linux/drivers/usb/dwc2/hcd_queue.c
<<
>>
Prefs
   1/*
   2 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
   3 *
   4 * Copyright (C) 2004-2013 Synopsys, Inc.
   5 *
   6 * Redistribution and use in source and binary forms, with or without
   7 * modification, are permitted provided that the following conditions
   8 * are met:
   9 * 1. Redistributions of source code must retain the above copyright
  10 *    notice, this list of conditions, and the following disclaimer,
  11 *    without modification.
  12 * 2. Redistributions in binary form must reproduce the above copyright
  13 *    notice, this list of conditions and the following disclaimer in the
  14 *    documentation and/or other materials provided with the distribution.
  15 * 3. The names of the above-listed copyright holders may not be used
  16 *    to endorse or promote products derived from this software without
  17 *    specific prior written permission.
  18 *
  19 * ALTERNATIVELY, this software may be distributed under the terms of the
  20 * GNU General Public License ("GPL") as published by the Free Software
  21 * Foundation; either version 2 of the License, or (at your option) any
  22 * later version.
  23 *
  24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  35 */
  36
  37/*
  38 * This file contains the functions to manage Queue Heads and Queue
  39 * Transfer Descriptors for Host mode
  40 */
  41#include <linux/gcd.h>
  42#include <linux/kernel.h>
  43#include <linux/module.h>
  44#include <linux/spinlock.h>
  45#include <linux/interrupt.h>
  46#include <linux/dma-mapping.h>
  47#include <linux/io.h>
  48#include <linux/slab.h>
  49#include <linux/usb.h>
  50
  51#include <linux/usb/hcd.h>
  52#include <linux/usb/ch11.h>
  53
  54#include "core.h"
  55#include "hcd.h"
  56
  57/* Wait this long before releasing periodic reservation */
  58#define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5))
  59
  60/**
  61 * dwc2_periodic_channel_available() - Checks that a channel is available for a
  62 * periodic transfer
  63 *
  64 * @hsotg: The HCD state structure for the DWC OTG controller
  65 *
  66 * Return: 0 if successful, negative error code otherwise
  67 */
  68static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
  69{
  70        /*
  71         * Currently assuming that there is a dedicated host channel for
  72         * each periodic transaction plus at least one host channel for
  73         * non-periodic transactions
  74         */
  75        int status;
  76        int num_channels;
  77
  78        num_channels = hsotg->core_params->host_channels;
  79        if (hsotg->periodic_channels + hsotg->non_periodic_channels <
  80                                                                num_channels
  81            && hsotg->periodic_channels < num_channels - 1) {
  82                status = 0;
  83        } else {
  84                dev_dbg(hsotg->dev,
  85                        "%s: Total channels: %d, Periodic: %d, "
  86                        "Non-periodic: %d\n", __func__, num_channels,
  87                        hsotg->periodic_channels, hsotg->non_periodic_channels);
  88                status = -ENOSPC;
  89        }
  90
  91        return status;
  92}
  93
  94/**
  95 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
  96 * for the specified QH in the periodic schedule
  97 *
  98 * @hsotg: The HCD state structure for the DWC OTG controller
  99 * @qh:    QH containing periodic bandwidth required
 100 *
 101 * Return: 0 if successful, negative error code otherwise
 102 *
 103 * For simplicity, this calculation assumes that all the transfers in the
 104 * periodic schedule may occur in the same (micro)frame
 105 */
 106static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
 107                                         struct dwc2_qh *qh)
 108{
 109        int status;
 110        s16 max_claimed_usecs;
 111
 112        status = 0;
 113
 114        if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
 115                /*
 116                 * High speed mode
 117                 * Max periodic usecs is 80% x 125 usec = 100 usec
 118                 */
 119                max_claimed_usecs = 100 - qh->host_us;
 120        } else {
 121                /*
 122                 * Full speed mode
 123                 * Max periodic usecs is 90% x 1000 usec = 900 usec
 124                 */
 125                max_claimed_usecs = 900 - qh->host_us;
 126        }
 127
 128        if (hsotg->periodic_usecs > max_claimed_usecs) {
 129                dev_err(hsotg->dev,
 130                        "%s: already claimed usecs %d, required usecs %d\n",
 131                        __func__, hsotg->periodic_usecs, qh->host_us);
 132                status = -ENOSPC;
 133        }
 134
 135        return status;
 136}
 137
 138/**
 139 * pmap_schedule() - Schedule time in a periodic bitmap (pmap).
 140 *
 141 * @map:             The bitmap representing the schedule; will be updated
 142 *                   upon success.
 143 * @bits_per_period: The schedule represents several periods.  This is how many
 144 *                   bits are in each period.  It's assumed that the beginning
 145 *                   of the schedule will repeat after its end.
 146 * @periods_in_map:  The number of periods in the schedule.
 147 * @num_bits:        The number of bits we need per period we want to reserve
 148 *                   in this function call.
 149 * @interval:        How often we need to be scheduled for the reservation this
 150 *                   time.  1 means every period.  2 means every other period.
 151 *                   ...you get the picture?
 152 * @start:           The bit number to start at.  Normally 0.  Must be within
 153 *                   the interval or we return failure right away.
 154 * @only_one_period: Normally we'll allow picking a start anywhere within the
 155 *                   first interval, since we can still make all repetition
 156 *                   requirements by doing that.  However, if you pass true
 157 *                   here then we'll return failure if we can't fit within
 158 *                   the period that "start" is in.
 159 *
 160 * The idea here is that we want to schedule time for repeating events that all
 161 * want the same resource.  The resource is divided into fixed-sized periods
 162 * and the events want to repeat every "interval" periods.  The schedule
 163 * granularity is one bit.
 164 *
 165 * To keep things "simple", we'll represent our schedule with a bitmap that
 166 * contains a fixed number of periods.  This gets rid of a lot of complexity
 167 * but does mean that we need to handle things specially (and non-ideally) if
 168 * the number of the periods in the schedule doesn't match well with the
 169 * intervals that we're trying to schedule.
 170 *
 171 * Here's an explanation of the scheme we'll implement, assuming 8 periods.
 172 * - If interval is 1, we need to take up space in each of the 8
 173 *   periods we're scheduling.  Easy.
 174 * - If interval is 2, we need to take up space in half of the
 175 *   periods.  Again, easy.
 176 * - If interval is 3, we actually need to fall back to interval 1.
 177 *   Why?  Because we might need time in any period.  AKA for the
 178 *   first 8 periods, we'll be in slot 0, 3, 6.  Then we'll be
 179 *   in slot 1, 4, 7.  Then we'll be in 2, 5.  Then we'll be back to
 180 *   0, 3, and 6.  Since we could be in any frame we need to reserve
 181 *   for all of them.  Sucks, but that's what you gotta do.  Note that
 182 *   if we were instead scheduling 8 * 3 = 24 we'd do much better, but
 183 *   then we need more memory and time to do scheduling.
 184 * - If interval is 4, easy.
 185 * - If interval is 5, we again need interval 1.  The schedule will be
 186 *   0, 5, 2, 7, 4, 1, 6, 3, 0
 187 * - If interval is 6, we need interval 2.  0, 6, 4, 2.
 188 * - If interval is 7, we need interval 1.
 189 * - If interval is 8, we need interval 8.
 190 *
 191 * If you do the math, you'll see that we need to pretend that interval is
 192 * equal to the greatest_common_divisor(interval, periods_in_map).
 193 *
 194 * Note that at the moment this function tends to front-pack the schedule.
 195 * In some cases that's really non-ideal (it's hard to schedule things that
 196 * need to repeat every period).  In other cases it's perfect (you can easily
 197 * schedule bigger, less often repeating things).
 198 *
 199 * Here's the algorithm in action (8 periods, 5 bits per period):
 200 *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
 201 *  |*****|  ***|*****|  ***|*****|  ***|*****|  ***|   OK 3 bits, intv 3 at 2
 202 *  |*****|* ***|*****|  ***|*****|* ***|*****|  ***|   OK 1 bits, intv 4 at 5
 203 *  |**   |*    |**   |     |**   |*    |**   |     | Remv 3 bits, intv 3 at 2
 204 *  |***  |*    |***  |     |***  |*    |***  |     |   OK 1 bits, intv 6 at 2
 205 *  |**** |*  * |**** |   * |**** |*  * |**** |   * |   OK 1 bits, intv 1 at 3
 206 *  |**** |**** |**** | *** |**** |**** |**** | *** |   OK 2 bits, intv 2 at 6
 207 *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 1 at 4
 208 *  |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1
 209 *  |  ***|*****|  ***| ****|  ***|*****|  ***| ****| Remv 2 bits, intv 2 at 0
 210 *  |  ***| ****|  ***| ****|  ***| ****|  ***| ****| Remv 1 bits, intv 4 at 5
 211 *  |   **| ****|   **| ****|   **| ****|   **| ****| Remv 1 bits, intv 6 at 2
 212 *  |    *| ** *|    *| ** *|    *| ** *|    *| ** *| Remv 1 bits, intv 1 at 3
 213 *  |    *|    *|    *|    *|    *|    *|    *|    *| Remv 2 bits, intv 2 at 6
 214 *  |     |     |     |     |     |     |     |     | Remv 1 bits, intv 1 at 4
 215 *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
 216 *  |***  |     |**   |     |***  |     |**   |     |   OK 1 bits, intv 4 at 2
 217 *  |*****|     |** **|     |*****|     |** **|     |   OK 2 bits, intv 2 at 3
 218 *  |*****|*    |** **|     |*****|*    |** **|     |   OK 1 bits, intv 4 at 5
 219 *  |*****|***  |** **| **  |*****|***  |** **| **  |   OK 2 bits, intv 2 at 6
 220 *  |*****|*****|** **| ****|*****|*****|** **| ****|   OK 2 bits, intv 2 at 8
 221 *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 4 at 12
 222 *
 223 * This function is pretty generic and could be easily abstracted if anything
 224 * needed similar scheduling.
 225 *
 226 * Returns either -ENOSPC or a >= 0 start bit which should be passed to the
 227 * unschedule routine.  The map bitmap will be updated on a non-error result.
 228 */
 229static int pmap_schedule(unsigned long *map, int bits_per_period,
 230                         int periods_in_map, int num_bits,
 231                         int interval, int start, bool only_one_period)
 232{
 233        int interval_bits;
 234        int to_reserve;
 235        int first_end;
 236        int i;
 237
 238        if (num_bits > bits_per_period)
 239                return -ENOSPC;
 240
 241        /* Adjust interval as per description */
 242        interval = gcd(interval, periods_in_map);
 243
 244        interval_bits = bits_per_period * interval;
 245        to_reserve = periods_in_map / interval;
 246
 247        /* If start has gotten us past interval then we can't schedule */
 248        if (start >= interval_bits)
 249                return -ENOSPC;
 250
 251        if (only_one_period)
 252                /* Must fit within same period as start; end at begin of next */
 253                first_end = (start / bits_per_period + 1) * bits_per_period;
 254        else
 255                /* Can fit anywhere in the first interval */
 256                first_end = interval_bits;
 257
 258        /*
 259         * We'll try to pick the first repetition, then see if that time
 260         * is free for each of the subsequent repetitions.  If it's not
 261         * we'll adjust the start time for the next search of the first
 262         * repetition.
 263         */
 264        while (start + num_bits <= first_end) {
 265                int end;
 266
 267                /* Need to stay within this period */
 268                end = (start / bits_per_period + 1) * bits_per_period;
 269
 270                /* Look for num_bits us in this microframe starting at start */
 271                start = bitmap_find_next_zero_area(map, end, start, num_bits,
 272                                                   0);
 273
 274                /*
 275                 * We should get start >= end if we fail.  We might be
 276                 * able to check the next microframe depending on the
 277                 * interval, so continue on (start already updated).
 278                 */
 279                if (start >= end) {
 280                        start = end;
 281                        continue;
 282                }
 283
 284                /* At this point we have a valid point for first one */
 285                for (i = 1; i < to_reserve; i++) {
 286                        int ith_start = start + interval_bits * i;
 287                        int ith_end = end + interval_bits * i;
 288                        int ret;
 289
 290                        /* Use this as a dumb "check if bits are 0" */
 291                        ret = bitmap_find_next_zero_area(
 292                                map, ith_start + num_bits, ith_start, num_bits,
 293                                0);
 294
 295                        /* We got the right place, continue checking */
 296                        if (ret == ith_start)
 297                                continue;
 298
 299                        /* Move start up for next time and exit for loop */
 300                        ith_start = bitmap_find_next_zero_area(
 301                                map, ith_end, ith_start, num_bits, 0);
 302                        if (ith_start >= ith_end)
 303                                /* Need a while new period next time */
 304                                start = end;
 305                        else
 306                                start = ith_start - interval_bits * i;
 307                        break;
 308                }
 309
 310                /* If didn't exit the for loop with a break, we have success */
 311                if (i == to_reserve)
 312                        break;
 313        }
 314
 315        if (start + num_bits > first_end)
 316                return -ENOSPC;
 317
 318        for (i = 0; i < to_reserve; i++) {
 319                int ith_start = start + interval_bits * i;
 320
 321                bitmap_set(map, ith_start, num_bits);
 322        }
 323
 324        return start;
 325}
 326
 327/**
 328 * pmap_unschedule() - Undo work done by pmap_schedule()
 329 *
 330 * @map:             See pmap_schedule().
 331 * @bits_per_period: See pmap_schedule().
 332 * @periods_in_map:  See pmap_schedule().
 333 * @num_bits:        The number of bits that was passed to schedule.
 334 * @interval:        The interval that was passed to schedule.
 335 * @start:           The return value from pmap_schedule().
 336 */
 337static void pmap_unschedule(unsigned long *map, int bits_per_period,
 338                            int periods_in_map, int num_bits,
 339                            int interval, int start)
 340{
 341        int interval_bits;
 342        int to_release;
 343        int i;
 344
 345        /* Adjust interval as per description in pmap_schedule() */
 346        interval = gcd(interval, periods_in_map);
 347
 348        interval_bits = bits_per_period * interval;
 349        to_release = periods_in_map / interval;
 350
 351        for (i = 0; i < to_release; i++) {
 352                int ith_start = start + interval_bits * i;
 353
 354                bitmap_clear(map, ith_start, num_bits);
 355        }
 356}
 357
 358/*
 359 * cat_printf() - A printf() + strcat() helper
 360 *
 361 * This is useful for concatenating a bunch of strings where each string is
 362 * constructed using printf.
 363 *
 364 * @buf:   The destination buffer; will be updated to point after the printed
 365 *         data.
 366 * @size:  The number of bytes in the buffer (includes space for '\0').
 367 * @fmt:   The format for printf.
 368 * @...:   The args for printf.
 369 */
 370static __printf(3, 4)
 371void cat_printf(char **buf, size_t *size, const char *fmt, ...)
 372{
 373        va_list args;
 374        int i;
 375
 376        if (*size == 0)
 377                return;
 378
 379        va_start(args, fmt);
 380        i = vsnprintf(*buf, *size, fmt, args);
 381        va_end(args);
 382
 383        if (i >= *size) {
 384                (*buf)[*size - 1] = '\0';
 385                *buf += *size;
 386                *size = 0;
 387        } else {
 388                *buf += i;
 389                *size -= i;
 390        }
 391}
 392
 393/*
 394 * pmap_print() - Print the given periodic map
 395 *
 396 * Will attempt to print out the periodic schedule.
 397 *
 398 * @map:             See pmap_schedule().
 399 * @bits_per_period: See pmap_schedule().
 400 * @periods_in_map:  See pmap_schedule().
 401 * @period_name:     The name of 1 period, like "uFrame"
 402 * @units:           The name of the units, like "us".
 403 * @print_fn:        The function to call for printing.
 404 * @print_data:      Opaque data to pass to the print function.
 405 */
 406static void pmap_print(unsigned long *map, int bits_per_period,
 407                       int periods_in_map, const char *period_name,
 408                       const char *units,
 409                       void (*print_fn)(const char *str, void *data),
 410                       void *print_data)
 411{
 412        int period;
 413
 414        for (period = 0; period < periods_in_map; period++) {
 415                char tmp[64];
 416                char *buf = tmp;
 417                size_t buf_size = sizeof(tmp);
 418                int period_start = period * bits_per_period;
 419                int period_end = period_start + bits_per_period;
 420                int start = 0;
 421                int count = 0;
 422                bool printed = false;
 423                int i;
 424
 425                for (i = period_start; i < period_end + 1; i++) {
 426                        /* Handle case when ith bit is set */
 427                        if (i < period_end &&
 428                            bitmap_find_next_zero_area(map, i + 1,
 429                                                       i, 1, 0) != i) {
 430                                if (count == 0)
 431                                        start = i - period_start;
 432                                count++;
 433                                continue;
 434                        }
 435
 436                        /* ith bit isn't set; don't care if count == 0 */
 437                        if (count == 0)
 438                                continue;
 439
 440                        if (!printed)
 441                                cat_printf(&buf, &buf_size, "%s %d: ",
 442                                           period_name, period);
 443                        else
 444                                cat_printf(&buf, &buf_size, ", ");
 445                        printed = true;
 446
 447                        cat_printf(&buf, &buf_size, "%d %s -%3d %s", start,
 448                                   units, start + count - 1, units);
 449                        count = 0;
 450                }
 451
 452                if (printed)
 453                        print_fn(tmp, print_data);
 454        }
 455}
 456
 457/**
 458 * dwc2_get_ls_map() - Get the map used for the given qh
 459 *
 460 * @hsotg: The HCD state structure for the DWC OTG controller.
 461 * @qh:    QH for the periodic transfer.
 462 *
 463 * We'll always get the periodic map out of our TT.  Note that even if we're
 464 * running the host straight in low speed / full speed mode it appears as if
 465 * a TT is allocated for us, so we'll use it.  If that ever changes we can
 466 * add logic here to get a map out of "hsotg" if !qh->do_split.
 467 *
 468 * Returns: the map or NULL if a map couldn't be found.
 469 */
 470static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg,
 471                                      struct dwc2_qh *qh)
 472{
 473        unsigned long *map;
 474
 475        /* Don't expect to be missing a TT and be doing low speed scheduling */
 476        if (WARN_ON(!qh->dwc_tt))
 477                return NULL;
 478
 479        /* Get the map and adjust if this is a multi_tt hub */
 480        map = qh->dwc_tt->periodic_bitmaps;
 481        if (qh->dwc_tt->usb_tt->multi)
 482                map += DWC2_ELEMENTS_PER_LS_BITMAP * qh->ttport;
 483
 484        return map;
 485}
 486
 487struct dwc2_qh_print_data {
 488        struct dwc2_hsotg *hsotg;
 489        struct dwc2_qh *qh;
 490};
 491
 492/**
 493 * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print()
 494 *
 495 * @str:  The string to print
 496 * @data: A pointer to a struct dwc2_qh_print_data
 497 */
 498static void dwc2_qh_print(const char *str, void *data)
 499{
 500        struct dwc2_qh_print_data *print_data = data;
 501
 502        dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str);
 503}
 504
 505/**
 506 * dwc2_qh_schedule_print() - Print the periodic schedule
 507 *
 508 * @hsotg: The HCD state structure for the DWC OTG controller.
 509 * @qh:    QH to print.
 510 */
 511static void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
 512                                   struct dwc2_qh *qh)
 513{
 514        struct dwc2_qh_print_data print_data = { hsotg, qh };
 515        int i;
 516
 517        /*
 518         * The printing functions are quite slow and inefficient.
 519         * If we don't have tracing turned on, don't run unless the special
 520         * define is turned on.
 521         */
 522#ifndef DWC2_PRINT_SCHEDULE
 523        return;
 524#endif
 525
 526        if (qh->schedule_low_speed) {
 527                unsigned long *map = dwc2_get_ls_map(hsotg, qh);
 528
 529                dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us",
 530                             qh, qh->device_us,
 531                             DWC2_ROUND_US_TO_SLICE(qh->device_us),
 532                             DWC2_US_PER_SLICE * qh->ls_start_schedule_slice);
 533
 534                if (map) {
 535                        dwc2_sch_dbg(hsotg,
 536                                     "QH=%p Whole low/full speed map %p now:\n",
 537                                     qh, map);
 538                        pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
 539                                   DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices",
 540                                   dwc2_qh_print, &print_data);
 541                }
 542        }
 543
 544        for (i = 0; i < qh->num_hs_transfers; i++) {
 545                struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i;
 546                int uframe = trans_time->start_schedule_us /
 547                             DWC2_HS_PERIODIC_US_PER_UFRAME;
 548                int rel_us = trans_time->start_schedule_us %
 549                             DWC2_HS_PERIODIC_US_PER_UFRAME;
 550
 551                dwc2_sch_dbg(hsotg,
 552                             "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n",
 553                             qh, i, trans_time->duration_us, uframe, rel_us);
 554        }
 555        if (qh->num_hs_transfers) {
 556                dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh);
 557                pmap_print(hsotg->hs_periodic_bitmap,
 558                           DWC2_HS_PERIODIC_US_PER_UFRAME,
 559                           DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us",
 560                           dwc2_qh_print, &print_data);
 561        }
 562
 563}
 564
 565/**
 566 * dwc2_ls_pmap_schedule() - Schedule a low speed QH
 567 *
 568 * @hsotg:        The HCD state structure for the DWC OTG controller.
 569 * @qh:           QH for the periodic transfer.
 570 * @search_slice: We'll start trying to schedule at the passed slice.
 571 *                Remember that slices are the units of the low speed
 572 *                schedule (think 25us or so).
 573 *
 574 * Wraps pmap_schedule() with the right parameters for low speed scheduling.
 575 *
 576 * Normally we schedule low speed devices on the map associated with the TT.
 577 *
 578 * Returns: 0 for success or an error code.
 579 */
 580static int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
 581                                 int search_slice)
 582{
 583        int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
 584        unsigned long *map = dwc2_get_ls_map(hsotg, qh);
 585        int slice;
 586
 587        if (map == NULL)
 588                return -EINVAL;
 589
 590        /*
 591         * Schedule on the proper low speed map with our low speed scheduling
 592         * parameters.  Note that we use the "device_interval" here since
 593         * we want the low speed interval and the only way we'd be in this
 594         * function is if the device is low speed.
 595         *
 596         * If we happen to be doing low speed and high speed scheduling for the
 597         * same transaction (AKA we have a split) we always do low speed first.
 598         * That means we can always pass "false" for only_one_period (that
 599         * parameters is only useful when we're trying to get one schedule to
 600         * match what we already planned in the other schedule).
 601         */
 602        slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
 603                              DWC2_LS_SCHEDULE_FRAMES, slices,
 604                              qh->device_interval, search_slice, false);
 605
 606        if (slice < 0)
 607                return slice;
 608
 609        qh->ls_start_schedule_slice = slice;
 610        return 0;
 611}
 612
 613/**
 614 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule()
 615 *
 616 * @hsotg:       The HCD state structure for the DWC OTG controller.
 617 * @qh:          QH for the periodic transfer.
 618 */
 619static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg,
 620                                    struct dwc2_qh *qh)
 621{
 622        int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
 623        unsigned long *map = dwc2_get_ls_map(hsotg, qh);
 624
 625        /* Schedule should have failed, so no worries about no error code */
 626        if (map == NULL)
 627                return;
 628
 629        pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
 630                        DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval,
 631                        qh->ls_start_schedule_slice);
 632}
 633
 634/**
 635 * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule
 636 *
 637 * This will schedule something on the main dwc2 schedule.
 638 *
 639 * We'll start looking in qh->hs_transfers[index].start_schedule_us.  We'll
 640 * update this with the result upon success.  We also use the duration from
 641 * the same structure.
 642 *
 643 * @hsotg:           The HCD state structure for the DWC OTG controller.
 644 * @qh:              QH for the periodic transfer.
 645 * @only_one_period: If true we will limit ourselves to just looking at
 646 *                   one period (aka one 100us chunk).  This is used if we have
 647 *                   already scheduled something on the low speed schedule and
 648 *                   need to find something that matches on the high speed one.
 649 * @index:           The index into qh->hs_transfers that we're working with.
 650 *
 651 * Returns: 0 for success or an error code.  Upon success the
 652 *          dwc2_hs_transfer_time specified by "index" will be updated.
 653 */
 654static int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
 655                                 bool only_one_period, int index)
 656{
 657        struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
 658        int us;
 659
 660        us = pmap_schedule(hsotg->hs_periodic_bitmap,
 661                           DWC2_HS_PERIODIC_US_PER_UFRAME,
 662                           DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
 663                           qh->host_interval, trans_time->start_schedule_us,
 664                           only_one_period);
 665
 666        if (us < 0)
 667                return us;
 668
 669        trans_time->start_schedule_us = us;
 670        return 0;
 671}
 672
 673/**
 674 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule()
 675 *
 676 * @hsotg:       The HCD state structure for the DWC OTG controller.
 677 * @qh:          QH for the periodic transfer.
 678 */
 679static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg,
 680                                    struct dwc2_qh *qh, int index)
 681{
 682        struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
 683
 684        pmap_unschedule(hsotg->hs_periodic_bitmap,
 685                        DWC2_HS_PERIODIC_US_PER_UFRAME,
 686                        DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
 687                        qh->host_interval, trans_time->start_schedule_us);
 688}
 689
 690/**
 691 * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer.
 692 *
 693 * This is the most complicated thing in USB.  We have to find matching time
 694 * in both the global high speed schedule for the port and the low speed
 695 * schedule for the TT associated with the given device.
 696 *
 697 * Being here means that the host must be running in high speed mode and the
 698 * device is in low or full speed mode (and behind a hub).
 699 *
 700 * @hsotg:       The HCD state structure for the DWC OTG controller.
 701 * @qh:          QH for the periodic transfer.
 702 */
 703static int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg,
 704                                      struct dwc2_qh *qh)
 705{
 706        int bytecount = dwc2_hb_mult(qh->maxp) * dwc2_max_packet(qh->maxp);
 707        int ls_search_slice;
 708        int err = 0;
 709        int host_interval_in_sched;
 710
 711        /*
 712         * The interval (how often to repeat) in the actual host schedule.
 713         * See pmap_schedule() for gcd() explanation.
 714         */
 715        host_interval_in_sched = gcd(qh->host_interval,
 716                                     DWC2_HS_SCHEDULE_UFRAMES);
 717
 718        /*
 719         * We always try to find space in the low speed schedule first, then
 720         * try to find high speed time that matches.  If we don't, we'll bump
 721         * up the place we start searching in the low speed schedule and try
 722         * again.  To start we'll look right at the beginning of the low speed
 723         * schedule.
 724         *
 725         * Note that this will tend to front-load the high speed schedule.
 726         * We may eventually want to try to avoid this by either considering
 727         * both schedules together or doing some sort of round robin.
 728         */
 729        ls_search_slice = 0;
 730
 731        while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) {
 732                int start_s_uframe;
 733                int ssplit_s_uframe;
 734                int second_s_uframe;
 735                int rel_uframe;
 736                int first_count;
 737                int middle_count;
 738                int end_count;
 739                int first_data_bytes;
 740                int other_data_bytes;
 741                int i;
 742
 743                if (qh->schedule_low_speed) {
 744                        err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice);
 745
 746                        /*
 747                         * If we got an error here there's no other magic we
 748                         * can do, so bail.  All the looping above is only
 749                         * helpful to redo things if we got a low speed slot
 750                         * and then couldn't find a matching high speed slot.
 751                         */
 752                        if (err)
 753                                return err;
 754                } else {
 755                        /* Must be missing the tt structure?  Why? */
 756                        WARN_ON_ONCE(1);
 757                }
 758
 759                /*
 760                 * This will give us a number 0 - 7 if
 761                 * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ...
 762                 */
 763                start_s_uframe = qh->ls_start_schedule_slice /
 764                                 DWC2_SLICES_PER_UFRAME;
 765
 766                /* Get a number that's always 0 - 7 */
 767                rel_uframe = (start_s_uframe % 8);
 768
 769                /*
 770                 * If we were going to start in uframe 7 then we would need to
 771                 * issue a start split in uframe 6, which spec says is not OK.
 772                 * Move on to the next full frame (assuming there is one).
 773                 *
 774                 * See 11.18.4 Host Split Transaction Scheduling Requirements
 775                 * bullet 1.
 776                 */
 777                if (rel_uframe == 7) {
 778                        if (qh->schedule_low_speed)
 779                                dwc2_ls_pmap_unschedule(hsotg, qh);
 780                        ls_search_slice =
 781                                (qh->ls_start_schedule_slice /
 782                                 DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) *
 783                                DWC2_LS_PERIODIC_SLICES_PER_FRAME;
 784                        continue;
 785                }
 786
 787                /*
 788                 * For ISOC in:
 789                 * - start split            (frame -1)
 790                 * - complete split w/ data (frame +1)
 791                 * - complete split w/ data (frame +2)
 792                 * - ...
 793                 * - complete split w/ data (frame +num_data_packets)
 794                 * - complete split w/ data (frame +num_data_packets+1)
 795                 * - complete split w/ data (frame +num_data_packets+2, max 8)
 796                 *   ...though if frame was "0" then max is 7...
 797                 *
 798                 * For ISOC out we might need to do:
 799                 * - start split w/ data    (frame -1)
 800                 * - start split w/ data    (frame +0)
 801                 * - ...
 802                 * - start split w/ data    (frame +num_data_packets-2)
 803                 *
 804                 * For INTERRUPT in we might need to do:
 805                 * - start split            (frame -1)
 806                 * - complete split w/ data (frame +1)
 807                 * - complete split w/ data (frame +2)
 808                 * - complete split w/ data (frame +3, max 8)
 809                 *
 810                 * For INTERRUPT out we might need to do:
 811                 * - start split w/ data    (frame -1)
 812                 * - complete split         (frame +1)
 813                 * - complete split         (frame +2)
 814                 * - complete split         (frame +3, max 8)
 815                 *
 816                 * Start adjusting!
 817                 */
 818                ssplit_s_uframe = (start_s_uframe +
 819                                   host_interval_in_sched - 1) %
 820                                  host_interval_in_sched;
 821                if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)
 822                        second_s_uframe = start_s_uframe;
 823                else
 824                        second_s_uframe = start_s_uframe + 1;
 825
 826                /* First data transfer might not be all 188 bytes. */
 827                first_data_bytes = 188 -
 828                        DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice %
 829                                            DWC2_SLICES_PER_UFRAME),
 830                                     DWC2_SLICES_PER_UFRAME);
 831                if (first_data_bytes > bytecount)
 832                        first_data_bytes = bytecount;
 833                other_data_bytes = bytecount - first_data_bytes;
 834
 835                /*
 836                 * For now, skip OUT xfers where first xfer is partial
 837                 *
 838                 * Main dwc2 code assumes:
 839                 * - INT transfers never get split in two.
 840                 * - ISOC transfers can always transfer 188 bytes the first
 841                 *   time.
 842                 *
 843                 * Until that code is fixed, try again if the first transfer
 844                 * couldn't transfer everything.
 845                 *
 846                 * This code can be removed if/when the rest of dwc2 handles
 847                 * the above cases.  Until it's fixed we just won't be able
 848                 * to schedule quite as tightly.
 849                 */
 850                if (!qh->ep_is_in &&
 851                    (first_data_bytes != min_t(int, 188, bytecount))) {
 852                        dwc2_sch_dbg(hsotg,
 853                                     "QH=%p avoiding broken 1st xfer (%d, %d)\n",
 854                                     qh, first_data_bytes, bytecount);
 855                        if (qh->schedule_low_speed)
 856                                dwc2_ls_pmap_unschedule(hsotg, qh);
 857                        ls_search_slice = (start_s_uframe + 1) *
 858                                DWC2_SLICES_PER_UFRAME;
 859                        continue;
 860                }
 861
 862                /* Start by assuming transfers for the bytes */
 863                qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188);
 864
 865                /*
 866                 * Everything except ISOC OUT has extra transfers.  Rules are
 867                 * complicated.  See 11.18.4 Host Split Transaction Scheduling
 868                 * Requirements bullet 3.
 869                 */
 870                if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
 871                        if (rel_uframe == 6)
 872                                qh->num_hs_transfers += 2;
 873                        else
 874                                qh->num_hs_transfers += 3;
 875
 876                        if (qh->ep_is_in) {
 877                                /*
 878                                 * First is start split, middle/end is data.
 879                                 * Allocate full data bytes for all data.
 880                                 */
 881                                first_count = 4;
 882                                middle_count = bytecount;
 883                                end_count = bytecount;
 884                        } else {
 885                                /*
 886                                 * First is data, middle/end is complete.
 887                                 * First transfer and second can have data.
 888                                 * Rest should just have complete split.
 889                                 */
 890                                first_count = first_data_bytes;
 891                                middle_count = max_t(int, 4, other_data_bytes);
 892                                end_count = 4;
 893                        }
 894                } else {
 895                        if (qh->ep_is_in) {
 896                                int last;
 897
 898                                /* Account for the start split */
 899                                qh->num_hs_transfers++;
 900
 901                                /* Calculate "L" value from spec */
 902                                last = rel_uframe + qh->num_hs_transfers + 1;
 903
 904                                /* Start with basic case */
 905                                if (last <= 6)
 906                                        qh->num_hs_transfers += 2;
 907                                else
 908                                        qh->num_hs_transfers += 1;
 909
 910                                /* Adjust downwards */
 911                                if (last >= 6 && rel_uframe == 0)
 912                                        qh->num_hs_transfers--;
 913
 914                                /* 1st = start; rest can contain data */
 915                                first_count = 4;
 916                                middle_count = min_t(int, 188, bytecount);
 917                                end_count = middle_count;
 918                        } else {
 919                                /* All contain data, last might be smaller */
 920                                first_count = first_data_bytes;
 921                                middle_count = min_t(int, 188,
 922                                                     other_data_bytes);
 923                                end_count = other_data_bytes % 188;
 924                        }
 925                }
 926
 927                /* Assign durations per uFrame */
 928                qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count);
 929                for (i = 1; i < qh->num_hs_transfers - 1; i++)
 930                        qh->hs_transfers[i].duration_us =
 931                                HS_USECS_ISO(middle_count);
 932                if (qh->num_hs_transfers > 1)
 933                        qh->hs_transfers[qh->num_hs_transfers - 1].duration_us =
 934                                HS_USECS_ISO(end_count);
 935
 936                /*
 937                 * Assign start us.  The call below to dwc2_hs_pmap_schedule()
 938                 * will start with these numbers but may adjust within the same
 939                 * microframe.
 940                 */
 941                qh->hs_transfers[0].start_schedule_us =
 942                        ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME;
 943                for (i = 1; i < qh->num_hs_transfers; i++)
 944                        qh->hs_transfers[i].start_schedule_us =
 945                                ((second_s_uframe + i - 1) %
 946                                 DWC2_HS_SCHEDULE_UFRAMES) *
 947                                DWC2_HS_PERIODIC_US_PER_UFRAME;
 948
 949                /* Try to schedule with filled in hs_transfers above */
 950                for (i = 0; i < qh->num_hs_transfers; i++) {
 951                        err = dwc2_hs_pmap_schedule(hsotg, qh, true, i);
 952                        if (err)
 953                                break;
 954                }
 955
 956                /* If we scheduled all w/out breaking out then we're all good */
 957                if (i == qh->num_hs_transfers)
 958                        break;
 959
 960                for (; i >= 0; i--)
 961                        dwc2_hs_pmap_unschedule(hsotg, qh, i);
 962
 963                if (qh->schedule_low_speed)
 964                        dwc2_ls_pmap_unschedule(hsotg, qh);
 965
 966                /* Try again starting in the next microframe */
 967                ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME;
 968        }
 969
 970        if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES)
 971                return -ENOSPC;
 972
 973        return 0;
 974}
 975
 976/**
 977 * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer.
 978 *
 979 * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean
 980 * interface.
 981 *
 982 * @hsotg:       The HCD state structure for the DWC OTG controller.
 983 * @qh:          QH for the periodic transfer.
 984 */
 985static int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
 986{
 987        /* In non-split host and device time are the same */
 988        WARN_ON(qh->host_us != qh->device_us);
 989        WARN_ON(qh->host_interval != qh->device_interval);
 990        WARN_ON(qh->num_hs_transfers != 1);
 991
 992        /* We'll have one transfer; init start to 0 before calling scheduler */
 993        qh->hs_transfers[0].start_schedule_us = 0;
 994        qh->hs_transfers[0].duration_us = qh->host_us;
 995
 996        return dwc2_hs_pmap_schedule(hsotg, qh, false, 0);
 997}
 998
 999/**
1000 * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer.
1001 *
1002 * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean
1003 * interface.
1004 *
1005 * @hsotg:       The HCD state structure for the DWC OTG controller.
1006 * @qh:          QH for the periodic transfer.
1007 */
1008static int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1009{
1010        /* In non-split host and device time are the same */
1011        WARN_ON(qh->host_us != qh->device_us);
1012        WARN_ON(qh->host_interval != qh->device_interval);
1013        WARN_ON(!qh->schedule_low_speed);
1014
1015        /* Run on the main low speed schedule (no split = no hub = no TT) */
1016        return dwc2_ls_pmap_schedule(hsotg, qh, 0);
1017}
1018
1019/**
1020 * dwc2_uframe_schedule - Schedule a QH for a periodic xfer.
1021 *
1022 * Calls one of the 3 sub-function depending on what type of transfer this QH
1023 * is for.  Also adds some printing.
1024 *
1025 * @hsotg:       The HCD state structure for the DWC OTG controller.
1026 * @qh:          QH for the periodic transfer.
1027 */
1028static int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1029{
1030        int ret;
1031
1032        if (qh->dev_speed == USB_SPEED_HIGH)
1033                ret = dwc2_uframe_schedule_hs(hsotg, qh);
1034        else if (!qh->do_split)
1035                ret = dwc2_uframe_schedule_ls(hsotg, qh);
1036        else
1037                ret = dwc2_uframe_schedule_split(hsotg, qh);
1038
1039        if (ret)
1040                dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret);
1041        else
1042                dwc2_qh_schedule_print(hsotg, qh);
1043
1044        return ret;
1045}
1046
1047/**
1048 * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule().
1049 *
1050 * @hsotg:       The HCD state structure for the DWC OTG controller.
1051 * @qh:          QH for the periodic transfer.
1052 */
1053static void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1054{
1055        int i;
1056
1057        for (i = 0; i < qh->num_hs_transfers; i++)
1058                dwc2_hs_pmap_unschedule(hsotg, qh, i);
1059
1060        if (qh->schedule_low_speed)
1061                dwc2_ls_pmap_unschedule(hsotg, qh);
1062
1063        dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh);
1064}
1065
1066/**
1067 * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled
1068 *
1069 * Takes a qh that has already been scheduled (which means we know we have the
1070 * bandwdith reserved for us) and set the next_active_frame and the
1071 * start_active_frame.
1072 *
1073 * This is expected to be called on qh's that weren't previously actively
1074 * running.  It just picks the next frame that we can fit into without any
1075 * thought about the past.
1076 *
1077 * @hsotg: The HCD state structure for the DWC OTG controller
1078 * @qh:    QH for a periodic endpoint
1079 *
1080 */
1081static void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1082{
1083        u16 frame_number;
1084        u16 earliest_frame;
1085        u16 next_active_frame;
1086        u16 relative_frame;
1087        u16 interval;
1088
1089        /*
1090         * Use the real frame number rather than the cached value as of the
1091         * last SOF to give us a little extra slop.
1092         */
1093        frame_number = dwc2_hcd_get_frame_number(hsotg);
1094
1095        /*
1096         * We wouldn't want to start any earlier than the next frame just in
1097         * case the frame number ticks as we're doing this calculation.
1098         *
1099         * NOTE: if we could quantify how long till we actually get scheduled
1100         * we might be able to avoid the "+ 1" by looking at the upper part of
1101         * HFNUM (the FRREM field).  For now we'll just use the + 1 though.
1102         */
1103        earliest_frame = dwc2_frame_num_inc(frame_number, 1);
1104        next_active_frame = earliest_frame;
1105
1106        /* Get the "no microframe schduler" out of the way... */
1107        if (hsotg->core_params->uframe_sched <= 0) {
1108                if (qh->do_split)
1109                        /* Splits are active at microframe 0 minus 1 */
1110                        next_active_frame |= 0x7;
1111                goto exit;
1112        }
1113
1114        if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
1115                /*
1116                 * We're either at high speed or we're doing a split (which
1117                 * means we're talking high speed to a hub).  In any case
1118                 * the first frame should be based on when the first scheduled
1119                 * event is.
1120                 */
1121                WARN_ON(qh->num_hs_transfers < 1);
1122
1123                relative_frame = qh->hs_transfers[0].start_schedule_us /
1124                                 DWC2_HS_PERIODIC_US_PER_UFRAME;
1125
1126                /* Adjust interval as per high speed schedule */
1127                interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES);
1128
1129        } else {
1130                /*
1131                 * Low or full speed directly on dwc2.  Just about the same
1132                 * as high speed but on a different schedule and with slightly
1133                 * different adjustments.  Note that this works because when
1134                 * the host and device are both low speed then frames in the
1135                 * controller tick at low speed.
1136                 */
1137                relative_frame = qh->ls_start_schedule_slice /
1138                                 DWC2_LS_PERIODIC_SLICES_PER_FRAME;
1139                interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES);
1140        }
1141
1142        /* Scheduler messed up if frame is past interval */
1143        WARN_ON(relative_frame >= interval);
1144
1145        /*
1146         * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've
1147         * done the gcd(), so it's safe to move to the beginning of the current
1148         * interval like this.
1149         *
1150         * After this we might be before earliest_frame, but don't worry,
1151         * we'll fix it...
1152         */
1153        next_active_frame = (next_active_frame / interval) * interval;
1154
1155        /*
1156         * Actually choose to start at the frame number we've been
1157         * scheduled for.
1158         */
1159        next_active_frame = dwc2_frame_num_inc(next_active_frame,
1160                                               relative_frame);
1161
1162        /*
1163         * We actually need 1 frame before since the next_active_frame is
1164         * the frame number we'll be put on the ready list and we won't be on
1165         * the bus until 1 frame later.
1166         */
1167        next_active_frame = dwc2_frame_num_dec(next_active_frame, 1);
1168
1169        /*
1170         * By now we might actually be before the earliest_frame.  Let's move
1171         * up intervals until we're not.
1172         */
1173        while (dwc2_frame_num_gt(earliest_frame, next_active_frame))
1174                next_active_frame = dwc2_frame_num_inc(next_active_frame,
1175                                                       interval);
1176
1177exit:
1178        qh->next_active_frame = next_active_frame;
1179        qh->start_active_frame = next_active_frame;
1180
1181        dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n",
1182                     qh, frame_number, qh->next_active_frame);
1183}
1184
1185/**
1186 * dwc2_do_reserve() - Make a periodic reservation
1187 *
1188 * Try to allocate space in the periodic schedule.  Depending on parameters
1189 * this might use the microframe scheduler or the dumb scheduler.
1190 *
1191 * @hsotg: The HCD state structure for the DWC OTG controller
1192 * @qh:    QH for the periodic transfer.
1193 *
1194 * Returns: 0 upon success; error upon failure.
1195 */
1196static int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1197{
1198        int status;
1199
1200        if (hsotg->core_params->uframe_sched > 0) {
1201                status = dwc2_uframe_schedule(hsotg, qh);
1202        } else {
1203                status = dwc2_periodic_channel_available(hsotg);
1204                if (status) {
1205                        dev_info(hsotg->dev,
1206                                 "%s: No host channel available for periodic transfer\n",
1207                                 __func__);
1208                        return status;
1209                }
1210
1211                status = dwc2_check_periodic_bandwidth(hsotg, qh);
1212        }
1213
1214        if (status) {
1215                dev_dbg(hsotg->dev,
1216                        "%s: Insufficient periodic bandwidth for periodic transfer\n",
1217                        __func__);
1218                return status;
1219        }
1220
1221        if (hsotg->core_params->uframe_sched <= 0)
1222                /* Reserve periodic channel */
1223                hsotg->periodic_channels++;
1224
1225        /* Update claimed usecs per (micro)frame */
1226        hsotg->periodic_usecs += qh->host_us;
1227
1228        dwc2_pick_first_frame(hsotg, qh);
1229
1230        return 0;
1231}
1232
1233/**
1234 * dwc2_do_unreserve() - Actually release the periodic reservation
1235 *
1236 * This function actually releases the periodic bandwidth that was reserved
1237 * by the given qh.
1238 *
1239 * @hsotg: The HCD state structure for the DWC OTG controller
1240 * @qh:    QH for the periodic transfer.
1241 */
1242static void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1243{
1244        assert_spin_locked(&hsotg->lock);
1245
1246        WARN_ON(!qh->unreserve_pending);
1247
1248        /* No more unreserve pending--we're doing it */
1249        qh->unreserve_pending = false;
1250
1251        if (WARN_ON(!list_empty(&qh->qh_list_entry)))
1252                list_del_init(&qh->qh_list_entry);
1253
1254        /* Update claimed usecs per (micro)frame */
1255        hsotg->periodic_usecs -= qh->host_us;
1256
1257        if (hsotg->core_params->uframe_sched > 0) {
1258                dwc2_uframe_unschedule(hsotg, qh);
1259        } else {
1260                /* Release periodic channel reservation */
1261                hsotg->periodic_channels--;
1262        }
1263}
1264
1265/**
1266 * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation
1267 *
1268 * According to the kernel doc for usb_submit_urb() (specifically the part about
1269 * "Reserved Bandwidth Transfers"), we need to keep a reservation active as
1270 * long as a device driver keeps submitting.  Since we're using HCD_BH to give
1271 * back the URB we need to give the driver a little bit of time before we
1272 * release the reservation.  This worker is called after the appropriate
1273 * delay.
1274 *
1275 * @work: Pointer to a qh unreserve_work.
1276 */
1277static void dwc2_unreserve_timer_fn(unsigned long data)
1278{
1279        struct dwc2_qh *qh = (struct dwc2_qh *)data;
1280        struct dwc2_hsotg *hsotg = qh->hsotg;
1281        unsigned long flags;
1282
1283        /*
1284         * Wait for the lock, or for us to be scheduled again.  We
1285         * could be scheduled again if:
1286         * - We started executing but didn't get the lock yet.
1287         * - A new reservation came in, but cancel didn't take effect
1288         *   because we already started executing.
1289         * - The timer has been kicked again.
1290         * In that case cancel and wait for the next call.
1291         */
1292        while (!spin_trylock_irqsave(&hsotg->lock, flags)) {
1293                if (timer_pending(&qh->unreserve_timer))
1294                        return;
1295        }
1296
1297        /*
1298         * Might be no more unreserve pending if:
1299         * - We started executing but didn't get the lock yet.
1300         * - A new reservation came in, but cancel didn't take effect
1301         *   because we already started executing.
1302         *
1303         * We can't put this in the loop above because unreserve_pending needs
1304         * to be accessed under lock, so we can only check it once we got the
1305         * lock.
1306         */
1307        if (qh->unreserve_pending)
1308                dwc2_do_unreserve(hsotg, qh);
1309
1310        spin_unlock_irqrestore(&hsotg->lock, flags);
1311}
1312
1313/**
1314 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
1315 * host channel is large enough to handle the maximum data transfer in a single
1316 * (micro)frame for a periodic transfer
1317 *
1318 * @hsotg: The HCD state structure for the DWC OTG controller
1319 * @qh:    QH for a periodic endpoint
1320 *
1321 * Return: 0 if successful, negative error code otherwise
1322 */
1323static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
1324                                    struct dwc2_qh *qh)
1325{
1326        u32 max_xfer_size;
1327        u32 max_channel_xfer_size;
1328        int status = 0;
1329
1330        max_xfer_size = dwc2_max_packet(qh->maxp) * dwc2_hb_mult(qh->maxp);
1331        max_channel_xfer_size = hsotg->core_params->max_transfer_size;
1332
1333        if (max_xfer_size > max_channel_xfer_size) {
1334                dev_err(hsotg->dev,
1335                        "%s: Periodic xfer length %d > max xfer length for channel %d\n",
1336                        __func__, max_xfer_size, max_channel_xfer_size);
1337                status = -ENOSPC;
1338        }
1339
1340        return status;
1341}
1342
1343/**
1344 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
1345 * the periodic schedule
1346 *
1347 * @hsotg: The HCD state structure for the DWC OTG controller
1348 * @qh:    QH for the periodic transfer. The QH should already contain the
1349 *         scheduling information.
1350 *
1351 * Return: 0 if successful, negative error code otherwise
1352 */
1353static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1354{
1355        int status;
1356
1357        status = dwc2_check_max_xfer_size(hsotg, qh);
1358        if (status) {
1359                dev_dbg(hsotg->dev,
1360                        "%s: Channel max transfer size too small for periodic transfer\n",
1361                        __func__);
1362                return status;
1363        }
1364
1365        /* Cancel pending unreserve; if canceled OK, unreserve was pending */
1366        if (del_timer(&qh->unreserve_timer))
1367                WARN_ON(!qh->unreserve_pending);
1368
1369        /*
1370         * Only need to reserve if there's not an unreserve pending, since if an
1371         * unreserve is pending then by definition our old reservation is still
1372         * valid.  Unreserve might still be pending even if we didn't cancel if
1373         * dwc2_unreserve_timer_fn() already started.  Code in the timer handles
1374         * that case.
1375         */
1376        if (!qh->unreserve_pending) {
1377                status = dwc2_do_reserve(hsotg, qh);
1378                if (status)
1379                        return status;
1380        } else {
1381                /*
1382                 * It might have been a while, so make sure that frame_number
1383                 * is still good.  Note: we could also try to use the similar
1384                 * dwc2_next_periodic_start() but that schedules much more
1385                 * tightly and we might need to hurry and queue things up.
1386                 */
1387                if (dwc2_frame_num_le(qh->next_active_frame,
1388                                      hsotg->frame_number))
1389                        dwc2_pick_first_frame(hsotg, qh);
1390        }
1391
1392        qh->unreserve_pending = 0;
1393
1394        if (hsotg->core_params->dma_desc_enable > 0)
1395                /* Don't rely on SOF and start in ready schedule */
1396                list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
1397        else
1398                /* Always start in inactive schedule */
1399                list_add_tail(&qh->qh_list_entry,
1400                              &hsotg->periodic_sched_inactive);
1401
1402        return 0;
1403}
1404
1405/**
1406 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
1407 * from the periodic schedule
1408 *
1409 * @hsotg: The HCD state structure for the DWC OTG controller
1410 * @qh:    QH for the periodic transfer
1411 */
1412static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
1413                                     struct dwc2_qh *qh)
1414{
1415        bool did_modify;
1416
1417        assert_spin_locked(&hsotg->lock);
1418
1419        /*
1420         * Schedule the unreserve to happen in a little bit.  Cases here:
1421         * - Unreserve worker might be sitting there waiting to grab the lock.
1422         *   In this case it will notice it's been schedule again and will
1423         *   quit.
1424         * - Unreserve worker might not be scheduled.
1425         *
1426         * We should never already be scheduled since dwc2_schedule_periodic()
1427         * should have canceled the scheduled unreserve timer (hence the
1428         * warning on did_modify).
1429         *
1430         * We add + 1 to the timer to guarantee that at least 1 jiffy has
1431         * passed (otherwise if the jiffy counter might tick right after we
1432         * read it and we'll get no delay).
1433         */
1434        did_modify = mod_timer(&qh->unreserve_timer,
1435                               jiffies + DWC2_UNRESERVE_DELAY + 1);
1436        WARN_ON(did_modify);
1437        qh->unreserve_pending = 1;
1438
1439        list_del_init(&qh->qh_list_entry);
1440}
1441
1442/**
1443 * dwc2_qh_init() - Initializes a QH structure
1444 *
1445 * @hsotg: The HCD state structure for the DWC OTG controller
1446 * @qh:    The QH to init
1447 * @urb:   Holds the information about the device/endpoint needed to initialize
1448 *         the QH
1449 * @mem_flags: Flags for allocating memory.
1450 */
1451static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1452                         struct dwc2_hcd_urb *urb, gfp_t mem_flags)
1453{
1454        int dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1455        u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
1456        bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info);
1457        bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC);
1458        bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT);
1459        u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
1460        u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1461        bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED &&
1462                         dev_speed != USB_SPEED_HIGH);
1463        int maxp = dwc2_hcd_get_mps(&urb->pipe_info);
1464        int bytecount = dwc2_hb_mult(maxp) * dwc2_max_packet(maxp);
1465        char *speed, *type;
1466
1467        /* Initialize QH */
1468        qh->hsotg = hsotg;
1469        setup_timer(&qh->unreserve_timer, dwc2_unreserve_timer_fn,
1470                    (unsigned long)qh);
1471        qh->ep_type = ep_type;
1472        qh->ep_is_in = ep_is_in;
1473
1474        qh->data_toggle = DWC2_HC_PID_DATA0;
1475        qh->maxp = maxp;
1476        INIT_LIST_HEAD(&qh->qtd_list);
1477        INIT_LIST_HEAD(&qh->qh_list_entry);
1478
1479        qh->do_split = do_split;
1480        qh->dev_speed = dev_speed;
1481
1482        if (ep_is_int || ep_is_isoc) {
1483                /* Compute scheduling parameters once and save them */
1484                int host_speed = do_split ? USB_SPEED_HIGH : dev_speed;
1485                struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv,
1486                                                               mem_flags,
1487                                                               &qh->ttport);
1488                int device_ns;
1489
1490                qh->dwc_tt = dwc_tt;
1491
1492                qh->host_us = NS_TO_US(usb_calc_bus_time(host_speed, ep_is_in,
1493                                       ep_is_isoc, bytecount));
1494                device_ns = usb_calc_bus_time(dev_speed, ep_is_in,
1495                                              ep_is_isoc, bytecount);
1496
1497                if (do_split && dwc_tt)
1498                        device_ns += dwc_tt->usb_tt->think_time;
1499                qh->device_us = NS_TO_US(device_ns);
1500
1501
1502                qh->device_interval = urb->interval;
1503                qh->host_interval = urb->interval * (do_split ? 8 : 1);
1504
1505                /*
1506                 * Schedule low speed if we're running the host in low or
1507                 * full speed OR if we've got a "TT" to deal with to access this
1508                 * device.
1509                 */
1510                qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED ||
1511                                         dwc_tt;
1512
1513                if (do_split) {
1514                        /* We won't know num transfers until we schedule */
1515                        qh->num_hs_transfers = -1;
1516                } else if (dev_speed == USB_SPEED_HIGH) {
1517                        qh->num_hs_transfers = 1;
1518                } else {
1519                        qh->num_hs_transfers = 0;
1520                }
1521
1522                /* We'll schedule later when we have something to do */
1523        }
1524
1525        switch (dev_speed) {
1526        case USB_SPEED_LOW:
1527                speed = "low";
1528                break;
1529        case USB_SPEED_FULL:
1530                speed = "full";
1531                break;
1532        case USB_SPEED_HIGH:
1533                speed = "high";
1534                break;
1535        default:
1536                speed = "?";
1537                break;
1538        }
1539
1540        switch (qh->ep_type) {
1541        case USB_ENDPOINT_XFER_ISOC:
1542                type = "isochronous";
1543                break;
1544        case USB_ENDPOINT_XFER_INT:
1545                type = "interrupt";
1546                break;
1547        case USB_ENDPOINT_XFER_CONTROL:
1548                type = "control";
1549                break;
1550        case USB_ENDPOINT_XFER_BULK:
1551                type = "bulk";
1552                break;
1553        default:
1554                type = "?";
1555                break;
1556        }
1557
1558        dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type,
1559                     speed, bytecount);
1560        dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh,
1561                     dwc2_hcd_get_dev_addr(&urb->pipe_info),
1562                     dwc2_hcd_get_ep_num(&urb->pipe_info),
1563                     ep_is_in ? "IN" : "OUT");
1564        if (ep_is_int || ep_is_isoc) {
1565                dwc2_sch_dbg(hsotg,
1566                             "QH=%p ...duration: host=%d us, device=%d us\n",
1567                             qh, qh->host_us, qh->device_us);
1568                dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n",
1569                             qh, qh->host_interval, qh->device_interval);
1570                if (qh->schedule_low_speed)
1571                        dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n",
1572                                     qh, dwc2_get_ls_map(hsotg, qh));
1573        }
1574}
1575
1576/**
1577 * dwc2_hcd_qh_create() - Allocates and initializes a QH
1578 *
1579 * @hsotg:        The HCD state structure for the DWC OTG controller
1580 * @urb:          Holds the information about the device/endpoint needed
1581 *                to initialize the QH
1582 * @atomic_alloc: Flag to do atomic allocation if needed
1583 *
1584 * Return: Pointer to the newly allocated QH, or NULL on error
1585 */
1586struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
1587                                          struct dwc2_hcd_urb *urb,
1588                                          gfp_t mem_flags)
1589{
1590        struct dwc2_qh *qh;
1591
1592        if (!urb->priv)
1593                return NULL;
1594
1595        /* Allocate memory */
1596        qh = kzalloc(sizeof(*qh), mem_flags);
1597        if (!qh)
1598                return NULL;
1599
1600        dwc2_qh_init(hsotg, qh, urb, mem_flags);
1601
1602        if (hsotg->core_params->dma_desc_enable > 0 &&
1603            dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
1604                dwc2_hcd_qh_free(hsotg, qh);
1605                return NULL;
1606        }
1607
1608        return qh;
1609}
1610
1611/**
1612 * dwc2_hcd_qh_free() - Frees the QH
1613 *
1614 * @hsotg: HCD instance
1615 * @qh:    The QH to free
1616 *
1617 * QH should already be removed from the list. QTD list should already be empty
1618 * if called from URB Dequeue.
1619 *
1620 * Must NOT be called with interrupt disabled or spinlock held
1621 */
1622void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1623{
1624        /* Make sure any unreserve work is finished. */
1625        if (del_timer_sync(&qh->unreserve_timer)) {
1626                unsigned long flags;
1627
1628                spin_lock_irqsave(&hsotg->lock, flags);
1629                dwc2_do_unreserve(hsotg, qh);
1630                spin_unlock_irqrestore(&hsotg->lock, flags);
1631        }
1632        dwc2_host_put_tt_info(hsotg, qh->dwc_tt);
1633
1634        if (qh->desc_list)
1635                dwc2_hcd_qh_free_ddma(hsotg, qh);
1636        kfree(qh);
1637}
1638
1639/**
1640 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
1641 * schedule if it is not already in the schedule. If the QH is already in
1642 * the schedule, no action is taken.
1643 *
1644 * @hsotg: The HCD state structure for the DWC OTG controller
1645 * @qh:    The QH to add
1646 *
1647 * Return: 0 if successful, negative error code otherwise
1648 */
1649int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1650{
1651        int status;
1652        u32 intr_mask;
1653
1654        if (dbg_qh(qh))
1655                dev_vdbg(hsotg->dev, "%s()\n", __func__);
1656
1657        if (!list_empty(&qh->qh_list_entry))
1658                /* QH already in a schedule */
1659                return 0;
1660
1661        /* Add the new QH to the appropriate schedule */
1662        if (dwc2_qh_is_non_per(qh)) {
1663                /* Schedule right away */
1664                qh->start_active_frame = hsotg->frame_number;
1665                qh->next_active_frame = qh->start_active_frame;
1666
1667                /* Always start in inactive schedule */
1668                list_add_tail(&qh->qh_list_entry,
1669                              &hsotg->non_periodic_sched_inactive);
1670                return 0;
1671        }
1672
1673        status = dwc2_schedule_periodic(hsotg, qh);
1674        if (status)
1675                return status;
1676        if (!hsotg->periodic_qh_count) {
1677                intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
1678                intr_mask |= GINTSTS_SOF;
1679                dwc2_writel(intr_mask, hsotg->regs + GINTMSK);
1680        }
1681        hsotg->periodic_qh_count++;
1682
1683        return 0;
1684}
1685
1686/**
1687 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
1688 * schedule. Memory is not freed.
1689 *
1690 * @hsotg: The HCD state structure
1691 * @qh:    QH to remove from schedule
1692 */
1693void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1694{
1695        u32 intr_mask;
1696
1697        dev_vdbg(hsotg->dev, "%s()\n", __func__);
1698
1699        if (list_empty(&qh->qh_list_entry))
1700                /* QH is not in a schedule */
1701                return;
1702
1703        if (dwc2_qh_is_non_per(qh)) {
1704                if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
1705                        hsotg->non_periodic_qh_ptr =
1706                                        hsotg->non_periodic_qh_ptr->next;
1707                list_del_init(&qh->qh_list_entry);
1708                return;
1709        }
1710
1711        dwc2_deschedule_periodic(hsotg, qh);
1712        hsotg->periodic_qh_count--;
1713        if (!hsotg->periodic_qh_count &&
1714            hsotg->core_params->dma_desc_enable <= 0) {
1715                intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
1716                intr_mask &= ~GINTSTS_SOF;
1717                dwc2_writel(intr_mask, hsotg->regs + GINTMSK);
1718        }
1719}
1720
1721/**
1722 * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split.
1723 *
1724 * This is called for setting next_active_frame for periodic splits for all but
1725 * the first packet of the split.  Confusing?  I thought so...
1726 *
1727 * Periodic splits are single low/full speed transfers that we end up splitting
1728 * up into several high speed transfers.  They always fit into one full (1 ms)
1729 * frame but might be split over several microframes (125 us each).  We to put
1730 * each of the parts on a very specific high speed frame.
1731 *
1732 * This function figures out where the next active uFrame needs to be.
1733 *
1734 * @hsotg:        The HCD state structure
1735 * @qh:           QH for the periodic transfer.
1736 * @frame_number: The current frame number.
1737 *
1738 * Return: number missed by (or 0 if we didn't miss).
1739 */
1740static int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg,
1741                                         struct dwc2_qh *qh, u16 frame_number)
1742{
1743        u16 old_frame = qh->next_active_frame;
1744        u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1745        int missed = 0;
1746        u16 incr;
1747
1748        /*
1749         * See dwc2_uframe_schedule_split() for split scheduling.
1750         *
1751         * Basically: increment 1 normally, but 2 right after the start split
1752         * (except for ISOC out).
1753         */
1754        if (old_frame == qh->start_active_frame &&
1755            !(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in))
1756                incr = 2;
1757        else
1758                incr = 1;
1759
1760        qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr);
1761
1762        /*
1763         * Note that it's OK for frame_number to be 1 frame past
1764         * next_active_frame.  Remember that next_active_frame is supposed to
1765         * be 1 frame _before_ when we want to be scheduled.  If we're 1 frame
1766         * past it just means schedule ASAP.
1767         *
1768         * It's _not_ OK, however, if we're more than one frame past.
1769         */
1770        if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) {
1771                /*
1772                 * OOPS, we missed.  That's actually pretty bad since
1773                 * the hub will be unhappy; try ASAP I guess.
1774                 */
1775                missed = dwc2_frame_num_dec(prev_frame_number,
1776                                            qh->next_active_frame);
1777                qh->next_active_frame = frame_number;
1778        }
1779
1780        return missed;
1781}
1782
1783/**
1784 * dwc2_next_periodic_start() - Set next_active_frame for next transfer start
1785 *
1786 * This is called for setting next_active_frame for a periodic transfer for
1787 * all cases other than midway through a periodic split.  This will also update
1788 * start_active_frame.
1789 *
1790 * Since we _always_ keep start_active_frame as the start of the previous
1791 * transfer this is normally pretty easy: we just add our interval to
1792 * start_active_frame and we've got our answer.
1793 *
1794 * The tricks come into play if we miss.  In that case we'll look for the next
1795 * slot we can fit into.
1796 *
1797 * @hsotg:        The HCD state structure
1798 * @qh:           QH for the periodic transfer.
1799 * @frame_number: The current frame number.
1800 *
1801 * Return: number missed by (or 0 if we didn't miss).
1802 */
1803static int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg,
1804                                     struct dwc2_qh *qh, u16 frame_number)
1805{
1806        int missed = 0;
1807        u16 interval = qh->host_interval;
1808        u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1809
1810        qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame,
1811                                                    interval);
1812
1813        /*
1814         * The dwc2_frame_num_gt() function used below won't work terribly well
1815         * with if we just incremented by a really large intervals since the
1816         * frame counter only goes to 0x3fff.  It's terribly unlikely that we
1817         * will have missed in this case anyway.  Just go to exit.  If we want
1818         * to try to do better we'll need to keep track of a bigger counter
1819         * somewhere in the driver and handle overflows.
1820         */
1821        if (interval >= 0x1000)
1822                goto exit;
1823
1824        /*
1825         * Test for misses, which is when it's too late to schedule.
1826         *
1827         * A few things to note:
1828         * - We compare against prev_frame_number since start_active_frame
1829         *   and next_active_frame are always 1 frame before we want things
1830         *   to be active and we assume we can still get scheduled in the
1831         *   current frame number.
1832         * - It's possible for start_active_frame (now incremented) to be
1833         *   next_active_frame if we got an EO MISS (even_odd miss) which
1834         *   basically means that we detected there wasn't enough time for
1835         *   the last packet and dwc2_hc_set_even_odd_frame() rescheduled us
1836         *   at the last second.  We want to make sure we don't schedule
1837         *   another transfer for the same frame.  My test webcam doesn't seem
1838         *   terribly upset by missing a transfer but really doesn't like when
1839         *   we do two transfers in the same frame.
1840         * - Some misses are expected.  Specifically, in order to work
1841         *   perfectly dwc2 really needs quite spectacular interrupt latency
1842         *   requirements.  It needs to be able to handle its interrupts
1843         *   completely within 125 us of them being asserted. That not only
1844         *   means that the dwc2 interrupt handler needs to be fast but it
1845         *   means that nothing else in the system has to block dwc2 for a long
1846         *   time.  We can help with the dwc2 parts of this, but it's hard to
1847         *   guarantee that a system will have interrupt latency < 125 us, so
1848         *   we have to be robust to some misses.
1849         */
1850        if (qh->start_active_frame == qh->next_active_frame ||
1851            dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) {
1852                u16 ideal_start = qh->start_active_frame;
1853                int periods_in_map;
1854
1855                /*
1856                 * Adjust interval as per gcd with map size.
1857                 * See pmap_schedule() for more details here.
1858                 */
1859                if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH)
1860                        periods_in_map = DWC2_HS_SCHEDULE_UFRAMES;
1861                else
1862                        periods_in_map = DWC2_LS_SCHEDULE_FRAMES;
1863                interval = gcd(interval, periods_in_map);
1864
1865                do {
1866                        qh->start_active_frame = dwc2_frame_num_inc(
1867                                qh->start_active_frame, interval);
1868                } while (dwc2_frame_num_gt(prev_frame_number,
1869                                           qh->start_active_frame));
1870
1871                missed = dwc2_frame_num_dec(qh->start_active_frame,
1872                                            ideal_start);
1873        }
1874
1875exit:
1876        qh->next_active_frame = qh->start_active_frame;
1877
1878        return missed;
1879}
1880
1881/*
1882 * Deactivates a QH. For non-periodic QHs, removes the QH from the active
1883 * non-periodic schedule. The QH is added to the inactive non-periodic
1884 * schedule if any QTDs are still attached to the QH.
1885 *
1886 * For periodic QHs, the QH is removed from the periodic queued schedule. If
1887 * there are any QTDs still attached to the QH, the QH is added to either the
1888 * periodic inactive schedule or the periodic ready schedule and its next
1889 * scheduled frame is calculated. The QH is placed in the ready schedule if
1890 * the scheduled frame has been reached already. Otherwise it's placed in the
1891 * inactive schedule. If there are no QTDs attached to the QH, the QH is
1892 * completely removed from the periodic schedule.
1893 */
1894void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1895                            int sched_next_periodic_split)
1896{
1897        u16 old_frame = qh->next_active_frame;
1898        u16 frame_number;
1899        int missed;
1900
1901        if (dbg_qh(qh))
1902                dev_vdbg(hsotg->dev, "%s()\n", __func__);
1903
1904        if (dwc2_qh_is_non_per(qh)) {
1905                dwc2_hcd_qh_unlink(hsotg, qh);
1906                if (!list_empty(&qh->qtd_list))
1907                        /* Add back to inactive non-periodic schedule */
1908                        dwc2_hcd_qh_add(hsotg, qh);
1909                return;
1910        }
1911
1912        /*
1913         * Use the real frame number rather than the cached value as of the
1914         * last SOF just to get us a little closer to reality.  Note that
1915         * means we don't actually know if we've already handled the SOF
1916         * interrupt for this frame.
1917         */
1918        frame_number = dwc2_hcd_get_frame_number(hsotg);
1919
1920        if (sched_next_periodic_split)
1921                missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number);
1922        else
1923                missed = dwc2_next_periodic_start(hsotg, qh, frame_number);
1924
1925        dwc2_sch_vdbg(hsotg,
1926                     "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n",
1927                     qh, sched_next_periodic_split, frame_number, old_frame,
1928                     qh->next_active_frame,
1929                     dwc2_frame_num_dec(qh->next_active_frame, old_frame),
1930                missed, missed ? "MISS" : "");
1931
1932        if (list_empty(&qh->qtd_list)) {
1933                dwc2_hcd_qh_unlink(hsotg, qh);
1934                return;
1935        }
1936
1937        /*
1938         * Remove from periodic_sched_queued and move to
1939         * appropriate queue
1940         *
1941         * Note: we purposely use the frame_number from the "hsotg" structure
1942         * since we know SOF interrupt will handle future frames.
1943         */
1944        if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number))
1945                list_move_tail(&qh->qh_list_entry,
1946                               &hsotg->periodic_sched_ready);
1947        else
1948                list_move_tail(&qh->qh_list_entry,
1949                               &hsotg->periodic_sched_inactive);
1950}
1951
1952/**
1953 * dwc2_hcd_qtd_init() - Initializes a QTD structure
1954 *
1955 * @qtd: The QTD to initialize
1956 * @urb: The associated URB
1957 */
1958void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
1959{
1960        qtd->urb = urb;
1961        if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
1962                        USB_ENDPOINT_XFER_CONTROL) {
1963                /*
1964                 * The only time the QTD data toggle is used is on the data
1965                 * phase of control transfers. This phase always starts with
1966                 * DATA1.
1967                 */
1968                qtd->data_toggle = DWC2_HC_PID_DATA1;
1969                qtd->control_phase = DWC2_CONTROL_SETUP;
1970        }
1971
1972        /* Start split */
1973        qtd->complete_split = 0;
1974        qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
1975        qtd->isoc_split_offset = 0;
1976        qtd->in_process = 0;
1977
1978        /* Store the qtd ptr in the urb to reference the QTD */
1979        urb->qtd = qtd;
1980}
1981
1982/**
1983 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
1984 *                      Caller must hold driver lock.
1985 *
1986 * @hsotg:        The DWC HCD structure
1987 * @qtd:          The QTD to add
1988 * @qh:           Queue head to add qtd to
1989 *
1990 * Return: 0 if successful, negative error code otherwise
1991 *
1992 * If the QH to which the QTD is added is not currently scheduled, it is placed
1993 * into the proper schedule based on its EP type.
1994 */
1995int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
1996                     struct dwc2_qh *qh)
1997{
1998        int retval;
1999
2000        if (unlikely(!qh)) {
2001                dev_err(hsotg->dev, "%s: Invalid QH\n", __func__);
2002                retval = -EINVAL;
2003                goto fail;
2004        }
2005
2006        retval = dwc2_hcd_qh_add(hsotg, qh);
2007        if (retval)
2008                goto fail;
2009
2010        qtd->qh = qh;
2011        list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
2012
2013        return 0;
2014fail:
2015        return retval;
2016}
2017