linux/drivers/vfio/pci/vfio_pci_config.c
<<
>>
Prefs
   1/*
   2 * VFIO PCI config space virtualization
   3 *
   4 * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
   5 *     Author: Alex Williamson <alex.williamson@redhat.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * Derived from original vfio:
  12 * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
  13 * Author: Tom Lyon, pugs@cisco.com
  14 */
  15
  16/*
  17 * This code handles reading and writing of PCI configuration registers.
  18 * This is hairy because we want to allow a lot of flexibility to the
  19 * user driver, but cannot trust it with all of the config fields.
  20 * Tables determine which fields can be read and written, as well as
  21 * which fields are 'virtualized' - special actions and translations to
  22 * make it appear to the user that he has control, when in fact things
  23 * must be negotiated with the underlying OS.
  24 */
  25
  26#include <linux/fs.h>
  27#include <linux/pci.h>
  28#include <linux/uaccess.h>
  29#include <linux/vfio.h>
  30#include <linux/slab.h>
  31
  32#include "vfio_pci_private.h"
  33
  34#define PCI_CFG_SPACE_SIZE      256
  35
  36/* Fake capability ID for standard config space */
  37#define PCI_CAP_ID_BASIC        0
  38
  39#define is_bar(offset)  \
  40        ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
  41         (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
  42
  43/*
  44 * Lengths of PCI Config Capabilities
  45 *   0: Removed from the user visible capability list
  46 *   FF: Variable length
  47 */
  48static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
  49        [PCI_CAP_ID_BASIC]      = PCI_STD_HEADER_SIZEOF, /* pci config header */
  50        [PCI_CAP_ID_PM]         = PCI_PM_SIZEOF,
  51        [PCI_CAP_ID_AGP]        = PCI_AGP_SIZEOF,
  52        [PCI_CAP_ID_VPD]        = PCI_CAP_VPD_SIZEOF,
  53        [PCI_CAP_ID_SLOTID]     = 0,            /* bridge - don't care */
  54        [PCI_CAP_ID_MSI]        = 0xFF,         /* 10, 14, 20, or 24 */
  55        [PCI_CAP_ID_CHSWP]      = 0,            /* cpci - not yet */
  56        [PCI_CAP_ID_PCIX]       = 0xFF,         /* 8 or 24 */
  57        [PCI_CAP_ID_HT]         = 0xFF,         /* hypertransport */
  58        [PCI_CAP_ID_VNDR]       = 0xFF,         /* variable */
  59        [PCI_CAP_ID_DBG]        = 0,            /* debug - don't care */
  60        [PCI_CAP_ID_CCRC]       = 0,            /* cpci - not yet */
  61        [PCI_CAP_ID_SHPC]       = 0,            /* hotswap - not yet */
  62        [PCI_CAP_ID_SSVID]      = 0,            /* bridge - don't care */
  63        [PCI_CAP_ID_AGP3]       = 0,            /* AGP8x - not yet */
  64        [PCI_CAP_ID_SECDEV]     = 0,            /* secure device not yet */
  65        [PCI_CAP_ID_EXP]        = 0xFF,         /* 20 or 44 */
  66        [PCI_CAP_ID_MSIX]       = PCI_CAP_MSIX_SIZEOF,
  67        [PCI_CAP_ID_SATA]       = 0xFF,
  68        [PCI_CAP_ID_AF]         = PCI_CAP_AF_SIZEOF,
  69};
  70
  71/*
  72 * Lengths of PCIe/PCI-X Extended Config Capabilities
  73 *   0: Removed or masked from the user visible capability list
  74 *   FF: Variable length
  75 */
  76static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
  77        [PCI_EXT_CAP_ID_ERR]    =       PCI_ERR_ROOT_COMMAND,
  78        [PCI_EXT_CAP_ID_VC]     =       0xFF,
  79        [PCI_EXT_CAP_ID_DSN]    =       PCI_EXT_CAP_DSN_SIZEOF,
  80        [PCI_EXT_CAP_ID_PWR]    =       PCI_EXT_CAP_PWR_SIZEOF,
  81        [PCI_EXT_CAP_ID_RCLD]   =       0,      /* root only - don't care */
  82        [PCI_EXT_CAP_ID_RCILC]  =       0,      /* root only - don't care */
  83        [PCI_EXT_CAP_ID_RCEC]   =       0,      /* root only - don't care */
  84        [PCI_EXT_CAP_ID_MFVC]   =       0xFF,
  85        [PCI_EXT_CAP_ID_VC9]    =       0xFF,   /* same as CAP_ID_VC */
  86        [PCI_EXT_CAP_ID_RCRB]   =       0,      /* root only - don't care */
  87        [PCI_EXT_CAP_ID_VNDR]   =       0xFF,
  88        [PCI_EXT_CAP_ID_CAC]    =       0,      /* obsolete */
  89        [PCI_EXT_CAP_ID_ACS]    =       0xFF,
  90        [PCI_EXT_CAP_ID_ARI]    =       PCI_EXT_CAP_ARI_SIZEOF,
  91        [PCI_EXT_CAP_ID_ATS]    =       PCI_EXT_CAP_ATS_SIZEOF,
  92        [PCI_EXT_CAP_ID_SRIOV]  =       PCI_EXT_CAP_SRIOV_SIZEOF,
  93        [PCI_EXT_CAP_ID_MRIOV]  =       0,      /* not yet */
  94        [PCI_EXT_CAP_ID_MCAST]  =       PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
  95        [PCI_EXT_CAP_ID_PRI]    =       PCI_EXT_CAP_PRI_SIZEOF,
  96        [PCI_EXT_CAP_ID_AMD_XXX] =      0,      /* not yet */
  97        [PCI_EXT_CAP_ID_REBAR]  =       0xFF,
  98        [PCI_EXT_CAP_ID_DPA]    =       0xFF,
  99        [PCI_EXT_CAP_ID_TPH]    =       0xFF,
 100        [PCI_EXT_CAP_ID_LTR]    =       PCI_EXT_CAP_LTR_SIZEOF,
 101        [PCI_EXT_CAP_ID_SECPCI] =       0,      /* not yet */
 102        [PCI_EXT_CAP_ID_PMUX]   =       0,      /* not yet */
 103        [PCI_EXT_CAP_ID_PASID]  =       0,      /* not yet */
 104};
 105
 106/*
 107 * Read/Write Permission Bits - one bit for each bit in capability
 108 * Any field can be read if it exists, but what is read depends on
 109 * whether the field is 'virtualized', or just pass thru to the
 110 * hardware.  Any virtualized field is also virtualized for writes.
 111 * Writes are only permitted if they have a 1 bit here.
 112 */
 113struct perm_bits {
 114        u8      *virt;          /* read/write virtual data, not hw */
 115        u8      *write;         /* writeable bits */
 116        int     (*readfn)(struct vfio_pci_device *vdev, int pos, int count,
 117                          struct perm_bits *perm, int offset, __le32 *val);
 118        int     (*writefn)(struct vfio_pci_device *vdev, int pos, int count,
 119                           struct perm_bits *perm, int offset, __le32 val);
 120};
 121
 122#define NO_VIRT         0
 123#define ALL_VIRT        0xFFFFFFFFU
 124#define NO_WRITE        0
 125#define ALL_WRITE       0xFFFFFFFFU
 126
 127static int vfio_user_config_read(struct pci_dev *pdev, int offset,
 128                                 __le32 *val, int count)
 129{
 130        int ret = -EINVAL;
 131        u32 tmp_val = 0;
 132
 133        switch (count) {
 134        case 1:
 135        {
 136                u8 tmp;
 137                ret = pci_user_read_config_byte(pdev, offset, &tmp);
 138                tmp_val = tmp;
 139                break;
 140        }
 141        case 2:
 142        {
 143                u16 tmp;
 144                ret = pci_user_read_config_word(pdev, offset, &tmp);
 145                tmp_val = tmp;
 146                break;
 147        }
 148        case 4:
 149                ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
 150                break;
 151        }
 152
 153        *val = cpu_to_le32(tmp_val);
 154
 155        return pcibios_err_to_errno(ret);
 156}
 157
 158static int vfio_user_config_write(struct pci_dev *pdev, int offset,
 159                                  __le32 val, int count)
 160{
 161        int ret = -EINVAL;
 162        u32 tmp_val = le32_to_cpu(val);
 163
 164        switch (count) {
 165        case 1:
 166                ret = pci_user_write_config_byte(pdev, offset, tmp_val);
 167                break;
 168        case 2:
 169                ret = pci_user_write_config_word(pdev, offset, tmp_val);
 170                break;
 171        case 4:
 172                ret = pci_user_write_config_dword(pdev, offset, tmp_val);
 173                break;
 174        }
 175
 176        return pcibios_err_to_errno(ret);
 177}
 178
 179static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
 180                                    int count, struct perm_bits *perm,
 181                                    int offset, __le32 *val)
 182{
 183        __le32 virt = 0;
 184
 185        memcpy(val, vdev->vconfig + pos, count);
 186
 187        memcpy(&virt, perm->virt + offset, count);
 188
 189        /* Any non-virtualized bits? */
 190        if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
 191                struct pci_dev *pdev = vdev->pdev;
 192                __le32 phys_val = 0;
 193                int ret;
 194
 195                ret = vfio_user_config_read(pdev, pos, &phys_val, count);
 196                if (ret)
 197                        return ret;
 198
 199                *val = (phys_val & ~virt) | (*val & virt);
 200        }
 201
 202        return count;
 203}
 204
 205static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
 206                                     int count, struct perm_bits *perm,
 207                                     int offset, __le32 val)
 208{
 209        __le32 virt = 0, write = 0;
 210
 211        memcpy(&write, perm->write + offset, count);
 212
 213        if (!write)
 214                return count; /* drop, no writable bits */
 215
 216        memcpy(&virt, perm->virt + offset, count);
 217
 218        /* Virtualized and writable bits go to vconfig */
 219        if (write & virt) {
 220                __le32 virt_val = 0;
 221
 222                memcpy(&virt_val, vdev->vconfig + pos, count);
 223
 224                virt_val &= ~(write & virt);
 225                virt_val |= (val & (write & virt));
 226
 227                memcpy(vdev->vconfig + pos, &virt_val, count);
 228        }
 229
 230        /* Non-virtualzed and writable bits go to hardware */
 231        if (write & ~virt) {
 232                struct pci_dev *pdev = vdev->pdev;
 233                __le32 phys_val = 0;
 234                int ret;
 235
 236                ret = vfio_user_config_read(pdev, pos, &phys_val, count);
 237                if (ret)
 238                        return ret;
 239
 240                phys_val &= ~(write & ~virt);
 241                phys_val |= (val & (write & ~virt));
 242
 243                ret = vfio_user_config_write(pdev, pos, phys_val, count);
 244                if (ret)
 245                        return ret;
 246        }
 247
 248        return count;
 249}
 250
 251/* Allow direct read from hardware, except for capability next pointer */
 252static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
 253                                   int count, struct perm_bits *perm,
 254                                   int offset, __le32 *val)
 255{
 256        int ret;
 257
 258        ret = vfio_user_config_read(vdev->pdev, pos, val, count);
 259        if (ret)
 260                return pcibios_err_to_errno(ret);
 261
 262        if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
 263                if (offset < 4)
 264                        memcpy(val, vdev->vconfig + pos, count);
 265        } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
 266                if (offset == PCI_CAP_LIST_ID && count > 1)
 267                        memcpy(val, vdev->vconfig + pos,
 268                               min(PCI_CAP_FLAGS, count));
 269                else if (offset == PCI_CAP_LIST_NEXT)
 270                        memcpy(val, vdev->vconfig + pos, 1);
 271        }
 272
 273        return count;
 274}
 275
 276/* Raw access skips any kind of virtualization */
 277static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
 278                                 int count, struct perm_bits *perm,
 279                                 int offset, __le32 val)
 280{
 281        int ret;
 282
 283        ret = vfio_user_config_write(vdev->pdev, pos, val, count);
 284        if (ret)
 285                return ret;
 286
 287        return count;
 288}
 289
 290static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
 291                                int count, struct perm_bits *perm,
 292                                int offset, __le32 *val)
 293{
 294        int ret;
 295
 296        ret = vfio_user_config_read(vdev->pdev, pos, val, count);
 297        if (ret)
 298                return pcibios_err_to_errno(ret);
 299
 300        return count;
 301}
 302
 303/* Virt access uses only virtualization */
 304static int vfio_virt_config_write(struct vfio_pci_device *vdev, int pos,
 305                                  int count, struct perm_bits *perm,
 306                                  int offset, __le32 val)
 307{
 308        memcpy(vdev->vconfig + pos, &val, count);
 309        return count;
 310}
 311
 312static int vfio_virt_config_read(struct vfio_pci_device *vdev, int pos,
 313                                 int count, struct perm_bits *perm,
 314                                 int offset, __le32 *val)
 315{
 316        memcpy(val, vdev->vconfig + pos, count);
 317        return count;
 318}
 319
 320/* Default capability regions to read-only, no-virtualization */
 321static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
 322        [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
 323};
 324static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
 325        [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
 326};
 327/*
 328 * Default unassigned regions to raw read-write access.  Some devices
 329 * require this to function as they hide registers between the gaps in
 330 * config space (be2net).  Like MMIO and I/O port registers, we have
 331 * to trust the hardware isolation.
 332 */
 333static struct perm_bits unassigned_perms = {
 334        .readfn = vfio_raw_config_read,
 335        .writefn = vfio_raw_config_write
 336};
 337
 338static struct perm_bits virt_perms = {
 339        .readfn = vfio_virt_config_read,
 340        .writefn = vfio_virt_config_write
 341};
 342
 343static void free_perm_bits(struct perm_bits *perm)
 344{
 345        kfree(perm->virt);
 346        kfree(perm->write);
 347        perm->virt = NULL;
 348        perm->write = NULL;
 349}
 350
 351static int alloc_perm_bits(struct perm_bits *perm, int size)
 352{
 353        /*
 354         * Round up all permission bits to the next dword, this lets us
 355         * ignore whether a read/write exceeds the defined capability
 356         * structure.  We can do this because:
 357         *  - Standard config space is already dword aligned
 358         *  - Capabilities are all dword aligned (bits 0:1 of next reserved)
 359         *  - Express capabilities defined as dword aligned
 360         */
 361        size = round_up(size, 4);
 362
 363        /*
 364         * Zero state is
 365         * - All Readable, None Writeable, None Virtualized
 366         */
 367        perm->virt = kzalloc(size, GFP_KERNEL);
 368        perm->write = kzalloc(size, GFP_KERNEL);
 369        if (!perm->virt || !perm->write) {
 370                free_perm_bits(perm);
 371                return -ENOMEM;
 372        }
 373
 374        perm->readfn = vfio_default_config_read;
 375        perm->writefn = vfio_default_config_write;
 376
 377        return 0;
 378}
 379
 380/*
 381 * Helper functions for filling in permission tables
 382 */
 383static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
 384{
 385        p->virt[off] = virt;
 386        p->write[off] = write;
 387}
 388
 389/* Handle endian-ness - pci and tables are little-endian */
 390static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
 391{
 392        *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
 393        *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
 394}
 395
 396/* Handle endian-ness - pci and tables are little-endian */
 397static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
 398{
 399        *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
 400        *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
 401}
 402
 403/*
 404 * Restore the *real* BARs after we detect a FLR or backdoor reset.
 405 * (backdoor = some device specific technique that we didn't catch)
 406 */
 407static void vfio_bar_restore(struct vfio_pci_device *vdev)
 408{
 409        struct pci_dev *pdev = vdev->pdev;
 410        u32 *rbar = vdev->rbar;
 411        u16 cmd;
 412        int i;
 413
 414        if (pdev->is_virtfn)
 415                return;
 416
 417        pr_info("%s: %s reset recovery - restoring bars\n",
 418                __func__, dev_name(&pdev->dev));
 419
 420        for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
 421                pci_user_write_config_dword(pdev, i, *rbar);
 422
 423        pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
 424
 425        if (vdev->nointx) {
 426                pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
 427                cmd |= PCI_COMMAND_INTX_DISABLE;
 428                pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
 429        }
 430}
 431
 432static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
 433{
 434        unsigned long flags = pci_resource_flags(pdev, bar);
 435        u32 val;
 436
 437        if (flags & IORESOURCE_IO)
 438                return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
 439
 440        val = PCI_BASE_ADDRESS_SPACE_MEMORY;
 441
 442        if (flags & IORESOURCE_PREFETCH)
 443                val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
 444
 445        if (flags & IORESOURCE_MEM_64)
 446                val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
 447
 448        return cpu_to_le32(val);
 449}
 450
 451/*
 452 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
 453 * to reflect the hardware capabilities.  This implements BAR sizing.
 454 */
 455static void vfio_bar_fixup(struct vfio_pci_device *vdev)
 456{
 457        struct pci_dev *pdev = vdev->pdev;
 458        int i;
 459        __le32 *bar;
 460        u64 mask;
 461
 462        bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
 463
 464        for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
 465                if (!pci_resource_start(pdev, i)) {
 466                        *bar = 0; /* Unmapped by host = unimplemented to user */
 467                        continue;
 468                }
 469
 470                mask = ~(pci_resource_len(pdev, i) - 1);
 471
 472                *bar &= cpu_to_le32((u32)mask);
 473                *bar |= vfio_generate_bar_flags(pdev, i);
 474
 475                if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
 476                        bar++;
 477                        *bar &= cpu_to_le32((u32)(mask >> 32));
 478                        i++;
 479                }
 480        }
 481
 482        bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
 483
 484        /*
 485         * NB. REGION_INFO will have reported zero size if we weren't able
 486         * to read the ROM, but we still return the actual BAR size here if
 487         * it exists (or the shadow ROM space).
 488         */
 489        if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
 490                mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
 491                mask |= PCI_ROM_ADDRESS_ENABLE;
 492                *bar &= cpu_to_le32((u32)mask);
 493        } else if (pdev->resource[PCI_ROM_RESOURCE].flags &
 494                                        IORESOURCE_ROM_SHADOW) {
 495                mask = ~(0x20000 - 1);
 496                mask |= PCI_ROM_ADDRESS_ENABLE;
 497                *bar &= cpu_to_le32((u32)mask);
 498        } else
 499                *bar = 0;
 500
 501        vdev->bardirty = false;
 502}
 503
 504static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
 505                                  int count, struct perm_bits *perm,
 506                                  int offset, __le32 *val)
 507{
 508        if (is_bar(offset)) /* pos == offset for basic config */
 509                vfio_bar_fixup(vdev);
 510
 511        count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
 512
 513        /* Mask in virtual memory enable for SR-IOV devices */
 514        if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
 515                u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
 516                u32 tmp_val = le32_to_cpu(*val);
 517
 518                tmp_val |= cmd & PCI_COMMAND_MEMORY;
 519                *val = cpu_to_le32(tmp_val);
 520        }
 521
 522        return count;
 523}
 524
 525/* Test whether BARs match the value we think they should contain */
 526static bool vfio_need_bar_restore(struct vfio_pci_device *vdev)
 527{
 528        int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
 529        u32 bar;
 530
 531        for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
 532                if (vdev->rbar[i]) {
 533                        ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
 534                        if (ret || vdev->rbar[i] != bar)
 535                                return true;
 536                }
 537        }
 538
 539        return false;
 540}
 541
 542static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
 543                                   int count, struct perm_bits *perm,
 544                                   int offset, __le32 val)
 545{
 546        struct pci_dev *pdev = vdev->pdev;
 547        __le16 *virt_cmd;
 548        u16 new_cmd = 0;
 549        int ret;
 550
 551        virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
 552
 553        if (offset == PCI_COMMAND) {
 554                bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
 555                u16 phys_cmd;
 556
 557                ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
 558                if (ret)
 559                        return ret;
 560
 561                new_cmd = le32_to_cpu(val);
 562
 563                phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
 564                virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
 565                new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
 566
 567                phys_io = !!(phys_cmd & PCI_COMMAND_IO);
 568                virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
 569                new_io = !!(new_cmd & PCI_COMMAND_IO);
 570
 571                /*
 572                 * If the user is writing mem/io enable (new_mem/io) and we
 573                 * think it's already enabled (virt_mem/io), but the hardware
 574                 * shows it disabled (phys_mem/io, then the device has
 575                 * undergone some kind of backdoor reset and needs to be
 576                 * restored before we allow it to enable the bars.
 577                 * SR-IOV devices will trigger this, but we catch them later
 578                 */
 579                if ((new_mem && virt_mem && !phys_mem) ||
 580                    (new_io && virt_io && !phys_io) ||
 581                    vfio_need_bar_restore(vdev))
 582                        vfio_bar_restore(vdev);
 583        }
 584
 585        count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 586        if (count < 0)
 587                return count;
 588
 589        /*
 590         * Save current memory/io enable bits in vconfig to allow for
 591         * the test above next time.
 592         */
 593        if (offset == PCI_COMMAND) {
 594                u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
 595
 596                *virt_cmd &= cpu_to_le16(~mask);
 597                *virt_cmd |= cpu_to_le16(new_cmd & mask);
 598        }
 599
 600        /* Emulate INTx disable */
 601        if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
 602                bool virt_intx_disable;
 603
 604                virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
 605                                       PCI_COMMAND_INTX_DISABLE);
 606
 607                if (virt_intx_disable && !vdev->virq_disabled) {
 608                        vdev->virq_disabled = true;
 609                        vfio_pci_intx_mask(vdev);
 610                } else if (!virt_intx_disable && vdev->virq_disabled) {
 611                        vdev->virq_disabled = false;
 612                        vfio_pci_intx_unmask(vdev);
 613                }
 614        }
 615
 616        if (is_bar(offset))
 617                vdev->bardirty = true;
 618
 619        return count;
 620}
 621
 622/* Permissions for the Basic PCI Header */
 623static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
 624{
 625        if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
 626                return -ENOMEM;
 627
 628        perm->readfn = vfio_basic_config_read;
 629        perm->writefn = vfio_basic_config_write;
 630
 631        /* Virtualized for SR-IOV functions, which just have FFFF */
 632        p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
 633        p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
 634
 635        /*
 636         * Virtualize INTx disable, we use it internally for interrupt
 637         * control and can emulate it for non-PCI 2.3 devices.
 638         */
 639        p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
 640
 641        /* Virtualize capability list, we might want to skip/disable */
 642        p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
 643
 644        /* No harm to write */
 645        p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
 646        p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
 647        p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
 648
 649        /* Virtualize all bars, can't touch the real ones */
 650        p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
 651        p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
 652        p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
 653        p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
 654        p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
 655        p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
 656        p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
 657
 658        /* Allow us to adjust capability chain */
 659        p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
 660
 661        /* Sometimes used by sw, just virtualize */
 662        p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
 663
 664        /* Virtualize interrupt pin to allow hiding INTx */
 665        p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
 666
 667        return 0;
 668}
 669
 670static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
 671                                int count, struct perm_bits *perm,
 672                                int offset, __le32 val)
 673{
 674        count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 675        if (count < 0)
 676                return count;
 677
 678        if (offset == PCI_PM_CTRL) {
 679                pci_power_t state;
 680
 681                switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
 682                case 0:
 683                        state = PCI_D0;
 684                        break;
 685                case 1:
 686                        state = PCI_D1;
 687                        break;
 688                case 2:
 689                        state = PCI_D2;
 690                        break;
 691                case 3:
 692                        state = PCI_D3hot;
 693                        break;
 694                }
 695
 696                pci_set_power_state(vdev->pdev, state);
 697        }
 698
 699        return count;
 700}
 701
 702/* Permissions for the Power Management capability */
 703static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
 704{
 705        if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
 706                return -ENOMEM;
 707
 708        perm->writefn = vfio_pm_config_write;
 709
 710        /*
 711         * We always virtualize the next field so we can remove
 712         * capabilities from the chain if we want to.
 713         */
 714        p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 715
 716        /*
 717         * Power management is defined *per function*, so we can let
 718         * the user change power state, but we trap and initiate the
 719         * change ourselves, so the state bits are read-only.
 720         */
 721        p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
 722        return 0;
 723}
 724
 725static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos,
 726                                 int count, struct perm_bits *perm,
 727                                 int offset, __le32 val)
 728{
 729        struct pci_dev *pdev = vdev->pdev;
 730        __le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
 731        __le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
 732        u16 addr;
 733        u32 data;
 734
 735        /*
 736         * Write through to emulation.  If the write includes the upper byte
 737         * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
 738         * have work to do.
 739         */
 740        count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 741        if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
 742            offset + count <= PCI_VPD_ADDR + 1)
 743                return count;
 744
 745        addr = le16_to_cpu(*paddr);
 746
 747        if (addr & PCI_VPD_ADDR_F) {
 748                data = le32_to_cpu(*pdata);
 749                if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
 750                        return count;
 751        } else {
 752                data = 0;
 753                if (pci_read_vpd(pdev, addr, 4, &data) < 0)
 754                        return count;
 755                *pdata = cpu_to_le32(data);
 756        }
 757
 758        /*
 759         * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
 760         * signal completion.  If an error occurs above, we assume that not
 761         * toggling this bit will induce a driver timeout.
 762         */
 763        addr ^= PCI_VPD_ADDR_F;
 764        *paddr = cpu_to_le16(addr);
 765
 766        return count;
 767}
 768
 769/* Permissions for Vital Product Data capability */
 770static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
 771{
 772        if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
 773                return -ENOMEM;
 774
 775        perm->writefn = vfio_vpd_config_write;
 776
 777        /*
 778         * We always virtualize the next field so we can remove
 779         * capabilities from the chain if we want to.
 780         */
 781        p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 782
 783        /*
 784         * Both the address and data registers are virtualized to
 785         * enable access through the pci_vpd_read/write functions
 786         */
 787        p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
 788        p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
 789
 790        return 0;
 791}
 792
 793/* Permissions for PCI-X capability */
 794static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
 795{
 796        /* Alloc 24, but only 8 are used in v0 */
 797        if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
 798                return -ENOMEM;
 799
 800        p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 801
 802        p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
 803        p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
 804        return 0;
 805}
 806
 807static int vfio_exp_config_write(struct vfio_pci_device *vdev, int pos,
 808                                 int count, struct perm_bits *perm,
 809                                 int offset, __le32 val)
 810{
 811        __le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
 812                                  offset + PCI_EXP_DEVCTL);
 813
 814        count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 815        if (count < 0)
 816                return count;
 817
 818        /*
 819         * The FLR bit is virtualized, if set and the device supports PCIe
 820         * FLR, issue a reset_function.  Regardless, clear the bit, the spec
 821         * requires it to be always read as zero.  NB, reset_function might
 822         * not use a PCIe FLR, we don't have that level of granularity.
 823         */
 824        if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
 825                u32 cap;
 826                int ret;
 827
 828                *ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
 829
 830                ret = pci_user_read_config_dword(vdev->pdev,
 831                                                 pos - offset + PCI_EXP_DEVCAP,
 832                                                 &cap);
 833
 834                if (!ret && (cap & PCI_EXP_DEVCAP_FLR))
 835                        pci_try_reset_function(vdev->pdev);
 836        }
 837
 838        return count;
 839}
 840
 841/* Permissions for PCI Express capability */
 842static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
 843{
 844        /* Alloc larger of two possible sizes */
 845        if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
 846                return -ENOMEM;
 847
 848        perm->writefn = vfio_exp_config_write;
 849
 850        p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 851
 852        /*
 853         * Allow writes to device control fields, except devctl_phantom,
 854         * which could confuse IOMMU, and the ARI bit in devctl2, which
 855         * is set at probe time.  FLR gets virtualized via our writefn.
 856         */
 857        p_setw(perm, PCI_EXP_DEVCTL,
 858               PCI_EXP_DEVCTL_BCR_FLR, ~PCI_EXP_DEVCTL_PHANTOM);
 859        p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
 860        return 0;
 861}
 862
 863static int vfio_af_config_write(struct vfio_pci_device *vdev, int pos,
 864                                int count, struct perm_bits *perm,
 865                                int offset, __le32 val)
 866{
 867        u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
 868
 869        count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 870        if (count < 0)
 871                return count;
 872
 873        /*
 874         * The FLR bit is virtualized, if set and the device supports AF
 875         * FLR, issue a reset_function.  Regardless, clear the bit, the spec
 876         * requires it to be always read as zero.  NB, reset_function might
 877         * not use an AF FLR, we don't have that level of granularity.
 878         */
 879        if (*ctrl & PCI_AF_CTRL_FLR) {
 880                u8 cap;
 881                int ret;
 882
 883                *ctrl &= ~PCI_AF_CTRL_FLR;
 884
 885                ret = pci_user_read_config_byte(vdev->pdev,
 886                                                pos - offset + PCI_AF_CAP,
 887                                                &cap);
 888
 889                if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP))
 890                        pci_try_reset_function(vdev->pdev);
 891        }
 892
 893        return count;
 894}
 895
 896/* Permissions for Advanced Function capability */
 897static int __init init_pci_cap_af_perm(struct perm_bits *perm)
 898{
 899        if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
 900                return -ENOMEM;
 901
 902        perm->writefn = vfio_af_config_write;
 903
 904        p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 905        p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
 906        return 0;
 907}
 908
 909/* Permissions for Advanced Error Reporting extended capability */
 910static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
 911{
 912        u32 mask;
 913
 914        if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
 915                return -ENOMEM;
 916
 917        /*
 918         * Virtualize the first dword of all express capabilities
 919         * because it includes the next pointer.  This lets us later
 920         * remove capabilities from the chain if we need to.
 921         */
 922        p_setd(perm, 0, ALL_VIRT, NO_WRITE);
 923
 924        /* Writable bits mask */
 925        mask =  PCI_ERR_UNC_UND |               /* Undefined */
 926                PCI_ERR_UNC_DLP |               /* Data Link Protocol */
 927                PCI_ERR_UNC_SURPDN |            /* Surprise Down */
 928                PCI_ERR_UNC_POISON_TLP |        /* Poisoned TLP */
 929                PCI_ERR_UNC_FCP |               /* Flow Control Protocol */
 930                PCI_ERR_UNC_COMP_TIME |         /* Completion Timeout */
 931                PCI_ERR_UNC_COMP_ABORT |        /* Completer Abort */
 932                PCI_ERR_UNC_UNX_COMP |          /* Unexpected Completion */
 933                PCI_ERR_UNC_RX_OVER |           /* Receiver Overflow */
 934                PCI_ERR_UNC_MALF_TLP |          /* Malformed TLP */
 935                PCI_ERR_UNC_ECRC |              /* ECRC Error Status */
 936                PCI_ERR_UNC_UNSUP |             /* Unsupported Request */
 937                PCI_ERR_UNC_ACSV |              /* ACS Violation */
 938                PCI_ERR_UNC_INTN |              /* internal error */
 939                PCI_ERR_UNC_MCBTLP |            /* MC blocked TLP */
 940                PCI_ERR_UNC_ATOMEG |            /* Atomic egress blocked */
 941                PCI_ERR_UNC_TLPPRE;             /* TLP prefix blocked */
 942        p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
 943        p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
 944        p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
 945
 946        mask =  PCI_ERR_COR_RCVR |              /* Receiver Error Status */
 947                PCI_ERR_COR_BAD_TLP |           /* Bad TLP Status */
 948                PCI_ERR_COR_BAD_DLLP |          /* Bad DLLP Status */
 949                PCI_ERR_COR_REP_ROLL |          /* REPLAY_NUM Rollover */
 950                PCI_ERR_COR_REP_TIMER |         /* Replay Timer Timeout */
 951                PCI_ERR_COR_ADV_NFAT |          /* Advisory Non-Fatal */
 952                PCI_ERR_COR_INTERNAL |          /* Corrected Internal */
 953                PCI_ERR_COR_LOG_OVER;           /* Header Log Overflow */
 954        p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
 955        p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
 956
 957        mask =  PCI_ERR_CAP_ECRC_GENE |         /* ECRC Generation Enable */
 958                PCI_ERR_CAP_ECRC_CHKE;          /* ECRC Check Enable */
 959        p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
 960        return 0;
 961}
 962
 963/* Permissions for Power Budgeting extended capability */
 964static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
 965{
 966        if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
 967                return -ENOMEM;
 968
 969        p_setd(perm, 0, ALL_VIRT, NO_WRITE);
 970
 971        /* Writing the data selector is OK, the info is still read-only */
 972        p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
 973        return 0;
 974}
 975
 976/*
 977 * Initialize the shared permission tables
 978 */
 979void vfio_pci_uninit_perm_bits(void)
 980{
 981        free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
 982
 983        free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
 984        free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
 985        free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
 986        free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
 987        free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
 988
 989        free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
 990        free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
 991}
 992
 993int __init vfio_pci_init_perm_bits(void)
 994{
 995        int ret;
 996
 997        /* Basic config space */
 998        ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
 999
1000        /* Capabilities */
1001        ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
1002        ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
1003        ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
1004        cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1005        ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
1006        ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
1007
1008        /* Extended capabilities */
1009        ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1010        ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1011        ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1012
1013        if (ret)
1014                vfio_pci_uninit_perm_bits();
1015
1016        return ret;
1017}
1018
1019static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
1020{
1021        u8 cap;
1022        int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
1023                                                 PCI_STD_HEADER_SIZEOF;
1024        cap = vdev->pci_config_map[pos];
1025
1026        if (cap == PCI_CAP_ID_BASIC)
1027                return 0;
1028
1029        /* XXX Can we have to abutting capabilities of the same type? */
1030        while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
1031                pos--;
1032
1033        return pos;
1034}
1035
1036static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
1037                                int count, struct perm_bits *perm,
1038                                int offset, __le32 *val)
1039{
1040        /* Update max available queue size from msi_qmax */
1041        if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1042                __le16 *flags;
1043                int start;
1044
1045                start = vfio_find_cap_start(vdev, pos);
1046
1047                flags = (__le16 *)&vdev->vconfig[start];
1048
1049                *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
1050                *flags |= cpu_to_le16(vdev->msi_qmax << 1);
1051        }
1052
1053        return vfio_default_config_read(vdev, pos, count, perm, offset, val);
1054}
1055
1056static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
1057                                 int count, struct perm_bits *perm,
1058                                 int offset, __le32 val)
1059{
1060        count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
1061        if (count < 0)
1062                return count;
1063
1064        /* Fixup and write configured queue size and enable to hardware */
1065        if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1066                __le16 *pflags;
1067                u16 flags;
1068                int start, ret;
1069
1070                start = vfio_find_cap_start(vdev, pos);
1071
1072                pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1073
1074                flags = le16_to_cpu(*pflags);
1075
1076                /* MSI is enabled via ioctl */
1077                if  (!is_msi(vdev))
1078                        flags &= ~PCI_MSI_FLAGS_ENABLE;
1079
1080                /* Check queue size */
1081                if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1082                        flags &= ~PCI_MSI_FLAGS_QSIZE;
1083                        flags |= vdev->msi_qmax << 4;
1084                }
1085
1086                /* Write back to virt and to hardware */
1087                *pflags = cpu_to_le16(flags);
1088                ret = pci_user_write_config_word(vdev->pdev,
1089                                                 start + PCI_MSI_FLAGS,
1090                                                 flags);
1091                if (ret)
1092                        return pcibios_err_to_errno(ret);
1093        }
1094
1095        return count;
1096}
1097
1098/*
1099 * MSI determination is per-device, so this routine gets used beyond
1100 * initialization time. Don't add __init
1101 */
1102static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1103{
1104        if (alloc_perm_bits(perm, len))
1105                return -ENOMEM;
1106
1107        perm->readfn = vfio_msi_config_read;
1108        perm->writefn = vfio_msi_config_write;
1109
1110        p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1111
1112        /*
1113         * The upper byte of the control register is reserved,
1114         * just setup the lower byte.
1115         */
1116        p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1117        p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1118        if (flags & PCI_MSI_FLAGS_64BIT) {
1119                p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1120                p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1121                if (flags & PCI_MSI_FLAGS_MASKBIT) {
1122                        p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1123                        p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1124                }
1125        } else {
1126                p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1127                if (flags & PCI_MSI_FLAGS_MASKBIT) {
1128                        p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1129                        p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1130                }
1131        }
1132        return 0;
1133}
1134
1135/* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
1136static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
1137{
1138        struct pci_dev *pdev = vdev->pdev;
1139        int len, ret;
1140        u16 flags;
1141
1142        ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1143        if (ret)
1144                return pcibios_err_to_errno(ret);
1145
1146        len = 10; /* Minimum size */
1147        if (flags & PCI_MSI_FLAGS_64BIT)
1148                len += 4;
1149        if (flags & PCI_MSI_FLAGS_MASKBIT)
1150                len += 10;
1151
1152        if (vdev->msi_perm)
1153                return len;
1154
1155        vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
1156        if (!vdev->msi_perm)
1157                return -ENOMEM;
1158
1159        ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1160        if (ret)
1161                return ret;
1162
1163        return len;
1164}
1165
1166/* Determine extended capability length for VC (2 & 9) and MFVC */
1167static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
1168{
1169        struct pci_dev *pdev = vdev->pdev;
1170        u32 tmp;
1171        int ret, evcc, phases, vc_arb;
1172        int len = PCI_CAP_VC_BASE_SIZEOF;
1173
1174        ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1175        if (ret)
1176                return pcibios_err_to_errno(ret);
1177
1178        evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1179        ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1180        if (ret)
1181                return pcibios_err_to_errno(ret);
1182
1183        if (tmp & PCI_VC_CAP2_128_PHASE)
1184                phases = 128;
1185        else if (tmp & PCI_VC_CAP2_64_PHASE)
1186                phases = 64;
1187        else if (tmp & PCI_VC_CAP2_32_PHASE)
1188                phases = 32;
1189        else
1190                phases = 0;
1191
1192        vc_arb = phases * 4;
1193
1194        /*
1195         * Port arbitration tables are root & switch only;
1196         * function arbitration tables are function 0 only.
1197         * In either case, we'll never let user write them so
1198         * we don't care how big they are
1199         */
1200        len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1201        if (vc_arb) {
1202                len = round_up(len, 16);
1203                len += vc_arb / 8;
1204        }
1205        return len;
1206}
1207
1208static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
1209{
1210        struct pci_dev *pdev = vdev->pdev;
1211        u32 dword;
1212        u16 word;
1213        u8 byte;
1214        int ret;
1215
1216        switch (cap) {
1217        case PCI_CAP_ID_MSI:
1218                return vfio_msi_cap_len(vdev, pos);
1219        case PCI_CAP_ID_PCIX:
1220                ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1221                if (ret)
1222                        return pcibios_err_to_errno(ret);
1223
1224                if (PCI_X_CMD_VERSION(word)) {
1225                        if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1226                                /* Test for extended capabilities */
1227                                pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1228                                                      &dword);
1229                                vdev->extended_caps = (dword != 0);
1230                        }
1231                        return PCI_CAP_PCIX_SIZEOF_V2;
1232                } else
1233                        return PCI_CAP_PCIX_SIZEOF_V0;
1234        case PCI_CAP_ID_VNDR:
1235                /* length follows next field */
1236                ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1237                if (ret)
1238                        return pcibios_err_to_errno(ret);
1239
1240                return byte;
1241        case PCI_CAP_ID_EXP:
1242                if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1243                        /* Test for extended capabilities */
1244                        pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1245                        vdev->extended_caps = (dword != 0);
1246                }
1247
1248                /* length based on version */
1249                if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1)
1250                        return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1251                else
1252                        return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1253        case PCI_CAP_ID_HT:
1254                ret = pci_read_config_byte(pdev, pos + 3, &byte);
1255                if (ret)
1256                        return pcibios_err_to_errno(ret);
1257
1258                return (byte & HT_3BIT_CAP_MASK) ?
1259                        HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1260        case PCI_CAP_ID_SATA:
1261                ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1262                if (ret)
1263                        return pcibios_err_to_errno(ret);
1264
1265                byte &= PCI_SATA_REGS_MASK;
1266                if (byte == PCI_SATA_REGS_INLINE)
1267                        return PCI_SATA_SIZEOF_LONG;
1268                else
1269                        return PCI_SATA_SIZEOF_SHORT;
1270        default:
1271                pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
1272                        dev_name(&pdev->dev), __func__, cap, pos);
1273        }
1274
1275        return 0;
1276}
1277
1278static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
1279{
1280        struct pci_dev *pdev = vdev->pdev;
1281        u8 byte;
1282        u32 dword;
1283        int ret;
1284
1285        switch (ecap) {
1286        case PCI_EXT_CAP_ID_VNDR:
1287                ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1288                if (ret)
1289                        return pcibios_err_to_errno(ret);
1290
1291                return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1292        case PCI_EXT_CAP_ID_VC:
1293        case PCI_EXT_CAP_ID_VC9:
1294        case PCI_EXT_CAP_ID_MFVC:
1295                return vfio_vc_cap_len(vdev, epos);
1296        case PCI_EXT_CAP_ID_ACS:
1297                ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1298                if (ret)
1299                        return pcibios_err_to_errno(ret);
1300
1301                if (byte & PCI_ACS_EC) {
1302                        int bits;
1303
1304                        ret = pci_read_config_byte(pdev,
1305                                                   epos + PCI_ACS_EGRESS_BITS,
1306                                                   &byte);
1307                        if (ret)
1308                                return pcibios_err_to_errno(ret);
1309
1310                        bits = byte ? round_up(byte, 32) : 256;
1311                        return 8 + (bits / 8);
1312                }
1313                return 8;
1314
1315        case PCI_EXT_CAP_ID_REBAR:
1316                ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1317                if (ret)
1318                        return pcibios_err_to_errno(ret);
1319
1320                byte &= PCI_REBAR_CTRL_NBAR_MASK;
1321                byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1322
1323                return 4 + (byte * 8);
1324        case PCI_EXT_CAP_ID_DPA:
1325                ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1326                if (ret)
1327                        return pcibios_err_to_errno(ret);
1328
1329                byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1330                return PCI_DPA_BASE_SIZEOF + byte + 1;
1331        case PCI_EXT_CAP_ID_TPH:
1332                ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1333                if (ret)
1334                        return pcibios_err_to_errno(ret);
1335
1336                if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1337                        int sts;
1338
1339                        sts = dword & PCI_TPH_CAP_ST_MASK;
1340                        sts >>= PCI_TPH_CAP_ST_SHIFT;
1341                        return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1342                }
1343                return PCI_TPH_BASE_SIZEOF;
1344        default:
1345                pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
1346                        dev_name(&pdev->dev), __func__, ecap, epos);
1347        }
1348
1349        return 0;
1350}
1351
1352static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
1353                                   int offset, int size)
1354{
1355        struct pci_dev *pdev = vdev->pdev;
1356        int ret = 0;
1357
1358        /*
1359         * We try to read physical config space in the largest chunks
1360         * we can, assuming that all of the fields support dword access.
1361         * pci_save_state() makes this same assumption and seems to do ok.
1362         */
1363        while (size) {
1364                int filled;
1365
1366                if (size >= 4 && !(offset % 4)) {
1367                        __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1368                        u32 dword;
1369
1370                        ret = pci_read_config_dword(pdev, offset, &dword);
1371                        if (ret)
1372                                return ret;
1373                        *dwordp = cpu_to_le32(dword);
1374                        filled = 4;
1375                } else if (size >= 2 && !(offset % 2)) {
1376                        __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1377                        u16 word;
1378
1379                        ret = pci_read_config_word(pdev, offset, &word);
1380                        if (ret)
1381                                return ret;
1382                        *wordp = cpu_to_le16(word);
1383                        filled = 2;
1384                } else {
1385                        u8 *byte = &vdev->vconfig[offset];
1386                        ret = pci_read_config_byte(pdev, offset, byte);
1387                        if (ret)
1388                                return ret;
1389                        filled = 1;
1390                }
1391
1392                offset += filled;
1393                size -= filled;
1394        }
1395
1396        return ret;
1397}
1398
1399static int vfio_cap_init(struct vfio_pci_device *vdev)
1400{
1401        struct pci_dev *pdev = vdev->pdev;
1402        u8 *map = vdev->pci_config_map;
1403        u16 status;
1404        u8 pos, *prev, cap;
1405        int loops, ret, caps = 0;
1406
1407        /* Any capabilities? */
1408        ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1409        if (ret)
1410                return ret;
1411
1412        if (!(status & PCI_STATUS_CAP_LIST))
1413                return 0; /* Done */
1414
1415        ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1416        if (ret)
1417                return ret;
1418
1419        /* Mark the previous position in case we want to skip a capability */
1420        prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1421
1422        /* We can bound our loop, capabilities are dword aligned */
1423        loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1424        while (pos && loops--) {
1425                u8 next;
1426                int i, len = 0;
1427
1428                ret = pci_read_config_byte(pdev, pos, &cap);
1429                if (ret)
1430                        return ret;
1431
1432                ret = pci_read_config_byte(pdev,
1433                                           pos + PCI_CAP_LIST_NEXT, &next);
1434                if (ret)
1435                        return ret;
1436
1437                if (cap <= PCI_CAP_ID_MAX) {
1438                        len = pci_cap_length[cap];
1439                        if (len == 0xFF) { /* Variable length */
1440                                len = vfio_cap_len(vdev, cap, pos);
1441                                if (len < 0)
1442                                        return len;
1443                        }
1444                }
1445
1446                if (!len) {
1447                        pr_info("%s: %s hiding cap 0x%x\n",
1448                                __func__, dev_name(&pdev->dev), cap);
1449                        *prev = next;
1450                        pos = next;
1451                        continue;
1452                }
1453
1454                /* Sanity check, do we overlap other capabilities? */
1455                for (i = 0; i < len; i++) {
1456                        if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1457                                continue;
1458
1459                        pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
1460                                __func__, dev_name(&pdev->dev),
1461                                pos + i, map[pos + i], cap);
1462                }
1463
1464                BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1465
1466                memset(map + pos, cap, len);
1467                ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1468                if (ret)
1469                        return ret;
1470
1471                prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1472                pos = next;
1473                caps++;
1474        }
1475
1476        /* If we didn't fill any capabilities, clear the status flag */
1477        if (!caps) {
1478                __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1479                *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1480        }
1481
1482        return 0;
1483}
1484
1485static int vfio_ecap_init(struct vfio_pci_device *vdev)
1486{
1487        struct pci_dev *pdev = vdev->pdev;
1488        u8 *map = vdev->pci_config_map;
1489        u16 epos;
1490        __le32 *prev = NULL;
1491        int loops, ret, ecaps = 0;
1492
1493        if (!vdev->extended_caps)
1494                return 0;
1495
1496        epos = PCI_CFG_SPACE_SIZE;
1497
1498        loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1499
1500        while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1501                u32 header;
1502                u16 ecap;
1503                int i, len = 0;
1504                bool hidden = false;
1505
1506                ret = pci_read_config_dword(pdev, epos, &header);
1507                if (ret)
1508                        return ret;
1509
1510                ecap = PCI_EXT_CAP_ID(header);
1511
1512                if (ecap <= PCI_EXT_CAP_ID_MAX) {
1513                        len = pci_ext_cap_length[ecap];
1514                        if (len == 0xFF) {
1515                                len = vfio_ext_cap_len(vdev, ecap, epos);
1516                                if (len < 0)
1517                                        return ret;
1518                        }
1519                }
1520
1521                if (!len) {
1522                        pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
1523                                __func__, dev_name(&pdev->dev), ecap, epos);
1524
1525                        /* If not the first in the chain, we can skip over it */
1526                        if (prev) {
1527                                u32 val = epos = PCI_EXT_CAP_NEXT(header);
1528                                *prev &= cpu_to_le32(~(0xffcU << 20));
1529                                *prev |= cpu_to_le32(val << 20);
1530                                continue;
1531                        }
1532
1533                        /*
1534                         * Otherwise, fill in a placeholder, the direct
1535                         * readfn will virtualize this automatically
1536                         */
1537                        len = PCI_CAP_SIZEOF;
1538                        hidden = true;
1539                }
1540
1541                for (i = 0; i < len; i++) {
1542                        if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1543                                continue;
1544
1545                        pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
1546                                __func__, dev_name(&pdev->dev),
1547                                epos + i, map[epos + i], ecap);
1548                }
1549
1550                /*
1551                 * Even though ecap is 2 bytes, we're currently a long way
1552                 * from exceeding 1 byte capabilities.  If we ever make it
1553                 * up to 0xFE we'll need to up this to a two-byte, byte map.
1554                 */
1555                BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1556
1557                memset(map + epos, ecap, len);
1558                ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1559                if (ret)
1560                        return ret;
1561
1562                /*
1563                 * If we're just using this capability to anchor the list,
1564                 * hide the real ID.  Only count real ecaps.  XXX PCI spec
1565                 * indicates to use cap id = 0, version = 0, next = 0 if
1566                 * ecaps are absent, hope users check all the way to next.
1567                 */
1568                if (hidden)
1569                        *(__le32 *)&vdev->vconfig[epos] &=
1570                                cpu_to_le32((0xffcU << 20));
1571                else
1572                        ecaps++;
1573
1574                prev = (__le32 *)&vdev->vconfig[epos];
1575                epos = PCI_EXT_CAP_NEXT(header);
1576        }
1577
1578        if (!ecaps)
1579                *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1580
1581        return 0;
1582}
1583
1584/*
1585 * For each device we allocate a pci_config_map that indicates the
1586 * capability occupying each dword and thus the struct perm_bits we
1587 * use for read and write.  We also allocate a virtualized config
1588 * space which tracks reads and writes to bits that we emulate for
1589 * the user.  Initial values filled from device.
1590 *
1591 * Using shared struct perm_bits between all vfio-pci devices saves
1592 * us from allocating cfg_size buffers for virt and write for every
1593 * device.  We could remove vconfig and allocate individual buffers
1594 * for each area requiring emulated bits, but the array of pointers
1595 * would be comparable in size (at least for standard config space).
1596 */
1597int vfio_config_init(struct vfio_pci_device *vdev)
1598{
1599        struct pci_dev *pdev = vdev->pdev;
1600        u8 *map, *vconfig;
1601        int ret;
1602
1603        /*
1604         * Config space, caps and ecaps are all dword aligned, so we could
1605         * use one byte per dword to record the type.  However, there are
1606         * no requiremenst on the length of a capability, so the gap between
1607         * capabilities needs byte granularity.
1608         */
1609        map = kmalloc(pdev->cfg_size, GFP_KERNEL);
1610        if (!map)
1611                return -ENOMEM;
1612
1613        vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1614        if (!vconfig) {
1615                kfree(map);
1616                return -ENOMEM;
1617        }
1618
1619        vdev->pci_config_map = map;
1620        vdev->vconfig = vconfig;
1621
1622        memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1623        memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1624               pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1625
1626        ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1627        if (ret)
1628                goto out;
1629
1630        vdev->bardirty = true;
1631
1632        /*
1633         * XXX can we just pci_load_saved_state/pci_restore_state?
1634         * may need to rebuild vconfig after that
1635         */
1636
1637        /* For restore after reset */
1638        vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1639        vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1640        vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1641        vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1642        vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1643        vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1644        vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1645
1646        if (pdev->is_virtfn) {
1647                *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1648                *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1649        }
1650
1651        if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
1652                vconfig[PCI_INTERRUPT_PIN] = 0;
1653
1654        ret = vfio_cap_init(vdev);
1655        if (ret)
1656                goto out;
1657
1658        ret = vfio_ecap_init(vdev);
1659        if (ret)
1660                goto out;
1661
1662        return 0;
1663
1664out:
1665        kfree(map);
1666        vdev->pci_config_map = NULL;
1667        kfree(vconfig);
1668        vdev->vconfig = NULL;
1669        return pcibios_err_to_errno(ret);
1670}
1671
1672void vfio_config_free(struct vfio_pci_device *vdev)
1673{
1674        kfree(vdev->vconfig);
1675        vdev->vconfig = NULL;
1676        kfree(vdev->pci_config_map);
1677        vdev->pci_config_map = NULL;
1678        kfree(vdev->msi_perm);
1679        vdev->msi_perm = NULL;
1680}
1681
1682/*
1683 * Find the remaining number of bytes in a dword that match the given
1684 * position.  Stop at either the end of the capability or the dword boundary.
1685 */
1686static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
1687                                           loff_t pos)
1688{
1689        u8 cap = vdev->pci_config_map[pos];
1690        size_t i;
1691
1692        for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1693                /* nop */;
1694
1695        return i;
1696}
1697
1698static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
1699                                 size_t count, loff_t *ppos, bool iswrite)
1700{
1701        struct pci_dev *pdev = vdev->pdev;
1702        struct perm_bits *perm;
1703        __le32 val = 0;
1704        int cap_start = 0, offset;
1705        u8 cap_id;
1706        ssize_t ret;
1707
1708        if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1709            *ppos + count > pdev->cfg_size)
1710                return -EFAULT;
1711
1712        /*
1713         * Chop accesses into aligned chunks containing no more than a
1714         * single capability.  Caller increments to the next chunk.
1715         */
1716        count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1717        if (count >= 4 && !(*ppos % 4))
1718                count = 4;
1719        else if (count >= 2 && !(*ppos % 2))
1720                count = 2;
1721        else
1722                count = 1;
1723
1724        ret = count;
1725
1726        cap_id = vdev->pci_config_map[*ppos];
1727
1728        if (cap_id == PCI_CAP_ID_INVALID) {
1729                perm = &unassigned_perms;
1730                cap_start = *ppos;
1731        } else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1732                perm = &virt_perms;
1733                cap_start = *ppos;
1734        } else {
1735                if (*ppos >= PCI_CFG_SPACE_SIZE) {
1736                        WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1737
1738                        perm = &ecap_perms[cap_id];
1739                        cap_start = vfio_find_cap_start(vdev, *ppos);
1740                } else {
1741                        WARN_ON(cap_id > PCI_CAP_ID_MAX);
1742
1743                        perm = &cap_perms[cap_id];
1744
1745                        if (cap_id == PCI_CAP_ID_MSI)
1746                                perm = vdev->msi_perm;
1747
1748                        if (cap_id > PCI_CAP_ID_BASIC)
1749                                cap_start = vfio_find_cap_start(vdev, *ppos);
1750                }
1751        }
1752
1753        WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1754        WARN_ON(cap_start > *ppos);
1755
1756        offset = *ppos - cap_start;
1757
1758        if (iswrite) {
1759                if (!perm->writefn)
1760                        return ret;
1761
1762                if (copy_from_user(&val, buf, count))
1763                        return -EFAULT;
1764
1765                ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1766        } else {
1767                if (perm->readfn) {
1768                        ret = perm->readfn(vdev, *ppos, count,
1769                                           perm, offset, &val);
1770                        if (ret < 0)
1771                                return ret;
1772                }
1773
1774                if (copy_to_user(buf, &val, count))
1775                        return -EFAULT;
1776        }
1777
1778        return ret;
1779}
1780
1781ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
1782                           size_t count, loff_t *ppos, bool iswrite)
1783{
1784        size_t done = 0;
1785        int ret = 0;
1786        loff_t pos = *ppos;
1787
1788        pos &= VFIO_PCI_OFFSET_MASK;
1789
1790        while (count) {
1791                ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1792                if (ret < 0)
1793                        return ret;
1794
1795                count -= ret;
1796                done += ret;
1797                buf += ret;
1798                pos += ret;
1799        }
1800
1801        *ppos += done;
1802
1803        return done;
1804}
1805