snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4528        netdev = alloc_netdev(0, name, NET_NAME_UNKNOWN, dummy_setup);
4529        if (!netdev)
4530                return -ENOMEM;
4531
4532        pi = netdev_priv(netdev);
4533        pi->adapter = adap;
4534        SET_NETDEV_DEV(netdev, &pdev->dev);
4535
4536        adap->port[0] = netdev;
4537
4538        err = register_netdev(adap->port[0]);
4539        if (err) {
4540                pr_info("Unable to register VF mgmt netdev %s\n", name);
4541                free_netdev(adap->port[0]);
4542                adap->port[0] = NULL;
4543                return err;
4544        }
4545        return 0;
4546}
4547
4548static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4549{
4550        struct adapter *adap = pci_get_drvdata(pdev);
4551        int err = 0;
4552        int current_vfs = pci_num_vf(pdev);
4553        u32 pcie_fw;
4554
4555        pcie_fw = readl(adap->regs + PCIE_FW_A);
4556        /* Check if cxgb4 is the MASTER and fw is initialized */
4557        if (!(pcie_fw & PCIE_FW_INIT_F) ||
4558            !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4559            PCIE_FW_MASTER_G(pcie_fw) != 4) {
4560                dev_warn(&pdev->dev,
4561                         "cxgb4 driver needs to be MASTER to support SRIOV\n");
4562                return -EOPNOTSUPP;
4563        }
4564
4565        /* If any of the VF's is already assigned to Guest OS, then
4566         * SRIOV for the same cannot be modified
4567         */
4568        if (current_vfs && pci_vfs_assigned(pdev)) {
4569                dev_err(&pdev->dev,
4570                        "Cannot modify SR-IOV while VFs are assigned\n");
4571                num_vfs = current_vfs;
4572                return num_vfs;
4573        }
4574
4575        /* Disable SRIOV when zero is passed.
4576         * One needs to disable SRIOV before modifying it, else
4577         * stack throws the below warning:
4578         * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4579         */
4580        if (!num_vfs) {
4581                pci_disable_sriov(pdev);
4582                if (adap->port[0]) {
4583                        unregister_netdev(adap->port[0]);
4584                        adap->port[0] = NULL;
4585                }
4586                /* free VF resources */
4587                kfree(adap->vfinfo);
4588                adap->vfinfo = NULL;
4589                adap->num_vfs = 0;
4590                return num_vfs;
4591        }
4592
4593        if (num_vfs != current_vfs) {
4594                err = pci_enable_sriov(pdev, num_vfs);
4595                if (err)
4596                        return err;
4597
4598                adap->num_vfs = num_vfs;
4599                err = config_mgmt_dev(pdev);
4600                if (err)
4601                        return err;
4602        }
4603
4604        adap->vfinfo = kcalloc(adap->num_vfs,
4605                               sizeof(struct vf_info), GFP_KERNEL);
4606        if (adap->vfinfo)
4607                fill_vf_station_mac_addr(adap);
4608        return num_vfs;
4609}
4610#endif
4611
4612static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4613{
4614        int func, i, err, s_qpp, qpp, num_seg;
4615        struct port_info *pi;
4616        bool highdma = false;
4617        struct adapter *adapter = NULL;
4618        struct net_device *netdev;
4619        void __iomem *regs;
4620        u32 whoami, pl_rev;
4621        enum chip_type chip;
4622        static int adap_idx = 1;
4623
4624        printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4625
4626        err = pci_request_regions(pdev, KBUILD_MODNAME);
4627        if (err) {
4628                /* Just info, some other driver may have claimed the device. */
4629                dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4630                return err;
4631        }
4632
4633        err = pci_enable_device(pdev);
4634        if (err) {
4635                dev_err(&pdev->dev, "cannot enable PCI device\n");
4636                goto out_release_regions;
4637        }
4638
4639        regs = pci_ioremap_bar(pdev, 0);
4640        if (!regs) {
4641                dev_err(&pdev->dev, "cannot map device registers\n");
4642                err = -ENOMEM;
4643                goto out_disable_device;
4644        }
4645
4646        err = t4_wait_dev_ready(regs);
4647        if (err < 0)
4648                goto out_unmap_bar0;
4649
4650        /* We control everything through one PF */
4651        whoami = readl(regs + PL_WHOAMI_A);
4652        pl_rev = REV_G(readl(regs + PL_REV_A));
4653        chip = get_chip_type(pdev, pl_rev);
4654        func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4655                SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4656        if (func != ent->driver_data) {
4657#ifndef CONFIG_PCI_IOV
4658                iounmap(regs);
4659#endif
4660                pci_disable_device(pdev);
4661                pci_save_state(pdev);        /* to restore SR-IOV later */
4662                goto sriov;
4663        }
4664
4665        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4666                highdma = true;
4667                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4668                if (err) {
4669                        dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4670                                "coherent allocations\n");
4671                        goto out_unmap_bar0;
4672                }
4673        } else {
4674                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4675                if (err) {
4676                        dev_err(&pdev->dev, "no usable DMA configuration\n");
4677                        goto out_unmap_bar0;
4678                }
4679        }
4680
4681        pci_enable_pcie_error_reporting(pdev);
4682        enable_pcie_relaxed_ordering(pdev);
4683        pci_set_master(pdev);
4684        pci_save_state(pdev);
4685
4686        adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4687        if (!adapter) {
4688                err = -ENOMEM;
4689                goto out_unmap_bar0;
4690        }
4691        adap_idx++;
4692
4693        adapter->workq = create_singlethread_workqueue("cxgb4");
4694        if (!adapter->workq) {
4695                err = -ENOMEM;
4696                goto out_free_adapter;
4697        }
4698
4699        adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4700                                    (sizeof(struct mbox_cmd) *
4701                                     T4_OS_LOG_MBOX_CMDS),
4702                                    GFP_KERNEL);
4703        if (!adapter->mbox_log) {
4704                err = -ENOMEM;
4705                goto out_free_adapter;
4706        }
4707        adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4708
4709        /* PCI device has been enabled */
4710        adapter->flags |= DEV_ENABLED;
4711
4712        adapter->regs = regs;
4713        adapter->pdev = pdev;
4714        adapter->pdev_dev = &pdev->dev;
4715        adapter->name = pci_name(pdev);
4716        adapter->mbox = func;
4717        adapter->pf = func;
4718        adapter->msg_enable = dflt_msg_enable;
4719        memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4720
4721        spin_lock_init(&adapter->stats_lock);
4722        spin_lock_init(&adapter->tid_release_lock);
4723        spin_lock_init(&adapter->win0_lock);
4724
4725        INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4726        INIT_WORK(&adapter->db_full_task, process_db_full);
4727        INIT_WORK(&adapter->db_drop_task, process_db_drop);
4728
4729        err = t4_prep_adapter(adapter);
4730        if (err)
4731                goto out_free_adapter;
4732
4733
4734        if (!is_t4(adapter->params.chip)) {
4735                s_qpp = (QUEUESPERPAGEPF0_S +
4736                        (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4737                        adapter->pf);
4738                qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4739                      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4740                num_seg = PAGE_SIZE / SEGMENT_SIZE;
4741
4742                /* Each segment size is 128B. Write coalescing is enabled only
4743                 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4744                 * queue is less no of segments that can be accommodated in
4745                 * a page size.
4746                 */
4747                if (qpp > num_seg) {
4748                        dev_err(&pdev->dev,
4749                                "Incorrect number of egress queues per page\n");
4750                        err = -EINVAL;
4751                        goto out_free_adapter;
4752                }
4753                adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4754                pci_resource_len(pdev, 2));
4755                if (!adapter->bar2) {
4756                        dev_err(&pdev->dev, "cannot map device bar2 region\n");
4757                        err = -ENOMEM;
4758                        goto out_free_adapter;
4759                }
4760        }
4761
4762        setup_memwin(adapter);
4763        err = adap_init0(adapter);
4764#ifdef CONFIG_DEBUG_FS
4765        bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4766#endif
4767        setup_memwin_rdma(adapter);
4768        if (err)
4769                goto out_unmap_bar;
4770
4771        /* configure SGE_STAT_CFG_A to read WC stats */
4772        if (!is_t4(adapter->params.chip))
4773                t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4774                             (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4775                              T6_STATMODE_V(0)));
4776
4777        for_each_port(adapter, i) {
4778                netdev = alloc_etherdev_mq(sizeof(struct port_info),
4779                                           MAX_ETH_QSETS);
4780                if (!netdev) {
4781                        err = -ENOMEM;
4782                        goto out_free_dev;
4783                }
4784
4785                SET_NETDEV_DEV(netdev, &pdev->dev);
4786
4787                adapter->port[i] = netdev;
4788                pi = netdev_priv(netdev);
4789                pi->adapter = adapter;
4790                pi->xact_addr_filt = -1;
4791                pi->port_id = i;
4792                netdev->irq = pdev->irq;
4793
4794                netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4795                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4796                        NETIF_F_RXCSUM | NETIF_F_RXHASH |
4797                        NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
4798                        NETIF_F_HW_TC;
4799                if (highdma)
4800                        netdev->hw_features |= NETIF_F_HIGHDMA;
4801                netdev->features |= netdev->hw_features;
4802                netdev->vlan_features = netdev->features & VLAN_FEAT;
4803
4804                netdev->priv_flags |= IFF_UNICAST_FLT;
4805
4806                netdev->netdev_ops = &cxgb4_netdev_ops;
4807#ifdef CONFIG_CHELSIO_T4_DCB
4808                netdev->dcbnl_ops = &cxgb4_dcb_ops;
4809                cxgb4_dcb_state_init(netdev);
4810#endif
4811                cxgb4_set_ethtool_ops(netdev);
4812        }
4813
4814        pci_set_drvdata(pdev, adapter);
4815
4816        if (adapter->flags & FW_OK) {
4817                err = t4_port_init(adapter, func, func, 0);
4818                if (err)
4819                        goto out_free_dev;
4820        } else if (adapter->params.nports == 1) {
4821                /* If we don't have a connection to the firmware -- possibly
4822                 * because of an error -- grab the raw VPD parameters so we
4823                 * can set the proper MAC Address on the debug network
4824                 * interface that we've created.
4825                 */
4826                u8 hw_addr[ETH_ALEN];
4827                u8 *na = adapter->params.vpd.na;
4828
4829                err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4830                if (!err) {
4831                        for (i = 0; i < ETH_ALEN; i++)
4832                                hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4833                                              hex2val(na[2 * i + 1]));
4834                        t4_set_hw_addr(adapter, 0, hw_addr);
4835                }
4836        }
4837
4838        /* Configure queues and allocate tables now, they can be needed as
4839         * soon as the first register_netdev completes.
4840         */
4841        cfg_queues(adapter);
4842
4843        adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4844        if (!adapter->l2t) {
4845                /* We tolerate a lack of L2T, giving up some functionality */
4846                dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4847                adapter->params.offload = 0;
4848        }
4849
4850#if IS_ENABLED(CONFIG_IPV6)
4851        if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4852            (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4853                /* CLIP functionality is not present in hardware,
4854                 * hence disable all offload features
4855                 */
4856                dev_warn(&pdev->dev,
4857                         "CLIP not enabled in hardware, continuing\n");
4858                adapter->params.offload = 0;
4859        } else {
4860                adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4861                                                  adapter->clipt_end);
4862                if (!adapter->clipt) {
4863                        /* We tolerate a lack of clip_table, giving up
4864                         * some functionality
4865                         */
4866                        dev_warn(&pdev->dev,
4867                                 "could not allocate Clip table, continuing\n");
4868                        adapter->params.offload = 0;
4869                }
4870        }
4871#endif
4872
4873        for_each_port(adapter, i) {
4874                pi = adap2pinfo(adapter, i);
4875                pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
4876                if (!pi->sched_tbl)
4877                        dev_warn(&pdev->dev,
4878                                 "could not activate scheduling on port %d\n",
4879                                 i);
4880        }
4881
4882        if (tid_init(&adapter->tids) < 0) {
4883                dev_warn(&pdev->dev, "could not allocate TID table, "
4884                         "continuing\n");
4885                adapter->params.offload = 0;
4886        } else {
4887                adapter->tc_u32 = cxgb4_init_tc_u32(adapter,
4888                                                    CXGB4_MAX_LINK_HANDLE);
4889                if (!adapter->tc_u32)
4890                        dev_warn(&pdev->dev,
4891                                 "could not offload tc u32, continuing\n");
4892        }
4893
4894        if (is_offload(adapter)) {
4895                if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4896                        u32 hash_base, hash_reg;
4897
4898                        if (chip <= CHELSIO_T5) {
4899                                hash_reg = LE_DB_TID_HASHBASE_A;
4900                                hash_base = t4_read_reg(adapter, hash_reg);
4901                                adapter->tids.hash_base = hash_base / 4;
4902                        } else {
4903                                hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4904                                hash_base = t4_read_reg(adapter, hash_reg);
4905                                adapter->tids.hash_base = hash_base;
4906                        }
4907                }
4908        }
4909
4910        /* See what interrupts we'll be using */
4911        if (msi > 1 && enable_msix(adapter) == 0)
4912                adapter->flags |= USING_MSIX;
4913        else if (msi > 0 && pci_enable_msi(pdev) == 0) {
4914                adapter->flags |= USING_MSI;
4915                if (msi > 1)
4916                        free_msix_info(adapter);
4917        }
4918
4919        /* check for PCI Express bandwidth capabiltites */
4920        cxgb4_check_pcie_caps(adapter);
4921
4922        err = init_rss(adapter);
4923        if (err)
4924                goto out_free_dev;
4925
4926        /*
4927         * The card is now ready to go.  If any errors occur during device
4928         * registration we do not fail the whole card but rather proceed only
4929         * with the ports we manage to register successfully.  However we must
4930         * register at least one net device.
4931         */
4932        for_each_port(adapter, i) {
4933                pi = adap2pinfo(adapter, i);
4934                adapter->port[i]->dev_port = pi->lport;
4935                netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4936                netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4937
4938                err = register_netdev(adapter->port[i]);
4939                if (err)
4940                        break;
4941                adapter->chan_map[pi->tx_chan] = i;
4942                print_port_info(adapter->port[i]);
4943        }
4944        if (i == 0) {
4945                dev_err(&pdev->dev, "could not register any net devices\n");
4946                goto out_free_dev;
4947        }
4948        if (err) {
4949                dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4950                err = 0;
4951        }
4952
4953        if (cxgb4_debugfs_root) {
4954                adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4955                                                           cxgb4_debugfs_root);
4956                setup_debugfs(adapter);
4957        }
4958
4959        /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4960        pdev->needs_freset = 1;
4961
4962        if (is_uld(adapter)) {
4963                mutex_lock(&uld_mutex);
4964                list_add_tail(&adapter->list_node, &adapter_list);
4965                mutex_unlock(&uld_mutex);
4966        }
4967
4968        print_adapter_info(adapter);
4969        setup_fw_sge_queues(adapter);
4970        return 0;
4971
4972sriov:
4973#ifdef CONFIG_PCI_IOV
4974        if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) {
4975                dev_warn(&pdev->dev,
4976                         "Enabling SR-IOV VFs using the num_vf module "
4977                         "parameter is deprecated - please use the pci sysfs "
4978                         "interface instead.\n");
4979                if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4980                        dev_info(&pdev->dev,
4981                                 "instantiated %u virtual functions\n",
4982                                 num_vf[func]);
4983        }
4984
4985        adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4986        if (!adapter) {
4987                err = -ENOMEM;
4988                goto free_pci_region;
4989        }
4990
4991        adapter->pdev = pdev;
4992        adapter->pdev_dev = &pdev->dev;
4993        adapter->name = pci_name(pdev);
4994        adapter->mbox = func;
4995        adapter->pf = func;
4996        adapter->regs = regs;
4997        adapter->adap_idx = adap_idx;
4998        adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4999                                    (sizeof(struct mbox_cmd) *
5000                                     T4_OS_LOG_MBOX_CMDS),
5001                                    GFP_KERNEL);
5002        if (!adapter->mbox_log) {
5003                err = -ENOMEM;
5004                goto free_adapter;
5005        }
5006        pci_set_drvdata(pdev, adapter);
5007        return 0;
5008
5009 free_adapter:
5010        kfree(adapter);
5011 free_pci_region:
5012        iounmap(regs);
5013        pci_disable_sriov(pdev);
5014        pci_release_regions(pdev);
5015        return err;
5016#else
5017        return 0;
5018#endif
5019
5020 out_free_dev:
5021        free_some_resources(adapter);
5022        if (adapter->flags & USING_MSIX)
5023                free_msix_info(adapter);
5024        if (adapter->num_uld || adapter->num_ofld_uld)
5025                t4_uld_mem_free(adapter);
5026 out_unmap_bar:
5027        if (!is_t4(adapter->params.chip))
5028                iounmap(adapter->bar2);
5029 out_free_adapter:
5030        if (adapter->workq)
5031                destroy_workqueue(adapter->workq);
5032
5033        kfree(adapter->mbox_log);
5034        kfree(adapter);
5035 out_unmap_bar0:
5036        iounmap(regs);
5037 out_disable_device:
5038        pci_disable_pcie_error_reporting(pdev);
5039        pci_disable_device(pdev);
5040 out_release_regions:
5041        pci_release_regions(pdev);
5042        return err;
5043}
5044
5045static void remove_one(struct pci_dev *pdev)
5046{
5047        struct adapter *adapter = pci_get_drvdata(pdev);
5048
5049        if (!adapter) {
5050                pci_release_regions(pdev);
5051                return;
5052        }
5053
5054        if (adapter->pf == 4) {
5055                int i;
5056
5057                /* Tear down per-adapter Work Queue first since it can contain
5058                 * references to our adapter data structure.
5059                 */
5060                destroy_workqueue(adapter->workq);
5061
5062                if (is_uld(adapter))
5063                        detach_ulds(adapter);
5064
5065                disable_interrupts(adapter);
5066
5067                for_each_port(adapter, i)
5068                        if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5069                                unregister_netdev(adapter->port[i]);
5070
5071                debugfs_remove_recursive(adapter->debugfs_root);
5072
5073                /* If we allocated filters, free up state associated with any
5074                 * valid filters ...
5075                 */
5076                clear_all_filters(adapter);
5077
5078                if (adapter->flags & FULL_INIT_DONE)
5079                        cxgb_down(adapter);
5080
5081                if (adapter->flags & USING_MSIX)
5082                        free_msix_info(adapter);
5083                if (adapter->num_uld || adapter->num_ofld_uld)
5084                        t4_uld_mem_free(adapter);
5085                free_some_resources(adapter);
5086#if IS_ENABLED(CONFIG_IPV6)
5087                t4_cleanup_clip_tbl(adapter);
5088#endif
5089                iounmap(adapter->regs);
5090                if (!is_t4(adapter->params.chip))
5091                        iounmap(adapter->bar2);
5092                pci_disable_pcie_error_reporting(pdev);
5093                if ((adapter->flags & DEV_ENABLED)) {
5094                        pci_disable_device(pdev);
5095                        adapter->flags &= ~DEV_ENABLED;
5096                }
5097                pci_release_regions(pdev);
5098                kfree(adapter->mbox_log);
5099                synchronize_rcu();
5100                kfree(adapter);
5101        }
5102#ifdef CONFIG_PCI_IOV
5103        else {
5104                if (adapter->port[0])
5105                        unregister_netdev(adapter->port[0]);
5106                iounmap(adapter->regs);
5107                kfree(adapter->vfinfo);
5108                kfree(adapter);
5109                pci_disable_sriov(pdev);
5110                pci_release_regions(pdev);
5111        }
5112#endif
5113}
5114
5115/* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5116 * delivery.  This is essentially a stripped down version of the PCI remove()
5117 * function where we do the minimal amount of work necessary to shutdown any
5118 * further activity.
5119 */
5120static void shutdown_one(struct pci_dev *pdev)
5121{
5122        struct adapter *adapter = pci_get_drvdata(pdev);
5123
5124        /* As with remove_one() above (see extended comment), we only want do
5125         * do cleanup on PCI Devices which went all the way through init_one()
5126         * ...
5127         */
5128        if (!adapter) {
5129                pci_release_regions(pdev);
5130                return;
5131        }
5132
5133        if (adapter->pf == 4) {
5134                int i;
5135
5136                for_each_port(adapter, i)
5137                        if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5138                                cxgb_close(adapter->port[i]);
5139
5140                t4_uld_clean_up(adapter);
5141                disable_interrupts(adapter);
5142                disable_msi(adapter);
5143
5144                t4_sge_stop(adapter);
5145                if (adapter->flags & FW_OK)
5146                        t4_fw_bye(adapter, adapter->mbox);
5147        }
5148#ifdef CONFIG_PCI_IOV
5149        else {
5150                if (adapter->port[0])
5151                        unregister_netdev(adapter->port[0]);
5152                iounmap(adapter->regs);
5153                kfree(adapter->vfinfo);
5154                kfree(adapter);
5155                pci_disable_sriov(pdev);
5156                pci_release_regions(pdev);
5157        }
5158#endif
5159}
5160
5161static struct pci_driver cxgb4_driver = {
5162        .name     = KBUILD_MODNAME,
5163        .id_table = cxgb4_pci_tbl,
5164        .probe    = init_one,
5165        .remove   = remove_one,
5166        .shutdown = shutdown_one,
5167#ifdef CONFIG_PCI_IOV
5168        .sriov_configure = cxgb4_iov_configure,
5169#endif
5170        .err_handler = &cxgb4_eeh,
5171};
5172
5173static int __init cxgb4_init_module(void)
5174{
5175        int ret;
5176
5177        /* Debugfs support is optional, just warn if this fails */
5178        cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5179        if (!cxgb4_debugfs_root)
5180                pr_warn("could not create debugfs entry, continuing\n");
5181
5182        ret = pci_register_driver(&cxgb4_driver);
5183        if (ret < 0)
5184                debugfs_remove(cxgb4_debugfs_root);
5185
5186#if IS_ENABLED(CONFIG_IPV6)
5187        if (!inet6addr_registered) {
5188                register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5189                inet6addr_registered = true;
5190        }
5191#endif
5192
5193        return ret;
5194}
5195
5196static void __exit cxgb4_cleanup_module(void)
5197{
5198#if IS_ENABLED(CONFIG_IPV6)
5199        if (inet6addr_registered) {
5200                unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5201                inet6addr_registered = false;
5202        }
5203#endif
5204        pci_unregister_driver(&cxgb4_driver);
5205        debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5206}
5207
5208module_init(cxgb4_init_module);
5209module_exit(cxgb4_cleanup_module);
5210